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Abstract—The population-based ant colony optimization al-
gorithm (P-ACO) differs from other ACO algorithms because
of its implementation of the pheromone update. P-ACO keeps
track of a population of solutions, which serves as an archive
of solutions generated by the ants’ colony. Pheromone updates
in P-ACO are only done based on solutions that enter or
leave the solution archive. The population-based scheme reduces
considerably the computation time needed for the pheromone
update when compared to classical ACO algorithms such as Ant
System. In this work, we study the behavior of P-ACO when
solving the traveling salesman and the quadratic assignment
problem. In particular, we investigate the impact of a local search
on P-ACO parameters and performance. The results show that
P-ACO reaches competitive performance but that the parameter
settings and algorithm behavior are strongly problem-dependent.

I. INTRODUCTION

Ant Colony Optimization (ACO) [4], [6], [7] is a meta-
heuristic that is mainly used for tackling combinatorial op-
timization problems. In ACO, the ants search is stochasti-
cally biased by heuristic and pheromone information. The
way pheromone update is implemented differs across ACO
variants, and the choice of an appropriate pheromone update
mechanism is essential to obtain effective ACO algorithms.
Pheromone update usually involves pheromone evaporation,
which is implemented as the reduction of the pheromone trail
strength, and the deposit of pheromone by one or several ants.
A detailed description of pheromone update procedures of
ACO algorithms can be found in [7].

In the population-based ACO (P-ACO) algorithm [11],
the pheromone values change according to a population of
solutions. This population of solutions has the role of an
archive of solutions generated by the ants. Every time a new
solution enters the archive, a fixed amount of pheromone is
added to the entries of the pheromone matrix that correspond
to the solution’s components. The pheromone deposited by a
solution on its corresponding entries in the pheromone matrix
is removed when it leaves the solution archive.

The mechanism used to deposit and remove the pheromone
in P-ACO results in a faster pheromone update procedure than
in classic ACO algorithms such as Ant System or MAX–
MIN Ant System (MMAS). For example, when applied to

the traveling salesman problem (TSP) and to the quadratic
assignment problem (QAP) on an instance of size n, the
pheromone update in the P-ACO algorithm can be computed
in O(n), while for Ant System or MMAS it takes O(n2), if
no additional, often problem-specific speed-ups are used.

In this paper, we study in detail the behavior of P-ACO
when applied to the TSP and the QAP, extending earlier studies
that have been conducted by Guntsch [9] and a few other
authors [1], [2], [14], [15], [19]. In particular, we investigate
the algorithm behavior examining first different parameter
settings and their effect on the algorithm performance as a
function of the computation time used. We then study the
impact of different strategies for the population management.
These strategies decide which solutions enter the population or
which are forced to leave the population; different strategies
were proposed in [9]. In addition, we also study the effect
that local search has on the best choice of parameter settings
and of the population management strategy. We also improve
P-ACO with a pheromone matrix restart procedure. To put the
results by P-ACO in perspective, we compare it to MMAS, a
state-of-the-art ACO algorithm for the TSP and the QAP [16].

The paper is organized as follows. In Section II, we describe
the P-ACO pheromone update procedure. We present and
discuss the experimental setup and results in Section III. In
Section IV, we further compare P-ACO and MMAS. Finally,
we conclude in Section V.

II. POPULATION-BASED ACO

P-ACO introduces a solutions archive (also called popula-
tion) and changes the pheromone update rule [9]–[11] but it
keeps the same solution construction and objective function
evaluation mechanisms as used in most ACO algorithms [7].
The pheromone update of P-ACO operates on two data
structures: the pheromone matrix and the solution archive.
The algorithm starts with an empty solution archive, denoted
by P , and all the entries of the pheromone matrix have an
initial value τ0, which has the same effect as the minimum
pheromone trail limit in MMAS [16]. The maximum number
of solutions in the solution archive is K. At the end of each
iteration, the best solution found π is added to the solution
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archive and is used to update the entry τij of the pheromone
matrix as follows:

τij = τ0 + ∆

|P |∑
k=1

wk · Ikij , (1)

where wk is a weight,

∆ =
τmax − τ0

K
, (2)

τmax is a parameter and Ikij is an indicator function that is
equal to one if the solution component ij is present in the so-
lution generated by ant k and zero otherwise. The pheromone
matrix is updated incrementally. Each time a solution enters
P , the entries τij corresponding to solution components ij of
the solution are increased by ∆ · wk.

When the solution archive reaches |P |=K solutions, the next
solutions built may replace solutions in the archive depending
on the mechanism used to define how and when a solution
should enter or leave P . The mechanism used defines the
pheromone update strategy, which strongly influences the
algorithm performance. When this replacement happens, the
pheromones corresponding to the components of the solution
removed from P are decreased by ∆ · wk.

Several strategies were proposed to manipulate P-ACO’s
solutions archive. In this paper, we analyze three of the five
strategies proposed in [9]: the age-based strategy, the quality-
based strategy and the elitist-based strategy.

Age-based strategy. This strategy follows a FIFO (first in
first out) queue behavior. When the archive is full, the new
solution replaces the one that entered the archive longest ago.
Pheromone deposit is done on the components of all solutions
that enter the archive and the pheromone removal is done on
the components of the solutions that leave the archive.

Quality-based strategy. This strategy allows the iteration-
best solution π to enter the solution archive only if its solution
quality is better than the worst in P . Thus, if π is worse than
all solutions in P , the solution archive remains unchanged.
When P is full, the new solution replaces the worst of P at
that moment.

Elitist-based strategy. This strategy keeps track of the best
solutions found during a run. Each time a new best solution e
is found, the elitist update is applied. This means that, given
a weight we ∈ [0, 1], the best solution found so far receives
a weight we · τmax and the other solutions of the population
receive a weight ∆ · (1− we)/(K − 1).

III. EXPERIMENTS

To examine the behavior of P-ACO, several experiments
were performed with and without 3-opt local search on the
TSP instances and with and without 2-opt local search on the
QAP instances. The constant parameters used in P-ACO for
the TSP are the same as in [9]: m = 10 ants, β = 2 and
α = 1. For MMAS without local search, we set m = n/4,
where n is the instance size, β = 2, α = 1, ρ = 0.02 for small
size instances, ρ = 0.05 for medium size instances and ρ =

0.2 for large size instances. When local search is applied, the
following values are set in MMAS: m = 25 and ρ = 0.2.

The TSP instances used in these experiments were taken
from TSPLIB: eil101, d198, kroA200, rd400, d657, u724,
pcb1173, u1817, d2103, u2319 and are available at http://
comopt.ifi.uni-heidelberg.de/software/TSPLIB95/. We call the
first three instances small, the following three medium-size,
and the remaining ones large instances. All the results reported
in this paper for the TSP were obtained by an implementation
built on top of the ACOTSP software package available
at http://www.aco-metaheuristic.org/aco-code/. Hence, the P-
ACO algorithm tested in this paper shares the same data
structures and speed-up techniques as MMAS.

Unless stated otherwise, the parameter settings used by the
algorithms solving the QAP are the same as those used for the
TSP, which are considered as the default configuration for both
algorithms. The QAP instances used are kra30a, wil50, tai80b,
tai100b, taken from the QAPLIB (available at http://www.opt.
math.tu-graz.ac.at/qaplib/inst.html) and a large instance, es300
(available at http://iridia.ulb.ac.be/supp/IridiaSupp2010-009/).

Our experiments have been run on an Intel Xeon 2.4 Ghz
quad-core CPUs with 6 MB of cache and 8 GB of RAM
running under Cluster Rocks Linux. The algorithms studied are
coded in C and compiled with gcc version 4.1.2. For the TSP,
we stop the algorithms after 100, 1000, and 2000 CPU seconds
for small, medium and large instances, respectively. For the
QAP, we stop the algorithms using the time needed to run our
re-implementation of Taillard’s Robust Tabu Search [18] for
10000 · n iterations.

The rest of this section is divided into three subsections:
In Subsection III-A we use a profiler to study the impact of
the pheromone update on the computation time spent by P-
ACO, MMAS and Ant Colony System (ACS) [5]. (Parameter
settings of ACS follow the defaults proposed in the literature.)
In Subsection III-B we analyze P-ACO specific parameters,
and in Subsection III-C we propose an improvement of P-
ACO. For the results presented in Subsections III-B and III-C,
each algorithm and their variants were executed 20 times
on each instance. The qualitative analysis conducted with
the aid of solution quality over time (SQT) plots depict the
average performance of each algorithm. The plots we choose
to present in this paper are just a sample set to represent
our findings. Other plots can be found at http://iridia.ulb.ac.
be/supp/IridiaSupp2011-010/index.html.

A. Impact of the Pheromone Update on Computation Time

The pheromone update mechanism of P-ACO is typically
faster than that of other ACO algorithms. In order to measure
the percentage of the overall time spent by the pheromone
update procedure and the solution construction procedure, we
ran P-ACO and other ACO algorithms using a profiling tool.

Each algorithm was executed only once. P-ACO, MMAS
and ACS were executed for the TSP. The comparison with
ACS for the TSP is interesting because its pheromone update
procedure also takes only O(n) steps as P-ACO, but with a
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TABLE I
SUMMARY OF RESULTS WITH THE gprof PROFILER - PERCENTAGE OF COMPUTATION TIME USED FOR SOLUTION CONSTRUCTION (INCLUDING LOCAL

SEARCH IF EXECUTED), %cst, AND FOR PHEROMONE UPDATE, %ph. THE UPPER TABLE REPORTS RESULTS FOR THE TSP INSTANCES; THE LOWER
TABLE FOR THE QAP INSTANCES. TWO VARIANTS OF P-ACO, ACS, AND MMAS (WITHOUT LOCAL SEARCH, AND WITH LOCAL SEARCH,+ls) WERE

USED. NOTE THAT IN MOST CASES THE TOTAL COMPUTATION TIME DOES NOT SUM UP TO 100% DUE TO OTHER FUNCTIONS USED BY THE CODE.

P-ACO ACS MMAS P-ACO+ls ACS+ls MMAS+ls
Instance %cst %ph %cst %ph %cst %ph %cst %ph %cst %ph %cst %ph
d198 95.64 4.09 81.45 18.02 43.32 55.81 98.53 0.61 93.90 6.05 97.08 1.89
eil101 93.63 5.87 83.02 16.86 47.14 52.56 97.20 0.85 95.50 4.17 97.40 1.24
kroA200 94.77 4.86 77.77 22.02 42.70 56.98 97.91 0.85 95.43 4.26 97.44 1.47
rd400 94.06 5.06 79.67 20.09 28.71 70.03 98.41 0.60 94.17 5.62 95.76 3.09
pcb1173 94.53 5.02 77.49 22.34 11.11 88.21 97.41 1.57 93.15 6.08 95.75 3.86
u2319 92.45 4.96 76.22 23.64 9.04 88.47 96.01 3.09 89.76 8.17 90.93 6.36

P-ACO MMAS P-ACO+ls MMAS+ls
Instance %cst %ph %cst %ph %cst %ph %cst %ph
kra30a 99.70 0.30 90.46 9.09 99.99 0.01 99.46 0.54
wil50 99.61 0.38 90.08 9.92 99.99 0.01 99.73 0.27
tai80b 99.74 0.26 90.51 9.49 99.99 0.01 99.80 0.20
tai100b 99.76 0.24 90.52 9.46 99.99 0.01 99.83 0.16
es300 99.69 0.31 88.92 11.06 99.99 0.01 99.91 0.09

larger constant hidden in the O(n) notation. For the QAP, only
P-ACO and MMAS were considered.

The percentages of the computation time required for all
functions related either to pheromone update or to solution
construction (including local search if executed) were com-
puted and are presented in Table I for the TSP and the QAP. As
expected, P-ACO spends much less time updating pheromones
than MMAS. The amount of computation time saved by P-
ACO is particularly impressive when compared to MMAS on
the TSP without a local search. For large instances, up to
ca. 90% of MMAS’s computation time is spent for updating
pheromones. This is due to the fact that the evaporation affects
all O(n2) pheromone entries and that the solution construction
is of almost linear complexity due to the exploitation of
candidate lists. For P-ACO, the fraction of the computation
time used for updating pheromones is always small (around
5% in the discussed case). P-ACO’s pheromone update is also
much faster than ACS’s one.

Once local search is added, the relative importance of P-
ACO’s fast pheromone update is much reduced, due to two
reasons. First, because the local search takes a significant
amount of time; second, when used with local search, MMAS
does not update the full pheromone matrix, but only the part
corresponding to the candidate lists and is therefore much
faster. P-ACO’s advantage with respect to computation time
is nevertheless still clear in the TSP case, where tour length
computation is of linear complexity and the solution construc-
tion is of (almost) linear complexity. On the QAP, the situation
is different. Without local search, the speed advantage of P-
ACO with respect to MMAS is much reduced and with local
search, the percentage of time spent for pheromone update by
P-ACO and MMAS is almost negligible. This is due to the fact
that for the QAP the solution construction and the objective
function computation are of equal or higher complexity than
the phermone update. Consequently, the relative impact of the
pheromone update becomes less important.

In summary, the relative importance of the time spent
updating pheromones depends on two factors: (1) the use of
a local search, and (2) the complexity of the computation of

the objective function.

B. Analysis of P-ACO Specific Parameter Settings

The P-ACO age-based algorithm has three specific param-
eters: K, τmax, and τmin. To understand how they influence
the algorithm behavior, we tested the algorithm with different
values of K and τmax, while τmin is always set to 1/(n− 1),
which is also the initial pheromone value τ0. The values we
examine are the same as those proposed by Guntsch [9], that
is, K = 1, 5, and 25, and τmax = 1, 3, and 10. Some additional
values are studied in various places in the paper, in order to
refine the observations taken from the results achieved by the
parameter values studied in [9]. For this analysis, we consider
only the age-based strategy, which is the simplest among the
strategies to manage the solution archive. The impact of other
strategies on performance is studied later.

1) Analysis of K: The plots in Figure 1 (left column)
show that, for both problems without local search P-ACO
performs clearly the worst when K = 1. A similar behavior
was observed across all instance sizes for both problems.
This behavior can be explained by the fact that P-ACO
is an algorithm that focuses on exploitation, but a larger
solution archive counterbalances this by a better exploration
of the search space. P-ACO shows the opposite behavior when
solving the TSP if local search is applied. The best value of
K for solving the TSP now is one. This is probably due to
the fact that the search intensification of a local search around
one solution is important to guide the algorithm to high-quality
solutions. However, for the QAP, P-ACO performs better with
a larger value of K and apparently for the QAP a certain
diversity of solutions in the solution archive is needed. Note
that in Figure 1, τmax is 3 for the TSP. For the QAP it
is 3 when local search is applied but 100 when not. These
parameter settings are justified in the following.

2) Analysis of τmax: The ratio between τmax and τmin for
P-ACO is approximately a constant times n. Thus, the amount
of pheromone deposited in the pheromone matrix increases
linearly with the instance size, the maximum pheromone trail
being τmax. In Figure 2, we have an improvement of the final
solution quality on the TSP (without local search) when τmax
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Figure 1: Solution quality over time of MMAS and P-ACO using different values of K for the best setting of
τmax, without local search on instance d198 (for TSP, top-left plot) and on instance wil50 (QAP, bottom-left
plot), with local search on instance u1817 (TSP top-right plot) and on instance tai100b (QAP, bottom-right
plot).
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Fig. 1. Solution quality over time of MMAS and P-ACO using different values of K for the best setting of τmax, without local search on instance d198 for
the TSP and on instance wil50 for the QAP, with local search on instance u1817 for TSP, and on instance tai100b for QAP.

is equal to 3 or 10. The results show that generally τmax

= 3 is able to improve the algorithm’s solution quality for
the best values of K in comparison to τmax = 1 and that
no improvement can be seen in the final solution quality for
larger values of τmax, where we had tested also τmax = 50.
When local search is applied, no substantial differences can
be observed.

For the QAP, we have tested a wider range of τmax values:
1, 3, 10, 30 or 100. We found that increasing the value of
τmax considerably improves the performance of P-ACO and
that τmax = 100 appears to be the best value for QAP without
the use of local search. In case of P-ACO with local search,
the best value of τmax is much lower, with a setting of τmax

= 3 usually resulting in good performance. We also found that
the settings of τmax and K depend on each other. Without
local search, P-ACO always obtains good results when large

τmax is paired with large K, while with local search, small
τmax with large K always gives good results.

Overall, the ratio between τmax and τmin influences, to-
gether with the setting of K, how strong the search intensi-
fication is. Given the two factors we had mentioned in Sub-
section III-A about P-ACO speedup dependence, we can now
state that (1) the speed advantage of P-ACO is much reduced
when local search is applied and (2) P-ACO’s parameters need
to be adapted when applied to different problems and high
performance is desired.

C. Strategies for Updating the Solution Archive

Different strategies to manage the solution archive have
been proposed to improve the performance of P-ACO. In order
to compare their influence on the algorithm’s performance,
we have tested three strategies from those presented in [9].
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Figure 2: Solution quality over time of MMAS and P-ACO using different values of τmax for the best setting
of K, without local search on instance kroA200 (TSP, top-left plot) and on instance wil50 (QAP, bottom-left
plot), with local search on instance u1817 (TSP, top-right plot) and on instance tai100b (QAP, bottom-right
plot).
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Fig. 2. Solution quality over time of MMAS and P-ACO using different values of τmax for the best setting of K, without local search on instance kroA200
for TSP, and on instance wil50 for QAP, with local search on instance u1817 for TSP, and on instance tai100b for QAP.

All strategies tested here were explained in Section II. We
have used for each strategy the best values of K and τmax of
Subsections III-B1 and III-B2.

For the TSP, τmax is set to 3, and K is set to 25 when local
search is not applied and to 1 when it is applied. For the QAP,
τmax is set to 30 when local search is not applied, and to 3
when local search is applied. The value of K is always set
to 25. The values chosen for τmax and K are the ones that
provide the best tradeoff between the two values. To define
the best weight for the elitist-based strategy, we tested three
values (we = 0.25, 0.5 and 0.75) for both problems. These
weights are the same as those proposed in [9].

In Figure 3, we present the plot of the solution quality over
time of P-ACO with the best parameter settings among those
tested for each population update strategy. For the TSP, the
quality-based strategy shows the best performance. The elitist-

based strategy with the weight set to either 0.50 or 0.75 obtains
good results, too. P-ACO often performs better than MMAS
for short computation times, which is not necessarily the case
when we look for the final solution quality reached at the end
of the run. Indicative results for the QAP are shown in the
two plots at the bottom of Figure 3. Without local search, the
performance of the elitist-based strategy is similar to that of
MMAS, while the other two strategies are much worse. With
the use of local search, all three strategies reach high-quality
solutions, with the age-based strategy being the best, although
on most instances still performing worse than MMAS with
respect to the final solution quality reached.

Using other pheromone update strategies, we managed to
obtain improved results under specific experimental condi-
tions. Often, P-ACO shows a better performance than MMAS
after a short computation time, but does not necessarily
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Figure 3: Solution quality over time of MMAS and P-ACO considering all the strategies tested, without
local search on instance d198 (TSP, top-left plot) and on instance tai80b (QAP, bottom-left plot), with local
search on instance pcb1173 (TSP, top-right plot) and on instance es300 (QAP, bottom-right plot).
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Fig. 3. Solution quality over time of MMAS and P-ACO considering all the strategies tested, without local search on instance d198 for TSP and on instance
tai80b for QAP, with local search on instance pcb1173 for TSP, and on instance es300 for QAP.

improve on the final solution quality reached by it. A detailed
comparison with the results presented in [9] cannot be made
because of the lack of actual data.

D. P-ACO with Restart

P-ACO is an algorithm that presents a strong exploitation
capability and, hence, a fast convergence to high quality
solutions. On the other hand, its exploration during the search
may be insufficient. Following other ACO algorithms such
as MMAS, we implemented a restart procedure. The proce-
dure re-initializes the pheromone matrix values to τ0 after a
number r of iterations without improvement. We tested this
procedure over a range of values of r. For the TSP, we tested
the pheromone re-initialization after n, 25n, 50n and 100n
iterations when local search was not applied and after 100,
250, 500 and 1000 iterations when it was applied. For the

QAP, we examined values of r ∈ {n, 25n, 50n, 100n} without
local search, and of r ∈ {10, 25, 50, 100} with local search.

Plots in Figure 4 show the results achieved when solving
the TSP, using r = 50n when local search is not applied and
r = 500 when local search is applied. For the QAP, r is set to
100n if no local search is applied, and r = 10 if local search is
applied. We chose these values as they were the ones for which
the algorithm showed the best overall results. In Figure 4, an
improvement in the performance of P-ACO can be seen when
we compare the final solution quality achieved by the same
algorithm with and without the restart procedure, especially
when local search is applied. In summary, by adding occa-
sional restarts, the algorithm exploitation capability remains
but P-ACO’s final solution quality improves.
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Figure 4: Solution quality over time of MMAS and P-ACO considering the quality strategy with the restart
procedure, without local search on instance d198 (TSP, top-left plot) and on instance wil50 (QAP, bottom-left
plot), with local search on instance pcb1173 (TSP, top-right plot) and on instance tai100b (QAP, bottom-right
plot).
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Fig. 4. Solution quality over time of MMAS and P-ACO considering the quality strategy with the restart procedure, without local search on instance d198
for TSP, and on instance wil50 for QAP, with local search on instance pcb1173 for TSP, and on instance tai100b for QAP.

IV. DETAILED COMPARISON TO MMAS
In this section, we compare the performance of P-ACO and

MMAS with and without local search when applied to the TSP
and the QAP reporting for both the percentage deviations from
the optimal or best-known solutions reached at the termination
of an algorithm’s run. To test for the statistical significance of
the differences, we use the pairwise Wilcoxon signed rank test
at a significance level of 0.05. To avoid issues from potential
over-tuning, we use in this section other instances than before.
For the TSP, all new instances are taken from TSPLIB. For
the QAP, the following instances are used: sko42, sko72,
tai100a, and wil100 from QAPLIB; bl100, ci100, bl144, and
ci144 from the microarray instance set [3], and dre132 and
tai175e from Drezner et al. [8]. The P-ACO and MMAS
algorithm configurations remain the same as we presented in
Section III-D.

The results presented in Table II show that for the TSP with-
out local search, P-ACO performs better than MMAS except
on instance kroA100. Differently, the performance of MMAS
and P-ACO with local search are similar when applied to
large instances. When solving the QAP, P-ACO without local
search always obtains better results than MMAS, except on
tai175e. In 9 out of 10 instances, the differences are significant.
With the use of local search, in most cases, MMAS performs
slightly better than P-ACO, except on instance dre132, where
the difference is rather large. In 8 out of 10 instances, the
differences are significant. Overall, these results indicate that
P-ACO with restart appears to be competitive with MMAS.

V. CONCLUSIONS

In this article, we have discussed and analyzed the P-ACO
algorithm for the TSP and the QAP. Extensive experiments
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TABLE II
GIVEN IS THE AVERAGE PERCENTAGE DEVIATION FROM THE KNOWN-OPTIMAL OR THE BEST KNOWN SOLUTIONS (INDICATED BY “BEST”) OBTAINED

BY P-ACO AND MMAS ACROSS 30 TRIALS. INSTANCES WITH NO PUBLICLY AVAILABLE BEST KNOWN SOLUTION (DRE132 AND TAI175E) ARE
COMPARED BASED ON THE BEST SOLUTION FOUND IN OUR EXPERIMENTS. THE LEFT TABLE GIVES THE RESULTS FOR THE TSP INSTANCES AND THE

RIGHT TABLE THE RESULTS FOR THE QAP INSTANCES. ENTRIES IN BOLD INDICATE STATISTICALLY SIGNIFICANT DIFFERENCES.

Inst. best P-ACO MMAS P-ACO+ls MMAS+ls
kroA100 21282 0.00 0.01 - -
kroA150 26524 0.52 0.97 - -
rat195 2323 0.52 0.59 - -
pcb442 50778 0.92 2.05 - -
d493 35002 1.92 2.40 - -
rl1889 316536 - - 0.15 0.26
u2152 64253 - - 0.18 0.13
pr2392 378032 - - 0.16 0.13
pcb3038 137694 - - 0.24 0.25
fnl4461 182566 - - 0.33 0.36

Inst. best P-ACO MMAS P-ACO+ls MMAS+ls
sko42 15812 1.71 2.44 0.00 0.00
sko72 66256 1.55 1.88 0.09 0.02
tai100a 21125314 2.94 3.04 2.04 0.99
wil100 273038 0.68 0.91 0.02 0.02
bl100 9272 5.96 6.20 4.62 2.11
ci100 523146366 2.36 2.92 0.48 0.27
dre132 4380 30.44 32.03 24.56 8.41
bl144 13472 7.11 7.56 5.51 2.35
ci144 795009899 3.01 3.79 0.89 0.53
tai175e 57540 73.97 66.75 3.67 1.49

were conducted to investigate the behavior of P-ACO when
different parameter settings and pheromone update strategies
are used. A significant part of the comparison between P-
ACO and MMAS revealed that for the TSP the pheromone
update of the former is much faster than that of the latter.
For the QAP, on the other hand, the speed improvement by
P-ACO is negligible, since much of the computation time is
utilized for the solution construction and the computation of
the objective function, which is much more expensive than for
the TSP. We have considered strategies for updating P-ACO’s
solution archive and found that the quality-based strategy is
the best option for solving the TSP, while for the QAP the
best strategy depends on whether local search is used or not.
Without local search, the quality-based strategy appears to be
preferable, while with local search, the age-based strategy is
better. We also showed that the usage or not of local search has
strong impact on parameter settings for P-ACO applied to the
TSP. For example, for the case with local search, a population
size of one is clearly the best for P-ACO.

Extensive analysis of the development of solution quality
over time shows that in many cases P-ACO outperforms
MMAS with standard parameter settings for short computation
times. However, the situation would possibly be different if
MMAS parameter settings were fine-tuned to improve its any-
time behavior [13], [17]. When compared to MMAS, P-ACO
shows an early stagnation behavior. We have shown that a
restart mechanism may significantly improve its performance.
Our results allow us to conclude that, with the restart procedure
and the right configuration, P-ACO is competitive with state-
of-the-art ACO algorithms. However, P-ACO’s sensitivity to
parameter settings suggests that, as often the case also for other
algorithms, the usage of an automatic configuration through
tools such as irace [12] is strongly advisable.
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[7] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press,
Cambridge, MA, 2004.
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