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Abstract— In this paper, we propose a distributed constrained
connectivity control algorithm for a network of dynamically
decoupled agents with constrained discrete-time linear dynam-
ics. This control algorithm works based on a receding horizon
control (RHC) scheme and acts as a middleware that modifies
the set-points defined by the user or by high-level control
units whenever their direct application would violate system
constraints. To guarantee the connectivity of the communication
graph, the algorithm enforces that a specific spanning tree exists
at each time. The algorithm is allowed, under certain conditions,
to switch between interaction graphs in order to enhance system
performance. Among all possible spanning trees, we propose
to use the Euclidean Minimum Spanning Tree (EMST), and
we study its advantages. The overall algorithm is described,
and some of its properties are pointed out. Some simulations
conclude the paper and show the effectiveness of the proposed
method.

Index Terms—Connectivity Control, Proximity Networks,
Distributed Command Governor, Constrained Control.

I. INTRODUCTION

In recent years many distributed control and coordination
schemes have been introduced in the literature for mobile
agents in proximity networks [1]. Examples include forma-
tion flight [2], coverage [3], flocking [4], and partitioning [5].
A crucial constraint in proximity networks is connectivity
maintenance, which is required to guarantee the availability
of a connected communication network for the agents.

A measure often used for studying connectivity is the
second smallest eigenvalue of the Laplacian matrix, known as
the Fiedler value or algebraic connectivity. Kim and Mesbahi
[6] proposed a control algorithm that maximizes the Fiedler
value through centralized semi-definite programming. Later,
De Gennario and Jadbabaie [7] proposed a distributed super-
gradient algorithm based on the Fiedler vector to maximize
the algebraic connectivity.

In a different approach, Zavlanous and Pappas [8] used
the sum of powers of the adjacency matrix, called k-
hop connectivity matrix, to maintain k-connectivity in the
network. In [9], the same authors used the determinant
of the reduced Laplacian matrix to form a potential field
which preserves connectivity. To avoid infinite control inputs
whenever communication links tend to be lost in the potential
fields, Dimarogonas and Johansson [10] and Ajorlou et al.
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[11] proposed distributed algorithms which produce bounded
control inputs.

The above-mentioned approaches do not allow the deletion
of communication links after they have been established.
This can be quite conservative whenever connectivity control
is integrated with mobility control. In [12], Zavlanous et al.
proposed a distributed hybrid control which allows both the
addition and deletion of links. In their work, agents agree
on sequential deletions by using an auction-based algorithm
which guarantees that no violation of connectivity occurs. In
[13], Aragues et. al employed the minimum spanning tree
for coverage control with connectivity maintenance. For a
detailed list of works on connectivity, please refer to [14]
and the references therein.

Most of the works on connectivity control assume that
the agent dynamics is a single integrator. Moreover, the
few papers that consider double integrators [15], [16], [17]
or nonholonomic dynamics [18] do not fully take into
account constraints on the dynamics. However, in real-world
applications, dynamics is subject to different limitations such
as input saturations, and state constraints. For this reason,
control algorithms based on reactive control and potential
functions which are not responsible for the consequences
of the current actions, can yield constraint violations, as
highlighted in [19].

In this paper, we propose a novel distributed constrained
connectivity control algorithm which is able to guarantee
the connectivity of a network of agents with constrained
dynamics, e.g., with local actuator, velocity, and position
constraints. This control algorithm works based on a re-
ceding horizon control (RHC) scheme, i.e., the turn-based
distributed Command Governor (CG) recently introduced in
[20]. The proposed connectivity control algorithm will act
as a middleware that modifies the set-points defined by the
user or by high-level control units whenever their direct
application would violate system constraints.

In particular, to guarantee the connectivity of the commu-
nication graph the algorithm enforces that a specific spanning
tree exists at each time. To make the interaction graph
adaptive, the algorithm is allowed, under certain conditions,
to switch between interaction graphs. Among all spanning
trees, we propose to use the Euclidean Minimum Spanning
Tree (EMST), and we study its advantages.

The organization of the paper is as follows. In Section II,
we provide the problem statement. In Section III, we detail
the connectivity control algorithm. In Section IV, we present
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the results of simulations, and finally in Section V, we draw
some conclusions.

II. PROBLEM STATEMENT

Consider a network composed of N dynamically decou-
pled agents with discrete-time linear dynamics (e.g., double
integrator). The dynamics of each agent i is described by

xi(t+ 1) = Axi(t) +Bui(t) (1)

where A ∈ Rn×n, B ∈ Rn×m̄, and xi(t) ∈ Rn and ui(t) ∈
Rm̄ denote the state and control input of agent i at time step
t, respectively. The state of the agent can be decomposed
as xi(t)T = [pi(t), vi(t)] where pi(t) is the position of the
agent, and vi(t) is its velocity. The state and control input
are subject to local convex constraints

xi(t) ∈ Xi, ui(t) ∈ Ui, ∀t ≥ 0 (2)

where Xi and Ui are state and input constraint sets, respec-
tively.

We assume that the agents can communicate with each
other. The communication graph can be represented by a
time-varying undirected graph GC(t) = (V, EC(t)) with the
vertex set V = {1, . . . , N} and the edge set EC(t) ⊆ V × V
where (i, j) ∈ EC(t) if and only if agents i and j can
communicate. In the sequel, we model the communication
graph by a proximity graph. Hence, two agents i and j
can communicate when their relative Euclidean distance is
smaller than certain radius R, i.e., ||pi(t)− pj(t)|| ≤ R.

Definition 1 (Graph connectivity): An undirected graph G
is connected if there exists a path between every two vertices
of the graph.

Connectivity can be defined from the algebraic graph
theory perspective:

Lemma 1: [21] Let λ1(G) ≤ λ2(G) ≤ · · · ≤ λN (G) be
the ordered eigenvalues of the Laplacian matrix L(G). Then,
the graph G is connected if and only if λ2(G) > 0.

Assuming that each agent plays a non-cooperative game,
the objective of this paper is to determine a distributed
supervision scheme that, whenever necessary, modifies the
behavior of each single agent to ensure that the communica-
tion graph is always connected and that the local constraints
are satisfied.

III. DISTRIBUTED CONSTRAINED CONNECTIVITY
CONTROL

A. Distributed Command Governor

We adopt the turn-based distributed CG, and extend it to
the case of general convex constraints appropriate for our
problem. Assume that each agent has been pre-compensated
so as to be asymptotically stable. Then, the dynamics of
agent i is described as

xi(t+ 1) = Φxi(t) +Ggi(t) (3)

where Φ ∈ Rn×n is a Schur matrix (all eigenvalues smaller
than 1), G ∈ Rn×m, and gi(t) ∈ Rm is the command
(manipulable reference input) of the agent i. For the sake
of simplicity, it is assumed that all the systems have the

same dynamics. We also assume that the reference input
ri(t) ∈ Rm of each agent is expressed by the user or a
high-level control unit.

The aggregate system is subject to convex constraints

cj
(
x(t), g(t)

)
≤ 0, j = 1, ..., nc (4)

to be satisfied at each time step, where x(t)T =
[x1(t), . . . , xN (t)] and gT (t) = [g1(t), . . . , gN (t)] denote the
aggregate system state and aggregate command, respectively.

The goal of the distributed CG is to determine, at each
time step t and for each agent i, a suitable command gi(t)
that is the best approximation of the reference input ri(t)
such that it would fulfill the global constraints (4) if it were
constantly applied from t onward.

To this end, we define the interaction graph GI(t) =
(V, EI(t)) with EI(t) ⊆ V × V where (i, j) ∈ EI(t) if and
only if agents i and j interact with each other. Since agents
are dynamically decoupled, the only interaction between
agents is due to the inter-agent constraints (i.e., connectivity
constraints). To characterize constraints sparsity, let Ii denote
the set of indices of constraints depending on agent i, i.e.,
j ∈ Ii if and only if cj(x(t), g(t)) < 0 explicitly depends
on xi(t) or gi(t).

The set of neighbors Ni of agent i in the interaction graph
is the set of agents that share at least one constraint with
agent i, i.e.,

Ni = {j| Ii ∩ Ij 6= ∅, j 6= i}.

At this point, if we introduce xNi
(t), gNi

(t) as the aggregate
state and aggregate command of the agents in Ni, the
constraints (4) associated with agent i can be rewritten as

cj
(
xi(t), gi(t), xNi

(t), gNi
(t)
)
≤ 0, ∀j ∈ Ii. (5)

To satisfy the constraints (5), it is enough to select gi such
that for any i ∈ V 1

cj
(
x̂i(k, xi, gi), gi, x̂Ni

(k, xNi
, gNi

), gNi

)
≤ 0, (6)

k = 0, 1, ...,∞, ∀j ∈ Ii
where

x̂i(k, xi, gi) = Φkxi +

k−1∑
τ=0

Φk−τ−1Ggi

x̂Ni(k, xNi , gNi) = (I ⊗ Φk)xNi + (I ⊗
k−1∑
τ=0

Φk−τ−1G)gNi

are the state prediction of agent i and neighbors of agent
i along the virtual time k, respectively, and ⊗ denotes the
Kronecker product.

Using standard arguments in CG [22], the necessity to
check an infinite number of constraints in (6) can be relaxed
at the cost of a slight increase in conservativity by using the
following two sets of constraints

cj
(
x̂i(k, xi, gi), gi, x̂Ni

(k, xNi
, gNi

), gNi

)
≤ 0

cj
(
x̄i(gi), gi, x̄Ni(gNi), gNi

)
+ δ ≤ 0,

k = 0, 1, ..., k0, ∀j ∈ Ii (7)

1In the following, when it is obvious, for simplicity we drop the argument
time t.
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where

x̄i(gi) = (I − Φ)−1Ggi

x̄Ni(gNi) = (I ⊗ (I − Φ)−1G)gNi (8)

are the steady state of agent i and neighbors of agent i,
respectively. Note that the constants δ > 0 and k0 <∞ can
be determined as in [22].

The main idea of the turn-based scheme is to partition the
set of agents in subsets T1, ..., Tχ such that two agents in the
same subset are not neighbors in the interaction graph, i.e.,
they do not share any constraints

∀i, j ∈ Tk ⇒ j /∈ Ni. (9)

Each subset Tk is hereafter referred to as a turn. The
determination of a set of turns is closely related to the well
known problem of graph coloring [23].

Let us assume that at each time step t, each agent i knows
xNi

(t) and gNi
(t− 1), and assume that a certain turn Tk(t)

is in charge. Then, if all the agents i /∈ Tk(t) are instructed
to keep their previous command, i.e., gi(t) = gi(t− 1), then
the only variable in (7) for each agent i ∈ Tk(t) will be
gi(t). This allows to formulate the following strategy:

Algorithm 1 Turn-Based Distributed Command Governor

REPEAT AT EACH TIME t
1. IF i ∈ Tk(t)

1.1 RECEIVE xNi(t) AND gNi(t− 1), ∀j ∈ Ii
1.2 SOLVE

gi(t) = arg min
gi
||gi − ri(t)||2Ψ (10)

subject to (7)

2 ELSE
2.1 SET gi(t) = gi(t− 1)

3 APPLY gi(t)
4 SEND gi(t) AND xi(t) TO THE NEIGHBORS Ni

where ‖z‖2Ψ denotes the quadratic form zTΨz (Ψ = ΨT >0).
It is then possible to prove that:

Theorem 1: Consider the stable system (3), the constraints
(4), and the turn mechanism (9) that is assumed to be
periodic, i.e., ∀t > 0,∃tp such that ∪tpi=0T (t + i) = V . If
at time t = 0, there exists a g(0) such that (7) is satisfied
∀i ∈ V , then the following statements hold:

i) For each agent i ∈ V , at each decision time t, the
minimizer in (10) uniquely exists and can be obtained
by locally solving a convex constrained optimization
problem [20],

ii) The overall system acted by the agents implementing
Algorithm 1 never violates the constraints (4) [20].

iii) As a non-cooperative distributed RHC scheme, the al-
gorithm always converges to a Nash equilibrium [24].

B. Connectivity Constraints and Local Constraints
In this subsection, we characterize the constraints (4) of

the aggregate system that are due to local constraints or
connectivity constraints.

Typical local constraints (2), in addition to the equality
constraint (3), for each agent include:
• Input saturation constraints: ‖ui

(
xi(t), gi(t))‖∞ ≤

umax;
• Velocity constraints: ||vi(t)||2 ≤ vmax;
• Constraints on the admissible position: pi(t) ∈ Pi, with
Pi a convex region.

A possible way to guarantee connectivity of the communi-
cation graph GC(t) is to enforce that a specific spanning tree
(or a connected spanning subgraph) exists from t onward.
Let the interaction graph GI(t) be a spanning tree of the
communication graph GC(t) at time step t. To enforce this
spanning tree to exist from t onward, the following N − 1
convex constraints must be satisfied for all future time

||pi(t)− pj(t)|| ≤ R, ∀(i, j) ∈ EI(t). (11)

Note that in this case

Ni = {j| (i, j) ∈ EI(t), j 6= i} (12)

where EI(t) is the edge set of the spanning tree. Interestingly
enough, under the topology induced by (11), a simple two-
turns partition of the agents can always be built.

Lemma 2: For any spanning tree G, if Ni is as in (12),
then the vertex set V can be partitioned in two turns T1 and
T2 ensuring (9).

Proof: The proof is constructive. Let us arbitrarily
assume that vertex i belongs to T1. In any tree, there exists
only a unique path between any two vertices i and j. For any
vertex j, if the length of the path between i and j is even,
we assign j to the set T1, otherwise to the set T2. Since no
other paths exists, the proof is concluded.

All the local constraints and connectivity constraints can
be formulated in the form (4), and then are tractable by the
distributed CG. In particular, from Theorem 1, it directly
follows that, 1) the local constraints are always satisfied, 2)
the spanning tree always exists, and then the communication
graph is always connected.

Depending on the choice of the spanning tree at time
t = 0, the use of a fixed interaction graph can be quite
conservative as it may prevent the network to get certain
configurations. For instance, if at time t = 0 a star graph
is chosen (see Fig. 1.b), the path graph (see Fig. 1.a) is
prevented.

We can resolve this limitation by allowing the algorithm to
switch between different interaction graphs (spanning trees).
However, switching between two interaction graphs cannot
be done abruptly, because the transition could violate the
constraints in the subsequent time steps. Therefore, we need
a switching policy.

A switch from the interaction graph GI with associated
constraints cj , j = 1, . . . , nc to the interaction graph G′I with
associated constraints c′j , j = 1, . . . , nc′ is admissible if for
all future time steps the optimization problem (10) subject
to the new constraints will admit a solution. The following
lemma gives us a sufficient condition for an admissible
switch:
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a)

b)

Fig. 1: Some spanning trees chosen for connectivity mainte-
nance might be restrictive in terms of network configuration.
a) a path graph, b) a star graph.

Lemma 3: Consider Algorithm 1 and assume g(t) is the
current applied command. A sufficient condition to guarantee
that the switch to a new set of constraints c′j(t), j =
1, . . . , nc′ is admissible from t + 1 onward is that g(t)
simultaneously satisfies the inequalities (7) defined with
respect to c′j(t) for all agents i ∈ V.

Proof: To prove the statement it is enough to note that
for all τ > t + 1, g(τ) = g(t) is an admissible solution as
still satisfies (7) with the new constraints for all agents.

Clearly, when a switch is admissible, in order to apply the
switch all agents must agree to change the constraint set to
the new one at time t+ 1.

C. Dynamic Interaction Graph based on EMST

In this subsection, we propose to use a dynamic interaction
graph defined by the Euclidian Minimum Spanning Tree
(EMST) of the network.

Assume the weights in the communication graph GC(t)
are relative Euclidean distances between agents. The EMST
GEMST = (V, EEMST ) is a spanning tree with minimum
total weight, i.e., ∑

(i,j)∈EEMST

wij ≤
∑

(i,j)∈EST

wij (13)

where wij is the weight of the edge (i, j), and EST is the
edge set of an arbitrary spanning tree GST .

Definition 2 (Connectivity set of an agent): Associated
with a connected spanning subgraph used for ensuring
connectivity of a proximity network G, the connectivity set
of an agent is a set of points that the agent can stay on
given the positions of its neighbors without removing the
edges of the subgraph.

In the case of spanning trees, for each agent i this set is
determined by the intersection of all the constraint sets given
by (11) for j ∈ Ni. Fig. 2 illustrates the EMST of a given
proximity graph, and it represents the connectivity sets of a
vertex imposed by the EMST and another spanning tree.

Lemma 4: Among all the connected spanning subgraphs
used for ensuring connectivity of a proximity network G,
GEMST provides the largest connectivity set on average for
every agents.

4

3

6

51

2

7

R

R

R

Fig. 2: The Euclidean minimum spanning tree (EMST) of
a given proximity network shown by the dashed blue line.
The connectivity sets of vertex 2 imposed by the EMST and
another spanning tree are depicted by the intersections of
circles with radius R, i.e., intersections of the red and blue
circles, and the green and red circles, respectively

Proof: Assume that a connected spanning subgraph GS
exists which provides the largest connectivity set on average
for every agent, and it is not the EMST. As GS imposes the
least conservative constraints for ensuring the connectivity,
it must have the minimum number of edges. Then, GS is
a spanning tree. In addition, since GS provides on average
the largest set for every agent, the average distance between
every two neighbors must be the shortest one, i.e.,

w̄(GS) ≤ w̄(GST ). (14)

Multiplying both sides by the number of edges in a spanning
tree, we have

(N − 1)w̄(GS) ≤ (N − 1)w̄(GST ).

Each side of (16) represents the total weight of the corre-
sponding graph, i.e.,∑

(i,j)∈ES

wij ≤
∑

(i,j)∈EST

wij . (15)

Hence, GS must be the EMST, and this is a contradiction.

Another advantage of using EMST is the existence of
efficient distributed algorithms that can obtain it. In this
work, we employ the Gallager, Humblet, and Spira (GHS)
algorithm [25] which is reported briefly in Algorithm 2.

Fig. 3 illustrates a proximity graph (communication graph)
with 50 agents and the EMST (interaction graph) with
(vertex) graph coloring of the EMST.

We update the EMST every τ time steps in order to make
the interaction graph adaptive. Hence, the switching times
will be at t = kτ, k ∈ N.

Proposition 1: Provided the switch from the interaction
graph at time t − 1, which is the EMST at time (k − 1)τ ,
to the EMST at time t = kτ is admissible for every agent
(in the sense of Lemma 3), then the network can update the
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Algorithm 2 Gallager, Humblet, and Spira

1. EXECUTE WakeUp
2. RESPOND TO (FIRST COME FIRST SERVED)

– Connect(L) ON EDGE e
– Initiate(L,F, S) ON EDGE e
– Test(L,F ) ON EDGE e
– Accept ON EDGE e
– Reject ON EDGE e
– Report(w) ON EDGE e
– ChangeRoot

interaction graph at time t, and the connectivity constraints
for every agent through the time interval

[
kτ, (k + 1)τ

)
is

‖pi(t)− pj(t)‖ ≤ R, ∀j ∈ Ni,EMST (kτ). (16)
Notice that if the switching to the new topology is not

admissible at time t = kτ , one solution is to postpone the
switch for another τ steps, and then recheck the admissibility.

Remark 1: Switching between spanning trees is devised
to enhance the performance of the overall system when the
connectivity control algorithm is integrated with a high-level
control algorithm (e.g., formation control). When the system
reaches an equilibrium (velocity mismatch of the network
becomes zero), one can switch from the EMST to any other
spanning tree available for the network if it further improves
the performance.

IV. SIMULATION RESULTS

To show the effectiveness of the proposed algorithm, we
present simulation results with a swarm of 20 agents. We
assume each agent has a double integrator dynamics and is
controlled with a PD

Φ=


1 0 Ts 0
0 1 0 Ts

−Tskp 0 1−Tskd 0
0 −Tskp 0 1−Tskd

 , G=


0 0
0 0

Tskp 0
0 Tskp

 (17)

where Ts = 0.1, kp = 12, and kd = 5, and the eigenvalues
of the controlled systems are 0.75± 0.24i and 0.75± 0.24i.
The parameters in (7) are δ = 0.1 and k0 = 10.

We assume that the local constraint is defined as[
−2
−2

]
≤ vi(t) ≤

[
2
2

]
. (18)

At time t = 0, the agents are distributed in a region
[2 m × 2 m]. The communication distance is R = 2 m,
and we assume that the communication graph is initially
connected.

The scenario is to deploy all agents on a circle with the
radius of 3 m and center at origin. Each agent is provided
with its final desired position on the circle. The swarm
should expand itself while the connectivity constraints and
the local constraints must be satisfied. Figure 4(a-e) illustrate
the configuration of the swarm at difference time steps. It
was observed that all the local constraints were satisfied.
The algebraic connectivity through the experiment is shown
in Fig. 4(f). The algebraic connectivity starts from 20 and

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3: A proximity graph with 50 agents and with neighbor-
hood distance 0.30 randomly generated in a [1 × 1] region.
The thin lines illustrates the edges in the proximity graph
while the tick lines illustrates the edges in the EMST. The
EMST is colored by two colors: green and red.

reaches 0.48 at the steady state. The minimum value of the
algebraic connectivity is 0.35 occurring at the time step 16
confirming that the communication graph was maintained
connected through the deployment.

V. CONCLUSION

In this paper, the problem of preserving connectivity
for dynamically decoupled agents with linear discrete-time
dynamics subject to local constraints was tackled, and a novel
distributed connectivity control algorithm making use of a
receding horizon scheme was proposed. The results showed
the effectiveness of the method. In the future, we intend
to study the convergence properties of the scheme and its
extension to the case of nonlinear agents.
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