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Abstract

In this paper, we study coordinated motion in a swarm robotic system, called a swarm-bot. A swarm-bot is a self-assembling and self-organising
artifact, composed of a swarm of s-bots, mobile robots with the ability to connect to and disconnect from each other. The swarm-bot concept is
particularly suited for tasks that require all-terrain navigation abilities, such as space exploration or rescue in collapsed buildings. As a first step
toward the development of more complex control strategies, we investigate the case in which a swarm-bot has to explore an arena while avoiding
falling into holes. In such a scenario, individual s-bots have sensory–motor limitations that prevent them navigating efficiently. These limitations
can be overcome if the s-bots are made to cooperate. In particular, we exploit the s-bots’ ability to physically connect to each other. In order to
synthesise the s-bots’ controller, we rely on artificial evolution, which we show to be a powerful tool for the production of simple and effective
solutions to the hole avoidance task.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The first problem to be considered when trying to control
an autonomous robot is to make it move efficiently in a
given environment. Depending on the robot, this task can
be rather simple (i.e., the motion of a wheeled robot) or
particularly complex (i.e., walking for a humanoid robot).
Also the environment in which the robot is placed influences
the complexity of the problem: a flat terrain is clearly less
challenging than a rough terrain with holes and obstacles. An
additional source of complexity is found in the coordinated
motion task, in which the robotic system is composed of a
number of independent entities that have to coordinate their
actions in order to move coherently.

Coordinated motion is a well studied behaviour in biology,
being observed in many different animal species. For example,
we can think of flocks of birds flying in a coordinated manner,
or of schools of fish swimming in perfect unison. These
examples are not only fascinating for the charming patterns
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they create, but they also represent interesting instances of
self-organised behaviours. Many researchers have provided
models for schooling behaviours, and thus replicated real-world
behaviours in artificial life simulations (see [2, Chapter 11]).
Similarly, groups of artificial fish (e-boids) have been evolved to
display schooling behaviours, obtaining interesting results [13].
Finally, evolutionary computation has been used to evolve
coordinated motion behaviours in small groups of physical
robots [10].

Coordinated motion is a problem of fundamental importance
within the SWARM-BOTS project,1 wherein this research
is conducted. The project aims at the development of a
new robotic system, called a swarm-bot [4,8]. A swarm-
bot is defined as an artifact composed of simpler autonomous
robots, called s-bots. An s-bot has limited acting, sensing
and computational capabilities. However, an s-bot can create
physical connections with other s-bots, thereby forming a
swarm-bot that is able to solve problems the single individual
cannot cope with. Coordinated motion is a basic ability that
the swarm-bot should display: a swarm-bot should move

1 A project funded by the Future and Emerging Technologies Programme
(IST-FET) of the European Community, under grant IST-2000-31010.
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coherently across the environment as a result of the cooperation
of the s-bots assembled in a single structure [1].

Another basic ability for the swarm-bot is coping
with rough terrains, holes, gaps or narrow passages. All-
terrain navigation is an important feature for an intelligent
autonomous system, opening many possible application
scenarios, like space exploration or rescue in a collapsed
building. Research in this direction has focused mainly on
the development of rovers provided with articulated wheels
or tracks, such as the sojourner [7]. A different approach is
presented by reconfigurable robotics, where robots can adopt
different shapes in order to cope with varying environmental
conditions [3,11,14].

The swarm-bot concept puts together the advantages given
by autonomous rovers and by self-reconfigurable robots for all-
terrain navigation. In fact, similarly to rovers, each s-bot is
fully autonomous in its control and is capable of moving
on moderately rough terrains. On the other hand, whenever
individual abilities are not sufficient, the s-bots can rely on
their ability to display collective behaviours. This allows the
swarm-bot to exploit features similar to those of reconfigurable
robots, such as (i) cooperation among assembled elementary
units, (ii) physical support through inter-unit connections and
(iii) exploitation of different multi-robot configurations (shape
changing). Some pioneer work with comparable features has
been done by Hirose et al. [5]. However, to the best of our
knowledge, this work remained at the level of a proposal. We
significantly improve on this proposal within the SWARM-
BOTS project [8].

In summary, we aim at studying all-terrain navigation as the
result of the cooperation among s-bots, which can self-assemble
and build structures that can cope with hazardous situations
like avoiding a hole or passing over a trough. In such cases,
rigid connections serve as support for those s-bots that are
suspended over the gap. This approach to all-terrain navigation
also has a natural counterpart in ants of the species Œcophilla
longinoda [6], which are able to build chains connecting one
to the other, creating bridges that facilitate the passage of other
ants.

In this paper, we study an instance of the family of all-terrain
navigation tasks, that is, hole avoidance. A swarm-bot has to
perform coordinated motion in an environment that presents
holes too large to be traversed. Thus, holes must be recognised
and avoided, so that the swarm-bot does not fall into them.
The challenges issued by this task are described in Section 2,
along with the experimental set-up used for our experiments.
Sections 3 and 4 are dedicated to the description of the obtained
results. Finally, Section 5 concludes the paper.

2. Evolution of hole avoidance behaviours

The hole avoidance task has similar aspects to a common
obstacle avoidance scenario, in which there are zones that
should not be traversed. However, this task presents challenges
that are not found in obstacle avoidance. Above all, two
important differences should be highlighted: (i) the failure
in avoiding a hole leads to a situation from which the
Fig. 1. (a) Two s-bots physically connected. This illustrates how two robots
can cooperate to traverse a gap neither could navigate alone. The s-bot is
provided with a traction system comprising wheels and tracks, a rotating turret
holding the rigid and the flexible grippers, and many sensors. (b) The simulated
s-bot model. The turret is transparent to show the chassis (centre sphere), the
motorised wheels (lighter spherical wheels) and the passive wheels (darker
spherical wheels). The position of the gripper is shown with an arrow painted on
the s-bot’s body. Ground sensors are displayed as lines exiting from the s-bot.

robot cannot recover, while a collision with an obstacle is
not harmful as long as the robot is not damaged; (ii) the
sensory configuration of the s-bot and its dynamics make it
difficult to perceive and avoid holes with particular shape
and dimension, despite the fact that obstacles with identical
two dimensional characteristics of shape and size could be
easily detected.2 These difficulties led us to the choice of
exploiting the cooperation among the s-bots assembled in
a swarm-bot configuration. However, this choice introduces
new challenges. First, s-bots should coordinate their overall
motion. Second, s-bots have to recognise the presence of a hole,
communicate it to the whole group and re-organise to choose a
safer direction of motion.

The controllers for the s-bots are obtained using artifi-
cial evolution. There are multiple motivations behind this
choice [9]. In particular, in a distributed multi-robot context
such as the one considered within the SWARM-BOTS project,
hand-crafting the controllers may be too complex. Here, artifi-
cial evolution can bypass this difficulty, as it directly tests the
behaviour displayed by the robots embedded in their environ-
ment. Furthermore, artificial evolution can exploit the richness
of solutions offered by the complex dynamics resulting from
robot–robot and robot–environment interactions [4].

Fig. 1(a) shows two connected s-bots.3 In this paper,
however, experiments are performed in simulation, using a
software based on VortexTM, a 3D rigid body dynamics engine.
In the following sections, we describe the experimental set-up:
we give details about the simulation model in Section 2.1, about
the evolutionary algorithm in Section 2.2 and about the fitness
function used for the evolution of hole avoidance behaviours in
Section 2.3.

2.1. The simulation model

We have defined a simple s-bot model that both allows fast
simulations and preserves those features of the real s-bot that

2 Experiments performed using a single s-bot revealed that the narrow
corners of a hole are hard to perceive, and therefore to avoid (data not shown).

3 Details regarding the hardware and simulation of the swarm-bot can also
be found in the project web-site (www.swarm-bots.org).

http://www.swarm-bots.org
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we considered most important (see Fig. 1b). The simulated
s-bot is composed of a cylindrical turret (radius: 6 cm, height:
6 cm), connected to a chassis by a motorised hinge joint that
allows relative rotation between the two bodies. The chassis is
modelled as a sphere (radius: 1.4 cm) to which four spherical
wheels are connected (radius: 1.5 cm). The lateral wheels are
connected to the chassis by a motorised joint and a suspension
system and are responsible for the motion of the s-bot. The front
and back wheels are passive and they can rotate in any direction.
The gripper that allows connections between s-bots is simulated
by creating a link between the two turrets. The gripping position
is indicated by an arrow painted over the turret. In this work,
connections are established at the beginning of the simulation
and are never released.

Each s-bot is provided with a traction sensor placed at the
turret–chassis junction. It detects the direction and the intensity
of the traction force that the turret exerts on the chassis.
The traction sensor, integrating all the pulling/pushing forces
created by the movement of the connected s-bots, provides an
indication of the average direction toward which the swarm-
bot is trying to move as a whole.4 Besides the traction sensor,
we also make use of four ground sensors, which are infrared
proximity sensors evenly distributed around the chassis of the
s-bot and pointed toward the ground. Ground sensors are used
to perceive the presence of a hole in the vicinity of the s-bot.

Each s-bot can control its wheels independently. The
maximum angular speed has been set to 10 rad/s, which
corresponds to a maximum speed of the s-bot of 0.15 m/s. In
addition, the motor controlling the rotation of the turret is used.
Its angular speed is set to half of the difference between the
angular speed of the left and right wheels. This motor assists
the rotation of the chassis with respect to the turret even when
one or both wheels of the s-bot are not in contact with the
ground [1].

We designed a square arena (side 3 m) that contains four
square holes (side 60 cm, see Fig. 2(b)) evenly distributed. The
swarm-bot consists of a linear structure made of four s-bots,
which are rigidly connected by means of their grippers. Each
s-bot is controlled by a simple perceptron, a neural network
connecting its sensory inputs to the motor outputs. The network
has eight sensory inputs: four are dedicated to the readings
coming from the ground sensors, and the other four encode the
intensity and direction of traction (for more details, see [1]).
The neural network is provided with one bias unit and two
outputs that control the two wheels and the turret/chassis motor.
This perceptron has a total of 18 connections for which weights
are evolved.

2.2. The evolutionary algorithm

A simple generational evolutionary algorithm is used for
the synthesis of neural controllers. The initial population is
composed of µ = 100 randomly generated genotypes. Each
genotype is binary encoded, and is mapped into a neural

4 This particular kind of sensor proved to be of fundamental importance for
the evolution of coordinated motion in a swarm-bot [1].
Fig. 2. Hole avoidance results: (a) Average fitness over 10 replications of
the experiment. (b) Trajectories displayed by a swarm-bot performing hole
avoidance.

network controller for a single s-bot. Each weight of the neural
network ranges in the interval [−10, 10] and is represented
in the genotype by eight bits. Therefore, the genotype length
corresponds to L = 18 × 8 = 144 bits. In every generation,
all genotypes of the population are evaluated using the fitness
function defined in the following section. The best λ = 20
genotypes of each generation are allowed to reproduce, each
generating µ/λ = 5 offspring, which are exact copies of the
parent. Afterwards, each offspring is mutated — i.e., each bit
has a probability 2/L of being flipped. Parents are not copied
to the offspring population (no elitism). No recombination
operator is applied. The evolutionary experiment lasts 100
generations. This algorithm is very simple and straightforward,
and we found that it is sufficient to evolve simple and efficient
controllers for groups of robots [4].

2.3. The fitness evaluation

The neural network controller obtained from a genotype is
cloned and downloaded in each of the n = 4 s-bots involved
in the experiment, so that all s-bots are homogeneous in their
control. The fitness of the genotype is computed by measuring
the performance of the corresponding group of four robots. The
fitness F of a genotype is a random variable, because of the
random initialisation of the positions and orientations of the
s-bots. Its expected value F can be estimated by evaluating
the behaviour of the swarm-bot for a number M of trials and
then averaging the obtained values. Therefore, in each trial e
we compute a sample Fe of the random variable F . In these
experiments, we use the sampling size M = 5.

The fitness function is designed to favour coordinated
motion, exploration of the arena and a fast reaction to the
detection of a hole. The fitness estimation Fe in each trial is
given by the average of two components, Fe1 and Fe2 (see
below). In order to compute the fitness components, we divide
each trial e into two sub-trials, e1 and e2. In the former, we
test the controller for its ability to perform coordinated motion
in a flat environment. Here the s-bots start connected in a
linear formation, with the orientation of their chassis randomly
initialised. They are rewarded for the ability to move as far
as possible from their initial position. Note that this indirectly
implies an ability to display coordinated movements. Therefore,
the fitness estimation Fe1 is computed as the distance covered
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Table 1
Performance of the best individuals for each replication of the experiment, averaged over 100 trials

Replication 1 2 3 4 5 6 7 8 9 10

Fitness avg. 0.66 0.65 0.65 0.61 0.58 0.64 0.69 0.64 0.66 0.65
Fitness std. 0.14 0.12 0.14 0.19 0.10 0.16 0.12 0.15 0.13 0.16

The mean value and the standard deviation are reported.
by the group:

Fe1 =
‖X(0) − X(Te1)‖

D
, (1)

where X(t) is the coordinate vector of the centre of mass of the
group, and D is the maximum distance achievable. The sub-trial
e1 lasts Te1 = 150 simulation cycles, each cycle corresponding
to 100 ms of real time.

In sub-trial e2, the s-bots are positioned in the centre
of the arena with holes, and start connected in a linear
formation. Their chassis are all initialised with the same random
orientation. In this way, there is no need for a coordination
phase at the beginning of the sub-trial, the focus being on
hole avoidance. Also the chain is randomly oriented at the
beginning of each sub-trial. The sub-trial lasts Te2 = 200
cycles.5 The fitness estimation Fe2 is given by the product of
two sub-components: the survival sub-component Fs and the
exploration sub-component Fx . The former rewards only those
behaviours that reach the end of the trial without resulting in a
fall. It is computed as follows:

Fs =

{
1, if Ts = Te2;

0, otherwise;
(2)

where Ts is the number of cycles the swarm-bot “survived”
without falling into a hole. This sub-component introduces
a strong selective pressure towards safe behaviours, as it
penalises every fall, even if it happens at the end of the sub-
trial.6 The second sub-component is designed to favour those
genotypes that are able to better explore the arena. In this
case, the arena is virtually divided in 25 square zones (side:
60 cm). The genotype is rewarded for the number of visited
zones during the sub-trial, formalised as follows:

Fx =
z(Ts)

Z(Te2)
, (3)

where z(Ts) is the number of visited zones at cycle Ts and
Z(Te2) = 5 corresponds to the maximum number of zones
that can be visited in Te2 cycles. A zone is considered visited
if the swarm-bot’s centre of mass lies within the corresponding
square area. Passing multiple times over a visited zone does not
correspond to any additional reward.

5 A longer time is needed in this sub-trial in order to let the swarm-
bot interact with holes and edges of the arena as much as possible.

6 However, we cannot ensure that a swarm-bot that does not fall within 200
simulation cycles will never fall in the future. A trade-off value must be chosen
which maximises the selective pressure while minimising the duration of the
evolutionary experiment, and therefore the required computation time.
3. Obtained results

We performed 10 replications of the evolutionary experi-
ment, every time starting with a different population of ran-
domly generated genotypes. The average fitness values of the
best individuals and of the whole populations, computed over
all the replications, are plotted against the generation number
in Fig. 2. The plot indicates that the evolutionary experiments
were successful: the average fitness value of the best individ-
uals reaches 80% of the maximum achievable value, which
cannot normally be reached due to the particular experimental
set-up.7

We tested the performance of the controllers evolved in the
10 different replications of the evolutionary experiment. We
evaluated the 10 best individuals of the last generation obtained
in the different replications, averaging their fitness Fe over
100 different trials. The corresponding results are shown in
Table 1. All individuals perform reasonably well. It can be
noted that their performance is lower than 0.8, which is the
average performance achieved at the end of the 10 replications
of the evolutionary experiment, as shown in Fig. 2a. This is
due to the small sampling size M used for the estimation of
the fitness during the evolution (M = 5 samples). In fact, a
small sampling size usually leads to an over-estimation of the
fitness of the best individual during the evolution. Thus, the
post-evaluation analysis with a larger sampling size (M = 100
trials, in this case) gives a better approximation of the real
performance of the evolved controllers.

Direct observation of the behaviours evolved showed that all
solutions rely on similar strategies. We observed the evolved
behaviours placing the swarm-bot in the arena with holes,
and starting with different orientations of the chassis of the
s-bots8 (see Fig. 2(b)). At the beginning, the s-bots start to
move in their initial direction, resulting in a rather disordered
overall motion. Within a few simulation cycles, the physical
connections transform this disordered motion into traction
forces, that are exploited to coordinate the group. When an
s-bot feels a traction force, it rotates its chassis in order to
cancel this force. Once the chassis of all the s-bots are oriented
in a same direction, the traction forces disappear and the
coordinated motion of the swarm-bot starts. Then, when one

7 The maximum value for Fe could be reached only if in the first sub-trial
s-bots started with their chassis perfectly aligned, so that no coordination phase
is required, allowing the swarm-bot to cover the maximum distance. This is
normally not the case due to the random initialisation of the orientations of the
chassis.

8 See http://www.swarm-bots.org/hole-avoidance.html for some movies of
these behaviours.

http://www.swarm-bots.org/hole-avoidance.html
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s-bot perceives an edge with its ground sensors, it rotates the
chassis and changes the direction of motion in order to avoid
falling. This change in direction creates a traction force for the
other s-bots, which they perceive by means of their traction
sensors. At this point, a new coordination phase is triggered,
which ends up in a new direction of motion leading the swarm-
bot away from the edge. In some cases, the reaction of a single
s-bot may not be sufficient to influence the behaviour of the rest
of the group. As a consequence, the s-bot may be pushed out of
the arena. However, physical connections serve as support for
this s-bot, while the rest of the group continues to perform hole
avoidance and eventually leads the whole swarm-bot to a safer
location.

4. Generalisation

The evolved strategy for hole avoidance is very robust, being
able to work in a number of different situations. This is a
result of the physical connections among the s-bots and, above
all, of the use of the traction sensors. First of all, the evolved
strategies are independent of the shape and position of the
holes in the arena. We also tested the scalability of the evolved
controllers varying the size and the shape of the swarm-bot.
We observed that the evolved controllers perform well in many
different conditions. For example, Fig. 3(a) shows the case of a
swarm-bot comprising eight s-bots connected in a “star” shape.
The swarm-bot is placed in a square arena without holes, but
with open borders. The swarm-bot is still able to avoid falling
out of the arena, notwithstanding the higher inertia of the star
formation.

Another interesting feature of the evolved controllers is that
they are able to perform collective obstacle avoidance. In fact,
when an s-bot hits an obstacle, its turret exerts a force on the
chassis in a direction opposite to the obstacle. This force is
felt as a traction pulling the s-bot away from the obstacle.
In response to this traction, the s-bot rotates its chassis to
cancel it, as explained before. Moreover, the rigid connections
between s-bots transmit the force resulting from the collision
to the whole group, triggering a fast change in the direction
of movement of the swarm-bot. As shown in Fig. 3(b), the
swarm-bot is able to avoid both holes and obstacles, represented
here by walls surrounding the arena. It is worth noting that the
traction sensor works as an omni-directional bumper distributed
on the whole body of the swarm-bot, allowing collective
obstacle avoidance.

Finally, we tested the evolved controllers when the s-bots
are linked using flexible, rather than rigid, connections. Flexible
connections allow the rotation of the connecting s-bots around
the turret of the connected s-bot. The use of this type of
connection allows the shape of the swarm-bot to change
during motion. Because of the flexibility of the connections,
traction can be transmitted only in the radial direction, but
not in the tangential one. Nevertheless, the evolved strategies
still work. We performed tests with both a “star” and a
chain formation composed of eight s-bots each. As shown in
Fig. 3(c) and (d), the flexible formations are able to perform
coordinated motion, obstacle and hole avoidance, changing
Fig. 3. Generalisation properties. The trajectories and the final position of
the swarm-bot are shown. (a) Size and shape change. A “star” formation is
tested in a square arena (grey area) without holes but with open borders. The
trajectories indicate that the swarm-bot is able to avoid falling out, even if some
s-bots are pushed out from the border. (b) Obstacle avoidance. The square
arena with holes (grey area) is surrounded by walls (dark grey borders). The
swarm-bot proves able to avoid both holes and obstacles. (c) Obstacle and hole
avoidance of a “star” formation with flexible connections. Here the cylindrical
obstacles (light grey objects) create a narrow passage with the edge of the arena
(grey area), which is faced by the swarm-bot through reconfiguration of its
shape. (d) Hole avoidance of a big linear formation with flexible connections.
Here the swarm-bot completely deforms when it reaches the edge of the arena
(grey area), therefore adapting its shape.

shape when passing through narrow passages. The flexible
formation adapts more easily to the environment, and in
some situations can avoid holes more efficiently than a rigid
structure. In fact, the s-bots do not completely feel the inertia
of the swarm-bot, because they can change their relative
positions, therefore deforming the structure and adapting it
to the edge of the hole. In order to assess to what extent
flexible connections among s-bots make the system more
efficient, we compared the performance of three different
swarm-bot configurations using both rigid and flexible links.
The first configuration is the standard linear formation with
four s-bots, the second configuration is the “star” formation
with eight s-bots shown in Fig. 3(a) and the third is a circular
formation, again composed of eight s-bots. The performance
was measured over 500 simulation cycles, and the two fitness
components described in Section 2 were computed.9 Table 2
shows the exploration and the survival performance for these
formations. The most interesting data is given by the survival
factor, which indicates the ability of the swarm-bot to avoid
falling out of the arena.10 We can notice that, as far as
the linear and the circular formations are concerned, flexible
formations are advantageous, leading to a higher survival

9 The arena used for the formations comprising eight s-bots is larger than
before, having a side of 4 m, in order to ease the passage of the larger swarm-
bot.
10 The exploration factor is less relevant in this case. In fact, the longer the

trial, the higher the probability that the swarm-bot retraces his steps visiting
already covered zones. This justifies the observed drop in performance when
using flexible links.
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Table 2
Performance comparison of different swarm-bot formations using rigid and
flexible connections among s-bots

Exploration Survival

Rigid line 5.82 0.46
Flexible line 6.52 0.66

Rigid star 5.43 0.30
Flexible star 4.4 0.33

Rigid circle 5.22 0.40
Flexible circle 5.04 0.60

factor. In contrast, when s-bots are connected in a “star”
formation, the use of a flexible formation does not correspond
to a significant improvement. This fact can be explained
considering that the “star” formation is an intrinsically more
rigid structure, and therefore it does not allow a drastic shape
change. This means that the swarm-bot can adapt to the
environment (i.e., the presence of holes, edges) only to a limited
extent.

5. Conclusions

We presented a set of experiments for the evolution of
hole avoidance behaviours in a group of simulated s-bots that
are physically connected to form a swarm-bot. The solutions
found by evolution are simple and in many cases they work in
different environmental situations. The obtained results suggest
that evolution is a suitable tool for synthesising controllers
for a group of homogeneous robots. In this case, evolution
was able to produce a self-organising system that relies on
simple and general rules, a system that is consequently robust
to environmental changes and to the number of s-bots involved
in the experiment.

Our results demonstrate the traction sensor to be a
powerful mechanism for achieving coordination in the swarm-
bot. The traction sensor allows the swarm-bot to exploit
the complex dynamics arising from the interactions among
individual s-bots and between the s-bots and the environment.
It provides robustness and adaptivity features with respect to
environmental or structural changes of the swarm-bot. Besides,
traction forces are used as a sort of communication of the
presence of a hazard, allowing the group as a whole — and not
only the s-bots that perceive the hole — to change direction
of motion when heading toward a hole. Finally, the traction
sensor can also work as a distributed bumper for the swarm-
bot, allowing collective obstacle avoidance.

The hole avoidance task represents the first step toward the
solution of more difficult problems. We will extend this work
in order to obtain controllers that can pass over holes that are
sufficiently small, while avoiding falling into holes that are too
big to be traversed by the swarm-bot. Additionally, we plan to
study problems that belong to the all-terrain navigation family,
such as coping with uneven terrains. In these perspectives,
physical connections among s-bots become an essential feature
to be exploited. Finally, we intend to investigate functional
self-assembly for all-terrain navigation, that is, the problem
of forming and disbanding a swarm-bot with a functional
shape for the particular environmental conditions and task
to be performed, in order to maximise the efficiency in the
navigation [12].
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