4.6 La thèse d'Artemov

Artemov montre qu'on peut faire une thèse de ce que j'ai appellé le stratagème du Théétète.

Extrait de Artemov 1990.

"Are there any reasons for adopting the definition $\square P := P \And \square P$? The modality \square doesn't have an explicit mathematical model; it had been introduced as a modality for an intuitive notion of mathematical provability. On the contrary the modality \square has an exact mathematical definition as an operator of formal provability Pr(.) on the set of arithmetical sentences. Thus there is no way to prove that $\square P := P \And \square P$; one can only hope to find some arguments in order to declare a

Thesis :
$$\Box P := P \& \Box P$$

(* *)

(like the Church Thesis for computable functions). Gödel himself in [Gödel 1933] tried the obvious idea to define $\Box Q$ as $\Box Q$ but noticed that this definition led to a contradiction between his axioms and rules for \boxdot and the already known Gödel Second Incompleteness Theorem. Can one nevertheless give a reasonable definition of \boxdot via \Box ? The most optimistic expectations are

to find a \Box -formula B(p) which satisfies known properties of \Box p (first of all axioms and rules of S4) and such that for each other \Box -formula C(p) with these properties

$$G \vdash B(p) \leftrightarrow C(p)$$

In this case we have the right to declare a definition $\Box Q$:=B(p) as a Thesis. It turns out that this situation holds with p& $\Box p$ as B(p). The main ideas of the proof of the following theorem were taken from [Kuznetsov & Muravitsky 1986].

Theorem 6. For a given \Box -formula C(p) if

1. all axioms and rules of S4 for C(p) as $\Box p$ are arithmetically valid (derivable in G^*) and

2. $G \vdash C(p) \rightarrow \Box p$ (this principle says that any "real" mathematical proof can be finitely transformed into a formal proof)

then

$$G \vdash C(p) \leftrightarrow (p \& \Box p)$$

Proof. Let T denotes the propositional constant "truth" so $T \in Int$, S4, Grz, G, G*. Obviously, S4 $\vdash \Box T$ and by the conditions of Theorem 6

1) $G^* \vdash C(T)$, 2) $G^* \vdash C(C(p) \rightarrow p)$ (because S4 $\vdash \Box (\Box p \rightarrow p)$), 3) for each \Box -formula F that contains modality symbols only in combinations of a type C(.)

$$G^* \vdash F \Rightarrow G^* \vdash C(F),$$

(because of the necessitation rule for S4: S4 \vdash Q \Rightarrow S4 \vdash \square Q),

4) G \vdash C(p) $\rightarrow \Box$ p (condition 2. of the theorem).

We will show that

$$G \vdash C(p) \leftrightarrow (p \& \Box p)$$

and thus this formula is deducible in all logics of formal provability. According to 2) $G^* \vdash C(C(p) \rightarrow p)$,

thus (G \subseteq G^{*}, condition 2. of the theorem)

$$G \vdash \Box(C(p) \rightarrow p)$$

and

$$G \vdash C(p) \rightarrow p.$$

Together with 4) this gives

$$G \vdash C(p) \rightarrow p \& \Box p.$$

Lemma. For each \Box -formula D(p)

$$G \vdash (p \& \Box p) \to (D(p) \leftrightarrow D(T)).$$

The proof is an induction on the complexity of D. The basis step and induction steps for Boolean connectives are trivial.

Let D(p) be $\Box E(p)$. By the induction hypothesis

$$G \vdash (p \& \Box p) \rightarrow (E(p) \leftrightarrow E(T)).$$

The necessitation rule for G and the commutativity of $\Box \;$ with \rightarrow and & give

$$\mathbf{G} \vdash (\Box \mathbf{p} \& \Box \Box \mathbf{p}) \rightarrow (\Box \mathbf{E}(\mathbf{p}) \leftrightarrow \Box \mathbf{E}(\mathsf{T})).$$

Together with $G \vdash \Box p \rightarrow \Box \Box p$ this implies

$$\mathbf{G} \vdash (\mathbf{p} \& \Box \mathbf{p}) \to (\mathbf{D}(\mathbf{p}) \leftrightarrow \mathbf{D}(\mathbf{T})).$$

By 2) $G^* \vdash C(T)$ and according to 3), 4), $G^* \vdash C(C(T))$, $G^* \vdash \Box C(p)$ and $G \vdash C(p)$. Because of the lemma we have

$$G \vdash (p \& \Box p) \to C(p)$$
, whence $G \vdash C(p) \leftrightarrow (p \& \Box p)$.

Remark. Without condition 2. of the theorem we lose the uniqueness of the definition (**): C(p):=p also fits."