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everal advanced robotics applications, such as rescue

and planetary or underwater exploration, must cope

with very unstructured and partially unknown envi-

ronments. Robots operating in such environments

should display a high degree of mobility, versatility,
and robustness to very different and time-varying operating
conditions in order to successfully perform tasks such as dis-
placement, exploration, or object transportation.

Swarm robotics, which can be considered an instance of
the more general fields of swarm intelligence [1]—[3] and
collective robotics [4], addresses mobility, versatility, and
robustness in a novel way, combining different aspects such
as distributed control, self-assembling mechanisms, and col-
lective behavior. This novel research field addresses the
design and implementation of robotic systems composed of
swarms of robots that interact and cooperate to reach their
goals. In a swarm robotics system, although each single
robot of the swarm is a fully autonomous robot, the swarm
as a whole can solve problems that single robots cannot deal
with because of limited capabilities or physical constraints.
Swarm robotics researchers use the social insect metaphor as
their main source of inspiration and emphasize concepts
such as control decentralization, limited communication
bandwidth, coordination via local information, emergence
of global behavior, and robustness.

This article describes the development of the concept and
briefly overviews the outcomes of the SWARM-BOTS pro-
ject, including the mechanical and electronic features of the
developed robots. It also presents a physics-based simulator
suitable to investigate time-consuming adaptive algorithms and
shows examples of cooperative behaviors, both in simulation
and in hardware. The project was sponsored by the Informa-
tion Society Technologies-Future and Emerging Technologies
Programme (IST-FET) of the European Commission.
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A swarm-
bot is defined as
an artifact com-
posed of a swarm of
several mobile robots
(called s-bots) that can oper-
ate both autonomously and as a
group. In addition to standard sensors, motors, and limited
computational capabilities, what best characterizes s-bots is
that they are equipped with grippers that can be used to cre-
ate physical links with other s-bots to assemble into a swarm-
bot able to tackle challenges that are too difficult for a single
s-bot. In swarm-bot formation, s-bots are attached to each
other and the robotic system becomes a single whole that can
move and reconfigure as needed. For example, the swarm-bot
might change its shape in order to traverse a narrow passage
or climb an obstacle. Physical connections between s-bots
play a particularly important role in the solution of many col-
lective tasks. For example, in a navigation task, physical links
can serve as support if the swarm-bot has to pass over a hole
larger than a single s-bot or when it has to pass through nar-
row passages in complex situations, as illustrated in Figure 1.
S-bots could also exploit physical links to form pulling chains
in an object retrieval scenario. However, there might be situa-
tions where a swarm of unconnected s-bots is more efficient;
for example, when searching for a goal location or when trac-
ing an optimal path to a goal.

Flexibility and modularity are features that have already
been explored in robotics under the label of self-reconfigurable
robotics. Pioneering examples of self-reconfigurable robots are
MTRAN [5] and PolyBot [6]. An overview of existing
systems and characteristics can be found in the works of
Kamimura et al. [5] and Yim et al. [7]. MTRAN and Poly-
Bot use a large number of simple modules, have been physically
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Robots operating in environments
such as rescue and planetary or
underwater exploration should
display a high degree of mobility,
versatility, and robustness.

implemented, and can self-reconfigure. Despite their very
good hardware flexibility, both MTRAN and PolyBot have
been designed with a centralized control perspective, which
features less robustness to failures when compared to a decen-
tralized approach. The latest articles on these two research
projects show that MTRAN is staying with the centralized
control approach [8] while PolyBot is incorporating a new
decentralized approach known as Phase Automata [9].

The first three-dimensional (3-D) self-reconfigurable robot
with decentralized control has been the CONRO system
[10], which operates on decentralized control systems [11],
[12]. These controllers allow the robotic hardware modules to
change their relative positions while the system is running.
During this dynamic change, each involved module
autonomously readapts its behavioral role in the system.

One of the most recent developments in the field of self-
reconfigurable robotics is the ATRON module of the
HYDRA project [13]. This module is very simple, with one
degree of freedom, but displays high-precision mechanics and
is manufactured in hundreds of units.

Although self-reconfigurable robots display an impressive
flexibility, they are all based on modules without individual
mobility and autonomy with respect to the environment.
Therefore, they are not capable of autonomously self-
assembling, which is a main feature of swarm-bots.

From Theory to Practice
When we started the project at the end of 2001, we knew that
we were going to bring into robotics the self-assembling and
self-reconfiguration abilities displayed by colonies of ants
when they transport objects, build a nest, or make living
bridges to cross large gaps. The first challenge in designing the
s-bots was the choice of connection types and their properties
(flexible, rigid) and number of degrees of freedom (DOF).
Another important issue was the mobility of the swarm-bot
with respect to individual s-bots. Should the swarm-bot move
by acting on the s-bot connections (rotate like a track or a ball
made of s-bots) or by relying on the mobility of each individ-
ual s-bot (wheels, legs, and tracks)?

At first, we considered a cylindrical

mobile robot capable of connecting to
other robots by two rigid connections
[Figure 2(a) and (b)]. This solution
seemed interesting because of the
potential 3-D configurations of the
swarm-bot and of the possibility of
self-reconfiguration of a single s-bot
without disconnecting from the
swarm-bot (a functionality that has
been exploited also by Kamimura et al.
[5]). The first full-size wood model
showed that the resulting structure was
hyperstatic and would have required
precise control and strong coordinated
planning of the actions of each s-bot.
This was not in line with the spirit of
the project, which aimed at developing
decentralized and loosely coupled
robotic systems where simple compu-
tational abilities would give rise to
complex behaviors.

In a second stage, we compensated
for those shortcomings by giving
higher movement autonomy to indi-
vidual s-bots and providing them with
two types of connections [Figure 2(c)
and (d)]. Better mobility was achieved
by introducing bigger tracks. For con-

nections, s-bots were equipped with a

Figure 1. Swarm-bots in situations of extreme all-terrain navigation where chain for-
mation is exploited for (a) passing a gap and (b) going through a narrow passage.
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strong gripper capable of grasping
another s-bot anywhere around its
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(b) (d)

(f)

Figure 2. The evolution of the swarm-bot hardware design: (a)-(b) results of the first brainstorming, (c)—(d) introduction of flexi-
ble links and better mobility, and (e)—(f) the choice of gripper-based connections and design finalization.

body and lifting it. They also had two flexible arms with a
Velcro surface at their ends to provide loose but easy
connectivity to other s-bots. In addition, the upper part of
the s-bot (including the connections) could rotate with
respect to the motor base in order to allow local adjust-
ments in swarm-bot configuration. This design was getting
closer to the original aim and also captured the functional-
ity of mandibles and legs used by ants to lift heavy objects
and establish connections to other ants, respectively. How-
ever, prototypes of Velcro-equipped arms showed that the
connection could easily break up if two s-bots rotated in
certain directions.
Eventually, we decided to replace the

Mechatronic Implementation
The mechanical structure [Figure 3(b)] is based on the
detailed design shown in Figure 3(a), with the main parts
made of plastic and molded in our workshop. This manufac-
turing process allows fast reproduction of parts without extra
machining in order to build 35 s-bots. Plastic parts also allow
the construction of relatively light robots (660 g) that can be
lifted by other robots. An s-bot is made of approximately
100 main parts.

The electronic brain and sensors of the s-bot have been
designed to allow communication among robots,
autonomous self-assembling, coordinated navigation of the

two arms with a single flexible arm
equipped with a small, toothed gripper
[Figure 2(e) and (f)]. This flexible arm
could be used to establish connection
with another s-bot as well as grasp
objects on the floor. Another improve-
ment has been made at the level of the
motor base by combining tracks with
wheels (treels) to provide swift rotation
and navigation on rough terrains. This
final design includes 9 DOF: two for the
treels, one for the rotation of the body
with respect to the treels, two for the

strong gripper (elevation and aperture),
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three for the flexible arm, and one for
the gripper mounted on it.
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Figure 3. The (a) detailed design and (b) final implementation of an s-bot. The
diameter of the robot is 120 mm.
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Figure 4. Schematic structure of the s-bot electronics. Fourteen processors distributed all around the robot body manage all the

sensor and actuator devices.

s-bots in swarm-bot configuration, and monitoring of the
entire system for data analysis on an external computer. To
ensure all these functionalities, the s-bot has been
equipped with 50 sensors, including position and torque
sensors on most DOE lateral and ground proximity sen-
sors, inclinometers, humidity sensors for humidity gradi-
ent detection, light sensors, object sensors within the
gripper, a panoramic camera, and microphones. In addi-
tion to actuators for the 9 DOF the robot is equipped
with a transparent ring of color light-emitting diodes
(LEDs) around its body and loudspeakers. The color ring,
which also serves as connection area, can be used by s-bots

to express their state and guide the approaching and grasp-
ing of other s-bots. The loudspeakers can be used to call
other robots or emit alert signals.
Fourteen processors within the s-bot ensure the control of
all these devices, as illustrated in the diagram of Figure 4.
Most of them (13) are small PIC processors acting as slaves
for local management of sensors or actuators. The fourteenth
processor, an Intel XScale processor running LINUX at 400
MHz, plays the role of the master, controlling the whole
robot. This processor has direct control on sound devices and
cameras. It can also communicate with an external PC by
means of a wireless ethernet connection. A set of recharge-
able batteries within the motor base

Modularity
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provides autonomy for approximately
three hours in normal activity (this
duration is decreased if the robot lifts
other robots several times).

Simulation

Swarmbot3D is the simulation plat-
form developed during the swarm-bots
project to support the evaluation of dif-
ferent hardware components, to help
the design and the validation of distrib-
uted swarm control policies, and to
reproduce kinematics and dynamic
robot 3-D behaviors on terrains with
different levels of roughness. Since no
commercial or research prototype sim-
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ulation tools were able to provide all

Complexity

these features together, we decided to

implement Swarmbot3D starting from

Figure 5. The simulation of the s-bot hardware is structured into various modules, each
of them modeled at several levels of complexity. These features allow a very flexible sim-
ulation, adjusting in an optimal way the simulation complexity to the experiments.
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Vortex, an engine that allows the simu-
lation of rigid objects and their dynam-
ics in a 3-D space.
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Swarmbot3D implements a modular description of the Self.reconfigurable robots are

s-bot, based on basic modules such as the treels system

module, the rotating turret module, the front-arm gripper not Capable of autonomOUSIy

module, and the flexible side-arm gripper module. Each
module has been implemented in different models, each

self-assembling, which is a main

model having a different level of detail, as described in feature of swarm-bots.
Figure 5. This allows the user to build the simulated robot

according to the experimental constraints, for example, by
focusing on a few details for high simulation speed in case
of time-consuming experiments or by using the full

description to carry out experiments
requiring detailed models. Four differ-
ent reference models—fast, simple,
medium, and detailed (see Figure 6)
have been implemented in which the
detailed model replicates exactly the
geometrical blueprints of the real
hardware as well as masses, center of
masses, torques, acceleration, and
speeds. The other models have been
designed combining basic modules
with decreasing level of details and
increasing simulation speed.

Many tests have been carried out to
validate the simulation in case of
swarm-bot behavior in complex envi-
ronments. Porting a simulated experi-
ment to the real robot is quite easy
since simulated and physical systems
use the same control primitives. Both
the detailed model and the real s-bot
were able to carry out a successful tra-

versal up to a maximum gap of about
45 mm, to climb slopes up to about
60°, and to overcome steps up to 23
mm. Experiments with simulated and
physical robots have shown that two
connected s-bots are able to overcome
gaps and to pass steps that are larger
and higher than the capability of a sin-
gle s-bot (see Figures 7 and 8).

These collective capabilities are cur-
rently investigated in experiments in
which the goal is to move heavy
objects in complex environments with
terrains of different levels of roughness.
In these experiments, we face two dif-
ferent requirements. In the case of flat
terrain, the user does not need a
detailed simulation of the interaction
with the ground and may therefore
adopt a simple and fast reference
model. In case of rough terrain, or in
the case of behaviors actively exploit-
ing physical connections, one may use
a more refined simulated robot.
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Figure 6. To simplify the exploitation of the simulator modularity, four reference
models have been predefined and made available to the user.

Figure 7. An example of a task that two s-bots can perform together but not in iso-
lation. Using the rigid connection between them, (a) one s-bot is helped to pass the
step, (b) as soon as the first s-bot has passed, it helps the second to pass the step
too, as shown in (c) and (d).
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Figure 8. The replication of the four phases illustrated in Figure 5 using 3-D physics-
based simulation.

Figure 9. Major results of the project: (a) the production of 35-s bots, (b) the
demonstration of passing a 14-cm step with a swarm-bot composed of five s-bots,
(c) s-bots self-assembling and transporting an object towards a goal in a self-orga-
nized manner, and (d) transporting a child in a structured manner.
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Swarmbot3D introduces the possibility
to dynamically change at run-time the
s-bot representation models. This
allows the user to use the simulation
with the simplest abstraction level as
the default and let it automatically
switch to a more refined model when
the environment or the interaction
among s-bots requires a more detailed
simulation. Dynamic model changing
allows Swarmbot3D to introduce
complexity only when needed, making
simulation faster. In addition, in the
case of experiments based on artificial
evolution [14], where a large number
of evaluations are required, it is possi-
ble to run fast evaluations using the
simple model and to reevaluate some
situations (or parts of them) by using a
more detailed s-bot.

Results

The project achieved very interesting
results concerning the implementation
and the validation of the mechatronic
concept of self-assembling systems, the
design of control algorithms, and the
exploration of the potential impact of
the approach.

A total of 35 s-bots were produced
[Figure 9(a)] in three batches of about
12 robots each. The first batch was
produced after four prototyping itera-
tions. Despite the sufficient quality of
the robots in this first batch, we
improved them in the second and third
batches, allowing better and more
complex experiments. Until now we
carried out experiments involving up
to 20 s-bots.

A swarm-bot in a chain configuration
displayed the ability to pass obstacles of
the same height of a single s-bot robot
[Figure 9(b)]; a video of this experiment
is available at: http://www.swarm-
bots.org/ram05.html. This type of oper-
ation has been carried out under
tele-operation and still has to be tested in
fully autonomous mode. It nevertheless
shows the potential flexibility of this type
of system in all-terrain conditions.

S-bots are capable of autonomous
self~assembly by combining vision for
long-range information, proximity
sensors for local adjustments, and sen-
sors in the gripper for secure grasping.
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Self-reconfigurable robots are not
capable of autonomously
self-assembling, which is a

main feature of swarm-bots.

The control strategies that allow a swarm of connected s-
bots to move in a coordinated fashion were evolved in
physics-based simulation and successfully used with the real
robots. Those strategies are sufficiently universal to gener-
alize to the different shape (chain, square, triangle) and size
of the swarm-bot. They are also useful for the coordinated
transportation of a heavy object toward a goal, exploiting a
combination of vision and lateral force sensors on the robot
body [Figure 9(c)]; a video of the combination of these
two behaviors is available at http://www.swarm-
bots.org/ram05.html.

All these capabilities were exploited in an experiment
where 20 s-bots self~assemble into four swarm-bots to pull
a child on the floor [Figure 9(d)]; a video of this experi-
ment is available at http://www.swarm-bots.org/ram05.
html. The experiment was carried out in semiautonomous
mode. The user specifies the number of swarm-bots, the
distribution of the s-bots in the swarm-bots, the global
localization of the child, and the global actions timing. The
s-bots perform in autonomous mode the precise localiza-
tion of the grasping location on the child, the approach,
and the self-assembling process.
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