
Whatever Emerges should be Intrinsically Useful

Hugues Bersini

IRIDIA-CP 194/6
Université Libre de Bruxelles

50, av. Franklin Roosevelt – 1050 Bruxelles
Belgium

bersini@ulb.ac.be

Abstract

The practical work presented in this paper uses a
GA to evolve a cellular automata (CA)
implementation of a binary numbers adder. One
very useful way to compress the enormous search
space and eventually find an optimal CA consists
in adopting a macro-coding of the states and the
rule table. It is further discussed how this work
illustrates and defends our favorite position in the
currently vivid epistemological debate around the
notion of “emergence”. This position is
Crutchfield’s “intrinsic emergence” one, in which
to say that a macro-property is emergent requires
that this “property” supplies some mechanical and
non-human observer with additional functionality.

Introduction and Intrinsic Emergence

For many years now, cellular automata (CA) [16] have
been the favorite computational platform to experiment
and illustrate emergent phenomena. It is far from
surprising that many authors have relied on their CA
experimentation to quest for formal definitions of the
nature of “emergence” and to practically validate them
[3][10][14]. This paper is following a similar trend by fully
adopting the practice of CA. On the whole, all authors
interested in the rationalization of emergence converge to
the fact that at least two levels of observation are required:
A first one in which the micro-states and micro behavioral
rules are specified and implemented, and a second one,
which by only depending upon the underlying micro-
characteristics, exhibits interesting macro-phenomena.
They are obtained by unfolding in space and time the
micro-rules though the micro-states, most of the time in a
non-decomposable way (see [10] for an attempt to
formalize this non-decomposability).
 An observer, so far always human, is necessary to
instantiate this second and more abstract level of
observation and to spot, follow and trace these interesting
and new phenomena. This characterization of emergence
has turned out to be quite common [2][3][8][10][13] and

could be symbolized by the little UML class diagram of
figure 1 showing the three basic actors: the parts, the
whole, allowing to iterate the parts in space and time, and
the human observer. Nevertheless, this paper considers
that such a classical characterization, though including
necessary ingredients (i.e. the two levels of observation
and the abstraction in space and time of the second with
respect to the first), is far from sufficient, severely limited
and incomplete on one essential aspect: the identity and the
role of this second level observer. The problem is not so
much that “the whole is more than the sum of its parts” but
rather who is responsible for observing that “whole”. For
CA, Neural Networks, other computer simulations of
networks and whatever computational source of
emergence, the observer is generally accepted to be human.
However, this “anthropomorphisation” of the phenomenon
of emergence is antagonistic to any scientific practice that,
in principle, aims at not leaving subjectivism a leg to stand
on. Basically, if the formalization of emergence demands
the intervention of a human observer, even worse to be
“psychologically surprised” [14], its intrusion in the
vocabulary of physics is compromised right off the bat.

Fig. 1. The “Intrinsic Emergence”: from the human observer to
the functional device.

 To our knowledge, such a limitation has been faced and
removed mainly by two authors [5][6][7] who, in their
writing, have answered this preoccupation by supplying
the characterization of emergence with a key ingredient.
Like the updated UML class diagram shows, a “functional
device” must substitute the human observer that, for
whatever utility or performance reasons, will fine-tune its
observation of any macro-phenomena produced by the
system. Cariani [5] claims that, for a phenomenon to be
said emergent, devices need to be built, able to find new
observable, autonomously relative to us, whose selection
and tuning must rely on performance measures. However
the most convincing reply to this limitation and which
provides the main guidelines for the work to be described
in this paper is the Crutchfield’s definition of “intrinsic
emergence” [6]:
“… Pattern formation is insufficient to capture the
essential aspect of the emergence of coordinated behaviour
and global information processing… At some basic level
though, pattern formation must play a role… What is
distinctive about intrinsic emergence is that the patterns
formed confer additional functionality which supports
global information processing… During intrinsic
emergence there is an increase in intrinsic computational
capability, which can be capitalized on and so lends
additional functionality.”
 For instance, the game of life “glider” [12][3][10]
should not be characterized as “emergent” unless some
functional device able to observe the CA and to aggregate
its cells in space and in time (the glider covers 5 cells and
is a period-four phenomenon) will make a specific use of
it. Emergence is a bottom-up phenomenon but like in any
top-down and hierarchical construction of complex
systems, some external entity needs to make sense and use
of whatever emerges at any level of the construction.
Following trends initiated by Packard, Crutchfield,
Mitchell and others [1][7][11], the work described in this
paper consists in using an evolutionary algorithm to
discover a CA able to perform an engineering task, in our
case, the binary addition of numbers coded on n bits. It is
shown that the discovery of such an efficient CA is very
painful by adopting the natural micro-coding of the states
and the rules.
 An important improvement and acceleration of this
discovery is allowed by adopting a simplified macro or
abstract characterization of the states and the rules of the
CA. This new and one level up “macro observation”,
intrinsically emerges, since autonomously tuned by the
system itself on the basis of performance measures. Once
a new macro-way of observing the system is adopted, new
phenomena emerge since being detectable only by this new
observing device. Allowing part of the evolutionary
process to take place by adopting such an emergent
observable accelerates in a consequential way the
discovery of a quasi-optimal CA. This is why and only

why, according to the definition of “intrinsic emergence”,
this observable can be labeled as “emergent”, since it is
intrinsically selected by the system to improve its
performance and needs no external human observer.
 Apart from casting some fresh light on the
characterization of emergence, any engineering of
distributed computation should often be able to reproduce
such a practice: find a way of observing the system which
helps the optimizing of its structure and behaviour. The
next section will describe the task to be achieved by the
CA. The third one will describe how a simple evolutionary
algorithm can search for a satisfactory non-uniform CA,
finally followed by the two last sections discussing and
experimenting how a useful way of observing the CA can
emerge in order to boost the discovery of this satisfactory
solution.

The CA Task: Binary Addition

Binary addition is an interesting task to be performed by
CA for essentially two reasons. First, it is much more
reminiscent of what real digital circuits perform in
computers than “density classification” or
“synchronization” [1][7][11][15], so that the developments
presented here could more easily be transposed for the
automatic discovery of useable logical circuits. Moreover,
the computer digital circuitry for binary additions is built
by growing up in functional abstraction i.e. big circuits
(able to add big numbers) are composed of small circuits.
Basically the little circuits, optimally shaped for adding
very small binary numbers, are kept as the basic blocks for
building larger circuits. This fact will be important to help
at better understanding the type of observables we want
our system to be able to “emerge”.
 The CA used to perform this task is a two dimensional
CA (this dimensionality was favored to the one-
dimensional case by analogy with digital circuitry and for
reasons that will become obvious later on), with periodic
boundaries and characterized by the classical 8-cells
Moore neighborhood. At time 0, like indicated in fig.2,
two n bits binary numbers are installed in the first line of
the CA (the first number on the extreme left, the second
number on the extreme right, in the figure, numbers are
coded on 5 bits). All other cell initial states are tuned to 0.
Time step after time step, the CA then updates all its cells
in a synchronous way, by complying with the rule table
associating with each of the 28 possible neighborhood
configurations the next value of the state (so that the rule
table here has 28 entries with value “0” or “1” for each).
The goal of the CA global computation is, like indicated in
fig.2, after a given number of time steps, taken here to be
equal to the vertical size of the CA (the number of lines),
to obtain, still in the first line and on its extreme left, the
n+1 bits composing the result of the addition of the two
numbers.

Fig.2. The CA Task: Binary addition of two five bits binary
numbers. Initially, the numbers are shown at the extreme left and
extreme right of the first line of the first CA (a 25x25 periodic
CA). The two numbers are 10001 and 00111. All the other cells
are set to 0. After 25 time steps, the correct sum: 011000 should
appear at the extreme left of the first line of the second CA.

In the software, all parameters, the size of the CA, the size
of the numbers to add, the number of time steps to reach
the result, can easily be changed. However, here for sake
of clarity, we will maintain one set of number, 25 for the
size of a square CA (so that 25 five time steps are
computed in order to get the answer) and 5 for the size of
the two numbers to add by the same CA. Finally, this
addition must be performed for a certain number of
couples of binary numbers, say 5 again, like, for instance
given below:

 N1 N2 N1+N2
01110 11110 101100
00111 10101 011100
11100 00110 100010
11001 01111 101000
10111 11110 110101

This way of doing makes CA very similar to classical
addition logical circuits were the numbers to add are
injected as input on the top of the circuit, then cascade
down through a sequence of logical gates to finally give
the result of the addition at the bottom of this circuit. It
must be clear that this procedure does not guarantee at all
obtaining a universal adder but just a specific one, which
works well for these n numbers. However, the bigger this n
the more likely you’ll make the adder universal.

What Kind of GA Evolves the CA

 The kind of GA and how well it allows optimizing the
rule table is not a central topic here and an infinite number
of possible evolutionary algorithms could be applied. The
rule table to be optimized is composed of 28 bits so that the

search must take place in this huge binary space (228

possibilities). A population of 20 individuals is being
evolved. After computing the fitness of every individual,
the best one is kept in the subsequent population (the
“elitist version”) and the best half of the population is

selected on which to apply the mutation and the crossover
mechanisms responsible for generating the subsequent
population. Following a series of mutation and crossover
upon the 10 best individuals, a new population of 20
individuals is generated. More precisely, the first
individual of the new population is the same as the first
individual of the previous one. Then the second and the
third individuals of the new population are obtained by
randomly mutating one bit of two individuals arbitrarily
taken among the 10 best individuals of the previous
population. Since a large preference is given to the
crossover mechanism, the 17 remaining individuals are
obtained by applying the simplex crossover on three
individuals.
 The simplex crossover first introduced in [4], and which
has been shown to improve on the two parents classical
one, is described below.

Simplex Crossover:

1) Take three parents and rank then by
decreasing fitness: P1>P2>P3

2) For each bit, if parent 1 and parent 2 agree on
the value of the bit, the offspring will have
the same value for this bit. If parent 1 and
parent 2 disagree on the value of the bit, take
the reverse of the value of this bit given by
parent 3.

3) The idea is that both parent 1 and 2, the good
ones, attempt at shaping the offspring similar
to them while parent 3, the worst of all three,
and as soon as it can say something, will
force the offspring to be very different from
him.

For instance:

 P1: 1001100110
 P2: 1011110100
 P3: 0001101111

 Offspring: 1011110100

In our case and provided the individuals in the population
are ranked by decreasing fitness, the three parents are
selected so that the first resides in the first third of the 10
best, the second in the second third and the third in the last
third. Again, we are not so much interesting here in how
well this GA performs. This is one very simple instance to
implement and much better versions could be imagined. It
largely suffices to test and validate the main idea behind
this work. The fitness is computed by summing, over all
five couple of numbers, the Hamming distance between the
desired result (the correct sum) and the one obtained after
25 time steps of the CA run. For all possible rule tables and
for 5 couples of 5 bit numbers, the fitness value is
comprised between 0, the best fitness, and 30, the worst
one (i.e. 5*6).

 After many attempts, the performances obtained were
very poor, giving an average fitness around 6.5. In
substance, after thousands of iterations, no CA could be
found able to sum these 5 binary numbers. Like done by
other authors before [15], a first recovery decision
consisted in allowing the CA to become non-uniform i.e. to
allow distinct rule tables to characterize the update
mechanism of different cells. Then a cell could be
characterized by one rule table and its neighboring cell by
a distinct one. While this increase in the degrees of
freedom should naturally improve the computational
capacity of the CA, the original motivation was to be able
to replicate the heterogeneity of computer logical circuits
(composed of “AND”, “NOR”, “XOR”, etc. gates).
Consequently, an additional attribute has to be associated
with every cell i.e. which one of the rule tables it complies
with. The way the rule tables were distributed among the
cells was random and the figure below shows the increase
in performance obtained by allowing the number of distinct
rule tables to vary from 1 to 5 (the parameter “v” for
“variety”). But, still no CA could be found with fitness
better than 6 after 500 iterations of the GA search.
 The new individual to optimize would now comprise
v*28 bits increasing by many order of magnitude the size
of the search space. Indeed, the same figure shows that,
although a small increase of v allows an improvement in
the fitness, in order to obtain this improvement and to
discover better individuals, the number of GA iterations
must equally increase in a drastic way (500 GA iterations
in the first case and 2000 in the second one). So, while
increasing the heterogeneity increases in proportion the
chance to find a better CA (for instance with v=5, the
average best fitness obtained after 2000 GA iterations is
5,4), the computational time must also be consequently
increased to allow this discovery. A very practical problem
turns out to be how to accelerate the discovery of an
optimal CA in a fundamental way.

Fig.3. The fitness as a function of the variety of the rule tables for
500 and 2000 GA iterations

Discovery of a Useful Way to Observe CA

Facing this huge search space, among the many ways to
reduce its size, the original one proposed in this paper
requires to modify the way CA is observed and to move

one level up in abstraction to look at the states and the
rules. This new observable makes any cell to be
characterized by only x out of the 8 states composing its
neighborhood and to mask the (8-x) others. For instance, x
could be taken to be 3, like indicated in fig.4. If only 3
neighbors are taken into account, many cells, whatever
distinct precise neighborhood they have, turn out to be in
identical state. This is very reminiscent of the “don’t care”
symbol of Holland’s definition of GA schema. Instead of
“10010000”, for instance, the state of a cell will become
“#0####00”. A formidable collapse in the dimension of the
search space follows from this abstract observation which,
in presence of 5 don’t care (we will keep with this value in
the following although a bigger or smaller one is equally
possible), boils the coding of the rule table down to 23*v (v
still being the variety factor).

 Fig. 4. Here the mask “02367” has been applied

The way a cell is updated now complies with this reduced
coding of the rule table and 25 distinct neighborhood (the
masked “don’t care cells”) will give the same next state.
The (8-x) hidden neighboring cells will be called the
“mask” and C5

8 masks are possible. A mask will be
defined, for instance, as “02367” i.e. the five hidden
neighboring cells (this is the case shown in fig.4). The first
experiments we tried consisted in seeing whether such a
reduced search space, although skipping the fine tuning
probably necessary at the discovery of an optimal CA,
degraded or not the performance obtained so far. The GA
was exactly the same apart from tackling a consequently
smaller binary space and the 5-cells masks were randomly
generated. The experimental results were quite surprising
and supported the initiative since, despite this degradation
in characterizing the cell state, the reduction of the search
space would largely compensate for it. In average, the
fitness, following a same number of GA iterations, was
slightly improved. For instance, for the “variety” equal to
5, one point of fitness could be gained, around 5 instead of
6.

Emergence of a Useful way to Observe CA

At this stage of the work, and although this masking
sounds as a promising proposal, several remarks can be
made. First, though slightly improved, the fitness is still
unsatisfactory and an average of five is the best we can
reach. Second, it is clear that by limiting the observation
to such a small part of the cell state, it’s hard to imagine

MASK
02367

how we could reach one very best individual the coding of
which should demand for a fine tuning. Last but not least,
with respect to the problematic of emergence, this masking
can’t be said to emerge since it is manually imposed by the
human user.
 One way to answer all these remarks is by the following
new set of experiments that we indeed performed. First,
let’s define the emergent “observable” to be the “mask”
given the best fitness after a certain number of random
trials. In such a way, this masking will be intrinsically
selected by the system itself with no need for human
intervention. So there should be an initial set of trials to
reveal this promising mask. The right mask will emerge
out of this initial sequence of random trials. Afterwards,
both the mask and the population of the best rules obtained
with this mask should be memorized so as to release a new
set of simulations in which the complete coding of the cell
states and the rules will be re-established. The new
algorithm works as follows:

1) For “s” trials, generate one random mask and
compute the best fitness after “y” GA iterations
2) Out of these s trials, memorize the best mask and the
best rules set for this mask
3) Re-establish the complete coding and generate the
initial rule set from the rule set memorized after the
“masking” phase. To do so, the v*28 bits of the
“unmask” version bit will be obtained by taking the
value of the corresponding v*23 bits of the memorized
“masked” version, so that v*25 bits will share the same
initial value. It is easy to understand that this procedure
guarantees that the best fitness of this new unmasked
rules set is equal to the best fitness of the previous
masked one. So an elitist evolutionary algorithm can
only improve on the best fitness of the unmasked
version.
4) compute the best fitness after “z” GA iterations.

In order to verify in the most “honest” way the benefit
allowed by this algorithm, results need to be compared
with a “unmasked” version of the algorithm allowing
z+y*s iterations. In the table below, one can read three
output of the algorithms for z=1500, y=300 and s=5. First,
for comparative purpose, a simple run of the “unmasked”
algorithm is done for 3000 GA iteration, then 5 trials are
made of the “masked” version for 300 GA iterations, to be
concluded by 1500 GA iterations of the re-establish
“unmasked” version, with the best mask extracted from the
precedent trials. In such a way, the unmasked version and
the “emergent masked” version will be fairly compared
following a same number of 3000 GA iterations. In the
table below the three outputs are quite representative of the
many run we did of this same algorithm.
 Focusing on the first output (i.e. the first column), the
best fitness attained by the unmasked version after 1500
GA iterations was 5. Then 5 trials of 300 GA iterations
were run with 5 different masks. The best fitness, 2, was
obtained with the fifth mask: “01457”. A final release of
1500 GA iterations was performed by re-establishing the

complete coding of the states and the rules, which
eventually lead to the optimal rule table. Here the right
way to observe the CA turned out to be by exploiting the
mask “01457”, an observable that was really selected by
the system itself. Following this last run, a final perfect
adder was obtained for the 5 numbers (fitness = 0). In
general, this algorithm leads to the best final fitness we
could ever have, with an average of 1.5 after the 5 masks
testing and the final 500 iterations instead of 6 by simply
using the original unmasked coding during 3000 iterations.
A considerable improvement results from the use of this
emerging observable of the CA. Results shown in the 2nd
and the 3rd columns are also interesting since, despite the
mediocre results obtained after 500 iterations with mask
“01456” in the first case and “02356” in the second, the
following “masked” version considerably improves the
final fitness (2 and 1). So in all cases, it seems that the use
of the masks constrain the GA search space in a very
profitable way.

No masking: fitness = 5 No masking: fitness = 7 No masking: fitness = 7

With masking:

01347
fitness = 7

With masking:

01456
fitness = 7

With masking:

12357
fitness = 7

With masking:

01245
fitness = 4

With masking:

23567
fitness = 10

With masking:

02356
fitness = 6

With masking:

24567
fitness = 6

With masking:

12467
fitness = 9

With masking:

12356
fitness = 8

With masking:

01234
fitness = 6

With masking:

12457
fitness = 10

With masking:

01237
fitness = 10

With masking:

01457
fitness = 2

With masking:

12357
fitness = 9

With masking:

01346
fitness = 7

No masking:
 01457
fitness = 0

No masking:
 01456
fitness = 2

No masking:
 02356
fitness = 1

Conclusions and Related Work

It is necessary here to spend some lines on the closely
connected and very influential work of Crutchfield and
Mitchell [6][7] who also evolve CA both in an engineering
and in an epistemological perspective. Regarding the
epistemological impact of their work, a new way of
observing the CA in terms of “regular domains”,
“particles”, and “particle interactions” is proposed. To
some extent, this new observable can be said to emerge
since it provides the system with a better understanding of
how the CA performs. Now this is somewhat different
from our proposal where this new macro way to observe
the CA behaviour is not aiming at a better comprehension
of how it performs but straightforwardly at a better
performance. Roughly said, the adoption of this new
sophisticated and high-level semantics based on “particles
and particle interactions” allow to understand why the CA

can classify or synchronize but does not make it
synchronize or classify better (indeed the coding and
general framework they used was enough to find the
optimal CA), whereas the “emergent abstract observable”
discussed in this paper aims at improving (here by simply
accelerating the search) how the CA can achieve addition.
Both works illustrate the necessary condition for a
phenomenon to “intrinsic emerge” since, in both cases,
additional functionally is provided to the system. Simply,
the nature of this functionality turns out to be different,
oriented towards a better understanding on the one hand
and towards a better performance on the other hand. In
contrast with more dynamical phenomena like the game of
life “glider”, this very small increment in abstraction
provided by superposing the mask on the CA is a very
elementary structural form of emergence, but what is more
relevant here is the way it autonomously appears rather
than its definitive nature. Besides, but much more work
should be done, by observing the CA dynamics when
adding the two initial numbers, it clearly appears that some
kind of particle is crossing the space to encounter others of
the same kind, and that the adoption of this “mechanical”
high level semantics could, here also, clarify the rules of
addition evolved by the GA. It would have been even more
convincing if, instead of the mask, it is these new reading
of CA in terms of particles and particle encounters that
would have been autonomously selected to accelerate the
discovery of the optimal adder.
 Adopting a more engineering perspective, this manner
of reducing and constraining the search space by adopting
a more coarse grained observation of the system to
optimize could be effective for a lot of combinatorial and
real optimization applications. Take for instance the
Traveling Salesman Problem, a way of grouping the cities
in some kind of region and first optimize the path among
the regions, then keep the best “regionalization” and, from
this new solution, try to optimize the real one, is definitely
something to try when the number of cities prohibit any
acceptable solution by just staying at the lowest level.
Also, this technique is similar to some form of automatic
feature selection which is a rather common attitude when
having to optimize real functions with many dimensions.
An obvious next thing to try will be to put the mask under
genetic control to let a population of masks to evolve as
part of the whole GA’s evolutionary process.
 Finally, the idea that adopting some “distorted” way of
observing the reality can make the observer more adapted
in his environment than by trying too match all details will
not surprise researchers interested in the study of
perception both correct and illusory. Living systems
calibrate their perceptual apparatus not to perfectly match
the external reality but to extract what is needed for a
better life. We don’t see the world as it is but as it fits. The
work presented here resonates with this generally accepted
view of perceptive systems: Here, the evolving system
does not observe the CA with all possible details but just in
a way which allows rushing towards the most adapted one.

Whenever a functional perspective is adopted in biological
systems, Darwinism is just around the corner so that, like
in the practical work presented in this paper, an emergent
observable should be selected in a biological system on
account of the adaptive value it provides this system with.

References

1. Andre, D., Forrest H. Bennet and J.R. Koza. 1996. Discovery
by genetic programming of a cellular automata rule that is
better than any known rule for the majority classification
problem. In J.R. Koza, D.E. Goldberg, D.B. Fogel and R.L
Riolo (eds) – Genetic Programming 1996: Proceedings of the
first conference, pp. 3-11, MA. The MIT Press.

 2. Baas, N.A. 1994. Emergence, hierarchies, and hyperstructures.
In C.G. Langton (Ed.) Artificial Life III. Sante Fe Studies in
the Sciences of Complexity, Proc. Vol. XVII. (pp. 515-537).
CA: Addison-Wesley.

 3. Bedeau, M.A. 1997. Weak emergence. In J. Tomberlin (Ed.)
Philosophical perspectives: Mind, causation and world, Vol.
11 (pp. 375-399), MA: Blackwell.

 4. Bersini, H. and G. Seront (1992): "In search of a good
optimization-evolution crossover" - In Parallel Problem
Solving from Nature, 2 - Männer and Manderick (Eds.) - pp.
479 - 488.

 5. Cariani, P. 1997. Emergence of new signal-primitives in
neural networks. Intellectica, 2, pp. 95-143.

 6. Crutchfield, J.P. 1994. Is Anything Ever New? Considering
Emergence. In Integrative Themes. G. Cowan, D. Pines and D.
Melzner (eds.) Santa Fe Institute Studies in the Sciences of
Complexity XIX. Addison-Wesley, Reading , MA.

 7. Crutchfield, J.P. and M. Mitchell. 1995. The evolution of
emergent computation. Proceedings of the National Academy
of Science, 23(92):103. van Leeuwen, J. (ed.): Computer
Science Today. Recent Trends and Developments. Lecture
Notes in Computer Science, Vol. 1000. Springer-Verlag,
Berlin Heidelberg New York.

 8. Emmeche, C., S. Koppe and F. Stjernfelt. 1997. Explaining
emergence: Towards an ontology of levels. Journal for
General Philosophy of Science, 28:83-119.

 9. Holland, J.H. 1992. Adaptation in Natural and Artificial
System. 2nd edition. Cambridge, Mass. The MIT Press.

 10.Kubik, A. 2003. Toward a formalization of Emergence. In
Artificial Life 9: pp. 41-65. MIT Press.

 11.Packard, N.H. 1988. Adaptation toward the edge of chaos. In
J.A.S. Kelso, A.J. Mandell, M.F. Shlesinger (eds.) Dynamic
Patterns in Complex Systems, pp. 293-301. Singapore World
Scientific.

 12.Poundstone, W. 1985 The Recursive Universe. Chicago:
Contemporary Books.

 13.Rasmussen, S., Baas, N.A., Mayer, B., Nilson, M., & Olegen,
M.W. 2002. Ansatz for dynamical hierarchies. Artificial Life,
7, pp. 367-374.

14.Ronald, E.A., Sipper, M. & Capcarrère, M.S. 1999. Design,
observation, surprise! A test of emergence. Artificial Life, 5,
pp. 225-239.

15.Sipper, M. 1998. Computing with cellular automata: Three
cases for nonuniformity. Physical Review E, 57(3).

16. Wolfram, S. 1994. Cellular Automata and Complexity.
Addison-Wesley, Reading, MA.

