
‘Feeling’ the flow of time through sensorimotor co-ordination

Elio Tuci�, Vito Trianni and Marco Dorigo

IRIDIA, Avenue Franklin Roosevelt 50, CP 194/6 — 1050 Bruxelles, Belgium

email: fetuci,vtrianni,mdorigog@ulb.ac.be

Abstract. In this paper, we aim to design decision-making mechanisms for a simulated Khepera robot

equipped with simple sensors, which integrates over time its perceptual experience in order to initiate a

simple signalling response. Contrary to other previous similar studies, in this work the decision-making

is uniquely controlled by the time-dependent structures of the agent controller, which in turn are tightly

linked to the mechanisms for sensorimotor coordination. The results of this work show that a single

dynamic neural network, shaped by evolution, makes an autonomous agent capable of ‘feeling’ time

through the flow of sensations determined by its actions. Further analysis of the evolved solutions

reveals the nature of the selective pressures that facilitate the evolution of fully discriminating and

signalling agents. Moreover, we show that, by simply working on the nature of the fitness function,

it is possible to bring forth discrimination mechanisms that generalize to conditions never

encountered during evolution.

Keywords: evolutionary robotics, dynamic neural networks, time-based decision making

mechanisms, robustness.

1. Introduction
Animals that forage in a heterogeneous environment, where resources are distributed
in patches, are required to make ‘complex decisions’ such as in which patch to forage, or
at which moment in time it is better to move to another patch. To make such decisions,
animals need to acquire relevant information from their environment. Although several
different mechanisms have been proposed to account for the observed behaviour of differ-
ent animals, behavioural ecologists tend to assume that the experience the animals have of
the patch during time has an incremental or a decremental effect on the animal tendency to
remain in the patch (see Nonacs (2003) and Alphen et al. (2003) for more on this issue).

A general problem common to biology and robotics concerns the definition of the
mechanisms necessary to decide when it is better to pursue a particular action in a
certain location and at which moment in time it is better to leave for pursuing a
similar or a different activity in a similar or different location. This problem is not
limited to foraging alone, but extends to many activities that a natural or artificial
agent is required to carry out. Autonomous agents may be asked to change their beha-
viour in response to the information gained through repeated interactions with their
environment. For example, in a group of robots, although many individual actions
might be simpler to carry out than a single co-ordinated activity, they might turn out
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to be less efficient (see Trianni et al., 2004). Therefore, autonomous agents require
adaptive mechanisms to decide whether it is better to pursue solitary actions or to initiate
co-operative strategies.

In this paper, we aim at synthesizing decision-making mechanisms for an autono-
mous robot equipped with simple sensors (see figure 1), which integrates over time its
perceptual experiences in order to initiate alternative actions. In other words, the beha-
viour of the agent should change as a consequence of its repeated interaction with
particular environmental circumstances. We are interested in exploiting a biologically-
inspired evolutionary approach, based on the use of dynamical neural networks and
genetic algorithms (Beer 1995). Generally speaking, the appeal of an evolutionary
approach to robotics is twofold. Firstly, and most basically, it offers the possibility of
automating a complex design task (Nolfi and Floreano 2000). Secondly, since artificial
evolution needs neither to understand nor to decompose a problem in order to find a
solution, it offers the possibility of exploring regions of the solution space that con-
ventional design approaches are often constrained to ignore (Harvey et al. 1992). In our
work, artificial evolution should tightly couple the agent’s decision-making mechanisms
to the nature of the environment and to the sensorimotor capabilities of the agent.

The experiment performed here, described in detail in section 2, requires an auton-
omous agent to possess both navigational skills and decision-making mechanisms.
That is, the agent should prove capable of navigating in a boundless arena in order to
approach a light bulb positioned at a certain distance from its starting position. More-
over, it should prove capable of discriminating between two types of environment:
one in which the light can be actually reached, and another in which the light is
surrounded by a ‘barrier’ that prevents the agent from proceeding further toward
its target. Due to the nature of the experimental set-up, the agent can find out in
which type of environment it is situated only if it proves capable of: (i) moving in a
co-ordinated fashion in order to bring forth the perceptual experience required to discri-
minate between the two environments; and (ii) integrating over time its perceptual
experience in order to initiate a signalling behaviour if situated in an environment in
which the light cannot be reached.

The results of our simulations show that a single continuous time recurrent neural
network (CTRNN, described in section 4.2 and also in Beer (1995)) shaped by evolution
makes an autonomous agent capable of ‘feeling’ time through the flow of sensations
determined by its actions.1 Low-level ‘leaky-integrator’ neurons, which constitute the
elementary units of the robot’s controller, provide the agent with the required time-
dependent structures. Further analysis of the evolved solutions reveals the nature of
the selective pressures that facilitate the evolution of fully discriminating and signalling
agents (see section 5). Moreover, we show that, simply by working on the nature of the
fitness function, it is possible to bring forth discrimination mechanisms that are robust
enough to deal with environmental circumstances that have never been encountered
by the best evolved robots’ ancestors. This result supports further the significance of
the evolutionary robotics approach as a suitable method to develop adaptive autonomous
systems.

The paper is structured as follows. Section 2 gives a detailed description of the
discrimination task. Section 3 highlights similarities and differences between our
approach and some other works in the evolutionary robotics literature about decision-
making problems based on the evolution of ‘low-level’ time-dependent structures. We
claim that, although other studies looked at the evolution of time-dependent structures
to control the behaviour of agents required to make decisions based on their experience,
our experimental set-up allows us to look at issues that have not yet been explored.
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Section 4 introduces the experimental set-up used for the experiments described in
sections 5 and 6. Conclusions are drawn in section 7.

2. Description of the task
At the beginning of each trial, a robot is positioned within a boundless arena, about
100 cm west of a light bulb, with a randomly determined orientation chosen between
north-east and south-east (see figure 2, left). The light bulb is always turned on during
the trial. The robot perceives the light through its ambient light sensors, positioned
458 left and 458 right with respect to its heading. Light levels alter depending on the
robot’s distance from the light. The colour of the arena floor is white except for a circular
band, centred around the lamp, within which the floor is in shades of grey. The circular
band covers an area between 40 and 60 cm from the light; the floor is black at exactly
40 cm from the light; the grey level decreases linearly with the distance from the

Figure 1. (a) Picture of a Khepera robot. (b) Plan of the robot, showing sensors and motors.

The robot is equipped with two ambient light sensors (L1 and L2) and a floor sensor indicated

by the black square F. The left and right motor (M1 and M2) are controlled by a dynamic

neural network (NN). A simple sound signalling system, controlled by an output of the

network, is referred to as S.

Figure 2. Depiction of the task. The small black circle represents the robot’s starting position.

The small open circle represents the light bulb. The arena floor is white everywhere except

within a circular band surrounding the light. The way in zone corresponds to the sector of

the band, indicated by dotted lines, in which the floor is white. In both pictures, the

continuous arrows are examples of good navigational strategies; the dashed arrows are

examples of forbidden trajectories. In Env. B, the continuous arrow gets thicker to

indicate that the robot emits a sound after having made a loop around the light.
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light. The robot perceives the colour of the floor through its floor sensor, positioned
under its chassis, which outputs a value scaled between zero (when the robot is
positioned over white floor) and one (when it is over black floor) (see section 4 for
a description of the robot).

The robot can move freely within the band, but it is not allowed to cross the black
edge. The latter can be imagined as an obstacle or a trough that prevents the robot
from further approaching the light (see dashed arrows in figure 2). Whenever the
robot crosses the black edge, the trial is unsuccessfully terminated. The area in shades
of grey is meant to work as a warning signal, which indicates to the robot how close
it is to the danger, i.e. the black edge.

There are two types of environment. In one type—referred to as Env. A—the band
presents a discontinuity (see figure 2, left). This discontinuity, referred to as the way
in zone, is a sector of the band in which the floor is white. In the other type—referred
to as Env. B—the band completely surrounds the light (see figure 2, right). The way
in zone represents the path along which the robot is allowed to reach safely the light
in Env. A. A successful robot should prove capable of performing phototaxis as well
as looking for the way in zone to avoid crossing the black edge of the band. Such a
robot should always reach the light in Env. A. On the contrary, in Env. B the robot
should, besides avoiding crossing the black edge, signal the absence of the way in
zone by emitting a tone. How can the robot, provided only with local information,
distinguish between environments in which the band presents a discontinuity (i.e.
Env. A) and environments in which the band does not presents any discontinuity
(i.e. Env. B)?

The cue the agent should use is a temporal one: that is, the Env. B can be ‘recognized’
by the persistence of a particular perceptual state for the amount of time necessary to
discover that there is no way in zone. For example, a successful agent might integrate
over time the grey level sensed by its floor sensor to bring forth something similar to
the ‘feeling’ of travelling within the band for as long as the time required to complete
a loop. Such a strategy would allow the robot to make sure that there is no way in
zone. Alternatively, the robot might simply react to the colour of the floor and integrate
over time the perceived light intensity. In this case, the perception of the circular band is
simply used to interrupt the phototaxis and to initiate a circular trajectory.

Notice that, whatever the nature of the perceptual state that the robot integrates over
time, the underlying mechanisms for the integration are strongly dependent upon the way
in which the robot moves within the environment. For example, let us assume that our
robot, by circuiting around the light while remaining over the circular band, integrates
over time the reading from the floor sensor. By employing this strategy, the amount
of time required for our robot to perform a complete loop of the band depends on
the dimensions of the band and on the way in which the robot moves within the
band. The robot movements, e.g. its speed and trajectory, are determined by its control-
ler. Thus, the latter should make the robot move in such a way that, if the perception
of the band lasts for a certain amount of time, the robot can deduce that the
band does not present any discontinuity. Consequently, it should activate the sound
signalling.

In view of what we have just said, we claim that the most challenging part of our
empirical work resides in: (i) synthesizing, through an evolutionary process, a robot’s
controller which must be capable of moving the robot co-ordinately so that it can inte-
grate over time the flow of perception determined by its actions; and (ii) evolving within
a single, i.e. not modularized, controller the mechanisms required for sensorimotor
co-ordination and discrimination through sound signalling.

304 E. Tuci et al.



As illustrated in the next section, the results of previous similar works in the evolution-
ary robotics literature seem to suggest that CTRNNs provide all the ‘building blocks’
necessary for evolution to generate the mechanisms required by an autonomous agent
to perform this task: that is, mechanisms for sensorimotor co-ordination and time-
dependent structures for decision-making (see section 3).

3. Related work
Several studies have described evolutionary simulation models in which time-dependent
structures are evolved to control the behaviour of agents required to make decisions
based on their experiences. The aim of this section is to highlight similarities and
differences between our experiments and those already in the literature.

First of all, we wish to make a distinction between our work and some others that we
refer to as non-ecological models (Todd and Miller 1991a,b, Yamauchi and Beer 1994,
Tuci et al. 2002a). In our model, the agent perception is brought forth by the agent itself
through its actions. Contrary to us, in the non-ecological models the perceptual experi-
ence of the agents is determined by the experimenter. This is, in our view, a significant
difference that bears upon the complexity of our task. Obviously, the flow of perception
provides the agents with the cues to make the discrimination. In non-ecological models,
the discrimination task is therefore facilitated by the fact that perceptual structures are
‘made available’ to the agent by the experimenter (see also Parisi et al. (1990) for
more on this issue). Moreover, some of the non-ecological models (see, e.g. Yamauchi
and Beer’s (1994) experiment) are further simplified by the presence of an explicit
reinforcement signal, i.e. an input signal explicitly dedicated to informing the agent’s
controller of the characteristics of the ‘environmental circumstances’ in which it is
currently situated by making available to the system any possible mismatch between
the current agent’s action and the correct response.

Other studies on the evolution of time-dependent structures for discrimination tasks
share with our experiment the ecological perspective, in which the nature of the
agent’s perception is determined by its own actions and the reinforcement signals are
part of the evolved structures (see Ziemke and Thieme 2002, Tuci et al. 2002b, Nolfi
2002, Blynel and Floreano 2003). The evolution of time-dependent structures and
decision-making mechanisms has been studied extensively on the T-maze problem
(see Ziemke and Thieme 2002, Blynel and Floreano 2003). Generally speaking, these
tasks require a robot to find its way to a goal location placed at the bottom of any of
the two arms of a maze. When at the T-junction, the robot must decide whether to
turn left or right. The correct decision can be made if the agent is capable of exploiting
perceptual cues that were available to it while it was navigating down the first corridor,
or by ‘remembering’ something about previous trials in a similar T-maze. In Ziemke and
Thieme (2002), a mechanism for neuromodulation of sensorimotor weights provided
the agents with the required plasticity to exploit the relationship between the location
of light signals placed roughly at the middle of the first corridor and the turn to make
at the junction. Blynel and Floreano (2003) allowed the agent to experience the environ-
ment in a first trial, in which success or failure play the role of a reinforcement signal,
in order to associate the position of the goal with respect to the T-junction. In Tuci
et al. (2002b), evolved CTRNNs provided the agents with the required plasticity to
discover the spatial relationship between the position of a landmark and the position
of a goal. In this study, the spatial relationship between the goal and the landmark can
be learned by ‘remembering’ from previous trials the relative position of the landmark
with respect to the goal.
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The difference between the ecological models and our study is not as apparent as
it was for the non-ecological ones described at the beginning of the section. However,
it should be noticed that, in the ecological studies reviewed above, the discrimination
is based on the recognition of distinctive environmental contingencies and the mainten-
ance of these experiences through time, as a form of short-term memory.2 On the con-
trary, in our study the cue that allows the agent to make the discrimination has to deal
with the persistence over time of a perceptual state common to both the elements to
be distinguished, i.e. Env. A and Env. B, rather than with the nature of the cue itself
employed to make the discrimination. That is, in our case, due to the nature of the
agent sensory apparatus, one environment can be distinguished from the other solely
because a perceptual state, common to both environments, might, in one case, be
perceived by the agent for a time longer than what the agent might experience by
acting in the other type of environment.

Experiments similar to the one described here were performed by Nolfi (2002) and by
Croon et al. (2004). These authors investigated a discrimination task in which a robot,
while navigating through a maze, must recognize that it is located in one room rather
than in another. In spite of the differences in the experimental set-up, these works
and the one described here focus on similar issues. They all exploit evolution to
design controllers for autonomous robots required to make decisions based on time-
dependent structures.

4. The robot-based model
In this section, we provide some details concerning the robot-environment simulation
model used to evolve the controllers (see section 4.1), the equation used to update the
state of the neural network (see section 4.2) and the parameters of the genetic algorithm
(see section 4.3).

4.1. The simulation
The robot and its world are simulated using a modified version of the ‘minimal
simulation’ technique described by Jakobi (1997). Jakobi’s technique uses high levels
of noise to guarantee that the simulated controller will transfer to a physically realized
robot with no loss of performance. Our simulation models a Khepera robot, a 55-mm
diameter cylindrical robot (see figure 1). This simulated robot is provided with two
ambient light sensors, placed at 458 (L1) and 2458 (L2) with respect to its heading,
and a floor sensor positioned facing downward on the underside of the robot (F). The
light sensors have an angle of acceptance of 1208, and they can detect the light up to
a distance of 100 cm from the light source. Light levels change as a function of the
robot’s distance from the lamp. The light sensor values are extrapolated from a look-
up table3 which corresponds to the one provided with the Evorobot simulator—see
Nolfi (2000) for further details. The floor sensor can be conceived of as a proximity
infrared sensor capable of detecting the level of grey of the floor. It produces an
output that is proportional to the level of grey, scaled between zero (when the robot is
positioned over white floor) and one (when it is over black floor). The sound signalling
system is represented by the binary output of one of the neurons of the robot’s controller
(see section 4.2 for details).

The robot has right and left motors—respectively M1 and M2—which can move inde-
pendently forward or backward, allowing it to turn fully in any direction. The robot is
assumed to have negligible mass, so that the motor output can be taken as the tangential
velocity of the robot at the motor mount point. The current heading u 0 and the position
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(x0, y0) of the virtual Khepera within its environment are calculated at each time step
according to the following equations:

m ¼ rw � vw � Dt;

x0 ¼ x þ x(u) �
(vr þ v l)

2
� m � dt;

y0 ¼ y þ g(u) �
(vr þ v l)

2
� m � dt;

u0 ¼ uþ
(vr � v l) � m

d � dt
, (1)

where vr and v l correspond to the instantaneous velocity of the right and the left motors,
respectively; m is a constant equal to 0.8 cm representing the maximum distance covered
by a robot in Dt ¼ 1 s at maximum speed vw ¼ 10 rad s21; rw ¼ 0.8 cm is the the radius
of the wheel; x(u) and g(u) correspond to the horizontal and vertical increments for
a Khepera travelling at a speed of 1 cm per second for a given orientation u; and
d ¼ 5.2 cm is the length of the axle. The simulation time step dt corresponds to 0.2 s.
There is no allowance for momentum, and the noise inherent in the real-world situation
is not modelled.

4.2. The controller
Fully connected, eight neuron CTRNNs are used. All neurons are governed by the
following state equation:

dpi

dt
¼

1

ti

�pi þ
X8

j¼1

wjis ( pj þ bj) þ gIi

 !
, s (x) ¼

1

1 þ e�x
, (2)

where, using terms derived from an analogy with real neurons, pi represents the cell
potential, ti the decay constant, bj the bias term, s(pj þ bj) the firing rate, wji the
strength of the synaptic connection from neuron jth to neuron ith, and Ii the intensity
of the sensory perturbation on sensory neuron i. Three neurons receive input Ii from
the robot sensors. These input neurons receive a real value in the range [0,1], which is
a simple linear scaling of the reading taken from its associated sensor.4 The other
neurons do not receive any input from the robot’s sensors. The cell potential pi of the
sixth neuron, mapped into [0,1] by the sigmoid function s and then set to unity if
bigger than 0.5 or zero otherwise, is used by the robot to control the sound signalling
system. The cell potentials pi of the seventh and the eigth neurons, mapped into [0,1]
by the sigmoid function s and then linearly scaled into [210,10] set the robot motors
output. The strength of synaptic connections wji, the decay constants ti, the bias terms
bj and the gain factor g are genetically encoded parameters. Cell potentials are set to
zero any time the network is initialized or reset, and circuits are integrated using the
forward Euler method with an integration step size of 0.2 s.

4.3. The evolutionary algorithm
A simple generational genetic algorithm (GA) is employed to set the parameters of the
networks (Goldberg 1989). The population contains 100 genotypes. Generations follow-
ing the first one are produced by a combination of selection with élitism, recombination
and mutation. For each new generation, the three highest scoring individuals (‘the élite’)
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from the previous generation are retained unchanged. The remainder of the new
population is generated by fitness-proportional selection from the 70 best individuals
of the old population. Each genotype is a vector comprising 81 real values (64 connec-
tions, eight decay constants, eight bias terms and a gain factor). Initially, a random popu-
lation of vectors is generated by initializing each component of each genotype to values
chosen uniformly random from the range [0,1]. New genotypes, except ‘the élite’, are
produced by applying recombination with a probability of 0.3 and mutation. Mutation
entails that a random Gaussian offset is applied to each real-valued vector component
encoded in the genotype, with a probability of 0.15. The mean of the Gaussian is
zero, and its standard deviation is 0.1. During evolution, all vector component values
are constrained to remain within the range [0,1]. Genotype parameters are linearly
mapped to produce CTRNN parameters with the following ranges: biases bj [
[22,2], weights wji [ [26,6] and gain factor g [ [1,12]. The genes that codify the
decay constants are firstly linearly mapped on to the range [20.7, 1.7] and then exponen-
tially mapped into ti [ [1020.7,101.7].

5. Evolution of time-dependent discrimination mechanisms
In this section, we illustrate the fitness function and the results of a first series of exper-
iments in which we aim to evolve agents capable of discriminating between Env. A and
Env. B. The fitness function employed simply rewards a robot for approaching the light
bulb, and for signalling anytime it is located in Env. B, but not signalling in Env. A.
A significant feature of this fitness function is that it rewards agents that make a proper
use of their sound signalling system regardless of the strategies exploited to make the
discrimination.

We have run three sets of 10 evolutionary simulations—referred to as condition þA,
condition þB and condition AB—which differ with respect to the proportion of Env. A
and Env. B each agent experiences during the evolutionary phase. In condition þA, the
Env. A are three times more frequent than the Env. B. In condition þB, the Env. B are
three times more frequent than the Env. A. In condition AB, the two types of environ-
ment appear with the same frequency.

The reason for running simulations on these three conditions is related to the potential
effects on the phylogeny of the system produced by different selective pressures
determined by the proportion of Env. A and Env. B the agents encounter during their
lifetime. For example, due to the nature of the task, we may assume that sound signalling
is advantageous only if it is employed by an agent that possesses the sensorimotor
co-ordination required to discriminate between Env. A and Env. B. However, if Env.
B is more frequent than Env. A—as in condition þB—an agent that always signals,
regardless of its sensorimotor capabilities, has a higher fitness than an agent that
never signals. Although both types of agent are sometimes right and some other times
wrong, the former is three times more successful than the latter. Thus, in condition
þB, evolution might progress through an initial stage characterized by populations of
signalling agents, followed by a subsequent stage characterized by populations of
agents that combine signalling with the sensorimotor co-ordination required to carry
out the discrimination task.

On the contrary, in condition þA the pay-off is reversed. An agent that never signals
is three times more successful than an agent that always emits a sound signal. Thus,
evolution might proceed by firstly rewarding agents capable of sensorimotor co-ordination
but not capable of sound signalling, and subsequently by rewarding those agents that
combine sensorimotor co-ordination with a proper use of the sound. Both conditions
þA and þB require the gradual and progressive evolution of adaptive mechanisms
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coupled with previously evolved traits. However, such evolutionary trends might not be
particularly easy to obtain.

It is more difficult to imagine what could happen in condition AB, which neither
favours the mechanisms for sensorimotor co-ordination over the mechanisms for signal-
ling, nor vice versa. Although this condition might facilitate the progressive evolution of
agents capable of the required sensorimotor co-ordination and signalling, there is also the
possibility that the lack of a strong selective pressure for or against either mechanism
might be deleterious rather than beneficial to the evolution of the desired behaviour.
The system might end up fluctuating without being capable of ‘bootstrapping’ from
randomly initialized controllers to the desired solution/s.

The results of the simulations and the analysis of the evolved solutions, illustrated in
section 5.2, provide useful empirical evidence to clarify some of the issues discussed
above.

5.1. The evaluation function
During the evolution, each genotype is coded into a robot controller and is evaluated 16
times. The proportion of Env. A and Env. B within the 16 trials depends on the condition.
At the beginning of each trial, the neural network is reset, i.e. the activation value of each
neuron is set to zero. Each trial differs from the others in the initialization of the random
number generator, which influences the robot starting position and orientation, the
position of the way in zone, and the noise added to motors and sensors. For each trial
in Env. A, the position of the way in zone is varied to facilitate the evolution of
robust navigational strategies. Its amplitude is fixed to p/2. Within a trial, the robot
life-span is 80 s (400 simulation cycles). A trial is terminated earlier if either the
robot crosses the black edge of the band (see dashed arrows in figure 2) or because it
reaches a Euclidean distance from the light higher than 120 cm. In each trial e, the
robot is rewarded by an evaluation function fe which corresponds to the sum of the
following two components:

(1) Rmotion: this component rewards movements toward the light bulb, and it is com-
puted as:

Rmotion ¼
df � dn

df

, (3)

where df and dn represent, respectively, the furthest and the nearest Euclidean
distance between the robot and the light bulb. In particular, df is updated whenever
the robot increases its maximum distance from the light bulb. At the beginning of
the trial, dn is fixed as equal to df, and it is subsequently updated: (i) every time the
robot gets closer to the light bulb; (ii) every time df is updated. In this latter case, dn

is set up equal to the new df. In Env. A, dn is set to zero if the robot is less than
7.5 cm away from the light bulb. In Env. B, dn is set to zero as soon as the robot
reaches the band in shades of grey.

(2) Rsignal: this component rewards agents that: (i) do not signal any time they
are located in Env. A; and (ii) emit a sound signal any time they are located in
Env. B. The component is computed as:

Rsignal ¼
1 if proper signalling

0 otherwise:

�
(4)
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An important feature of this evaluation function is that it simply rewards agents that
make a proper use of their sound signalling system, without directly interfering with
the nature of the discrimination strategies.

5.2. Results obtained
Ten replications of the experiments are run for each condition. Figure 3 shows, for each
condition, the fitness of the best individual and the mean population fitness plotted
against the generation number and averaged over the 10 replications. It is possible to
notice that in all the three conditions, the maximum fitness value is reached suggesting
that in all replications of the experiment and in all conditions a successful behaviour was
evolved. The 100% success rate can be accounted for by recalling that the fitness
function, not rewarding any specific action except phototaxis and the signalling
behaviour, has positively influenced the development of successful behaviours. In
fact, evolution is left free to search for whatever strategy could be effective for the
achievement of the final goal.5

Figure 3. Average fitness during the evolution. All plots are the average over the 10 replications

of the experiment performed for each condition. The thick line correspond to the average

fitness of the best individual, while the thin line refers to the average fitness of the population.
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5.2.1. Analysis of the evolved behavioural strategies. A qualitative analysis of the
evolved controllers confirms that a number of different behavioural strategies have
been obtained. However, some constant characteristics can be recognized. At the begin-
ning of a trial, all robots perform phototaxis until they reach the circular band. When the
grey level on the floor exceeds a certain threshold, the robots start circuiting around the
light bulb with an approximately constant angular speed. Whenever the robots are placed
in Env. A and the way in zone is detected, phototaxis starts again and the light bulb is
reached. On the contrary, in Env. B, after travelling on the band for a given time
without detecting the way in zone, the robots initiate a signalling behaviour.

An example of this behaviour is shown in figure 4: in both Env. A and Env. B, it is
possible to see that, when the circular band is detected—see continuous line F at
about simulation cycle 130—the robot starts moving on the circular band, maintaining
a constant distance from the light bulb. This behaviour is indicated by the constant read-
ings of the light sensors L1 and L2 and of the floor sensors F. In Env. A, the way in zone
is encountered shortly before simulation cycle 300, as indicated by the sudden drop in the
floor sensor F. At this point, the robot performs phototaxis again, rapidly reaching
the light bulb, as indicated by the high activation of the light sensors L1 and L2 at the
end of the simulation.

The constant angular speed on the circular band is the basic mechanism exploited for
discrimination between Env. A and Env. B by successfully evolved robots. In fact, this
constant motion allows the robots to experience a constant perceptual state (the grey
level of the floor and the light intensity that impinges on their sensors), which roughly
corresponds to the constant flow of time. In figure 4, it is possible to see that the persist-
ence of a particular perceptual state, corresponding to the robot circuiting around the
light and over the band, makes the output S, which controls the sound, increase linearly.
This perceptual state triggers the sound signalling through an efficient integration mech-
anism which is based on the ‘feeling’ of travelling long enough over the circular band
without having encountered the way in zone. In fact, if the way in zone is encountered,
as in the upper part of figure 4, the activation of the neuron S decreases below the
threshold level 0.5. This response makes the robot capable of avoiding initiating the
signalling behaviour when it is not required. The situation is different in Env. B:
the absence of the way in zone let the output of neuron S reach and overcome the
threshold level 0.5—see bottom part of figure 4, simulation cycle 300. This response
makes the robot capable of correctly signalling that it is located in an Env. B.

In summary, the behavioural analysis revealed that the evolved controllers produce
the required sensorimotor co-ordination that brings forth a perceptual state that is
integrated over time and exploited for discrimination through sound signalling.

5.2.2. Analysis of the different selective pressures. All the replications produced a suc-
cessful controller, no matter the condition in which the evolution took place (þA, þB or
AB). Therefore, we still cannot state if the selective pressures introduced in condition
þA, in condition þB and in condition AB made any significant difference. From
figure 3, it is possible to see that in condition þA the average performance of the best
individual reaches the optimum earlier than in the other two cases. This seems to
suggest that the evolutionary regime in condition þA might be more suitable for the
evolution of fully discriminating agents than the one corresponding to condition þB
and condition AB. Recall that the condition þA facilitates the early evolution of a popu-
lation of agent with the required sensorimotor co-ordination followed by population of
agents capable of successfully discriminating through sound signalling.
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In order to assess and compare the performance of controllers evolved in different
conditions, we performed further analyses by re-evaluating each of the best evolved
final generation individuals for 100 trials in each type of environment (i.e. Env. A and
Env. B). In each trial performed in Env. A, we look at the robot capability of reaching
the light bulb (Succ.), without making any error. Errors can be of two types: E1 refers to
the emission of a sound signal, while E2 refers to crossing the black edge of the band.
Similarly, in Env. B, we look at the performance of the robot on properly signalling

Figure 4. Behavioural analysis. The sensors’ activity and the corresponding motor outputs

are plotted for 400 simulation cycles. L1 and L2 refer to the light sensors, while F refers

to the floor sensor. M1 and M2 correspond to the motors of the two wheels, and S refers

to the sound signalling. When S is bigger than 0.5, the robot emits a signal (see section 4.1).
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the absence of the way in zone (Succ.), without committing any error. Also in this case,
two error types are possible: E3 refers to the lack of sound signalling, and E4 refers to the
robot crossing the black edge of the band. Furthermore, in Env. B we also compute the
offset between the entrance position of the robot in the circular band and the position in
which the robot starts to signal. This measure, called offset D, is computed as follows:

D ¼ ja(te, ts)j � 2p, (5)

a(t1, t2) ¼
Xt2�1

t¼t1

dAOBAOB, A ¼ Xt, B ¼ Xtþ1, (6)

where O corresponds to the position of the light, and a is the angular displacement of the
robot around the light from the starting position—the position at time te when the robot
enters into the circular band—to the signalling position—the position at time ts when the
robot starts signalling. a is computed summing up all the convex angles dAOBAOB comprised
between two consecutive position of the robot X t, taking into account that an angle is
negative if the robot moves clockwise. This measure accounts for the capability of a
robot for searching the way in zone. Offset D takes value zero if the robot signals
exactly after covering a complete loop of the circular band. Otherwise, it gives the
angular displacement from this position. Negative values of the offset D suggest that
the robot signals before having performed a complete loop, while positive values corre-
spond to the situation in which the robot has performed more than one loop around the
light, waiting too long to signal.

Table 1 refers to the post-evaluation in condition þA. Here, all the evolved controllers
perform well, having a very high success rate in both Env. A and Env. B. It is worth

Table 1. Post-evaluation in condition þA. Performance of the best evolved controllers of

each replication. The percentage of success (Succ. %) and the percentage of errors (E1

and E2 in Env. A, and E3 and E4 in Env. B) over 100 trials are shown for both Env.

A and Env. B. Additionally, the average offset D and its standard deviation (degrees) are

shown for Env. B.

Condition 1A

Run

number

Env. A Env. B

Succ. E1 E2 Succ. E3 E4
Offset D

(%) (%) (%) (%) (%) (%) Average Standard

1 100 0 0 100 0 0 238.5 8.79

2 100 0 0 99 1 0 260.05 30.47

3 100 0 0 100 0 0 257.47 12.6

4 100 0 0 99 0 1 217.94 24.06

5 91 1 8 90 0 10 267.21 25.78

6 100 0 0 98 2 0 228.83 38.38

7 98 0 0 100 0 0 247.16 25.21

8 97 0 3 100 0 0 265.49 16.04

9 96 0 4 91 0 9 63.98 22.91

10 98 0 2 96 4 0 257.47 27.5
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noting that there are only few cases in which the robot makes signalling errors (E1 and
E3), while some replications of the experiments have a higher error rate in crossing the
black edge of the circular band. This is due mainly to a tendency of the robots to
approach the black edge while circuiting on the band. Concerning the offset D, most
evolved controllers have a negative value, in general lower than 658, meaning that all
robots signal far before having completed one loop of the circular band. However,
this offset is enough to discriminate between Env. A and Env. B, as the way in zone
is 908 wide. Only in one case, in replication 9, is the robot ‘prudent’: that is, it signals
only after having completed a loop around the light bulb.

Here, the selective pressure given by the higher percentage of Env. A encountered by
the robot during evolution yields a robust behaviour. In condition þA, the sound signal-
ling behaviour appears only after having acquired the sensorimotor co-ordination
required for the integration over time.6 Therefore, it is simpler to make the association
between the sound signalling behaviour and the absence of the way in zone with respect
to the other conditions, as we shall see in the following.

The situation in condition þB is completely reversed, as shown in table 2. As
expected, the robots perform well in Env. B, with a high success rate and low percentage
of both types of error. However, E1, that is, signalling when not required, is much higher
than in condition þA.7 In all these cases, robots trigger the sound signal in Env. A too
early, before finding the way in zone. This is confirmed by the wide offset D recorded in
Env. B. The selective pressure given by the higher percentage of Env. B first favoured
the evolution of signalling robots, no matter the environment in which they
were located and their sensorimotor capabilities. The results obtained suggest that,
in condition þB, it is more difficult to evolve agents capable of moving in a co-ordinated
fashion in order to discriminate successfully, through sound signalling, Env. A from
Env. B.

The results of the post-evaluation in condition AB, shown in table 3, are intermediate
with respect to the other two conditions. While a high success rate is achieved for
many of the best evolved robots, we can also observe some errors, performed mainly in

Table 2. Post-evaluation in condition þB; see caption of table 1 for details.

Condition 1B

Run

number

Env. A Env. B

Succ. E1 E2 Succ. E3 E4
Offset D

(%) (%) (%) (%) (%) (%) Average Standard

1 97 0 3 100 0 0 258.49 6.28

2 86 13 1 100 0 0 2166 13.58

3 100 0 0 99 1 0 263.63 33.69

4 92 8 0 100 0 0 259.30 18.16

5 84 13 0 100 0 0 2161.65 13

6 78 12 10 100 0 0 2125.08 7.44

7 75 24 1 100 0 0 2181.23 31.51

8 62 36 1 98 2 0 2196 83.07

9 68 30 2 100 0 0 2173.78 21.77

10 98 0 0 100 0 0 65.70 50.42
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Env. A. The robot run number 1 signals too early—as indicated by the high negative
offset. Thus, it makes many errors of type E1. A similar performance was produced
by several other controllers evolved in condition þB. Other robots perform well in
sound signalling, but they often cross the black edge of the circular band, making
errors E2 or E4. This time, a similar performance was produced by several others con-
trollers evolved in condition þA. Clearly, the condition AB has a more uncertain and
variable outcome than the other two.

In conclusion, the above analysis reveals that the selective pressure corresponding
to condition þA, which favours the progressive evolution initially of sensorimotor
co-ordination followed by discrimination capabilities through sound signalling,
produces an overall better performance of the evolved controllers.

6. Evolution of robust discrimination strategies
One of the most desirable features of an autonomous robot consists in its capability to
adapt to varying environmental conditions. Research in biology has shown that the
‘adaptability’ of natural systems is generally bound within some limits that are deter-
mined by the evolutionary history of the species (see Breland and Breland 1961,
Bolles 1970, Johnston 1981). Animals, especially humans, are also capable of coping
with circumstances that it is reasonable to assume they have never encountered during
their phylogeny. Although the nature of the mechanisms that allow an animal to adapt
to ‘novel’ circumstances is still a controversial issue, biologists tend to assume that
mechanisms evolved to accomplish a particular task might subsequently carry out
other adaptive functions different from those for which they have been evolved
(Gould and Vrba 1982).

Evolutionary robotics makes it possible to bring these concepts within the domain of
artificial autonomous systems (see Wheeler 1996). That is, by evolving robot’s control-
lers in varying environmental conditions, we might obtain agents that show the following
characteristics: (i) they can easily adapt to several environmental conditions as long as
they have experienced them during evolution; and (ii) a phylogenetic history in varying

Table 3. Post-evaluation in condition AB; see caption of table 1 for details.

Condition AB

Run

number

Env. A Env. B

Succ. E1 E2 Succ. E3 E4
Offset D

(%) (%) (%) (%) (%) (%) Average Standard

1 90 9 1 100 0 0 2112.48 25.21

2 98 0 2 100 0 0 21.32 26.35

3 86 0 14 100 0 0 254.61 5.15

4 100 0 0 100 0 0 28.46 8.02

5 96 2 2 99 0 1 266.64 33.23

6 99 0 1 100 0 0 229.40 36.66

7 89 0 11 99 0 1 85.76 45.26

8 90 0 5 96 4 0 55.96 13.17

9 97 0 3 100 0 0 256.9 30.36

10 96 0 4 96 0 4 70.86 82.50
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environments might help the emergence of mechanisms that allow the final generation
agents to cope with circumstances that their ancestors have never encountered.

In this section, we show some results in which the robot’s controllers are evolved in
environments in which the distance between the black edge of the band and the light bulb
varies from a minimum of 20 cm to a maximum of 65 cm. We refer to this distance as
light–band distance, and the set of simulations in which this distance varies as condition
R. The environmental variation experienced by the robots in condition R represents a
significant evolutionary challenge for robots that are required to perform the discrimi-
nation task described in section 2. By varying the light–band distance, while main-
taining fixed the width of the circular band (20 cm), the spatiotemporal structures that
the robot must exploit to distinguish between Env. A and Env. B vary as well. For
example, for a robot that moves at a certain speed and with a certain trajectory over
the band, if the light–band distance is at its minimum of 20 cm, the time required to
perform a loop around the light will be definitely shorter than the time required in an
environment in which the light–band distance is at its maximum of 65 cm. In order to
be capable of successfully distinguishing between Env. A and Env. B, this robot must
be able to adapt to the characteristics of the environment. One possible solution consists
of exploiting the relationship between the intensity of the light and the activation of the
floor sensor in order to ‘get an idea’ of the light–band distance. If the robots can perceive
how far the light is from the black edge of the band, they can use this to estimate the inner
circumference of the circular band. They can then ‘deduce’ the length of time for which
they need to circuit the circular band before signalling. In principle, once evolved, this
adaptive mechanisms should be robust enough for the robot to cope with environmental
circumstances never encountered by its ancestors.

Unfortunately, preliminary tests in which populations of robots have been evolved in
varying environmental circumstances with the fitness function described in section 5
were not particularly satisfying. The variation of important characteristics of the
environment was not enough to evolve adaptive agents capable of adjusting, through
the exploitation of the light–band distance, their discrimination strategies to the
current environmental circumstances. An adaptive discrimination strategy would
require the robot to signal after having made a loop around the light while remaining
on the circular band. Evolution found a simpler solution: whatever the light–band
distance was, the robots were simply circuiting around the light for as long as the
time required to trigger the sound signalling. In more detail, the evolved robots
started signalling after a fixed amount of time, chosen in a way to guarantee that
they would start signalling after having made a loop around the light in those environ-
ments in which the light–band distance was at its maximum. Obviously, this strategy
allows them to make perfect discrimination also in those environments in which the
light–band distance was shorter. However, the shorter the light–band distance, the
more loops around the light were required before emitting the sound signal, and
the less efficient the robot’s discrimination strategy appears. Moreover, by employing
this strategy, the robots were sometimes failing to discriminate properly if located in
environments in which the light–band distance was higher than the maximum distance
experienced by their ancestors during evolution. That is, by employing a fixed ‘signal-
ling time’, the robots were erroneously signalling in environments in which there was
a way in zone.

Thus, we have designed a new fitness function that rewards discriminating robots
for signalling just after having made a loop around the light bulb (see section 6.1 for
a detailed description of the fitness function). Recall that the fitness function employed
in previous simulations was simply rewarding agents for properly signalling regardless
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of the strategies employed to make the discrimination. By rewarding robots that signal
after having only made a single loop around the light in an Env. B, we are expecting that
successful agents should evolve adaptive mechanisms that allow them to find a way to
perceive the light–band distance. Hopefully, such robots should be able to adjust the
time required for signalling with respect to this distance.

6.1. The evaluation function
During the evolution, each genotype is coded into a robot controller, and is evaluated
16 times in five different environments, i.e. 80 trials in total. The five environments
differ as far as concerns the light–band distance. For each environment, this distance
varies randomly within one of the following intervals: [20, 25] cm, [30, 35] cm,
[40, 45] cm, [50, 55] cm, [60, 65] cm. Within a set of 16 trials, the robots experience
the same proportion of Env. A and Env. B.

In each trial, the initializations of the robot’s controller and of the random parameters
of the evaluation are performed in the same way as explained in section 5.1. Within a
trial, the robot life-span is 120 s (600 simulation cycles). As explained before, a trial
is terminated earlier if either the robot crosses the black edge of the band (see dashed
arrows in figure 2) or because it reaches a Euclidean distance from the light higher
than 120 cm. In each trial e, the robot is rewarded by an evaluation function fe, which
corresponds to the sum of two components: Rmotion, which rewards phototaxis and is
computed as in equation (3); and Rsignal, which accounts for proper signalling of the
robot in Env. A and in Env. B. Rsignal is computed as illustrated in equation (4) when
the robot is placed in Env. A. Otherwise, we take into account the signalling error the
robot makes with respect to the completion of a loop around the light:

Rsignal ¼
1 �

jDj

2p
proper signalling

0 otherwise

8<: , (7)

where the offset D was introduced in equation (5). If we assume that a whole loop around
the light bulb while remaining over the circular band is needed for the robot to make sure
that there is no way in zone, then Rsignal rewards adaptive signalling strategies, which
adjust themselves to the current light–band distance.8

6.2. Results obtained
The condition R is studied performing 10 evolutionary runs, using the experimental
set-up described earlier. Figure 5 reports the fitness of the best individual and the
mean fitness of the population during the evolution, averaged over the 10 replications.
The maximum fitness is reached in all replications, as indicated by the plot in
figure 5. However, the performance of the best individual oscillates near the
maximum value, due to the high variability in the fitness component Rsignal. As expected,
it is quite difficult for the robots to signal exactly after having covered one loop around
the light.

A post-evaluation analysis has been performed in order to assess the discrimination
capabilities of the final generation best evolved controllers in each of the 10 replications
of the experiment. We have re-evaluated each of these controllers 200 times in each of
the five environmental conditions—100 trials in Env. A and 100 trials in Env. B. The
results, averaged for all the replications and for the five environmental circumstances,
are summarized in table 4. This table illustrates, for each agent, two measures of its
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average success rate (see columns Rmotion and Rsignal), and two measures of its average
rate of failure for each type of environment (see columns E1, E2, E3 and E4). Table 4
shows that, as far as concerns both Rmotion and Rsignal, each final generation best
evolved controller possesses a very high success rate for both Env. A and Env. B. In par-
ticular, the performance in Env. A is always very close to the maximum, and very few
errors have been observed. As far as concerns Env. B, it is important to highlight the
good performance in the Rsignal component, which is related to the offset D in the signal-
ling behaviour—see equation (5). Recall that a value of 0.9 for Rsignal corresponds to an
absolute mismatch of 368 with respect to a complete loop. This means that the evolved
signalling behaviour is very accurate, despite the high variability (i.e. the light–band
distance) in the environmental conditions encountered by the robot.

The evolved controllers produce behaviours that are qualitatively similar to
those described in the previous section. As it was for the robots evolved in the other
evolutionary conditions (i.e. þA, þB, AB), also for the best evolved robot in condition

Figure 5. Average fitness during the evolution. The plot corresponds to the average over the

10 replications of the experiment. The thick line corresponds to the average fitness of the best

individual, while the thin line refers to the average fitness of the population.

Table 4. Condition R. Performance of the best evolved controllers of each replication.

Rmotion, Rsignal were introduced in sections 5.1 and 6.1. E1, E2, E3 and E4 were introduced

at the beginning of section 5.2.2.

Condition R

Run

number

Env. A Env. B

Rmotion Rsignal

E1

(%)

E2

(%) Rmotion Rsignal

E3

(%)

E4

(%)

1 0.99 0.98 0 1 1 0.91 5 23

2 1 1 0 0 1 0.97 0 0

3 0.99 0.99 0 1 1 0.94 0 8

4 0.99 0.97 1 0 1 0.82 4 3

5 1 0.99 0 0 1 0.88 0 0

6 0.99 0.99 1 0 1 0.95 0 4

7 1 1 0 0 1 0.94 0 1

8 1 1 0 0 1 0.93 0 0

9 0.99 0.98 0 1 1 0.95 0 0

10 1 1 0 0 1 0.97 0 7
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R, the level of grey of the circular band is exploited to navigate at roughly constant
angular speed around the light. However, in this condition, the amount of light that
impinges on the robot’s sensor is an important cue for the robot to adjust its discrimi-
nation strategies to the characteristics of the environment. It seems that the light is
exploited by adaptive regulatory mechanisms that integrate over time the robot’s flow
of perception, as can be observed by looking at figure 6. This figure shows the

Figure 6. Behavioural analysis. The sensor’s activity and the corresponding neural outputs

are plotted for 600 simulation cycles. The upper plot refers to Env. B where the light–band

distance is 20 cm, while the lower part refers to Env. B having a light–band distance of

60 cm. See the caption of figure 4 for more details about the plots.
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sensor’s reading, the signal sent by the controller to the robot’s wheel, and the normal-
ized activation value of neuron S, i.e. the neuron associated with the sound signalling, of
robot run number 10, during a re-evaluation trial in two Env. B: one in which the light–
band distance is set to 20 cm (see figure 6 at the top), and one in which the light–band
distance is set to 60 cm (see figure 6 at the bottom). From figure 6 it is clear that the
activation of the neuron S increases linearly in both environments. However, if we
look at the angle of inclination of the continuous line S, we notice that it is steeper in
the environment in which the light–band distance is set to 20 cm than in the environment
in which the light–band distance is set to 60 cm. Obviously, for a given position of the
robot over the circular band, the smaller the light–band distance the higher the light
intensity. The robot seems to exploit this feature to adjust its strategy according to the
following simple adaptive mechanism: the higher the light intensity, the shorter
the time spent by the robot over the circular band required by the neuron S to reach
the threshold beyond which the sound is activated.

As we said earlier, adaptive mechanisms evolved in varying environmental circum-
stances might turn out to be extremely advantageous for achieving a goal other than the
one for which they were originally evolved. We have tested, for all the best evolved
robots, the robustness of the adaptive mechanisms illustrated above in environmental cir-
cumstances never encountered by the robots’ ancestors. In particular, we performed an
analysis of the robustness of the robot discrimination strategies by looking at the
quality of the signalling behaviour, i.e. the offset D, in Env. B in which the light–band
distance was varying uniformly from 20 to 80 cm. Although in this test several types of
environment have never been experienced by the robot’s ancestor (i.e. 36 out of 61
environments), we are particularly interested in those in which the light–band distance
is greater than 65 cm, because they clearly require generalization capabilities that
might not be necessary in the other cases. The offset D has been computed 100 times
in each environment. The results for the robot run number 10 are shown in figure 7.

Figure 7. Robustness analysis. The offset D is plotted for varying light–band distance. The

box-plot shows 100 evaluations per box. Boxes represent the inter-quartile range of the data,

while the horizontal bars inside the boxes mark the median values. The whiskers extends to

the most extreme data points within 1.5 of the inter-quartile range from the box. The open

circles mark the outliers.
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Surprisingly, the offset D remains within the interval [220,40] degrees. It takes positive
values mainly for small light–band distances. That is, in these environments, the robot
tends to signal shortly after having completed a loop around the light. As the light–
band distance increases, we can see a progressive decrease in the offset D. For light–
band distances higher than 29 cm, the offset D permanently remains in the interval
[220,20]. The precision of the signalling mechanism is not altered by environmental cir-
cumstances that have never been encountered by the robot’s ancestors (in figure 7, note in
particular the performance for light–band distance greater than 65 cm). To conclude, we
can say that the discrimination strategies of the best evolved robots proved robust enough
to cope with varying environmental circumstances never encountered during evolution.
The generalization arises on the one hand because the environment affords the agent
to discriminate by employing mechanisms whose functions are not disrupted by the
environmental changes; on the other hand, because evolution was able to synthesize
time-dependent structures and adaptive mechanisms tailor-made for the agent to
capture those ‘affordances’.

7. Conclusions
In this paper, we have shown that a single (i.e. not modularized) CTRNN can be shaped
by evolution to allow an autonomous agent to make co-ordinated movements that bring
forth the perceptual experience necessary to discriminate between two types of environ-
ment. The results illustrated here are of particular interest because, contrary to other
previous similar studies, in this work the decision-making is uniquely controlled by
the time-dependent structures of the agent controller, which in turn are tightly linked
to the mechanisms for sensorimotor co-ordination (see section 3).

The first set of simulations, described in section 5, are more focused on the general
problem concerning the progressive evolution of behavioural capabilities that are
somehow dependent on each other. The results of our simulations show that the evol-
ution of agents capable of solving the considered task is favoured by a particular
selective pressure (i.e. condition þA) which facilitates the progressive evolution of
fully discriminating agents by firstly rewarding populations of agents capable of sensor-
imotor co-ordination but not capable of sound signalling, and subsequently by rewarding
those agents that combine sensorimotor co-ordination with a proper use of the sound.
The other evolutionary scenarios explored, i.e. conditions þB and AB, turned out to
be less successful. In particular, condition þB showed that it is far more difficult to
associate already evolved sound signalling mechanisms with the mechanisms for the
required sensorimotor co-ordination than the other way around. In our case, it was par-
ticularly straightforward to isolate the evolutionary dynamics of the condition þB,
which hindered the evolution of fully discriminating agents. That is, agents that pos-
sessed the mechanisms for signalling and that were not tightly linked with the required
sensorimotor co-ordination turned out to be ‘lucky’ enough to get the highest possible
fitness score during the evolutionary phase—the fitness of these agents were clearly
overestimated due to the nature of the probabilistic features of the environments in
which they happened to be evaluated. The overestimated strategies took over in
the population. However, these ‘lucky’ agents, if re-evaluated in a bigger number of
evaluation trials, showed the limitation of their discrimination mechanisms (see table 2).

The results of the second set of simulations, described in section 6, represent, in our
view, the most important achievement of our work. These simulations show that, by
simply working on the nature of the fitness function, it is possible to bring forth discrimi-
nation mechanisms that are robust enough to deal with environmental circumstances
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that have never been encountered by the best evolved robot ancestors. Note that these
environmental circumstances—that is, the light–band distance—concern the spatio-
temporal structures that the robot employs for discrimination (see section 6.2). There-
fore, by varying these important environmental structures, we might have induced a
particularly disruptive effect on the robot performance. Nevertheless, the robots
managed successfully to carry out their task, showing a good performance, as shown
in figure 7.

The significance of these results is twofold: on the one hand, they further support
the suitability of CTRNNs as controllers for autonomous robots. That is, these results
indicate that, despite the complexity of the task, in which mechanisms for sensorimotor
co-ordination and for discrimination must be tightly linked, CTRNNs can easily be
shaped by evolution to bring forth complex reactive and non-reactive mechanisms
within a single non-modularized controller. On the other hand, these results bear upon
the significance of the evolutionary approach to robotics. That is, they suggest that the
evolutionary approach to robotics is a suitable methodological tool to develop adaptive
autonomous agents which, like natural systems, can cope with environmental circum-
stances never encountered by the agents’ ancestors during the evolutionary phase.
From an engineering point of view, this is a particularly desirable property to observe
in autonomous systems, since it represents a way to overcome successfully the limit-
ations of other more classic approaches to robotics (see Brooks 1991a, b, Harvey et al.
1992, Wheeler, 1996, for more on this issue).

Based on these preliminary but encouraging results, in future works, we shall consider
more challenging experimental set-ups. In particular, the evolution of time-dependent
structures will be associated with functions other than simple discrimination through sig-
nalling. Time-dependent structures may be employed to trigger effective alternative
activities, as is the case for animal species making decisions about the quality of foraging
sites. For example, in an environment with more than one light bulb, the robot might
decide to give up circuiting around a light that does not have a way in zone, and to
move to another light bulb. Another interesting scenario might concern a group of
robots engaged in a similar light-approaching task. Let us assume that the band in
shades of grey is a trough larger than the diameter of a single robot, and that the
robots are capable of self-assembling, as described, for example, in Dorigo et al.
(2004). In this collective robotics scenario, time-dependent structures and sound signal-
ling can have the function of triggering aggregation and self-assembling of the robots.
The robots assembled into a bigger structure might be capable of passing over the
trough and reach their goal, i.e. the light bulb.
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Notes
1. The term ‘feeling’, employed extensively in this document, could be seen as an anthropo

morphism. However, in this paper we use it to mean no more than: a robot that manages to discriminate

between two types of environment by relying on the persistence over time of a particular perceptual

experience.

2. Notice that: (i) the term ‘recognition’ is used to indicate a sequence of agent’s actions produced in

response to particular sensors’ states; and (ii) the term ‘memory’ does not necessarily refer to a neural

structure internal to the agent’s controller.

3. This look-up table is available at http://iridia.ulb.ac.be/ � etuci/publications.html

4. Neuron N1 takes input from the ambient light sensor L1, N2 from the ambient light sensor L2 and N3

from the floor sensor F.

5. The same experiments performed using a more constraining fitness function yield a success rate of

50% (data not shown).

6. A phylogenetic analysis revealed that the sound signalling behaviour is the last capability to appear

among the repertoire of behaviours shown by the evolved robots (data not shown).

7. It is not surprising to observe high error rates in the post-evaluation analysis, even if during the

evolutionary phase the best evolved individuals reached the optimal fitness value. This phenomenon

is certainly due to an overestimation of the performance of the best-rated individual of the population,

which is tested only in a small subset of all the possible environmental circumstances it might

encounter.

8. Actually, 3/4 of a loop would be enough, the amplitude of the way in zone being fixed to p/2. This

choice has been made for generality purposes.
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