
 7.1   Introduction 

 In the last decade, swarm robotics gathered much attention in the research commu-
nity. By drawing inspiration from social insects and other self-organizing systems, it 
focuses on large robot groups featuring distributed control, adaptation, high robust-
ness, and flexibility. Various reasons lay behind this interest in similar multi-robot 
systems. Above all, inspiration comes from the observation of social activities, which 
are based on concepts like division of labor, cooperation, and communication. If soci-
eties are organized in such a way in order to be more efficient, then robotic groups 
also could benefit from similar paradigms. 

As  Kube and Zhang (1993 ) have pointed out,   “ Constructing tools from a collection 
of individuals is not a novel endeavor for humankind. A chain is a collection of links, 
a rake a collection of tines, and a broom a collection of bristles. Sweeping the sidewalk 
would certainly be difficult with a single or even a few bristles. Thus there must exist 
tasks that are easier to accomplish using a collection of robots, rather than just one. ”  

 A multi-robot approach can have many advantages over a single-robot system. First, 
a monolithic robot able to accomplish various tasks in varying environmental condi-
tions is difficult to design. Moreover, the single-robot approach suffers from the 
problem that even small failures of the robotic unit may prevent the accomplishment 
of the whole task. On the contrary, a multi-robot approach can benefit from the paral-
lelism of operation to be more efficient, from the versatility of its multiple, possibly 
heterogeneous units, and from the inherent redundancy in using multiple agents 
( Jones and Matari ć  2006 ). 

 Swarm robotics pushes the cooperative approach to its extreme. It represents a theo-
retical and methodological approach to the design of  “ intelligent ”  multi-robot systems 
inspired by the efficiency and robustness observed in social insects in performing col-
lective tasks ( Bonabeau, Dorigo, and Theraulaz 1999 ). Collective motion in fish, birds, 
and mammals, as well as collective decisions, synchronization, and social differentia-
tion are examples of collective responses observed in natural swarms (for some recent 

 7   Evolutionary Swarm Robotics: A Theoretical and Methodological 
Itinerary from Individual Neurocontrollers to Collective Behaviors 

 Vito Trianni, Elio Tuci, Christos Ampatzis, and Marco Dorigo 



154 Chapter 7

reviews, see  Camazine et al. 2001 ;  Franks et al. 2002 ;  Couzin and Krause 2003 ;  Sumpter 
2006 ;  Couzin 2007 ). 

 In all these examples, the individual behavior is relatively simple, but the global 
system behavior presents complex features that result from the multiple interactions 
of the system components. Similarly, in a swarm robotics system, the complexity of 
the group behavior should not reside in the individual controller, but in the interac-
tions among the individuals. Thus, the main challenge in designing a swarm robotics 
system is represented by the need to identify suitable interaction rules among the 
individual robots. In other words, the challenge is designing the individual control 
rules that can lead to the desired global behavior. 

 In the preceding perspective, self-organization is the mechanism that can explain 
how complex collective behaviors can be obtained in a swarm robotics system from 
simple individual rules. In this context, a complex collective behavior should be 
intended as some spatiotemporal organization in a system that is brought forth 
through the interactions among the system components. Not every collective behavior 
is self-organized, though ( Camazine et al. 2001 ). The presence of a leader in the group, 
the presence of blueprints or recipes to be followed by the individual system compo-
nents clashes with the concept of self-organization, at least at the level of description 
in which leader or blueprints are involved. Another condition in which a collective 
behavior cannot be considered self-organizing is when environmental cues or hetero-
geneities are exploited to support the group organization. For instance, animals that 
aggregate in a warm part of the environment following a temperature gradient do not 
self-organize. But animals that aggregate to stay warm, and therefore create and 
support a temperature gradient in the environment, do self-organize. In both cases, 
the observer may recognize the presence of some structure (the aggregate) that cor-
relates with the presence of an environmental heterogeneity (the temperature 
gradient). However, the two examples are radically different from the organizational 
point of view. Similar natural examples can be easily given also for the presence of 
leader or blueprints, to show that not every collective behavior is self-organizing 
( Camazine et al. 2001 ). Both the leader and the blueprint can be recognized as the 
place where the behavioral complexity of the group is centralized. In other words, the 
complexity of the group behavior does not result from the multiple interactions among 
the individual behaviors. Rather, the group behavior results from a fixed pattern of 
interactions among the system components that is either decided beforehand (in the 
case of a blueprint) or is centrally or continuously re-planned, or both (in the case of 
a leader). In both cases, there is limited room for adaptiveness to unknown, unpredict-
able situations resulting from a highly dynamical environment, both physical and 
social. 

 The unpredictable nature of the (social) environment makes it difficult to predict 
in advance, and therefore design, the behavioral sequence and the pattern of 
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interactions that would lead to a certain group behavior. Moreover,  “ the adaptiveness 
of an autonomous multi-robot system is reduced if the circumstances an agent should 
take into account to make a decision concerning individual or collective behaviour 
are defined by a set of a priori assumptions ”  ( Tuci et al. 2006b ). This design problem 
can be bypassed by relying on evolutionary robotics (ER) techniques as an automatic 
methodology to synthesize the swarm behavior ( Trianni, Nolfi, and Dorigo 2008 ). In 
past researches conducted within the SWARM-BOTS project, we experimented with 
different tasks and defined a methodology that proved viable for the synthesis of self-
organizing systems. 

 We focused on two particular kinds of self-organizing systems: (1) systems that are 
able to achieve and maintain a certain organization, and (2) systems close to a bifurca-
tion point, where robot-robot interactions and randomness lead to one or the other 
solution. In both cases, the problem is solved without placing any assumption on the 
kind of interaction pattern that would have been exploited to achieve a certain goal. 
Even more important, we have shown that determining a priori a certain form of 
interaction may result in worse performance with respect to an assumption-free setup. 

 We present the SWARM-BOTS project ’ s experience in section 7.2, and in section 
7.3 we discuss in detail some examples of problems studied exploiting the ER approach. 
Then, in section 7.4 we speculate on the current limitations of the ER approach, and 
the future role of ER in the development of more complex behaviors and cognitive 
abilities for robotic swarms. 

 7.2   Swarm Robotics and the Swarm-bots 

 Even though research in swarm robotics is relatively novel, it is quickly developing 
thanks to the contribution of various pioneer studies ( Kube and Zhang 1993 ;  Beckers, 
Holland, and Deneubourg 1994 ;  Holland and Melhuish 1999 ;  Martinoli, Ijspeert, and 
Mondada 1999 ;  Krieger, Billeter, and Keller 2000 ). The SWARM-BOTS project made a 
significant contribution to the field in the design and development of an innovative 
swarm robotics platform: the swarm-bot ( Mondada, Floreano, and Gambardella 2004 ; 
 Dorigo et al. 2004 ). A swarm-bot is defined as a self-assembling, self-organizing artifact 
formed by a number of independent robotic units, called s-bots. In the swarm-bot 
form, the s-bots become a single robotic system that can move and reconfigure. Physi-
cal connections between s-bots are essential for solving many collective tasks, such as 
the retrieval of a heavy object. Also, during navigation on rough terrain, physical links 
can serve as support when the swarm-bot has to pass over a hole wider than a single 
s-bot, or when it has to pass through a steep concave region. 

 However, for tasks such as searching for a goal location or tracing an optimal path 
to a goal, a swarm of s-bots can be more efficient. An s-bot is a small mobile autono-
mous robot with self-assembling capabilities, shown in   figure 7.1 . It weighs 700 g and 
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 View of the s-bot from different sides. The main components are indicated (see text for more 

details). 
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its main body has a diameter of about 12 cm. Its design is innovative concerning both 
sensors and actuators. The traction system is composed of both tracks and wheels —
 referred to as  “ treels ”  — that provide the s-bot with a differential drive motion. The 
wheels are connected to the chassis, which contains the batteries, some sensors, and 
the corresponding electronics. The main body is a cylindrical turret mounted on the 
chassis by means of a motorized joint that allows the relative rotation of the two parts. 
The gripper is mounted on the turret and can be used for connecting rigidly to other 
s-bots or to some objects. The shape of the gripper closely matches the T-shaped ring 
placed around the s-bot ’ s turret, so that a firm connection can be established. The 
gripper not only opens and closes, but also has a degree of freedom for lifting the 
grasped objects. The corresponding motor is powerful enough to lift another s-bot.    

 An s-bot is provided with many sensory systems, useful for the perception of the 
surrounding environment or for proprioception. Infrared proximity sensors are distrib-
uted around the rotating turret. Four proximity sensors placed under the chassis —
 referred to as  “ ground sensors ”  — can be used for perceiving holes or the terrain ’ s 
roughness (see   figure 7.1 ). Additionally, an s-bot is provided with eight light sensors 
uniformly distributed around the turret, two temperature/humidity sensors, a three-
axis accelerometer and incremental encoders on each degree of freedom. Each robot 
is also equipped with sensors and devices to detect and communicate with other s-bots, 
such as an omni-directional camera, colored LEDs around the s-bots ’  turret, micro-
phones, and loudspeakers (see   figure 7.1 ). Eight groups of three colored LEDs each —
 red, green, and blue — are mounted around the turret. They can be used to emit a color 
that can represent a particular internal state of the robot. 

 The color emitted by a robot can be detected by other s-bots using the omni-
directional camera, which allows the robot to grab panoramic views of the scene sur-
rounding an s-bot. The loudspeaker can be used to emit a sound signal, which can be 
perceived by the microphones and processed by the on-board CPU. In addition to a 
large number of sensors for perceiving the environment, several sensors provide each 
s-bot with information about physical contacts, efforts, and reactions at the intercon-
nection joints with other s-bots. These include torque sensors on most joints as well 
as a traction sensor, which detects the direction and the intensity of the pulling force 
that the turret exerts on the chassis resulting from the forces applied by other con-
nected s-bots. 

 7.3   Experiments 

 By exploiting the swarm-bot robotic platform, we performed a series of experiments, 
all characterized by a coherent methodological approach. First of all, evolution was 
always performed in a simulated environment, which was designed to model the rel-
evant features of the s-bot. When required by the experimental setup, the simulation 
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exploited a full 3D physics simulation. This is the case for the experiments presented 
in section 7.3.1, in which pulling/pushing forces have a fundamental role in the 
swarm-bot behavior. Otherwise, we employed minimal simulations. In any case, the 
evolved controllers have been ported to reality to test the viability of the obtained 
controllers. 

 All evolutionary experiments share the same methodological approach. The algo-
rithm is run for a fixed number of generations and works on a single population of 
genotypes. Each genotype encodes the parameters of a single neural network control-
ler. During evolution, a genotype is mapped into a control structure that is cloned and 
downloaded in all the s-bots taking part in the experiment (i.e., we make use of a 
homogeneous group of s-bots). Each genotype is evaluated over multiple trials. The 
fitness of a genotype is the average performance computed over the trials in which 
the corresponding neural controller is tested. The homogeneous group resulting from 
a single genotype allows us to simplify the fitness assignment problem. In fact, a single 
controller is evaluated and selected for the group performance. This group selection 
also facilitates the evolution of cooperative strategies, given that there is no competi-
tion between different individuals in the group. 

 In the following sections 7.3.1 – 7.3.4, we present four different experiments per-
formed within the SWARM-BOTS project exploiting the ER approach: coordinated 
motion and hole avoidance, synchronization, categorization, and self-assembly. In all 
four sections, we first introduce the scenario in which these experiments have been 
performed, we discuss the experimental setup, and finally we draw some conclusions 
about the lesson learned from the study. 

 7.3.1   Coordinated Motion and Hole Avoidance 
 The Scenario 
 For a swarm-bot to move coherently, s-bots need to negotiate a common direction of 
motion and maintain the group coordination against external disturbances. The coor-
dinated motion of the assembled structure must take into account the variable number 
of assembled units, as well as a varying topology. Moreover, the swarm-bot ’ s naviga-
tion must be efficient with respect to any obstacle and other hazards such as holes 
and rough terrain, which may be perceived only by a limited subset of the connected 
s-bots. 

 Coordinated motion has been widely studied in the literature ( Balch and Arkin 
1998 ;  Fredslund and Matari ć  2002 ;  Quinn et al. 2003 ;  Spector et al. 2005 ). However, 
in the swarm-bot case, it takes a different flavor, due to the physical connections 
among the s-bots, which open the way to study novel interaction modalities that can 
be exploited for coordination. The experimental scenario can be summarized as follows: 
at the beginning of a trial, the s-bots start with their chassis oriented in a random 
direction. Their goal is to choose a common direction of motion on the basis of only 
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the information provided by their traction sensor, and then to move as far as possible 
from the starting position ( Baldassarre et al. 2007 ). In a different set of experiments, 
the experimental arena presents holes and open borders, in which a swarm-bot risks 
remaining trapped. In this case, s-bots must coordinate with the rest of the group to 
avoid falling ( Trianni and Dorigo 2006 ). Notice that this task is more difficult than it 
might appear at first sight. First, the group is not driven by a centralized controller 
(i.e., the control is distributed). Moreover, s-bots cannot use any type of landmark in 
the environment, such as light sources, or exploit predefined hierarchies between 
them to coordinate (i.e., there is no  “ leader robot ”  that decides and communicates to 
the other robots the direction of motion of the whole group). Finally, the 
s-bots do not have a predefined trajectory to follow, nor they are aware of their relative 
positions or about the structure of the swarm-bot in which they are assembled. As a 
consequence, the common direction of motion of the group should result from a self-
organizing process based on local interactions, which are shaped as traction forces. 
The problem of designing a controller capable of producing such a self-organized 
coordination is tackled using feed-forward neural networks synthesized by artificial 
evolution. 

 Results Obtained 
 As mentioned earlier, in order to move in a coordinated way s-bots can rely only 
on the traction sensor information, which provides a coarse indication of the 
average direction of motion of the group. By physically integrating the pulling/
pushing forces that the connected s-bots produce, the traction sensor provides 
compact information that can be exploited for coordination. The problem is there-
fore designing a controller that would let the group self-organize by interacting 
through physical forces. The results obtained evolving coordinated motion are 
extremely interesting ( Baldassarre et al. 2007 ). The evolved neural network encodes 
simple control rules that allow the robots to consistently achieve a common direc-
tion of motion in a very short time, and compensate possible misalignments during 
motion. In general terms, the evolved strategy is based on two feedback loops. 
Positive feedback makes robots match the average direction of motion of the group, 
as it is perceived through the traction sensor. Negative feedback makes robots persist 
in their own direction of motion, but when the traction and motion directions are 
opposite. Thus the positive feedback allows for a fast convergence toward a common 
direction of motion, which is stabilized by the negative feedback loop that avoids 
deadlock conditions. 

 All this is synthesized in a simple neural network evolved in simulation and tested 
on real robots (see   figure 7.2 ). The performance of the evolved controllers in terms of 
robustness, adaptation to varying environmental conditions, and scalability to differ-
ent number of robots and different topologies is striking, demonstrating how evolution 
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synthesized a very efficient self-organizing behavior for coordinated motion ( Baldas-
sarre et al. 2007 ).    

 Exploiting a similar setup, we also studied how a swarm-bot can navigate in an 
arena presenting holes or open borders in which the robots risk remaining trapped 
( Trianni and Dorigo 2006 ). In this case, we investigated how the swarm-bot can main-
tain coordination despite the presence of hazardous situations that are perceived only 
by a subset of the robots involved. To this purpose, some form of communication may 
be necessary to the group for a quick reaction. We tested three different communica-
tion modalities: (1) direct interactions (DI) through pulling/pushing forces, (2) direct 
communication (DC), handcrafted as a single-tone signal emitted as a reflex to the 
perception of the hazard, and (3) direct communication in which signaling was con-
trolled by the evolved neural network (evolved communication, EC). In all cases, the 
s-bots ’  motion was controlled by a simple perceptron network similar to the one used 
for coordinated motion. Additionally, s-bots could use their sensors for perceiving the 
presence of holes in the ground. In the DC and EC setups, s-bots could also commu-
nicate with each other through sound signaling ( Trianni and Dorigo 2006 ). 

 The results obtained show that it is possible to evolve efficient navigation strategies 
with each communication paradigm we devised. In the DI setup, when only direct 
interactions are present, the pulling/pushing forces are sufficient to trigger collective 
hole avoidance. However, in some cases the swarm-bot is not able to avoid falling 
because the signal encoded in the traction force produced by the s-bots that perceive 
the hazard may not be strong enough to trigger the reaction of the whole group. 
A different situation can be observed in the DC and EC setup, in which direct 
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 Figure 7.2 
 (a) Four real s-bots forming a linear swarm-bot during coordinated motion. (b) A physical swarm-

bot while performing hole avoidance. Notice how physical connections among the s-bots can 

serve as support when a robot is suspended out of the arena, still allowing the whole system 

to work. 
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communication allows a faster reaction of the whole group, as the emitted signal 
immediately reaches all the s-bots. Therefore, the use of direct communication among 
the s-bots is particularly beneficial in the case of hole avoidance. It is worth noting 
that direct communication acts here as a reinforcement of the direct interactions 
among the s-bots. In fact, s-bots react faster to the detection of the hole when they 
receive a sound signal, without waiting to perceive a traction strong enough to trigger 
the hole avoidance behavior. However, traction is still necessary for avoiding the hole 
and coordinating the motion of the swarm-bot as a whole. 

 We performed a statistical analysis to compare the three different setups we studied, 
and the results obtained showed that the completely evolved setup outperforms the 
setup in which direct communication is handcrafted. This result is in our eyes particu-
larly significant, because it shows how artificial evolution can synthesize solutions that 
would be very hard to design with conventional approaches. In fact, the most effective 
solutions discovered by evolution exploit some interesting mechanisms for the inhibi-
tion of communication that would have been difficult to devise without any a priori 
knowledge of the system ’ s dynamics ( Trianni and Dorigo 2006 ). 

 The Lesson Learned 
 The experiments performed with coordinated motion and hole avoidance revealed 
how direct interactions through pulling/pushing forces can be exploited to obtain 
robust coordination strategies in a swarm-bot. The connections among s-bots in fact 
represent an important means of transferring information through physical forces. 
However, exploiting such information is not an easy endeavor if a precise model of 
the traction sensor is not available. In particular, with respect to the synthesis of self-
organizing behaviors, the top-down approach runs into troubles due to the complex 
dynamical interactions among the system components that can hardly be predicted 
or modeled. The evolutionary approach, instead, does not need any precise model of 
the system. It is sufficient to test potential solutions and to compare their performance 
on the basis of a user-defined metric. With respect to handcrafted solutions, the evo-
lutionary approach can achieve a better performance as it can better exploit all system 
features, without being constrained by a priori assumptions. This is clear in the hole 
avoidance experiments, which show how the handcrafted reflex signaling, which 
seemed perfectly reasonable at first sight, is outperformed by the evolved signaling 
strategy, which could exploit self-inhibitory mechanisms that are counterintuitive for 
a  “ naive ”  designer. 

 7.3.2   Synchronization 
 The Scenario 
 An important feature of a swarm robotics system is the coordination of the activities 
through time. Normally, robots can be involved in different tasks, and higher 
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efficiency may be achieved through the synchronization of the activities within the 
swarm. Synchrony is a pervasive phenomenon: examples of synchronous behaviors 
can be found in the inanimate world as well as among living organisms ( Strogatz 2003 ). 
The synchronization behaviors observed in nature can be a powerful source of inspira-
tion for the design of swarm robotic systems, where emphasis is given to the emergence 
of coherent group behaviors from simple individual rules. Much work takes inspiration 
from the self-organized behavior of fireflies or similar chorusing behaviors ( Holland 
and Melhuish 1997 ;  Wischmann et al. 2006 ;  Christensen, O ’ Grady, and Dorigo 2009 ). 
Here, we present a study of self-organizing synchronization in a group of robots based 
on minimal behavioral and communication strategies ( Trianni and Nolfi 2009 ). We 
follow the basic idea that if an individual displays a periodic behavior, it can synchro-
nize with other (nearly) identical individuals by temporarily modifying its behavior 
in order to reduce the phase difference with the rest of the group. In this work, the 
period and the phase of the individual behavior are defined by the sensorimotor coor-
dination of the robot, that is, by the dynamical interactions with the environment 
that result from the robot embodiment. The studied task requires that each robot in 
the group display a simple periodic behavior, which should be entrained with the 
periodic behavior of the other robots present in the arena. The individual periodic 
behavior consists in oscillations along the y-direction of a rectangular arena (see   figure 
7.3 ). Oscillations are possible through the exploitation of a symmetric gradient in 
shades of gray painted on the ground.    

 Synchronization of robots movements can be achieved by exploiting a binary, 
global communication: each robot can produce a continuous tone with fixed fre-
quency and intensity. When a tone is emitted, it is perceived by every robot in the 
arena, including the signaling one. The tone is perceived in a binary way, that is, either 
there is someone signaling in the arena, or there is no one. This is a very minimal 

 Figure 7.3 
 Snapshot of a simulation showing three robots in the experimental arena. The dashed lines 

indicate the reference frame used in the experiments. 
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communication system for a swarm of robots, which carries no information about the 
number of signalers, or about their position in the environment. No assumption is 
made on the way the robots should move on the arena, and on the way they should 
communicate. All the behavioral rules are designed by the evolution of feedforward 
neural controllers. 

 Results Obtained 
 We performed twenty evolutionary replications, each resulting in the evolution of 
efficient synchronization behaviors. The individual ability to perform oscillatory 
movements is based on the perception of the gradient painted on the arena floor, 
which gives information about the direction parallel to the y-axis and about the point 
where to perform a U-turn and move back toward the x-axis. The main role of the 
evolved communication strategy is to provide a coupling between the oscillating 
s-bots, in order to achieve synchronization: we observed that s-bots change their 
behavior in response to a perceived communication signal coming from other robots. 
Recall that the communication signal, being binary and global, does not carry infor-
mation about either the sender or about its oscillation phase. The reaction to a per-
ceived signal is therefore adapted by evolution to allow the robots to reduce the phase 
difference between their oscillations, eventually achieving synchronous movements. 
In summary, the evolved synchronization behaviors are the results of the dynamical 
relationship between the robot and the environment, modulated through the com-
municative interactions among robots. No further complexity is required at the level 
of the neural controller: simple and reactive behavioral and communication strategies 
are sufficient to implement effective synchronization mechanisms. To better under-
stand the dynamical relationship between individual sensorimotor coordination and 
communication, we introduced a dynamical system model of the robots interacting 
with the environment and among each other ( Trianni and Nolfi 2009 ). 

 This model offers us the possibility to deeply understand the evolved behaviors, 
both at the individual and collective level, by uncovering the mechanisms that arti-
ficial evolution synthesized to maximize the user-defined utility function. We assumed 
an idealized, noise-free and collision-free environment, and we modeled the s-bot 
individual behavior as it is produced by the evolved neural network. By coupling the 
individual behaviors through the communication channel, we could study the effects 
of perturbations through sound signals over the robot oscillations. We analyzed the 
different evolutionary runs performed, and we discovered two alternative mecha-
nisms for synchronization. With the modulation mechanism, s-bots synchronize by 
tuning their oscillatory frequency in response to the perceived communication signal 
coming from other robots, in order to match the other robots ’  oscillations. They do 
so basically by anticipating or delaying the U-turn. With the reset mechanism, s-bots 
 “ reset ”  their oscillation phase by moving to a particular position over the painted 
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gradient, waiting for the other robots to reach a similar position. Qualitatively, similar 
mechanisms are also observed in biological oscillators. For instance, different species 
of fireflies present different synchronization mechanisms, based on delayed or 
advanced phase responses. 

 Besides studying the synchronization mechanisms, we performed a scalability anal-
ysis to test all evolved behaviors with varying group sizes. While scalability is ensured 
for small groups, we found that physical interactions may prevent the system from 
scaling to very large number of robots due to the higher probability of performing 
collision-avoidance maneuvers. Still, the evolved synchronization mechanism scales 
well if there are no physical interactions. We found that many controllers present 
perfect scalability, with only a slight decrease in performance due to the longer time 
required by larger groups to perfectly synchronize. Some controllers, however, present 
a communicative interference that prevents large groups from synchronizing: the 
signals emitted by different s-bots overlap in time and are perceived as a fixed signal-
ing pattern. If the perceived signal does not vary in time, it does not bring information 
to be exploited for synchronization. This problem is mainly due to the global and 
binary communication form, in which the signal emitted by an s-bot is perceived by 
any other s-bot anywhere in the arena. Moreover, from the perception point of view, 
there is no difference between a single s-bot and a thousand signaling at the same 
time. In order to understand the conditions under which this communicative interfer-
ence takes place, we again exploited the mathematical model. We found that scal-
ability can be predicted just by looking at the features of the individual behavior: the 
synchronization behavior scales to any number of robots provided that an s-bot that 
perceives a communication signal never emits a signal itself. This is a very interesting 
result, as it directly relates the collective behavior to the individual one, and indicates 
which are the building blocks for obtaining scalability in the system under study 
( Trianni and Nolfi 2009 ). 

 The Lesson Learned 
 The synchronization experiments show how temporal coordination can be achieved 
exploiting simple self-organizing rules. To this purpose, it is not necessary to provide 
robots with complex behaviors and time-dependent structures. Instead, we show that 
a minimal complexity of the behavioral and communicative repertoire is sufficient to 
observe the onset of synchronization. Robots can be described as embodied oscillators, 
their behavior being characterized by a period and a phase. In this perspective, the 
movements of an s-bot correspond to advancements of its oscillation phase. Robots 
can modulate their oscillations simply by moving in the environment and by modify-
ing their dynamical relationship with it. Such modulations are brought forth in 
response to the perceived communication signals, which also depend on the dynami-
cal relationship between the s-bot and the environment. 
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 In this perspective, the dynamical system analysis proved very useful: we introduced 
a dynamical system model of the robots interacting with the environment and each 
other. This model offered us the possibility to deeply understand the evolved behav-
iors, both at the individual and collective level, by uncovering the mechanisms that 
artificial evolution synthesized to maximize the user-defined utility function. More-
over, the developed model can be used to predict the ability of the evolved behavior 
to efficiently scale with the group size. We believe that such predictions are of funda-
mental importance to quickly select or discard obtained solutions without performing 
a time-demanding scalability analysis, as well as to engineer swarm robotic systems 
that present the desired properties. For instance, the knowledge acquired through the 
performed analysis could be exploited to improve the experimental setup. We have 
found that the communicative interferences that prevent the group from synchroniz-
ing are caused by a communication channel that is neither additive nor local. The 
locality of communication certainly is an important issue to take into account when 
studying a realistic experimental setup. Additivity, that is, the capability of perceiving 
the influence of multiple signals at the same time, is also crucial for self-organizing 
behaviors. We tested the latter issue, and we discovered that it is sufficient to provide 
the robots with the average signaling activity of the group to systematically evolve 
scalable behaviors ( Trianni and Nolfi 2011 ). 

 7.3.3   Categorization, Integration over Time, and Collective Decisions 
 The Scenario 
 A general problem common to biology and robotics concerns the understanding of 
the mechanisms necessary to decide whether to pursue a particular activity or to give 
up and perform alternative behaviors. This problem is common to many activities that 
natural or artificial agents are required to carry out. Autonomous agents may be asked 
to change their behavior in response to the information gained through repeated 
interactions with their environment. For example, after various unsuccessful attempts 
to retrieve a heavy prey, an ant may decide to give up and change its behavior by 
either cutting the prey or recruiting some nest-mates for collective transport ( Detrain 
and Deneubourg 1997 ). This example suggests that autonomous agents require adap-
tive mechanisms to decide whether it is better to pursue solitary actions or to initiate 
cooperative strategies. 

 We confronted with the decision-making problem by designing the experimental 
scenario depicted in   figure 7.4 . Robots are positioned within a boundless arena con-
taining a light source. Their goal is to reach a target area around the light sources. The 
color of the arena floor is white except for a circular band around the lamp, within 
which the floor is in shades of gray. The robots can freely move within the band, but 
they are not allowed to cross the black edge. The latter can be imagined as an obstacle 
or a trough that prevents the robot from further approaching the light. The goal of 
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the experiments is to show that the robots can learn to discriminate between two types 
of environments. In the first type — referred to as Env. A — the band presents a discon-
tinuity (see   figure 7.4a ). This discontinuity, referred to as the  “ way in zone, ”  is a sector 
of the band in which the floor is white. In the second type — referred to as Env. B — the 
band completely surrounds the light (see   figure 7.4b ). The way in zone represents the 
path along which the robots are allowed to safely reach the light in Env. A. Successful 
robots should prove capable of performing phototaxis and of moving over the circular 
band in search for the way in zone, without crossing the black edge. When placed in 
Env. A, the robots should always reach the target area. When placed in Env. B, on the 
contrary, the robot should initiate an alternative action, such as signaling or moving 
away in order to search for other light sources.    

 Initial experimentation was performed using a single robot controlled by an evolved 
continuous-time recurrent neural network (CTRNN) ( Beer 1995 ). The results revealed 
that decision making could be performed by exploiting a temporal cue: the Env. B can 
be  “ recognized ”  by the persistence of a particular perceptual state for the amount of 
time necessary to discover that there is no way in zone. The flow of time, in turns, 
can be recognized through the integration of the perceptual information available to 
the robot. This means that the movements of the robot should bring forth the persis-
tence of a certain perceptual condition, and the discrimination can be made only if 
the latter is maintained long enough. 

Env. A Env. B

Way-in
zone

Target area Target
 area

a b

 Figure 7.4 
 Depiction of the task. (a) Env. A is characterized by the way in zone. The target area, centered 

on the light, is indicated by the dashed circle. (b) In Env. B there is no way in zone and the target 

area cannot be reached. The continuous lines are an example of a good navigation strategy for 

one robot. 
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 We repeated the experiments using two robots having the same sensorimotor capa-
bilities ( Ampatzis et al. 2008 ). Additionally, robots are provided with a communication 
system similar to the one used in the synchronization experiments: they can emit a 
single frequency tone that is perceived everywhere in the arena in a binary way. The 
experiments have been performed by varying the initial position of the two robots, 
and by rewarding them when they perform antiphototaxis when placed in Env. B. 
However, no explicit reward was given for communication among the robots. In this 
way, we aimed at observing whether cooperative communicative behavior could 
emerge or not. 

 Results Obtained 
 Twenty evolutionary simulation runs, each using a different random initialization, 
were performed for 12,000 generations. Thirteen evolutionary runs produced success-
ful groups of robots: both robots approach the band and subsequently (1) reach the 
target area through the way in zone in Env. A; (2) leave the band performing antipho-
totaxis in Env. B. The discrimination between the two environments is possible by 
exploiting the integration over time and the ability of the leaky integrators that form 
the robot ’ s neural controller. While moving over the circular band, the s-bot accumu-
lates evidence about the absence of the way in zone. If the latter is found, the integra-
tion over time is stopped and the robot continues performing phototaxis. If, instead, 
the way in zone is not present, after approximately one loop, the robot leaves the 
band. This evolved behavior closely resembles the one obtained with a single robot. 
However, a closer look reveals that among the thirteen successful groups, nine make 
use of sound signaling. In particular, signaling strongly characterizes the behavioral 
strategies of the groups when they are located in Env. B. In Env. A signaling is, for all 
these groups, negligible. 

 Note that the emission of sound is not demanded in order to navigate toward the 
target and discriminate Env. A from Env. B. Indeed, the task and the fitness function do 
not require the robots to display signaling behavior. Mechanisms for phototaxis, anti-
phototaxis, and memory are sufficient for a robot to accomplish the task. In order to 
reveal the adaptive significance of sound signaling, further tests have been performed. 

 We looked at the behavior of the robots that emit sound during a successful trial 
in each type of environment. We recorded the behavior of the robots in both a normal 
condition and a condition in which the robots cannot hear each other ’ s sounds. 

 In the normal condition we notice that as soon as one of the robots starts signaling, 
both robots initiate an antiphototactic movement. But when communication signals 
are blocked, we notice that each robot initiates antiphototaxis only at the time when 
it starts emitting its own sound. Sound signaling has therefore the function of stimu-
lating antiphototaxis also for those robots that have not yet gathered enough evidence 
about the absence of the way in zone. 
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 These results show that most successful strategies employ signaling behavior and 
communication among the members of the groups. However, communication was not 
explicitly rewarded: communicating and noncommunicating groups could in principle 
obtain equal fitness. This means that communication may have other functions that 
influence its adaptive significance. By looking at the behavior of all successful groups, 
we discovered that whenever signaling is functionally relevant, robots employ it in 
Env. B as a self-produced perceptual cue. This cue induces the emitter as well as the 
other robot of the group to change its behavior from light seeking to light avoiding.  

 This evidence constrains our investigation on the adaptive significance of sound 
signaling to two functions: on the one hand, sound is the means by which a robot 
emitter switches from phototaxis to antiphototaxis. We refer to this as the  “ solitary ”  
function. On the other hand, sound is the means by which the robot emitter influ-
ences the behavior of the other robot. We refer to this as the  “ social ”  function. From 
the data we gathered, it appears that signaling is beneficial mainly because of its 
 “ social ”  function. 

 The selective advantage of signaling groups is given by the beneficial effects of 
communication with respect to a robust disambiguation of Env. A from Env. B. The 
task in fact requires one to find an optimal trade-off between speed and accuracy of 
the decision. 

 The beneficial effect of communication corresponds to robust individual decision 
making and faster group reaction, since signaler and hearer react at the same time. In 
fact, a robust individual decision requires longer time spent over the circular band to 
accumulate evidence of the absence of the way in zone, due to the environmental 
noise that influences the sensors and to the uncertainty of the action outcomes. In 
total, in those groups in which antiphototaxis is triggered by the perception of sound, 
a robot that by itself is not ready to make a decision concerning the nature of the 
environment can rely on the decision taken by the other robot of the group. In average, 
communication allows the group to accomplish the task earlier, and more reliably. In 
this way, signaling groups are better adapted to the  “ danger ”  of discrimination mis-
takes in Env. A than are nonsignaling groups, and thus  “ early ”  signaling seems to be 
an issue that has been taken care of by evolution. In fact, once signaling groups evolve, 
their signaling behavior is refined by categorizing the world later than in the case of 
nonsignaling groups. This happens in order to ensure that the chances of a potential 
disadvantage resulting from social behavior are minimized. In other words, the use of 
communication in a system can also affect aspects of the behavior not directly related 
to communication (i.e., the process of integration of inputs over time). 

 The Lesson Learned 
 The experiments presented in this section show how individual decision making and 
group behavior can be coevolved to obtain a robust and efficient system. The need to 
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perform a decision on the basis of information accumulated over time creates a natural 
trade-off between speed and accuracy. Each s-bot has to resolve a dilemma: to continue 
searching for the way in zone, or to leave for good? The solution, under normal evo-
lutionary pressures, would be to tune the individual behavior to limit the time spent 
searching to the minimum. However, the introduction of other robots contemporane-
ously solving the same task, and the possibility of communication, changes the evo-
lutionary dynamics. By exploiting the information gathered by other robots, it is 
possible to improve the accuracy of the group decision without reducing the decision 
speed. This is a relevant fact, which justifies the usage of a collective robotics setup 
even for those conditions in which it is not explicitly required. Additionally, the 
exploitation of communicative strategies allows each robot to spread acquired informa-
tion to the group, and to share information retrieval duties among group members: 
in fact, as soon as communication is in place, the individual behavior can be refined 
to exploit the redundancy of the system to the maximum. 

 7.3.4   Self-assembly and Autonomous Role Allocation 
 The Scenario 
 Self-assembly is a ubiquitous process in nature. According to  Whitesides and Grzy-
bowski (2002) , it is defined as  “ the autonomous organisation of components into 
patterns or structures without human intervention. ”  At the nano- or microscopic scale, 
the interaction among components is essentially stochastic and depends on their 
shape, structure, or chemical nature. Nature also provides many examples of self-
assembly at the macroscopic scale, the most striking being animals forming collective 
structures by connecting to one another. Individuals of various ant, bee, and wasp 
species self-assemble and manage to build complex structures such as bivouacs and 
ladders ( Anderson, Theraulaz, and Deneubourg 2002 ;  H ö lldobler and Wilson 1978 ). 

 As mentioned in section 7.1, the robotics community has been largely inspired from 
cooperative behavior in animal societies when designing controllers for groups of 
robots that have to accomplish a given task. In particular, self-assembly provides a 
novel form of cooperation in groups of robots. However, it is important to notice that 
some characteristics of the hardware may impose important constraints on the control 
of the modules of a self-assembling system. As argued by  Tuci et al. (2006a) , some 
hardware platforms consist of morphologically heterogeneous modules that can only 
play a predefined role in the assembly process. In others, the hardware design does 
not allow, for example, the assembly of more than two modules, or requires extremely 
precise alignment during the connection phase — that is, it requires a great accuracy. 
The swarm-bot platform, thanks to its sensors and actuators and its connection appa-
ratus, does not severely constrain the design of control mechanisms for self-assembly. 
The lack of hardware constraints and the homogeneity of the robots require that self-
assembly be achieved through a differentiation of roles, resulting in the definition of 
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an s-bot gripper (i.e., the robot that makes the action of gripping) and an s-bot grippee 
(i.e., the robot that is gripped). In work carried out within the SWARM-BOTS project 
by using control design techniques other than ER, the s-bot gripper/s-bot grippee dif-
ferentiation was either predefined ( Groß   et al. 2006 ) or based on stochastic events and 
a complex communication protocol ( O ’ Grady et al. 2005 ). Thanks to the use of ER we 
designed control strategies for real assembling robots that are not constrained by either 
morphological or behavioral heterogeneities introduced by the hardware and control 
method, respectively (see  Ampatzis et al. 2009 , for details). Instead of a priori defining 
the mechanisms leading to role allocation and self-assembly, ER allowed us to let 
behavioral heterogeneity emerge from the interaction among the system ’ s homoge-
neous components. Moreover, coordination and cooperation in self-assembly between 
physical robots is achieved without requiring explicit signaling of internal states, as 
assumed, for example, in  Groß   et al. 2006 . 

 Self-assembly is studied in a scenario in which two s-bots are positioned in a bound-
less arena at a distance randomly generated in the interval [25 cm,30 cm], and with 
predefined initial orientations. The robots are required to approach each other and to 
physically assemble through the gripper. The agents perceive each other through their 
omni-directional camera mounted on the turret, which returns rough information 
about robot distance and orientation. We also make use of the optical barrier mounted 
on the gripper, which informs a robot about the presence of an object between the 
gripper claws. The agent controller is composed of a CTRNN, whose control parameters 
are evolved through a rank-based evolutionary algorithm. 

 Results Obtained 
 The results of this work prove that dynamical neural networks shaped by evolutionary 
computation techniques directly controlling the robots ’  actuators can provide physical 
robots with all the required mechanisms to autonomously perform self-assembly. 
Owing to the ER approach, the assembly is initiated and regulated by perceptual cues 
that are brought forth by the homogeneous robots through their dynamical interac-
tions. Moreover, in spite of the system being homogeneous, role allocation — in other 
words, who is the s-bot gripper and who is the s-bot grippee — is successfully accom-
plished by the robots through an autonomous negotiation phase between the two 
s-bots, as confirmed by our behavioral analyses (see   figure 7.5 ). We observed that role 
allocation unfolds in time during the entire duration of a trial.    

 Whenever the two robots have different initial perceptions, the role that each s-bot 
assumes can be predicted knowing the combination of the initial relative orientations 
of the robots. In other words, the combination of relative orientations leads to a 
pattern of interactions among the robots with a predictable outcome, from the observer 
point of view. However, a robot has no such information. Perceiving the other robot 
at a specific distance and orientation does not inform a robot about the role it will 
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assume at the end of the trial. In summary, whenever the initial orientations are asym-
metrical, robots engage in a role negotiation phase, and the dynamical system com-
posed of the two interacting robots almost always converges at the same final condition, 
which depends only on the initial conditions. 

 In those cases in which the robots start with an identical perception, symmetry 
does not hinder the robots from autonomously allocating different roles to successfully 
accomplish their goal. The robots engage in a dynamical interaction, which eventually 
leads to a role assignment. However, in this case it is not possible to predict the 
outcome of the role allocation process: both robots have 50 percent probability of 
assuming the s-bot gripper or the s-bot grippee role. Post-evaluation tests have shown 
that the random noise inherent in the system is the causal factor that drives the system 
through sequences of actions that turn out to be successful. In other words, the 
dynamical system composed by the two interacting robots starts from an unstable 
equilibrium point, from which it can converge at either stable condition, that is, at 
one of the two alternative role allocations. It is important to notice that the symmetry 
breaking is performed by exploiting randomness present in the system, which is ampli-
fied by the neural controllers as a result of the evolutionary optimization. 

 Finally, tests with real robots revealed that the evolved mechanisms proved to be 
robust with respect to changes in the color of the light displayed by the LEDs. Fur-
thermore, the self-assembling robotic system designed by using ER techniques exhibits 
recovery capabilities that could not be observed during the artificial evolution and that 
were not coded or foreseen by the experimenter ( Ampatzis et al. 2009 ). Such a feature 
in our case comes for free, while in the case of  Groß   et al.  ’ s experiments ( 2006 ) a 
recovery mechanism had to be designed as a specific behavioral module to be activated 
every time the robots failed to achieve assembly. 

 The Lesson Learned 
 The main contribution of this work lies in the design of control strategies for real 
assembling robots that are not constrained by morphological or behavioral heteroge-
neities introduced by the hardware and control method, respectively. Contrary to the 

a b c d e

 Figure 7.5 
 Snapshots from a successful trial: (a) initial configuration, (b) starting phase, (c) role allocation 

phase, (d) gripping phase, (e) success (grip). 
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modular or hand-coded controllers described by  Groß   et al. (2006)  and  O ’ Grady et al. 
(2005) , the evolutionary robotics approach did not require the experimenter to make 
any a priori assumption concerning the roles of the robots during self-assembly (i.e., 
either s-bot gripper or s-bot grippee) or about their status (e.g., either capable of moving 
or required not to move). We showed with physical robots that coordination and 
cooperation in self-assembly do not require explicit signaling of internal states, as 
assumed, for example, by  Groß   et al. (2006) . In other words, we present a setup that 
requires minimal cognitive and communicative capacities on behalf of the robots. The 
absence of a priori assumptions allows evolution to exploit the dynamical interaction 
among the robots to produce an autonomous role allocation mechanism. This can be 
considered an example of a self-organizing system close to a bifurcation point, in 
which the random fluctuations of the system are amplified to let the system overcome 
the impasse given by symmetric starting conditions and converge toward a desired 
solution. 

 7.4   Discussion 

 The experiments presented in section 7.3 are representative of a coherent theoretical 
and methodological approach to the synthesis of self-organizing behaviors for a swarm 
robotics system. What are the limits of this approach? The main problem to deal with 
is the evolvability of the system related to the scaling in complexity of the collective 
behavior. By practicing with evolutionary swarm robotics, it appears rather easy to 
evolve self-organizing behaviors in which the system achieves and maintains a certain 
spatiotemporal pattern. For instance, coordinated motion of the swarm-bot and syn-
chronization are not particularly difficult to evolve (e.g., they require few generations, 
and successful controllers are almost always obtained), once a suitable experimental 
setup has been defined (see sections 7.3.1 and 7.3.2). 

 On the one hand, this is justified by the simplicity of the neural controller and the 
rather limited number of free parameters that need to be optimized by the evolution-
ary machinery. On the other hand, the quality of the interactions among the robots 
contains in itself part of the solution to the self-organization problem. 

 In the whole, simple controllers and well-defined interactions represent a perfect 
starting point for the evolution of self-organizing behavior. As a matter of fact, in similar 
conditions successful behaviors are systematically obtained in all evolutionary runs. 

 However, the situation is slightly different when evolution must produce self-
organizing systems close to a bifurcation point, in which multiple solutions are 
possible as a result of the interactions, feedback loops, and randomness of the system. 
This is the case of the categorization experiment, in which robots had to take a 
collective decision (section 7.3.3), and of the self-assembly experiment, in which 
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complementary roles needed to emerge from the robot-robot interactions and the 
amplification of random fluctuations of the system (section 7.3.4). In similar condi-
tions, evolvability is limited by the need to contemporaneously evolve different behav-
ioral traits, and by the presence of multiple stable conditions, which create local 
optima in which evolution may remain trapped. In the experiments we performed, 
many generations were necessary to find a suitable solution. Also, the success rate was 
never close to 100 percent, and some evolutionary runs resulted in partial solutions 
of the problem. The evolution of communication raises a similar problem, requiring 
evolution of both the signal and the response to the signal, which individually may 
be counteradaptive or neutral with respect to the devised fitness function (see section 
7.3.3). 

 The experiments presented in section 7.3.3 are interesting also from a different 
point of view, that is, the influence that the individual behavior has on the evolution 
of the group behavior. Here, we can distinguish between two organizational levels: (1) 
the individual level, in which sensorimotor coordination and integration over time 
support the decision making, and (2) the collective level, in which information spread-
ing through communication leads to increased group efficiency. We believe that future 
directions in evolutionary swarm robotics should focus on systems characterized 
by multiple levels of organization. More complex self-organizing behaviors can be 
obtained through a layered evolution that proceeds through individual sensorimotor 
coordination, individual categorization abilities, and communication and exploitation 
of the social environment, aiming at some collective intelligence. As experienced in 
our experiments, each different level of organization is supported by the lower levels, 
and in turns influences their dynamics. In a swarm robotics scenario, the influences 
of the higher organizational level on the lower ones could be exploited to simplify the 
individual behavior in favor of more robust, collective solutions. Brought to the limit, 
each robot in the swarm could behave as a neuron-like device that can move in the 
environment and interact, physically or through communication, with neighboring 
robots, while the swarm brings forth complex processes as a whole. In this respect, we 
believe that the cognitive abilities of swarms should be studied and compared with 
those observed in the vertebrate brain, in the attempt to find the common mechanisms 
that underlie cognition. In this respect, robotics models of swarm behavior may 
represent extremely powerful tools for the study of swarm cognition ( Trianni et al. 
2011 ).  

 Another possible direction in the study of evolutionary swarm robotics concerns 
the exploitation of heterogeneous swarms, in which different types of robots are orga-
nized in swarms, which cooperate for a collective goal. We investigated swarms of 
heterogeneous robots within the project Swarmanoid,  1   in which three types of robots 
have been studied: eye-bots, foot-bots, and hand-bots. Eye-bots are robots specialized 
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in sensing and analyzing the environment from a high position to provide an overview 
that foot-bots or hand-bots cannot have. Eye-bots fly or are attached to the ceiling. 
Hand-bots are specialized in moving and acting in a space zone between the one 
covered by the foot-bots (the ground) and the one covered by the eye-bots (the ceiling). 
Hand-bots can climb vertical surfaces. Foot-bots are specialized in moving on rough 
terrain and transporting either objects or other robots. They are based on the s-bot 
platform, and extend it with novel functionalities. The combination of these three 
types of autonomous agents forms a heterogeneous swarm robotic system that is 
capable of operating in a 3D space. 

 Generally speaking, dealing with heterogeneity in a collective robotics setup often 
leads to specialization and teamwork: the task is broken down on the basis of the 
different robots available, and roles are assigned correspondingly. With heteroge-
neous swarms, the redundancy of the system opens the way to various scenarios. On 
one extreme, the classical scenario accounts for different swarms that specialize in 
particular subtasks, and are loosely coupled. For instance, a swarm of eye-bots is 
responsible of locating areas of particular interest, such as areas that contain objects 
to be retrieved. The eye-bots direct the action of a swarm of foot-bots, which col-
lectively retrieve such objects. On the other extreme, robots can form a swarm of 
homogeneous entities, where each entity is a small, heterogeneous, tightly cooperat-
ing team. For instance, two or three foot-bots can self-assemble to transport a single 
hand-bot, thereby creating a small team, which can coordinate its activities within 
a swarm of similar foot-bot/hand-bot teams. Between these two extreme scenarios, 
there can be an infinite blend of possibilities for cooperating heterogeneous swarms. 
In this respect, ER can give a strong contribution to define the individual behaviors, 
and shape the self-organization of the heterogeneous swarm. In particular, ER can be 
exploited to define the behavior of the heterogeneous robots by evolving one con-
troller for each robot type. An alternative, interesting scenario consists of synthesizing 
homogeneous controllers for heterogeneous robots, in which the controller adapts 
to the dynamics of the robot on which it is downloaded without a priori knowledge 
of its type. We performed preliminary studies by evolving controllers for a heteroge-
neous group of three simulated robots ( Tuci et al. 2008 ). The agents are required to 
cooperate in order to avoid collisions when approaching a light source. The robots 
are morphologically different: two of them are equipped with infrared sensors, one 
with light sensors. Thus, the two morphologically identical robots should take care 
of obstacle avoidance, while the other one should take care of phototaxis. Since all 
the agents can emit and perceive sound, the group ’ s coordination of actions is based 
on acoustic communication. The results of this study are a  “ proof-of-concept ” : they 
show that dynamic artificial neural networks can be successfully synthesized by arti-
ficial evolution to design the neural mechanisms required to under pin the behavioral 
strategies and adaptive communication capabilities demanded by this task. Thus, ER 
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represents a promising method that should be considered in future research works 
dealing with the design of homogeneous controllers for groups of heterogeneous 
cooperating and communicating robots. 

 In conclusion, based on the results obtained in past research and on the prospect 
of future achievements, we believe that the bidirectional influence arrow connecting 
ER and swarm robotics can be enforced in both directions. ER can offer swarm robotics 
a bias-free method to automatically obtain robust and sophisticated control structures 
that exploit aspects of the experimental setup not always evident a priori to the experi-
menter. Equally, swarm robotics can broaden the horizons of ER beyond the current 
limits. In our opinion, the swarm cognition approach and studies with heterogeneous 
swarms are two of the most promising directions.   

 Note 

 1.   A project funded by the Future and Emerging Technologies program of the European Com-

munity, under grant IST-022888.        
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