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Abstract. Finding appropriate values for the parameters of an algo-
rithm is a challenging, important, and time consuming task. While typ-
ically parameters are tuned by hand, recent studies have shown that
automatic tuning procedures can effectively handle this task and often
find better parameter settings. F-Race has been proposed specifically for
this purpose and it has proven to be very effective in a number of cases.
F-Race is a racing algorithm that starts by considering a number of can-
didate parameter settings and eliminates inferior ones as soon as enough
statistical evidence arises against them. In this paper, we propose two
modifications to the usual way of applying F-Race that on the one hand,
make it suitable for tuning tasks with a very large number of initial
candidate parameter settings and, on the other hand, allow a significant
reduction of the number of function evaluations without any major loss
in solution quality. We evaluate the proposed modifications on a number
of stochastic local search algorithms and we show their effectiveness.

1 Introduction

The full potential of a parameterized algorithm cannot be achieved unless its
parameters are fine tuned. Often, practitioners tune the parameters using their
personal experience guided by some rules of thumb. Usually, such a procedure is
tedious and time consuming and, hence, it is not surprising that some authors
say that 90% of the total time needed for developing an algorithm is dedicated
to find the right parameter values [I]. Therefore, an effective automatic tuning
procedure is an absolute must by which the computational time and the human
intervention required for tuning can be significantly reduced. In fact, the selec-
tion of parameter values that drive heuristics is itself a scientific endeavor and
deserves more attention than it has received in the operations research litera-
ture [2]. In this context, few procedures have been proposed in the literature.
F-Race [3/] is one among them and has proven to be successful and useful in a
number of tuning tasks [4U5I6IT].

Inspired by a class of racing algorithms proposed in the machine learning lit-
erature, F-Race evaluates a given set of parameter configurations sequentially on
a number of problem instances. As soon as statistical evidence is obtained that
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a candidate configuration is worse than at least another one, the inferior can-
didate is discarded and not considered for further evaluation. In all previously
published works using F-Race, the initial candidate configurations were obtained
through a full factorial design. This design is primarily used to select the best
parameter configuration from a relatively small set of promising configurations
that the practitioner has already established. Nevertheless, the main difficulty
of this design is that, if the practitioner is confronted with a large number of
parameters and a wide range of possible values for each parameter, the number
of initial configurations becomes quite large. In such cases, the adoption of the
full factorial design within F-Race can become impractical and computationally
prohibitive. In order to tackle this problem, we propose two modifications to the
original F-Race approach. The first consists in generating configurations by ran-
dom sampling. Notwithstanding the simplicity, the empirical results show that
this approach can be more effective—in the context of tuning tasks—than the
adoption of a full factorial design. However, if the number of parameters is large,
this methodology might need a large number of configurations to achieve good
results. We alleviate this problem taking inspiration from model-based search
techniques [8]. The second procedure uses a probabilistic model defined on the
set of all possible parameter configurations and at each iteration, a small set of
parameter configurations is generated according to the model. Elite configura-
tions selected by F-Race are then used to update the model in order to bias the
search around the high quality parameter configurations.

The paper is organized as follows: In Section 2, we introduce the proposed
approach and we present some empirical results in Section 3. We discuss some
related work in Section 4, and conclude the paper in Section 5.

2 Sampling F-Race and Iterative F-Race for Tuning
Stochastic Local Search Algorithms

For a formal definition of the problem of tuning SLS algorithms, we follow Bi-
rattari et al. [3]. The problem is defined as a 6 tuple (0,1, Pr, P.,t,C), where
O is the finite set of candidate configurations, I is the possibly infinite set of
problem instances, P; is a probability measure over the set I, ¢ is a function
associating to every instance the computation time that is allocated to it, Po is
a probability measure over the set of all possible values for the cost of the best
solution found in a run of a configuration # € © on an instance i, C(f) is the
criterion that needs to be optimized with respect to : the solution of the tuning
problem consists in finding a configuration 6* such that

0" = arg mein C(9). (1)

Typically, C(6) is an expected value where the expectation is considered with
respect to both Py and Pc. The main advantage of using expectation is that it
can be effectively and reliably estimated with Monte Carlo procedures. In this
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Fig. 1. Visual representation of a typical trace of F-Race giving the number of surviving
configurations in dependence of the number of instances seen. The z-azis represents the
number of candidate configurations that are still in the race and the y-azis represents
the number of instances that has been used for evaluating the configurations. As the
evaluation proceeds, F-Race focuses more and more on the promising configurations.

paper, we focus on the minimization of the expected value of the solution cost
and the criterion is given as:

c0) = Ero[e0.d)] = [ [ i) arotalon amr. @

where, ¢;(0,1) is a random variable that represents the cost of the best solution
found by running configuration € on instance i for ¢ seconds. The integration is
taken in the Lebesgue sense and the integrals are estimated in a Monte Carlo
fashion on the basis of a so-called tuning set of instances. It is straightforward
to use criteria other than the expected value such as inter-quartile range of
the solution cost. In the case of decision problems, the practitioner might be
interested in minimizing the run-time of an algorithm, a task that can be handled
in a straightforward way by F-Race.

F-Race is inspired by a class of racing algorithms proposed in the machine
learning literature for tackling the model selection problem [QI0]. In F-Race, as
in other racing algorithms, a set of given candidate configurations are sequen-
tially evaluated on a number of tuning instances. As soon as sufficient evidence
is gathered that a candidate configuration is worse than at least another one,
the former is discarded from the race and is not further evaluated. The race
terminates when either one single candidate configuration remains, or the avail-
able budget of computation time is used. The peculiarity of F-Race compared
to other racing algorithms is the adoption of the Friedman two-way analysis of
variance by ranks [11], a nonparametric statistical test that appears particularly
suitable in the context of racing algorithms for the tuning task. The progress of
the F-Race procedure can be graphically illustrated as shown in Figure 1.

The main focus of this paper is the method by which the initial set of con-
figurations is obtained in F-Race: while F-Race does not specify how © is de-
fined, in most of the studies on F-Race, the configurations are defined using a
full factorial design (FFD). In the simplest case, this is done as follows: Let M =
{Mi,..., Mg} be the set of parameters that need to be tuned whose ranges are



Improvement Strategies for the F-Race Algorithm 111

given by (minyg, maxy), for k = 1,...,d, where minj and maxy, are the minimum
and maximum values of the parameter My, respectively. For each element in M,
the practitioner has to choose a certain number of values; each possible combina-
tion of these parameter values leads to one unique configuration and the set of all
possible combinations forms the initial set of configurations. If [, values are chosen
for My, then the number of initial configurations is szl l;. When each parame-

ter takes [ values, then HZ:1 I = 1%; that is, the number of configurations grows
exponentially with respect to the number of parameters. As a consequence, even
a reasonable number of possible values for each parameter makes the adoption of
a full factorial design impractical and computationally prohibitive.

2.1 Sampling F-Race

A simple way to overcome the shortcomings of FFD is sampling. This means
that the elements of © are sampled according to a given probability measure Py
defined on the space X of parameter values. If a priori knowledge is available
on the effect of the parameters and on their interactions, this knowledge can
be used to shape the probability measure Px and therefore to suitably bias the
sampling of the initial configurations. On the other hand, if no a priori knowl-
edge on the parameter values is available, except the boundary constraints, then
each possible value in the available range for each parameter should be given
equal probability of being selected in sampling. In this case, Px is a d-variate
uniform distribution, which is factorized by a product of d univariate indepen-
dent uniform distributions. A sample from the d-variate uniform distribution
is a vector corresponding to a configuration 6 such that a value zj in the vec-
tor is sampled from the univariate independent uniform distribution parame-
terized by (ming, maxy). We call this strategy random sampling design (RSD).
The F-Race procedure is then applied to the set of sampled configurations. We
denote this procedure as RSD/F-Race. It should be noted that the performance
of the winning configuration is greatly determined by the number of sampled
configurations, Ny,qz-

2.2 Iterative F-Race

RSD/F-Race can identify promising configurations in the search space. However,
finding the best configuration from the promising regions is often a difficult
task. In order to address this issue, we propose iterative F-Race (I/F-Race),
a supplementary mechanism to the original F-Race approach. It is an iterative
procedure in which each iteration consists in first defining a probability mea-
sure over the parameter space using promising configurations obtained from the
previous iteration, then generating configurations that are distributed according
to the newly defined probability measure, and finally applying F-Race on the
generated configurations. This approach falls under the general framework of
model-based search [§].

The way in which the probability measure is defined at each iteration plays a
crucial role in biasing the search towards regions containing high quality configu-
rations. The main issues in the search bias are the choice of the distribution and
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search intensification. For what concerns the distribution, there exist a num-
ber of choices. Here, we adopt a d-variate normal distribution parameterized
by mean vector and covariance matrix. In order to intensify the search around
the promising configurations, a d-variate normal distribution is defined on each
surviving configuration from the previous iteration such that the distribution is
centered at the values of the corresponding configuration. Moreover, the spread
of the normal densities given by the covariance matrix is gradually reduced at
each iteration.

This paper focuses on a scenario in which the practitioner does not have
any a priori knowledge on the parameter values. Hence, we assume that the
values taken by the parameters are independent, that is, knowing a value for a
particular parameter does not give any information on the values taken by the
other parameters. Consequently, the d-variate normal distribution is factorized
by a product of d univariate independent normal densities parameterized by
w=(p1,...,uq) and 0 = (01,...,04). At each iteration, the standard deviation
vector o of the normal densities is reduced heuristically using the idea of volume
reduction: Suppose that N; configurations survive after a given iteration; we
denote the surviving configurations as 6, = (z§,...,23), for s=1,...,N,;. At a
given iteration r, let V,. be the total volume of the d-dimensional sampling region
bounded by (p;" + 037), for k =1,...,d; for iteration r+ 1, in order to intensify
the search, we reduce the volume of the sampling region by a factor equal to
the number of sample configurations allowed for each iteration, N,,q.; therefore
Vi1 = V,/Npas, from which after some basic mathematical transformation,
we have:

1 1/d
op =R < ) fork=1,...,d, (3)
Nmaw

where RZ"""“ is set to standard deviation of the normal distribution component
from which z{ has been sampled from the previous iteration. In simple terms, the
adoption of Equation Bl allows I/F-Race to reduce the range of each parameter
that falls around one standard deviation from the mean at a constant rate of
(1/Nmaw)1/d for each iteration—the larger the value of N4, the higher the
rate of volume reduction. Though one could use more advanced techniques to
update the distribution as suggested by the model-based search framework [§],
we have adopted the above described heuristic way of intensifying search due to
its simplicity.

Note that in the first iteration, a d-variate uniform distribution is used as the
probability measure, thus for the following iteration, Rzp”"’ is set to the half of
range, that is, (max, — miny)/2, where maxy, and miny, are parameters of the
uniform distribution component from which z; has been sampled, respectively.

The proposed approach adopts a strategy in which the number of configura-
tions drawn from a d-variate normal distribution defined on a surviving config-
uration is inversely proportional to the configurations’ expected solution cost.
Recall that we are faced with the minimization of the expected solution cost. To
do so, a selection probability is defined: the surviving configurations are ranked
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according to their expected solution costs and the probability of selecting a d-
variate normal distribution defined on a configuration with rank z is given by

Ny —2z+1

A configuration is obtained by first choosing a d-variate normal distribution
according to Equation ] and then sampling from the chosen distribution. This
is repeated until N,,., configurations are sampled.

Implementation Specific Details. In order to guarantee that I/F-Race does
a specific minimum number of iterations and that it has a minimum number
of survivors, we have modified F-Race slightly to stop it prematurely. At each
iteration, the race is stopped if one of the following conditions is true:

— when N,,;,, configurations remain;
— when a certain amount of computational budget, C By, is used;
— when the configurations in the race are evaluated on at least I,,4, instances.

Though these modifications introduce 3 parameters, they are set in a reason-
able and straightforward way with respect to the total computational budget
CB when the algorithm starts: (i) CBp is set to CB/5: this setting allows
I/F-Race to perform at least five iterations; (ii) Ny is set to d: this setting
enables I/F-Race to search in a number of promising regions rather than just
concentrating on a single region; (iii) Ipnaz is set to 2 -+ (CBpmin/Nmaz): if none
of the configurations is eliminated from the race then each configuration has
been evaluated on CByipn/Nmas instances; hence, twice this value seems to be
a reasonable upper bound.

The maximum number N,,,, of configurations allowed for each race is kept
constant throughout the procedure. Moreover, the Ny configurations that have
survived the race are allowed to compete with the newly sampled configurations.
Therefore, N,,q.: — Ns configurations are sampled anew at each iteration.

The order in which the instances are given to the race is randomly shuffled
for each iteration. Since the surviving configurations of each race are allowed to
enter into the next race, their results could be reused if the configuration has
already been evaluated on a particular instance. However, since we do not want
to bias I/F-Race in the empirical study, we did not use this possibility here.

The boundary constraints are handled in an explicit way. We adopt a method
that consists in assigning the boundary value if the sampled value is outside
the boundary. The rationale behind this adoption is to allow the exploration
of values that lay at the boundary. In the case of parameters that take integer
values, the value assigned to each integer parameter in the entire procedure is
rounded off to the nearest integer.

3 Experiments

In this section, we study the proposed RSD/F-Race and I/F-Race using three ex-
amples. Though any parameterized algorithm may be tuned, all three examples
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concern the tuning of stochastic local search algorithms [12]: (i) tuning
MAX — MZIN ant system (MMAS) [13], a particular ant colony optimization
algorithm, for a class of instances of the TRAVELING SALESMAN PROBLEM (TSP),
(ii) tuning estimation-based local search, a new local search algorithm for stochas-
tic combinatorial optimization problems [I4], for a class of instances of the PROB-
ABILISTIC TRAVELING SALESMAN PROBLEM (PTSP), and (iii) tuning a simulated
annealing algorithm for a class of instances of the VEHICLE ROUTING PROBLEM
WITH STOCHASTIC DEMANDS (VRP-SD). The primary goal of these examples is to
show that RSD/F-Race and I/F-Race can significantly reduce the computational
budget required for tuning.

We compare RSD/F-Race and I/F-Race with an implementation of F-Race
that uses a full factorial design (FFD). For RSD/F-Race and I/F-Race we make
the assumption that the a prior: knowledge on the parameter values is not
available. In the case of FFD, we consider two variants:

1. FFD that uses a priori knowledge; a parameter My is allowed to take [y
values, for k = 1,...,d, where [} values are chosen according to the a pri-
ori knowledge available on the parameter values; we denote this variant by
FFDA/F-Race.

2. FFD that uses random values: a parameter My is allowed to take [ values,
for k=1,...,d, where [} values are chosen randomly; we denote this variant
by FFDgr/F-Race. Note that the number of configurations in this variant is
the same as that of FFDa/F-Race. This serves as a yardstick to analyze the
usefulness of the a priori knowledge. The rationale behind the adoption of
this yardstick is that if one just takes random values for FFD and achieves
better results then FFDj /F-Race, then we can conjecture that the available
a priori knowledge is either not accurate or simply not useful, at least in the
examples that we consider here.

The minimum number of steps allowed in F-Race for all algorithms before ap-
plying the Friedman test is set to 5 as proposed in [4].

The maximum computational budget of FFDp/F-Race and FFDg/F-Race are
set to 10 times the number of initial configurations. The rationale behind this
choice is that, if none of the configurations is eliminated, FFDa/F-Race and
FFDR/F-Race evaluate all the configurations on at least 10 instances. This budget
is also given for RSD/F-Race and I/F-Race. In order to force RSD/F-Race to
use the entire computational budget, the number of configurations is set to
one-sixth of the computational budget. Since I/F-Race needs to perform at
least five F-races with the same budget as that of RSD/F-Race, the number
of initial configurations in each F-Race run by I/F-Race is set to one-fifth of
the number of configurations given to RSD/F-Race. Moreover, in order to study
the effectiveness of RSD/F-Race and I/F-Race under strong budget constraints,
the computational budget is reduced by a factor of two, four, and eight. Note
that, in these cases, the number of configurations in RSD/F-Race and I/F-Race
is set according to the allowed budget using the same rule as described before.

Each tuning algorithm is allowed to perform 10 trials and the order in which
the instances are given to an algorithm is randomly shuffled for each trial.



Improvement Strategies for the F-Race Algorithm 115

All tuning algorithms were implemented and run under R version 2.4 and we
used a public domain implementation of F-Race in R which is freely available for
download [15]. MMAST and estimation-based local search were implemented
in C and compiled with gcc, version 3.4. Simulated annealing for VRP-SD is
implemented in C++. Experiments were carried out on AMD Opteron™244 1.75
GHz processors with 1 MB L2-Cache and 2 GB RAM, running under the Rocks
Cluster Distribution 4.2 GNU/Linux.

In order to quantify the effectiveness of each algorithm, we study the expected
solution cost of the winning configuration C(6*), where the expectation is taken
with respect to the set of all trials and the set of all test instances. We report the
expected solution cost of each algorithm, measured as the percentage deviation
from a reference cost, which is given by the average over C(6*) obtained by each
algorithm. The adoption of reference cost allows us to compare the expected
solution cost of different algorithms more directly.

In order to test whether the observed differences between the expected solution
costs of different tuning algorithms are significant in a statistical sense, a random
permutation test is adopted. The level of significance at which we reject the null
hypothesis is 0.05; two sided p-value is computed for each comparison.

3.1 Tuning MMAS for TSP
In this study, we tune 6 parameters of MMAS:

1. relative influence of pheromone trails, «;

2. relative influence of heuristic information, [;

3. pheromone evaporation rate, p;

4. parameter used in computing the minimum pheromone trail value 7,,,in, 7,
which is given by Taz/ (7 * instance size);

5. number of ants, m;

6. number of neighbors used in the solution construction phase, nn.

In FFDs/F-Race and FFDR/F-Race, each parameter is allowed to take 3 values.
The parameter values in FFDa/F-Race are set as follows: a € {0.75, 1.00, 1.50},
£ € {1.00, 3.00, 5.00}, p € {0.01, 0.02, 0.03}, v € {1.00, 2.00, 3.00}, m € {500,
750, 1000}, and nn € {20, 30, 40}. These values are chosen reasonably close to
the values proposed in [I6]. Note that the values are chosen from the version
without the local search. Table [l shows the ranges of the parameters considered
for RSD/F-Race and I/F-Race. The computational time allowed for evaluating
a configuration on an instance is set to 20 seconds. Instances are generated with
the DIMACS instance generator [I7]. We used uniformly distributed Euclidean
instances of size 750; 1000 instances were generated for tuning; 300 other in-
stances were generated for evaluating the winning configuration. Table [2] shows

1 R is a language and environment for statistical computing that is freely available
under the GNU GPL license at http://www.r-project.org/

2 We used the ACOTSP package, which is a public domain software that provides an im-
plementation of various ant colony optimization algorithms applied to the symmetric
TSP. The package available at: http://www.aco-metaheuristic.org/aco-code/
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Table 1. Ranges of the parameter values considered for tuning MMAS for TSP with
RSD/F-Race and I/F-Race

parameter range
0.0, 1.5]
[0.0,5.0]
0.0, 1.0]
[0.01, 5.00]
[1,1200]
[5,50]

S3I2vwe

Table 2. Computational results for tuning MMAS for TSP. The column entries with
the label per.dev shows the percentage deviation of each algorithms’ expected solution
cost from the reference cost: +x means that the expected solution cost of the algorithm
is % more than the reference cost and —x means that the expected solution cost of
the algorithm is % less than the reference cost. The column entries with the label
with max.bud shows the maximum number of evaluations given to each algorithm and
the column with the label usd.bud shows the average number of evaluations used by
each algorithm.

algo per.dev max.bud usd.bud
FFDRr/F-Race +13.45 7290 5954
FFDA /F-Race +11.13 7290 5233
RSD/F-Race —2.69 7290 7232
I/F-Race —3.92 7290 7181
RSD/F-Race —2.55 3645 3275
I/F-Race —3.84 3645 3564
RSD/F-Race —2.51 1822 1699
I/F-Race —3.66 1822 1793
RSD/F-Race —2.17 911 823
I/F-Race —3.23 911 894

the percentage deviation of each algorithms’ expected solution cost from the
reference cost, the maximum budget allowed for each algorithm and the average
number of evaluations used by each algorithm.

From the results, we can see that I/F-Race is very competitive: under equal
computational budget, the expected solution cost of I/F-Race is approximately
17% and 15% less than that of FFDr/F-Race and FFDA/F-Race, respectively
(the observed differences are significant according to the random permutation
test). On the other hand, the expected solution cost of RSD/F-Race is also very
low. However, I/F-Race reaches an expected cost that is about 1% less than
that of RSD/F-Race. Indeed, the observed difference is significant in a statistical
sense. Regarding the budget, FFDr/F-Race and FFD, /F-Race use only 80% and
70% of the maximum budget. This early termination of the F-Race is attributed
to the adoption of FFD: since, there are rather few possible values for each pa-
rameter, the inferior configurations are identified and discarded within few steps.
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Table 3. Ranges of the parameter values considered for tuning estimation-based local
search for PTSP with RSD/F-Race and I/F-Race

parameter range

P1 [0.0, 1.0]
w  [0,100]
p2  [0.0,1.0]

However, the poor performance of FFDr/F-Race and FFDp/F-Race is not only
attributable to the fact that they do not use the budget effectively: Given only
half of the computational budget (a maximum budget of 3645), RSD/F-Race
and I/F-Race achieve expected solution costs that are still 17% and 15% lower
than FFDg/F-Race and FFDa /F-Race, respectively (the observed differences are
significant according to the random permutation test). Another important ob-
servation is that, in the case of I/F-Race and RSD/F-Race, reducing the budget
does not degrade the effectiveness to a large extent. Furthermore, in all these
reduced budget cases, I/F-Race achieves an expected solution cost which is
approximately 1% less than that of RSD/F-Race (the observed differences are
significant according to the random permutation test).

3.2 Tuning Estimation-Based Local Search for PTSP

Estimation-based local search is an iterative improvement algorithm that makes
use of the 2-exchange and node-insertion neighborhood relation, where the delta
evaluation is performed using empirical estimation techniques [I4]. In order to
increase the effectiveness of this algorithm, a variance reduction technique called
importance sampling has been adopted. Three parameters that need to be tuned
in this algorithm are:

1. shift probability for 2-exchange moves, p1;
2. number of nodes allowed for shift in 2-exchange moves, w;
3. shift probability for node-insertion moves, ps.

Since this is a recently developed algorithm, a priori knowledge is not available
on the parameter values. Thus, in FFDp/F-Race, the values are assigned by
discretization: for each parameter, the range is discretized as follows: p; = po
€ {0.16, 0.33, 0.50, 0.66, 0.83}, and w = {8, 17, 25, 33, 42}. Table Bl shows the
ranges of the parameters considered for RSD/F-Race and I/F-Race. Estimation-
based local search is allowed to run until it reaches a local optimum. Instances
are generated as described in [I4]: we used clustered Euclidean instances of size
1000; 800 instances were generated for tuning; 800 more instances were generated
for evaluating the winning configuration.

The computational results show that the difference between the expected cost
of the solutions obtained by different algorithms exhibits a trend similar to the
one observed in the TSP experiments. However, the percentage deviations from
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Table 4. Computational results for tuning estimation-based local search for PTSP.
The column entries with the label per.dev shows the percentage deviation of each
algorithms’ expected solution cost from the reference cost: +x means that the expected
solution cost of the algorithm is % more than the reference cost and —z means that the
expected solution cost of the algorithm is % less than the reference cost. The column
entries with the label with max.bud shows the maximum number of evaluations given
to each algorithm and the column with the label usd.bud shows the average number
of evaluations used by each algorithm.

algo per.dev max.bud usd.bud
FFDRr/F-Race +1.45 1250 1196
FFDA /F-Race +1.52 1250 1247
RSD/F-Race —0.62 1250 1140
I/F-Race —0.53 1250 1232
RSD/F-Race —0.17 625 615
I/F-Race —0.52 625 618
RSD/F-Race —0.06 312 307
I/F-Race —0.58 312 278
RSD/F-Race —0.37 156 154
I/F-Race —0.11 156 150

the reference cost are relatively small: under equal computational budget, the
expected solution cost of I/F-Race and RSD/F-Race are approximately 2% less
than that of FFDr/F-Race and FFDA /F-Race, respectively. Note that this differ-
ence is significant according to a random permutation test. Though RSD/F-Race
obtains an expected solution cost which is 0.01% less than that of I/F-Race,
the random permutation test does not reject the null hypothesis. The overall
low percentage deviation between algorithms is attributed to the fact that the
estimation based local search is not extremely sensitive to the parameter values:
there are only 3 parameters and interactions among them are quite low. As a
consequence, the tuning task becomes relatively easy (as in the case of the pre-
vious task of tuning of MMAS). This can be easily seen with the used budget
of FFDr/F-Race: if the task of finding good configurations were difficult, the
race would have terminated early. Yet, this is not the case and almost the entire
computational budget has been used.

The numerical results on the budget constraints show that both RSD/F-Race
and I/F-Race are indeed effective. Given only one-eighth of the computational
budget (a maximum budget of 156 evaluations), RSD/F-Race and I/F-Race
achieve expected solution costs which are approximately 1.4% less than that of
FFDRr/F-Race and FFD4 /F-Race. This observed difference is significant according
to the random permutation test. However, in this case, the random permutation
test cannot reject the null hypothesis that RSD/F-Race and I/F-Race achieve ex-
pected solution costs that are equivalent. On the other hand, given one-half and
one-fourth of the computational budget, I/F-Race achieves an expected solution
cost that is approximately 0.4% less that of RSD/F-Race (observed differences
are significant according to the random permutation test).
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Table 5. Ranges of the parameter values considered for tuning a simulated annealing
algorithm for VRP-SD with RSD/F-Race and I/F-Race

parameter range

! [0.0,1.0]

q [1,100]

r [1,100]

F [0.01,1.00]

Table 6. Computational results for tuning a simulated annealing algorithm for VRP-
SD. The column entries with the label per.dev shows the percentage deviation of
each algorithms’ expected solution cost from the reference cost: +x means that the
expected solution cost of the algorithm is % more than the reference cost and —zx
means that the expected solution cost of the algorithm is % less than the reference
cost. The column entries with the label with max.bud shows the maximum number of
evaluations given to each algorithm and the column with the label usd.bud shows the
average number of evaluations used by each algorithm.

algo per.dev max.bud usd.bud
FFDr/F-Race +0.02 810 775
FFDA /F-Race +0.11 810 807
RSD/F-Race —0.05 810 804
I/F-Race —0.03 810 797
RSD/F-Race —0.03 405 399
I/F-Race —0.05 405 399
RSD/F-Race +0.02 202 200
I/F-Race —0.01 202 200
RSD/F-Race +0.02 101 101
I/F-Race +0.02 101 100

3.3 Tuning a Simulated Annealing Algorithm for VRP-SD
In this study, 4 parameters of a simulated annealing algorithm have been tuned:

1. cooling rate, «;

2. a parameter used to compute the number of iterations after which the process
of reheating can be applied, g;

3. another parameter used to compute the number of iterations after which the
process of reheating can be applied, r;

4. parameter used in computing the starting temperature value, f;

In FFDA /F-Race and FFDR/F-Race, each parameter is allowed to take 3 values
and in the former, the values are chosen close to the values adopted in [7]: o €
{0.25, 0.50, 0.75}, ¢ € {1, 5, 10}, r € {20, 30, 40}, f € {0.01, 0.03, 0.05}. Table[H
shows the ranges of the parameters considered for RSD/F-Race and I/F-Race.
In all algorithms, the computational time allowed for evaluating a configuration
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on an instance is set to 10 seconds. Instances are generated as described in [7];
400 instances were generated for tuning; 200 more instances were generated for
evaluating the winning configuration.

The computational results show that, similar to the previous example, the tun-
ing task is rather easy. Concerning the expected solution cost, the randomized
permutation test cannot reject the null hypothesis that the different algorithms
produce equivalent results. However, it should be noted that the main advan-
tage of RSD/F-Race and I/F-Race is their effectiveness under strong budget
constraints: RSD/F-Race and I/F-Race, given only one-eighth of the computa-
tional budget, achieve expected solution costs that are not significantly different
from FFDR/F-Race and FFDA /F-Race.

4 Related Work

The problem of tuning SLS algorithm is essentially a mixed variable stochas-
tic optimization problem. Even though a number of algorithms exist for mixed
variable stochastic optimization, it is quite difficult to adopt them for tuning.
The primary obstacle is that, since these algorithms have parameters, tuning
them is indeed paradoxical. Few procedures have been developed specifically
for tuning algorithms: Kohavi and John [I8] proposed an algorithm that makes
use of best-first search and cross-validation for automatic parameter selection.
Boyan and Moore [19] introduced a tuning algorithm based on machine learning
techniques. The main emphasis of these two works is given only to the pa-
rameter value selection; there is no empirical analysis of these algorithms when
applied to large number of parameters that have wide range of possible val-
ues. Audet and Orban [20] proposed a pattern search technique called mesh
adaptive direct search that uses surrogate models for algorithmic tuning. In this
approach, a conceptual mesh is constructed around a solution and the search
for better solutions is done around this mesh. The surrogates are used to reduce
the computation time by providing an approximation to the original response
surface. Nevertheless, this approach has certain number of parameters and it
has never been used for tuning SLS algorithms. Adenso-Diaz and Laguna [I]
designed an algorithm called CALIBRA specifically for fine tuning SLS algo-
rithms. It uses Taguchi’s fractional factorial experimental designs coupled with
local search. In this work, the authors explicitly mention that tuning a wide
range of possible values for parameters is feasible with their algorithm. How-
ever, a major limitation of this algorithm is that one cannot use it for tuning
SLS algorithms with more than five parameters. Beielstein et al. [21] proposed
an approach to reduce the difficulty of the tuning task. This approach con-
sists in first identifying the parameters that have a significant impact on the
algorithms’ performance through sensitivity analysis and then tuning them. Re-
cently, Hutter et al. [22] proposed an iterated local search algorithm for param-
eter tuning called paramILS. This algorithm is shown to be very effective and
most importantly, it can be used to tune algorithms with a large number of
parameters.
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5 Conclusions and Future Work

We proposed two supplementary procedures for F-Race that are based on random
sampling, RSD/F-Race, and model-based search techniques, I/F-Race. While the
adoption of full factorial design in the F-Race framework is impractical and compu-
tationally prohibitive when used to identify the best from a large number of param-
eter configurations, RSD/F-Race and I/F-Race are useful in such cases. Since the
proposed approaches are quite effective under strong budget constraints, they can
reduce significantly the computational time required for tuning. However, based on
the case studies, we conjecture that the expected solution cost obtained by
RSD/F-Race and I/F-Raceis mainly attributed to the difficulty of the tuning task.

Concerning the future research, we will extend our approach to include cate-
gorical variables. Regarding I/F-Race, we will also investigate the adoption of
distributions like Cauchy and some advanced techniques for updating the distri-
bution. Finally, from the case studies that were made in the paper, we speculate
that the difficulty of the tuning task depends on a number of factors such as
the sensitivity of the parameters that need to be tuned and problem instances
that need to be tackled. In this context, search space analysis on the parameter
values is an area to investigate further.
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