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Abstract 

The practical work presented in this paper uses a 
GA to evolve a cellular automata (CA) 
implementation of a binary numbers adder. One 
very useful way to compress the enormous search 
space and eventually find an optimal CA consists 
in adopting a macro-coding of the states and the 
rule table. It is further discussed how this work 
illustrates and defends our favorite position in the 
currently vivid epistemological debate around the 
notion of “emergence”. This position is 
Crutchfield’s “intrinsic emergence” one, in which 
to say that a macro-property is emergent requires 
that this “property” supplies some mechanical and 
non-human observer with additional functionality. 

Introduction and Intrinsic Emergence  

For many years now, cellular automata (CA) [16] have 
been the favorite computational platform to experiment 
and illustrate emergent phenomena. It is far from 
surprising that many authors have relied on their CA 
experimentation to quest for formal definitions of the 
nature of “emergence” and to practically validate them 
[3][10][14]. This paper is following a similar trend by fully 
adopting the practice of CA. On the whole, all authors 
interested in the rationalization of emergence converge to 
the fact that at least two levels of observation are required: 
A first one in which the micro-states and micro behavioral 
rules are specified and implemented, and a second one, 
which by only depending upon the underlying micro-
characteristics, exhibits interesting macro-phenomena. 
They are obtained by unfolding in space and time the 
micro-rules though the micro-states, most of the time in a 
non-decomposable way (see [10] for an attempt to 
formalize this non-decomposability). 
 An observer, so far always human, is necessary to 
instantiate this second and more abstract level of 
observation and to spot, follow and trace these interesting 
and new phenomena. This characterization of emergence 
has turned out to be quite common [2][3][8][10][13] and 

could be symbolized by the little UML class diagram of 
figure 1 showing the three basic actors: the parts, the 
whole, allowing to iterate the parts in space and time, and 
the human observer.  Nevertheless, this paper considers 
that such a classical characterization, though including 
necessary ingredients (i.e. the two levels of observation 
and the abstraction in space and time of the second with 
respect to the first), is far from sufficient, severely limited 
and incomplete on one essential aspect: the identity and the 
role of this second level observer. The problem is not so 
much that “the whole is more than the sum of its parts” but 
rather who is responsible for observing that “whole”.  For 
CA, Neural Networks, other computer simulations of 
networks and whatever computational source of 
emergence, the observer is generally accepted to be human. 
However, this “anthropomorphisation” of the phenomenon 
of emergence is antagonistic to any scientific practice that, 
in principle, aims at not leaving subjectivism a leg to stand 
on. Basically, if the formalization of emergence demands 
the intervention of a human observer, even worse to be 
“psychologically surprised” [14], its intrusion in the 
vocabulary of physics is compromised right off the bat. 
 

 
 
Fig. 1. The “Intrinsic Emergence”: from the human observer to 
the functional device. 
 



 To our knowledge, such a limitation has been faced and 
removed mainly by two authors [5][6][7] who, in their 
writing, have answered this preoccupation by supplying 
the characterization of emergence with a key ingredient. 
Like the updated UML class diagram shows, a “functional 
device” must substitute the human observer that, for 
whatever utility or performance reasons, will fine-tune its 
observation of any macro-phenomena produced by the 
system. Cariani [5] claims that, for a phenomenon to be 
said emergent, devices need to be built, able to find new 
observable, autonomously relative to us, whose selection 
and tuning must rely on performance measures.  However 
the most convincing reply to this limitation and which 
provides the main guidelines for the work to be described 
in this paper is the Crutchfield’s definition of “intrinsic 
emergence” [6]: 
“… Pattern formation is insufficient to capture the 
essential aspect of the emergence of coordinated behaviour 
and global information processing… At some basic level 
though, pattern formation must play a role… What is 
distinctive about intrinsic emergence is that the patterns 
formed confer additional functionality which supports 
global information processing… During intrinsic 
emergence there is an increase in intrinsic computational 
capability, which can be capitalized on and so lends 
additional functionality.” 
 For instance, the game of life “glider” [12][3][10] 
should not be characterized as “emergent” unless some 
functional device able to observe the CA and to aggregate 
its cells in space and in time (the glider covers 5 cells and 
is a period-four phenomenon) will make a specific use of 
it. Emergence is a bottom-up phenomenon but like in any 
top-down and hierarchical construction of complex 
systems, some external entity needs to make sense and use 
of whatever emerges at any level of the construction. 
Following trends initiated by Packard, Crutchfield, 
Mitchell and others [1][7][11], the work described in this 
paper consists in using an evolutionary algorithm to 
discover a CA able to perform an engineering task, in our 
case, the binary addition of  numbers coded on n bits. It is 
shown that the discovery of such an efficient CA is very 
painful by adopting the natural micro-coding of the states 
and the rules.  
 An important improvement and acceleration of this 
discovery is allowed by adopting a simplified macro or 
abstract characterization of the states and the rules of the 
CA. This new and one level up “macro observation”, 
intrinsically emerges, since autonomously tuned by the 
system itself on the basis of performance measures.  Once 
a new macro-way of observing the system is adopted, new 
phenomena emerge since being detectable only by this new 
observing device. Allowing part of the evolutionary 
process to take place by adopting such an emergent 
observable accelerates in a consequential way the 
discovery of a quasi-optimal CA. This is why and only 

why, according to the definition of “intrinsic emergence”, 
this observable can be labeled as “emergent”, since it is 
intrinsically selected by the system to improve its 
performance and needs no external human observer.  
 Apart from casting some fresh light on the 
characterization of emergence, any engineering of 
distributed computation should often be able to reproduce 
such a practice: find a way of observing the system which 
helps the optimizing of its structure and behaviour. The 
next section will describe the task to be achieved by the 
CA. The third one will describe how a simple evolutionary 
algorithm can search for a satisfactory non-uniform CA, 
finally followed by the two last sections discussing and 
experimenting how a useful way of observing the CA can 
emerge in order to boost the discovery of this satisfactory 
solution. 

The CA Task: Binary Addition  

Binary addition is an interesting task to be performed by 
CA for essentially two reasons. First, it is much more 
reminiscent of what real digital circuits perform in 
computers than “density classification” or 
“synchronization” [1][7][11][15], so that the developments 
presented here could more easily be transposed for the 
automatic discovery of useable logical circuits. Moreover, 
the computer digital circuitry for binary additions is built 
by growing up in functional abstraction i.e. big circuits 
(able to add big numbers) are composed of small circuits. 
Basically the little circuits, optimally shaped for adding 
very small binary numbers, are kept as the basic blocks for 
building larger circuits. This fact will be important to help 
at better understanding the type of observables we want 
our system to be able to “emerge”.  
 The CA used to perform this task is a two dimensional 
CA (this dimensionality was favored to the one-
dimensional case by analogy with digital circuitry and for 
reasons that will become obvious later on), with periodic 
boundaries and characterized by the classical 8-cells 
Moore neighborhood.  At time 0, like indicated in fig.2, 
two n bits binary numbers are installed in the first line of 
the CA (the first number on the extreme left, the second 
number on the extreme right, in the figure, numbers are 
coded on 5 bits). All other cell initial states are tuned to 0. 
Time step after time step, the CA then updates all its cells 
in a synchronous way, by complying with the rule table 
associating with each of the 28 possible neighborhood 
configurations the next value of the state (so that the rule 
table here has 28 entries with value “0” or “1” for each). 
The goal of the CA global computation is, like indicated in 
fig.2, after a given number of time steps, taken here to be 
equal to the vertical size of the CA (the number of lines), 
to obtain, still in the first line and on its extreme left, the 
n+1 bits composing the result of the addition of the two 
numbers. 



     
 
Fig.2. The CA Task: Binary addition of two five bits binary 
numbers. Initially, the numbers are shown at the extreme left and 
extreme right of the first line of the first CA (a 25x25 periodic 
CA). The two numbers are 10001 and 00111. All the other cells 
are set to 0. After 25 time steps, the correct sum: 011000 should 
appear at the extreme left of the first line of the second CA. 
 
In the software, all parameters, the size of the CA, the size 
of the numbers to add, the number of time steps to reach 
the result, can easily be changed. However, here for sake 
of clarity, we will maintain one set of number, 25 for the 
size of a square CA (so that 25 five time steps are 
computed in order to get the answer) and 5 for the size of 
the two numbers to add by the same CA. Finally, this 
addition must be performed for a certain number of 
couples of binary numbers, say 5 again, like, for instance 
given below: 
 

 N1    N2    N1+N2 
01110 11110 101100 
00111 10101 011100 
11100 00110 100010 
11001 01111 101000 
10111 11110 110101 

 
This way of doing makes CA very similar to classical 
addition logical circuits were the numbers to add are 
injected as input on the top of the circuit, then cascade 
down through a sequence of logical gates to finally give 
the result of the addition at the bottom of this circuit.  It 
must be clear that this procedure does not guarantee at all 
obtaining a universal adder but just a specific one, which 
works well for these n numbers. However, the bigger this n 
the more likely you’ll make the adder universal.  
 
 

What Kind of GA Evolves the CA 
 

 The kind of GA and how well it allows optimizing the 
rule table is not a central topic here and an infinite number 
of possible evolutionary algorithms could be applied. The 
rule table to be optimized is composed of 28 bits so that the 

search must take place in this huge binary space (228
 

possibilities). A population of 20 individuals is being 
evolved. After computing the fitness of every individual, 
the best one is kept in the subsequent population (the 
“elitist version”) and the best half of the population is 

selected on which to apply the mutation and the crossover 
mechanisms responsible for generating the subsequent 
population. Following a series of mutation and crossover 
upon the 10 best individuals, a new population of 20 
individuals is generated. More precisely, the first 
individual of the new population is the same as the first 
individual of the previous one. Then the second and the 
third individuals of the new population are obtained by 
randomly mutating one bit of two individuals arbitrarily 
taken among the 10 best individuals of the previous 
population. Since a large preference is given to the 
crossover mechanism, the 17 remaining individuals are 
obtained by applying the simplex crossover on three 
individuals.  
 The simplex crossover first introduced in [4], and which 
has been shown to improve on the two parents classical 
one, is described below.   
 
Simplex Crossover:  

1) Take three parents and rank then by 
decreasing fitness: P1>P2>P3 

2) For each bit, if parent 1 and parent 2 agree on 
the value of the bit, the offspring will have 
the same value for this bit. If parent 1 and 
parent 2 disagree on the value of the bit, take 
the reverse of the value of this bit given by 
parent 3. 

3) The idea is that both parent 1 and 2, the good 
ones, attempt at shaping the offspring similar 
to them while parent 3, the worst of all three, 
and as soon as it can say something, will 
force the offspring to be very different from 
him. 

 
For instance:  
 
 P1:   1001100110 
 P2:   1011110100 
 P3:   0001101111 
   --------------------------------- 

 Offspring:   1011110100 
  

In our case and provided the individuals in the population 
are ranked by decreasing fitness, the three parents are 
selected so that the first resides in the first third of the 10 
best, the second in the second third and the third in the last 
third.  Again, we are not so much interesting here in how 
well this GA performs. This is one very simple instance to 
implement and much better versions could be imagined. It 
largely suffices to test and validate the main idea behind 
this work. The fitness is computed by summing, over all 
five couple of numbers, the Hamming distance between the 
desired result (the correct sum) and the one obtained after 
25 time steps of the CA run. For all possible rule tables and 
for 5 couples of 5 bit numbers, the fitness value is 
comprised between 0, the best fitness, and 30, the worst 
one (i.e. 5*6). 



 After many attempts, the performances obtained were 
very poor, giving an average fitness around 6.5. In 
substance, after thousands of iterations, no CA could be 
found able to sum these 5 binary numbers. Like done by 
other authors before [15], a first recovery decision 
consisted in allowing the CA to become non-uniform i.e. to 
allow distinct rule tables to characterize the update 
mechanism of different cells. Then a cell could be 
characterized by one rule table and its neighboring cell by 
a distinct one. While this increase in the degrees of 
freedom should naturally improve the computational 
capacity of the CA, the original motivation was to be able 
to replicate the heterogeneity of computer logical circuits 
(composed of “AND”, “NOR”, “XOR”, etc. gates). 
Consequently, an additional attribute has to be associated 
with every cell i.e. which one of the rule tables it complies 
with. The way the rule tables were distributed among the 
cells was random and the figure below shows the increase 
in performance obtained by allowing the number of distinct 
rule tables to vary from 1 to 5 (the parameter “v” for 
“variety”). But, still no CA could be found with fitness 
better than 6 after 500 iterations of the GA search. 
 The new individual to optimize would now comprise 
v*28 bits increasing by many order of magnitude the size 
of the search space. Indeed, the same figure shows that, 
although a small increase of v allows an improvement in 
the fitness, in order to obtain this improvement and to 
discover better individuals, the number of GA iterations 
must equally increase in a drastic way (500 GA iterations 
in the first case and 2000 in the second one). So, while 
increasing the heterogeneity increases in proportion the 
chance to find a better CA (for instance with v=5, the 
average best fitness obtained after 2000 GA iterations is 
5,4 ), the computational time must also be consequently 
increased to allow this discovery. A very practical problem 
turns out to be how to accelerate the discovery of an 
optimal CA in a fundamental way. 
 

    
 

Fig.3. The fitness as a function of the variety of the rule tables for 
500 and 2000 GA iterations 
 

Discovery of a Useful Way to Observe CA 
 

Facing this huge search space, among the many ways to 
reduce its size, the original one proposed in this paper 
requires to modify the way CA is observed and to move 

one level up in abstraction to look at the states and the 
rules. This new observable makes any cell to be 
characterized by only x out of the 8 states composing its 
neighborhood and to mask the (8-x) others. For instance, x 
could be taken to be 3, like indicated in fig.4. If only 3 
neighbors are taken into account, many cells, whatever 
distinct precise neighborhood they have, turn out to be in 
identical state. This is very reminiscent of the “don’t care” 
symbol of Holland’s definition of GA schema.  Instead of 
“10010000”, for instance, the state of a cell will become 
“#0####00”. A formidable collapse in the dimension of the 
search space follows from this abstract observation which, 
in presence of 5 don’t care (we will keep with this value in 
the following although a bigger or smaller one is equally 
possible), boils the coding of the rule table down to 23*v (v 
still being the variety factor). 
 
 
 
 
 

    
                                      
  
  
      Fig. 4. Here the mask “02367” has been applied 
 
The way a cell is updated now complies with this reduced 
coding of the rule table and 25 distinct neighborhood (the 
masked “don’t care cells”) will give the same next state. 
The (8-x) hidden neighboring cells will be called the 
“mask” and C5

8 masks are possible. A mask will be 
defined, for instance, as “02367” i.e. the five hidden 
neighboring cells (this is the case shown in fig.4). The first 
experiments we tried consisted in seeing whether such a 
reduced search space, although skipping the fine tuning 
probably necessary at the discovery of an optimal CA, 
degraded or not the performance obtained so far. The GA 
was exactly the same apart from tackling a consequently 
smaller binary space and the 5-cells masks were randomly 
generated. The experimental results were quite surprising 
and supported the initiative since, despite this degradation 
in characterizing the cell state, the reduction of the search 
space would largely compensate for it. In average, the 
fitness, following a same number of GA iterations, was 
slightly improved. For instance, for the “variety” equal to 
5, one point of fitness could be gained, around 5 instead of 
6. 

Emergence of a Useful way to Observe CA  

At this stage of the work, and although this masking 
sounds as a promising proposal, several remarks can be 
made. First, though slightly improved, the fitness is still 
unsatisfactory and an average of five is the best we can 
reach.  Second, it is clear that by limiting the observation 
to such a small part of the cell state, it’s hard to imagine 

MASK 
02367 



how we could reach one very best individual the coding of 
which should demand for a fine tuning. Last but not least,    
with respect to the problematic of emergence, this masking 
can’t be said to emerge since it is manually imposed by the 
human user.  
 One way to answer all these remarks is by the following 
new set of experiments that we indeed performed. First, 
let’s define the emergent “observable” to be the “mask” 
given the best fitness after a certain number of random 
trials. In such a way, this masking will be intrinsically 
selected by the system itself with no need for human 
intervention. So there should be an initial set of trials to 
reveal this promising mask. The right mask will emerge 
out of this initial sequence of random trials. Afterwards, 
both the mask and the population of the best rules obtained 
with this mask should be memorized so as to release a new 
set of simulations in which the complete coding of the cell 
states and the rules will be re-established. The new 
algorithm works as follows: 
 

1) For “s” trials, generate one random mask and 
compute the best fitness after “y” GA iterations 
2) Out of these s trials, memorize the best mask and the 
best rules set for this mask  
3) Re-establish the complete coding and generate the 
initial rule set from the rule set memorized after the 
“masking” phase.  To do so, the v*28 bits of the 
“unmask” version bit will be obtained by taking the 
value of the corresponding v*23 bits of the memorized 
“masked” version, so that v*25 bits will share the same 
initial value. It is easy to understand that this procedure 
guarantees that the best fitness of this new unmasked 
rules set is equal to the best fitness of the previous 
masked one. So an elitist evolutionary algorithm can 
only improve on the best fitness of the unmasked 
version.  
4) compute the best fitness after “z” GA iterations. 
 

In order to verify in the most “honest” way the benefit 
allowed by this algorithm, results need to be compared 
with a “unmasked” version of the algorithm allowing 
z+y*s iterations. In the table below, one can read three 
output of the algorithms for z=1500, y=300 and s=5. First, 
for comparative purpose, a simple run of the “unmasked” 
algorithm is done for 3000 GA iteration, then 5 trials are 
made of the “masked” version for 300 GA iterations, to be 
concluded by 1500 GA iterations of the re-establish 
“unmasked” version, with the best mask extracted from the 
precedent trials.  In such a way, the unmasked version and 
the “emergent masked” version will be fairly compared 
following a same number of 3000 GA iterations. In the 
table below the three outputs are quite representative of the 
many run we did of this same algorithm. 
 Focusing on the first output (i.e. the first column), the 
best fitness attained by the unmasked version after 1500 
GA iterations was 5. Then 5 trials of 300 GA iterations 
were run with 5 different masks. The best fitness, 2, was 
obtained with the fifth mask: “01457”.  A final release of 
1500 GA iterations was performed by re-establishing the 

complete coding of the states and the rules, which 
eventually lead to the optimal rule table. Here the right 
way to observe the CA turned out to be by exploiting the 
mask “01457”, an observable that was really selected by 
the system itself. Following this last run, a final perfect 
adder was obtained for the 5 numbers (fitness = 0). In 
general, this algorithm leads to the best final fitness we 
could ever have, with an average of 1.5 after the 5 masks 
testing and the final 500 iterations instead of 6 by simply 
using the original unmasked coding during 3000 iterations. 
A considerable improvement results from the use of this 
emerging observable of the CA. Results shown in the 2nd 
and the 3rd columns are also interesting since, despite the 
mediocre results obtained after 500 iterations with mask 
“01456” in the first case and “02356” in the second, the 
following “masked” version considerably improves the 
final fitness (2 and 1).  So in all cases, it seems that the use 
of the masks constrain the GA search space in a very 
profitable way. 
 
No masking: fitness = 5 No masking: fitness = 7 No masking: fitness = 7 

With masking:  

01347 
fitness = 7 

With masking:  

01456 
fitness = 7 

With masking:  

12357 
fitness = 7 

With masking:  

01245 
fitness = 4 

With masking:  

23567 
fitness = 10 

With masking:  

02356 
fitness = 6 

With masking:  

24567 
fitness = 6 

With masking:  

12467 
fitness = 9 

With masking:  

12356 
fitness = 8 

With masking:  

01234 
fitness = 6 

With masking:  

12457 
fitness = 10 

With masking:  

01237 
fitness = 10 

With masking:  

01457 
fitness = 2 

With masking:  

12357 
fitness = 9 

With masking:  

01346 
fitness = 7 

No masking: 
     01457 
fitness = 0 

No masking: 
     01456 
fitness = 2 

No masking: 
     02356 
fitness = 1 

Conclusions and Related Work 

It is necessary here to spend some lines on the closely 
connected and very influential work of Crutchfield and 
Mitchell [6][7] who also evolve CA both in an engineering 
and in an epistemological perspective. Regarding the 
epistemological impact of their work, a new way of 
observing the CA in terms of “regular domains”, 
“particles”, and “particle interactions” is proposed. To 
some extent, this new observable can be said to emerge 
since it provides the system with a better understanding of 
how the CA performs. Now this is somewhat different 
from our proposal where this new macro way to observe 
the CA behaviour is not aiming at a better comprehension 
of how it performs but straightforwardly at a better 
performance.  Roughly said, the adoption of this new 
sophisticated and high-level semantics based on “particles 
and particle interactions” allow to understand why the CA 



can classify or synchronize but does not make it 
synchronize or classify better (indeed the coding and 
general framework they used was enough to find the 
optimal CA), whereas the “emergent abstract observable” 
discussed in this paper aims at improving (here by simply 
accelerating the search) how the CA can achieve addition. 
Both works illustrate the necessary condition for a 
phenomenon to “intrinsic emerge” since, in both cases, 
additional functionally is provided to the system. Simply, 
the nature of this functionality turns out to be different, 
oriented towards a better understanding on the one hand 
and towards a better performance on the other hand. In 
contrast with more dynamical phenomena like the game of 
life “glider”, this very small increment in abstraction 
provided by superposing the mask on the CA is a very 
elementary structural form of emergence, but what is more 
relevant here is the way it autonomously appears rather 
than its definitive nature. Besides, but much more work 
should be done, by observing the CA dynamics when 
adding the two initial numbers, it clearly appears that some 
kind of particle is crossing the space to encounter others of 
the same kind, and that the adoption of this “mechanical” 
high level semantics could, here also, clarify the rules of 
addition evolved by the GA. It would have been even more 
convincing if, instead of the mask, it is these new reading 
of CA in terms of particles and particle encounters that 
would have been autonomously selected to accelerate the 
discovery of the optimal adder.  
 Adopting a more engineering perspective, this manner 
of reducing and constraining the search space by adopting 
a more coarse grained observation of the system to 
optimize could be effective for a lot of combinatorial and 
real optimization applications. Take for instance the 
Traveling Salesman Problem, a way of grouping the cities 
in some kind of region and first optimize the path among 
the regions, then keep the best “regionalization” and, from 
this new solution, try to optimize the real one, is definitely 
something to try when the number of cities prohibit any 
acceptable solution by just staying at the lowest level. 
Also, this technique is similar to some form of automatic 
feature selection which is a rather common attitude when 
having to optimize real functions with many dimensions. 
An obvious next thing to try will be to put the mask under 
genetic control to let a population of masks to evolve as 
part of the whole GA’s evolutionary process.   
 Finally, the idea that adopting some “distorted” way of 
observing the reality can make the observer more adapted 
in his environment than by trying too match all details will 
not surprise researchers interested in the study of 
perception both correct and illusory. Living systems 
calibrate their perceptual apparatus not to perfectly match 
the external reality but to extract what is needed for a 
better life. We don’t see the world as it is but as it fits. The 
work presented here resonates with this generally accepted 
view of perceptive systems: Here, the evolving system 
does not observe the CA with all possible details but just in 
a way which allows rushing towards the most adapted one.  

Whenever a functional perspective is adopted in biological 
systems, Darwinism is just around the corner so that, like 
in the practical work presented in this paper, an emergent 
observable should be selected in a biological system on 
account of the adaptive value it provides this system with. 
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