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Abstract We study the psychophysiological state of humans when exposed to robot groups
of varying sizes. In our experiments, 24 participants are exposed sequentially to groups of
robots made up of 1, 3 and 24 robots. We measure both objective physiological metrics (skin
conductance level and heart rate), and subjective self-reported metrics (from a psychological
questionnaire). These measures allow us to analyse the psychophysiological state (stress,
anxiety, happiness) of our participants. Our results show that the number of robots to which
a human is exposed has a significant impact on the psychophysiological state of the human
and that higher numbers of robots provoke a stronger response.

Keywords Swarm robotics - Human—swarm interaction - Psychophysiology

1 Introduction

In the near future, swarms of autonomous robots are likely to be used in an array of pro-
fessional and domestic tasks (Dorigo et al. 2013, 2014). An increasing body of research
is devoted to studying what form interaction between humans and robot might take (e.g.,
Kolling et al. 2013; Nagavalli et al. 2015; Nagi et al. 2014, 2015; Nunnally et al. 2012;
Podevijn et al. 2013). This nascent field is known as human—swarm interaction (HSI)—see
Kolling et al. (2016) for a comprehensive review of the human—swarm interaction literature.
However, no study to date has rigorously addressed the fundamental problem of how expo-
sure to a swarm of robots may affect the psychological state of a human being. Intuitively,
one might expect that exposure to large numbers of robots could provoke responses such
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as stress or anxiety. Such responses are common when exposed to swarms of insects (e.g.,
apiphobia is the phobia of bees, myrmecophobia is the phobia of ants).

The goal of this study is to address this basic question—is the psychology of human beings
affected by the number of robots to which they are exposed? Surprisingly, this fundamen-
tal question has been largely ignored in human—swarm interaction research to date. Some
research has considered the role of human psychology in human—swarm interaction. How-
ever, the focus of existing studies was on human workload, i.e., the mental effort required
to deal with robot swarms under various different circumstances (De la Croix and Egerst-
edt 2012; Pendleton and Goodrich 2013; Setter et al. 2015). Compared to these previous
studies, our contribution is twofold. Firstly, we answer a more basic question—what is the
psychological effect on a human being of being confronted with varying amounts of robots.
Secondly, we adopt a rigorous, objective methodology. The majority of previous studies have
used simulated robots, while our experiments use exclusively real robots (De la Croix and
Egerstedt 2012; Kolling et al. 2013; Nagavalli et al. 2015; Nunnally et al. 2012; Pendleton and
Goodrich 2013). More importantly, while previous studies have relied on subjective ques-
tionnaires to determine psychological effects, for the first time in the field of human—swarm
interaction we use objective psychophysiological measures.

In our study, we measure the psychophysiological state of 24 participants. The psychophys-
iological state reflects the psychological state of a human (e.g., stress, anxiety, excitement)
based on his or her physiological responses (Blascovich et al. 2011). These measures are
considered objective, unlike the questionnaires used in all studies to date, which are prone
to subjective interpretation by the participant (Bethel et al. 2007). We measure our partic-
ipants’ psychophysiological state during a passive interaction (i.e., our participants do not
send commands to nor receive specific feedback from the robots) with an increasing number
of robots (see Fig. 1). Restricting our participants to passively interact with a swarm allows us
to study the effect of the robot group size in the simplest form of interaction, that is, without
the risk of increasing any psychophysiological reactions with an extra interaction interface
(e.g., joystick, keyboard, voice commands).

The results of our user study show that humans have a stronger physiological responses
when confronted with larger numbers of robots.

2 Related literature

To the best of our knowledge, there is no work that considers the human psychophysiological
state in the context of human—swarm interaction. However, the use of dedicated psychological
questionnaires were used in human—swarm interaction to study the human psychological
state, and more specifically the human workload level, i.e., the mental effort (De la Croix
and Egerstedt 2012; Pendleton and Goodrich 2013; Setter et al. 2015).

In human—-swarm interaction, only Pendleton and Goodrich (2013) consider the human
psychological state by studying the workload level of human operators controlling a varying
number of robots. The authors show that the human workload is not dependent on the number
of robots when interacting with a swarm robotics system. However, we believe that their study
may only be conveying a limited message about the human psychological state as the user
study was limited to simulated robots and a questionnaire-based data collection methodology.
User studies performed with simulated robots do not necessarily reflect the same conditions as
real robots. Furthermore, participants might not always answer psychological questionnaires
objectively, that is, they might not answer what they felt during the experiment; rather, they
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Fig. 1 An example of an experiment in progress. a At the beginning of the experiment, the participant is
attached to two physiological sensors. b The experiment begins with one robot moving around the participant.
¢ Subsequently, two more robots appear and the participant is exposed to a group of three robots. d Finally,
21 robots appear and the participant is exposed to a group of 24 robots. The participant shown in this figure
is the first author of this paper and did not take part in the experiment. The pictures shown in this figure were
taken for illustration purpose (Color figure online)

might answer what they believe the experimenter would like them to answer (Bethel et al.
2007).

While in swarm robotics the human operator’s workload does not seem to be affected
by the number of robots in a robot swarm, in multi-robot systems, the human operator’s
workload seems to be affected by the number of robots. Humphrey et al. (2007) developed
an experiment in which their participants had to search for and detect bombs with a group
of six robots and a group of nine robots. The authors show that their participants’ workload
was significantly higher when they had to search for the bombs with nine robots compared
to with six robots. Velagapudi et al. (2008) conducted search and rescue experiments with 4,
8 and 12 simulated robots. The results of their experiments revealed that their participants’
workload increased when the number of robots increased. In an experiment that simulated a
transportation task (i.e., a task in which robots must transport objects from one location to
another), Adams (2009) also shows an increase of workload with an increase of the number
of robots—her participants” workload was higher when they were doing the experiment with
four robots compared to two robots and one robot. These studies required active involvement
of the participants. Active involvement clearly gives a richer interaction experience to the
participant. However, it also renders the results harder to objectively interpret—it is not clear
to what extent the participant is responding to intrinsic difficulties of multi-robot interaction,
versus reacting to idiosyncrasies of the particular user interface used in each particular study.
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In human-robot interaction in general, very few existing studies have adopted psychophys-
iological measures, despite the fact that they are considered much more objective than
measures based on psychological questionnaires. Some researchers used psychophysiologi-
cal measures to study anxiety levels of humans operating a robot manipulator arm (Dehais
et al. 2011; Kulic and Croft 2005, 2007). Other researchers studied to what extent different
physical features (e.g., appearance and vocal properties) of a service robot (e.g., a robot that
assists a nurse for medicine delivery) can affect the patients’ psychophysiological state under
treatment (Swangnetr and Kaber 2013; Swangnetr et al. 2010; Zhang et al. 2010). Tiberio
et al. (2012) use psychophysiological measures to study the response to a telepresence robot
of elderly people suffering from mild cognitive impairment—a mobile robot mounted with a
screen allowing a human to interact with the user via videoconference. Psychophysiological
measures have also been used in the context of virtual rehabilitation where stroke patients
used a haptic robotic interface that allowed them to feel virtual objects (Goljar et al. 2011;
Novak et al. 2010). For completeness, we also mention other studies we are aware of where
psychophysiology has been used in human-robot interaction, even though these studies have
very different objectives from our own. Researchers have used psychophysiology to modify a
robot’s behaviour with respect to psychophysiological responses of a participant (Bekele and
Sarkar 2014; Itoh et al. 2006; Rani and Sarkar 2005; Rani et al. 2004). Finally, psychophys-
iology has also been used in the field of adaptive automation (Byrne and Parasuraman 1996;
Prinzel et al. 2000, 2003; Ting et al. 2010)—the psychophysiological state of a human is
monitored in order to change the level of automation of a system.

3 Methodology
3.1 Experimental scenario

We designed an experimental scenario that allowed us to study the effect of an increasing
number of robots on the human psychophysiological state. In this scenario, a participant is
seated in the same environment as the robots. We divide the experiment into three sessions.
In each session, we increase the number of robots. As in Velagapudi et al. (2008), we did not
randomize the sessions across the participants because our principal focus is on the effect of
increasing robot group sizes. While the first session includes only a single robot (hereafter
referred to as the /-robot session), the second and third sessions (hereafter referred to as the
3-robot session and the 24-robot session, respectively) include a total of 3 and 24 robots
respectively. Each participant is exposed to each of the three groups of robots (i.e., I-robot,
3-robot, 24-robot) for a period of 45 s.

3.2 Measures

In our experiment, we used psychophysiological measures to determine objectively the
psychological state of our participants based on physiological responses. These psychophys-
iological measures are considered objective because it is difficult for humans to intentionally
manipulate their physiological responses (for instance to intentionally decrease heart rate).
In addition to using psychophysiological measures, we also used self-reported measures (i.e.,
data gathered from our participants using a dedicated psychological questionnaire) to deter-
mine whether our participants are subjectively conscious of their psychological state change
and whether this state change is positive (i.e., our participants report a positive experience)
or negative (i.e., our participants report a negative experience). In the following two sections,
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Fig.2 Self-Assessment Manikin scales. Top the valence scale. The left-most picture corresponds to the lowest
level of valence. The right-most picture corresponds to the highest level of valence. Bottom the arousal scale.
The left-most picture corresponds to the lowest level of arousal. The right-most picture corresponds to the
highest level of arousal. These pictures are taken from and available at http://www.pxlab.de (last access: April
2016)

we present the self-reported measures and the psychophysiological measures used in this
study.

3.2.1 Self-reported measure

We used the Self-Assessment Manikin (SAM) questionnaire to collect our participants’ self-
reported affective state (Lang 1980). The affective state is measured with two scales: valence
and arousal. In the version of the SAM questionnaire used in this study (see Fig. 2), each
scale is composed of 9 pictures. Each picture in the valence and arousal scale represents a
value of valence or arousal, respectively. The left-most picture represents the lowest level,
and the right-most picture represents the highest level of valence or arousal that can be chosen
by the participant.

Valence is the cognitive judgement (i.e., pleasure or displeasure) of an evaluation such
as the interaction with robots considered in this study. Higher values of valence correspond
to greater pleasure, while lower valence values correspond to a less pleasurable experience.
The arousal scale assesses the mental alertness and the level of physical activity or level of
excitation (Mehrabian 1996) felt during an evaluation. Each picture of each scale corresponds
to a numerical score. Numerical scores vary from 1 to 9. In the valence scale, 1 corresponds
to the lowest level of valence (i.e., displeasure is maximal) and 9 corresponds to the highest
level of valence (i.e., pleasure is maximal). In the arousal scale, 1 corresponds to the lowest
level of arousal (i.e., excitement is minimal) and 9 corresponds to the highest level of arousal
(i.e., excitement is maximal).

3.2.2 Psychophysiological measure

The peripheral nervous system, part of the nervous system, is responsible for transmitting
information between the organs and the central nervous system. The peripheral nervous
system can be subdivided into the somatic nervous system and the autonomic nervous system.
The somatic nervous system is associated with the voluntary control of the body movements
(e.g., the muscles). The autonomic nervous system is associated with the involuntary functions
of the body (e.g., cardiovascular activity). These involuntary functions of the body can,
themselves, be associated with the change of several psychological states (e.g., emotion,
attention, motivation, arousal) (Blascovich et al. 2011). The autonomic nervous system is
made up of the sympathetic nervous system and of the parasympathetic nervous system.
The role of the sympathetic nervous system is to activate physiological responses (e.g., to
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a stimulus). The role of the parasympathetic nervous system is opposed to the role of the
sympathetic nervous system—it is responsible for maintaining physiological responses to a
normal activity (i.e., the physiological responses in absence of stimulus).

We study our participants’ physiological activity when they are exposed to increasing robot
group sizes. In particular, we study two physiological activities of the autonomic nervous
system—the cardiovascular activity and the electrodermal activity (i.e., the skin’s electrical
activity). We study the cardiovascular activity by measuring our participants’ heart rate. We
study the electrodermal activity by measuring our participants’ skin conductance.

The heart rate is the number of heart beats per unit of time. It is usually measured in
beats per minute (BPM). An increase of the heart rate can be due to either an increase in
the sympathetic nervous system activity, an increase of the parasympathetic nervous system
activity, or a combination of both. We analyse the skin conductance by measuring the skin
conductance level (SCL). The skin conductance level, measured in microsiemens (S), is
a slow variation of the skin conductance over time without the occurrence of any stimuli.
An increase of the skin conductance level is only due to an increase of the sympathetic
nervous system activity. The skin conductance level is commonly used as a measure of the
physiological arousal (Blascovich et al. 2011).

Physiological responses can significantly vary from individual to individual (e.g., heart
rate and skin conductance can show different values for different individuals for similar
experimental conditions). Because the physiological responses can vary from an individual
to an other, it can be difficult to compare the physiological responses of an individual with
those of another. In order to be able to compare the physiological responses of an individual
with those of another individual, we first recorded our participants’ physiological baseline,
i.e., the heart rate and SCL values at rest during 5 min. Then, we ran our experiment and
recorded the participants physiological values. Finally, we subtracted the mean baseline
values from those recorded during the experiment. This allows us to compare the difference
between our participants’ physiological responses during the baseline period (which can be
highly different from one participant to another) and during the experiment.

3.3 Equipment and experimental setup
3.3.1 Physiological response acquisition

The physiological responses were recorded using a PowerLab 26T (ADInstruments) data
acquisition system augmented with a GSR Amp device. The PowerLab 26T was connected
via USB to a laptop computer running Mac OSX Yosemite. We used the software LabChart 8
to record the physiological responses acquired by the PowerLab 26T data acquisition system.
We used an infrared photoelectric sensor (i.e., a photoplethysmograph) to measure the blood
volume pulse (BVP) of our participants (i.e., changes in the pulsatile blood flow). The blood
volume pulse can be retrieved from the photoplethysmograph from the peripheral parts of
the human body such as on the fingers. We can compute the heart rate from the blood volume
pulse. Firstly, we calculate the inter-beat interval (i.e., time in seconds between two peaks in
the blood volume pulse). Then, we calculate the heart rate by dividing 60 by the inter-beat
interval. For instance, if the inter-beat interval of an individual is 1 s, this individual’s heart
rate is 60 BPM. Figure 3 shows the blood volume pulse of a participant during a time window
of 10 s. The photoplethysmograph was attached to the index finger of a participant’s dominant
hand. The photoplethysmograph was directly connected to the PowerLab 26T.

To monitor the electrodermal activity of our participants, we used brightly polished stain-
less steel bipolar electrodes connected to the GSR Amp device. These bipolar electrodes
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Fig.3 The graph of a participant’s blood volume pulse (BVP) during 10 s. The BVP does not have a standard
unit. The x-axis is the time in minutes since the beginning of the recording. The time between two peaks
(depicted with two dots connected with a line on the picture) is called the inter-beat interval (IBI). The
participant’s heart rate (the number of beats per minute) is computed by dividing 60 by the inter-beat interval.
In this example, the mean heart rate of the participant during these 10 s is of 87 BPM (Color figure online)
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Fig. 4 The graph of a participant’s skin conductance during 10 s. The skin conductance’s unit is the
microsiemens (y-axis). The x-axis is the time in minutes since the beginning of the recording. The skin
conductance is computed by measuring the current flowing between two electrodes and by dividing this cur-

rent by a constant voltage applied between the electrodes. The skin conductance level of this participant during
these 10 s is of 5.17 (uS) (Color figure online)

were attached to the medial phalanxes of the index and middle fingers of a participant’s non-
dominant hand. In order to monitor the skin conductance, the GSR Amp device applies a
direct constant voltage between the bipolar electrodes. The constant voltage is small enough
(i.e., 22 mV) to prevent the participants from feeling it. As the voltage is known and con-
stant (22 mV), the GSR Amp device can measure the current between the bipolar electrodes.
When the current is known, the GSR Amp device can calculate the conductance of the skin
by applying the Ohm’s law (conductance is the current measured between the electrodes
divided by the constant voltage applied by the GSR Amp device between the electrodes).
Figure 4 shows the skin conductance of a participant during a time window of 10 s.

3.3.2 Environment

In our experiment, each participant is immersed in an environment in which he or she is
exposed to different numbers of robots. We used a square environment of dimension 200 cm x
200 cm (see Fig. 5). Adjacent to the inner environment walls, we added four covered hidden
zones of 25 cm width each. These hidden zones prevent all pre-experimental visual contact
between a participant—who is asked to remain seated on a chair placed in the centre of
the environment—and the robots. A curtain is installed at the entrance of each hidden zone
such that the robots cannot be seen by a participant while entering the experiment room.
Initially, all robots are placed inside the hidden zones. When the experiment starts, the robots
gradually drive out. We also added a dark area of 175cm x 20 cm in front of each hidden
zone entrance. This dark area was used to prevent the robots from accidentally returning
back into a hidden zone and hence disappearing from the experiment once they were already
in an area visible to the participant (see Sect. 3.3.3 for a detailed explanation of the robot
behaviour implementation).
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Curtain preventing pre-experimental
visual contact between the participant
and the robots

Hidden
zone

Black area preventing
the robtos from going

back to the hidden zone

Fig.5 The environment considered in this study with its four hidden zones and a chair for the participant. Six
robots are placed under each hidden zone. The blue curtains prevent all visual contact between our participants
and the robots prior to the beginning of an experiment. Once the participant is seated, the experimenter raises
the curtains. The hidden zones are designed such that the robots remain invisible to the participant sitting on
the chair until they drive out of the hidden zones (Color figure online)

3.3.3 Robot behaviour

During an experiment, robots gradually drive out of the hidden zones in order for a participant
to be exposed to three different robot group sizes, i.e., 1 robot, 3 robots and 24 robots. At the
beginning of an experiment, one robot drives out of the hidden zone and becomes visible to
the participant. Then, two robots drive out of the hidden zones at the same time so that the
participant is exposed to a group of three robots (i.e., the first robot that started the experiment,
joined by two additional robots). In order for the participant to be exposed to a group of 24
robots, 21 robots drive out of their hidden zone at the same time.

Once the robots become visible to a participant, they execute a random walk with obstacle
avoidance behaviour. Each robot executes the two following steps: (i) it drives straight with a
constant velocity of 10 cm/s, and (ii) it changes its direction when it encounters either a robot
or an obstacle in the direction of movement (i.e., it turns in place until the obstacle is no longer
detected in the front part of its chassis). Additionally, the obstacle avoidance behaviour is
also triggered when the robots enter the black area. We used the on-board proximity sensors
to detect obstacles in the direction of movement and ground sensors to detect changes in light
intensity on the floor allowing the robots to register when they are about to enter the black
area. A finite state machine (FSM) illustrating the robot behaviour is given in Fig. 6.

In order for all of our participants to be subjected to similar experimental conditions, the
robots that appear in the /-robot session and in the 3-robot sessions were always coming
from identical locations and hidden zones. As shown in Fig. 7, the single robot of the /-
robot session was always coming from the front of the participant and the two additional
robots of the 3-robot session were always coming from the front left and the front right of
the participant.
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U-turn Drives on Obstacle Obstacle
not finished black area l detected detected

Avoid Hidden Zone

Walk Straight
(make U-turn)

Avoid Obstacle

U-turn No obstacle
finished detected

Fig. 6 An FSM-based representation of the behaviour executed by all robots

Robot that appears
in the second session

Robot that appears [ —
in the first session | Robot that appears

| in the second session

Fig. 7 Initial position of the robots used in the experiments. The robot in front of the chair (encircled in the
picture) is the robot that comes out in the /-robot session. The two robots on the left and on the right of the
chair (encircled in the picture) are the robots that come out in the 3-robot session. The other robots (i.e., those
not encircled) are those that come out in the 24-robot session. The four boards of wood that cover the robots
in the hidden zones (i.e., that render the robots invisible to the participants) have been removed for this picture
(Color figure online)

3.3.4 Robot platform

The platform used in this study is the wheeled e-puck robot (see Fig. 8) equipped with an
extension board. The e-puck robot is designed for educational and research purposes (Mon-
dada et al. 2009). The extended version of the e-puck robot is 13 cm high and has a diameter
of 7 cm. In this study, we used only a subset of the sensors and actuators available to the
e-puck robot: the proximity sensors, the ground sensors (that comes with the e-puck exten-
sion board) and the wheel actuators. See Mondada et al. (2009) and Gutiérrez et al. (2008)
for further details and for a complete list of the sensors and actuators available on the e-puck
platform. We programmed the e-puck robots using the software infrastructure described in
Garattoni et al. (2015).

3.4 Participants

We recruited 25 participants from the overall population of the Université libre de Bruxelles.
Our participants came from different faculties of the university (e.g., law, sciences, medi-
cine, philosophy). None of our participants had a background in robotics. Participants were
between 18 and 45 years old with an average age of 25.04 years (SD = 5.16). We considered
current or anterior cardiovascular problems that could act on the central nervous system as
exclusion criteria (i.e., we excluded potential participants with cardiovascular problems). Our
participants received an informed consent form explaining that they were filmed during the
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Fig. 8 An e-puck robot used in
our experiments. The proximity
sensors are used to detect and
avoid nearby robots. The ground
sensors are used to detect black
areas (in order to avoid the robot
to go back in a hidden zone). The
wheel actuators are set to a speed
of 10 cm/s (Color figure online)

Proximity sensors

Wheel actuator

Ground sensors

experiment! and that their physiological responses were being collected for research purpose
only. All of our participants signed the informed consent form. We offered a 7 € financial
incentive for participation.

3.5 Experimental procedure

All our experiments were conducted in the robot arena of IRIDIA, the artificial intelligence
laboratory of the Université libre de Bruxelles. Upon arrival, a brief explanation of the
procedure of the experiment was given to the participant. We explained to the participant
that the experiment was divided into three sessions and that in each session, a certain number
of robots would move around them. We then asked the participant to read and sign the
consent form. We asked the participant to wash their hands with clear water (i.e., no soap)
to allow the physiological sensors to function accurately. Once the participant washed their
hands, we asked the participant to remain seated and we attached the participant to two
physiological sensors. Since some robots may come close to the participant’s feet, we told
the participant to not move their legs and feet during the whole duration of the experiment.
Once we attached the physiological sensors to the participant, we explained to the participant
how to answer the SAM questionnaire. In order for the participant to clearly understand
the notions of valence and arousal, we orally associated with the valence scale and to the
arousal scale two bipolar adjectives: unhappy—happy and unsatisfied—satisfied for valence
and relaxed—stimulated and calm—excited for arousal. These bipolar adjectives are highly
correlated with the notions of valence and arousal (Bradley and Lang 1994). We then asked
the participant to stay calm during a 5-min rest period. During this rest period, we recorded
the participant’s physiological responses that we used as the participant’s baseline. After the
rest period, we started the experiment with the first of the three sessions. After each session,
we asked the participant to choose an image in the valence and arousal scales that correspond
to their subjective psychological state. A number from 1 to 9 was written on the bottom of
each image of the SAM questionnaire. In order for the experimenter to record the valence
and arousal data, the participant had to speak out loud the number of the image he or she
chose. All participants completed the questionnaire within 1 min. After each session (i.e.,
when the participant was answering the SAM questionnaire), we kept the robots in motion
in the environment. Figure 9 shows a participant during an experiment, while the participant
was confronted with a group of 24 robots. The entire experiment’s duration was 30 min per
participant.

! We did not use the video recordings in our analysis. We recorded our experiments to have a visual history
in case an experiment failed (e.g., robot crashes).
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Fig. 9 A participant during the 24-robot session. The picture is a snapshot taken from the video recording of
an experiment. The participant gave her written consent to the use of the picture (Color figure online)

After the experiment ended, we detached the sensors from the participant and conducted
a brief interview with the participant. During the interview, we explained to the participant
the goal of the study. We also asked the participant to describe his or her experience with the
experiment and we answered potential questions.

4 Data analysis and results

For one of the participants, the robots were misplaced and were visible prior to the beginning
of the experiment. Therefore, we rejected this participant’s data (both psychophysiological
data and self-reported data) from our analysis in order to avoid possibly biased data. For
another participant, the psychophysiological data were very noisy, probably due to a mis-
placement of the sensors. We did not take into account this participant’s psychophysiological
data (i.e., heart rate, SCL), but we kept the participant’s self-reported data (i.e., valence and
arousal of the SAM questionnaire). We, therefore, used the psychophysiological data of 23
participants (11 males and 12 females) and the self-reported data of 24 participants (11 male
and 13 females). We analysed our data with the R software (R Core Team 2015).

4.1 Group size effect

As each of our participants performed the experiments with three different robot group
sizes, we conducted a within-subject analysis (a repeated-measure ANOVA) on both the psy-
chophysiological measures (heart rate and skin conductance) and the self-reported measures
(arousal and valence). We applied a Greenhouse-Geisser correction when the assumption of
sphericity was violated (assessed with a Mauchly’s test of sphericity). We selected o = .05 to
determine statistical significance. In the context of this study, the repeated-measure ANOVA’s
null hypothesis states that the three sessions /-robot, 3-robot and 24-robot have the same
mean. The alternative hypothesis states that at least one session mean is different. When the
repeated-measure ANOVA is significant, we can reject the null hypothesis in favour of the
alternative hypothesis. The alternative hypothesis, however, does not allow us to determine
which sessions differ in their means.

In order to determine which sessions differ in their means, we proceed with a pairwise
comparison of the three sessions with multiple paired ¢ tests. The ¢ test’s null hypothesis
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Table 1 Descriptive statistics of the psychophysiological data and of the self-reported data

Dependent Variable n 1 robot 3 robots 24 robots
Heart rate (BPM) 23 —1.88(6.2) —2.48 (4.9) 0.16 (5.4)
SCL (1S) 23 4.77(2.92) 4.82(2.16) 6.23 (2.39)
Arousal 24 3.87 (2.43) 3.75 (2.11) 5.45(2.41)
Valence 24 6.66 (1.04) 6.62 (1.05) 6.87 (1.77)

We report the mean and the standard deviation (in parentheses) of the three sessions (i.e., /-robot, 3-robot,
24-robot)

states that the mean difference between the paired values from two sessions (i.e., a value
from one session paired to a value from another session) is equal to zero. The alternative
hypothesis states that the mean difference of the paired values is not equal to zero. When the
t test is significant, we can reject the null hypothesis in favour of the alternative hypothesis
and conclude that there is a significant difference between the two sessions. Performing
multiple pairwise comparisons (there are three pairwise comparisons between our three
sessions) introduces the risk of increasing the Type I error, i.e., to declare the test significant,
while it is not. In order to control the Type I error, we apply a Bonferroni correction to the
p values obtained by the ¢ test. In Table 1, we summarize the results by giving for each
dependent variable the mean and the standard deviation (in parentheses) for each of the three
sessions.

The analysis of the heart rate data shows a main effect of the number of robots on our
participants [F(2,44) = 5.13, p < 0.01, r]2 = 0.04].2 The post hoc test on the heart
rate data revealed that our participants’ heart rate was statistically significantly increased
between the 3-robot session and the 24-robot session [t (22) = —3.3, p = 0.01]. Our par-
ticipants’ heart rate was not statistically significantly decreased between the 7-robot session
and 3-robot sessions [t(22) = 0.3, p = 1]. Finally, our participants’ heart rate was not
statistically significantly increased between the /-robot session and the 24-robot session
[t(22) = —1.2,p = 0.14], see Fig. 10 (top-left). The analysis of the skin conduc-
tance level also confirmed a main effect of the number of robots on our participants
[F(1.41,31.08) = 14.4, p < 0.001, 772 = 0.07]. The post hoc test on the SCL data revealed
that our participants’ SCL was statistically significantly increased between the 3-robot and
24-robot sessions [t(22) = —7.67, p < 0.001], and between the I-robot and 24-robot ses-
sions [7(22) = —4.11, p = 0.0014]. The SCL was not statistically significantly increased
between the /-robot and 3-robot sessions [t (22) = —.14, p = 1], see Fig. 10 (top-right).

The results of the repeated-measure ANOVA on the self-reported arousal data confirm a
main effect of the number of robots on our participants [ F (2, 46) = 26.02, p < 0.001, n> =
0.1]. The post hoc test shows that our participants’ self-reported arousal was statistically
significantly increased between the /-robot and 24-robot sessions [t(23) = —6.21, p <
0.001] and between the 3-robot and 24-robot sessions [t(23) = —5.74, p < 0.001]. The
self-reported arousal was not statistically significantly different between the /-robot and 3-
robot sessions [t(23) = .53, p = 1], see Fig. 10 (bottom left). The analysis of the valence

2 A reason for the heart rate values (the difference between the heart rate values during the baseline and the
heart rate values during the three sessions) to be negative is that, in situations that generates affective responses,
the heart rate first decreases before increasing (Bradley and Lang 2000). In our case, the heart rate decrease
was more prominent than the following heart rate increase.
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Fig. 10 Boxplots showing the heart rate values (fop left), skin conductance level values (top right), arousal
values (bottom left) and valence values (bottom right) of all three sessions (/-robot, 3-robot, 24-robot). The
median value of each session is shown using the bold horizontal line in the box. Outliers are represented using
dots. We also report the results of the pairwise ¢ tests by connecting the boxplots of the sessions showing
pairwise statistical significance (Color figure online)

does not show any main effect of the number of robots on our participants [F(2, 46) =
32, p=.7,7% =0.006].

4.2 Habituation effect

We should account for the possibility that the psychophysiological reactions we observed
were attributable to an initial surprise effect that the participants felt on being exposed to
robots, which could then wear off as the participants became accustomed to the robots—
the so-called habituation effect. If our participants were indeed “surprised” by the robots,
we would expect their skin conductance level to rise quickly during the first seconds of the
experiment. In order to detect if our participants were surprised by the robots, we computed
the mean of all of our participants’ skin conductance values during the whole duration of
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Fig. 11 Mean SCL values (all participants) over time (Color figure online)

each session. We show the results of all three sessions in Fig. 11. As depicted in Fig. 11, in
each of the three sessions, the graph peaks before the 10 first seconds of each session. Then,
the skin conductance values decrease and remain stable until the end of the session.

The peak within the 10 first seconds suggests that our participants were surprised by
the robots. After this peak, though, the stabilization of our participants’ skin conductance
suggests a “habituation effect” within each session—during each session, our participants
get habituated to the robots moving around them. However, the data do not suggest any
habituation effect between sessions with few robots (1 and 3) and the session with many robots
(24). Therefore, the data do not contradict our hypothesis that an increasing number of robots
affects the human psychophysiological state—as depicted in Fig. 11, the 24-robot session’s
curve clearly remains above the two other curves (i.e., /-robot and 3-robot) during the entire

duration of the experiment.

5 Discussion and conclusion

The hypothesis we aimed to test in this study was the following: the psychological response
of humans is affected by the number of robots to which they are exposed. Our results confirm
this hypothesis and furthermore show that greater numbers of robots provoke a stronger
response. Firstly, there was a significant difference in our participants psychophysiological
state when the number of robots increased to 24 robots. Secondly, our participants were
conscious of their psychophysiological state change, as they reported significantly higher
arousal values when exposed to the 24 robots.

Though we show with our results an effect of the group size on the human psychophys-
iological state, we did not consider all possible variables that could also influence the
psychophysiological state. For instance, the size of the arena was kept constant during the
experiments. It would be interesting in the future to study whether increasing the size of the
arena while keeping the group size constant would decrease the effect on the psychophysio-
logical state. Another variable that could influence the psychophysiological state is the robots’
behaviour. In this experiment, our robots were executing a basic swarm behaviour—a ran-
dom walk. Future work should focus on other swarm behaviours such as flocking, foraging,
search and rescue, and so on. A third variable to consider is the location of the participant
during the experiment. We wanted our participants to be immersed in the environment. How-
ever, allowing participants to move in the arena could decrease the effect of group size—for
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instance if they feel more comfortable moving to a corner of the arena or even outside of
the arena. Other variables could influence the human psychophysiological state (e.g., the
size of the robots, the noise produced by the robots, the participants’ prior experience with
robotics systems). These variables, or a combination of these variables (with the group size
for instance), should be considered in future work.

One interesting aspect of our results that also deserves attention in future work is the
nature of the psychological state. Psychophysiological measures are considered objective in
that they are by large not under the conscious control of the participant being measured. How-
ever, the exact relationship between the psychophysiological measures and the psychological
state that provoked the physiological response is not always clear. We were expecting to see
a primarily stress-based response to the robots. In fact, however, the valence values reported
by the additional questionnaire we asked our participants to fill out (see Sect. 3.2.1), suggest
that our participants had a positive experience—on a scale of 1-9 (1 being the less happy and
9 being the more happy), they reported valence values of 6.66, 6.62 and 6.87 for the /-robot,
3-robot and 24-robot sessions respectively. We believe that our participants reported these
valence values because they were not actively interacting with the robots, i.e., they did not
have to control the robots. In our experimental scenario, the participants passively interacted
with the robots (i.e., the participants do not send commands to the robots), instead of actively
interacting with the robots (i.e., the participants send commands to the robots). We chose
passive over active interaction to reduce the number of variables that could impact the exper-
iment, so as to increase our confidence that it was the number of robots that was affecting our
participants’ psychophysiological state. For example, in an interactive scenario, frustration
due to interaction difficulties or failures might also have introduced psychophysiological
effects. The effect of active interaction will be investigated in future work. For instance, we
will study whether actively interacting with a swarm of robots (e.g., by guiding a swarm)
negatively changes the psychophysiological state of our participants. We would expect, for
example, frustration or anger (i.e., low valence values) when a participant has to guide a
swarm of robots.

The most important contribution of this study is that we have established that robot group
sizes in particular, and robot swarms in general, affects human psychology. These facts should
have profound short-term and long-term implications for human—swarm interaction research.
In the short-term, we advise human—swarm interaction researchers to use psychophysiolog-
ical measures in all of their user studies. So far, only purely psychological questionnaires
have been used to study the human workload. Using psychophysiological measures would
allow human—swarm interaction researchers to have a broader and deeper understanding of
the human psychology. In the long-term, it is our contention that psychophysiology should be
used as an engineering methodology to develop concrete human—swarm interaction systems
for real-world applications. In human—computer interaction, for instance, psychophysiology
is a methodology that is starting to move out of the research laboratories—as suggested by
more and more human—computer interaction textbooks that propose psychophysiology for
designing and studying new systems humans can interact with (Bainbridge 2004; Dix et al.
2003; Salvendy 2012; Tullis and Albert 2008). In the same way psychophysiology is used to
create today’s real-world human—computer interaction systems; we strongly believe that psy-
chophysiology should be used to create tomorrow’s real-world human—swarm interactions
systems.
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