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ABSTRACT
In this paper, we study a heterogeneous robot team com-
posed of self-assembling robots and aerial robots that coop-
erate with each other to carry out global tasks. We intro-
duce supervised morphogenesis – an approach in which aerial
robots exploit their better view of the environment to detect
tasks on the ground that require self-assembly, and perform
on-board simulations to determine the morphology most ad-
equate to carry out the task. In case existing morphologies
on the ground do not match those determined in simula-
tion, aerial robots use a series of enabling mechanisms to
initiate and control (hence supervise) the formation of mor-
phologies more adequate to carry out the task. Supervised
morphogenesis solely employs LEDs and camera-based local
communication between the two robot types. We validate
the applicability of our approach in a real-world scenario, in
which ground-based robots are given the task to cross an un-
known, undulated terrain by forming ad-hoc morphologies
under the supervision of an aerial robot.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Experimentation

Keywords
Robot teams, multi-robot systems, air/ground systems, self-
assembling robots, swarm robotics

1. INTRODUCTION
Self-assembling robotic systems have been the topic of

many studies (refer to [1] for an overview). In such systems,
autonomous robots form new or re-arrange existing physical
connections to each other to form distinctive collective robot
structures (hereafter called morphologies). This morpholog-
ical flexibility gives self-assembling robots the potential to
adapt to changing environmental conditions. For instance,
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Figure 1: A potential deployment of the heterogeneous robot
team considered in this study. Maneuvers in such undulated
terrain may require the self-assembling robots to rely on en-
vironmental perception from an aerial perspective to deter-
mine the shape and the size of the morphologies (a chain
morphology of size three is shown in the inset) that may
allow the robots to navigate through the environment.

navigating through an uneven terrain may require a mor-
phology different from the one required for pushing an ob-
ject. However, existing systems are often not able to adap-
tively form new morphologies as a function of the task or
the environment. This is primarily because individual com-
ponents in existing systems consist of rather simple ground-
based robots that are adversely affected by obstructed sen-
sor views. Additionally, self-assembling robots often do not
have the sensory apparatus required to determine the mor-
phological constraints imposed by their environments.

Although many algorithms have been proposed to con-
trol morphology formation in self-assembling robots [2–6],
little attention has been devoted to the subsequent prac-
tical applicability of self-assembled morphologies. In fact,
only very few works have considered real-world tasks that re-
quire robots to form task-dependent morphologies of precise
shapes and sizes (hereafter called target morphologies) [7,8].
Due to sensory limitations, however, the robots in these
works are not able to detect the tasks allocated to them.
Therefore, the target morphologies were either predefined [7]
or controlled through additional environmental cues [8]. In [9],
self-assembling robots are able to detect and solve a series
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of tasks. However, the considered tasks did not require a
precise morphology shape or size to be solved successfully.

Many researchers have proposed to overcome the sensory
limitations of ground-based robots by using heterogeneous
systems composed of both ground-based and aerial robots
[10–15]. These systems exploit the complementary capabil-
ities of the two robot types. In fact, while aerial robots can
offer unobstructed field of view and rapid coverage of large
areas, ground-based robots can offer high accuracy sensing
at relatively short distances and can manipulate the envi-
ronment. In [10, 11], researchers have proposed GPS-based
solutions to study localization and navigation problems in
robot teams composed of aerial and ground-based robots.
The robots in [12] complement each others observations by
fusing sensory data to provide scalable solutions to tasks
involving searching and tracking of ground targets. Other
studies include cooperative surveillance [13, 14] and motion
control of ground-based robots through an aerial robot [15].
Despite the variety of tasks and applications considered in
existing air and ground-based robotic systems, no research
has been carried out, to the best of our knowledge, to study
how aerial robots may assist ground-based self-assembling
robots in their morphogenetic processes.

In this paper, we enhance the sensing capabilities of a
ground-based self-assembling robotic system by integrating
aerial robots into the system (Fig. 1 shows a possible de-
ployment scenario for such a heterogeneous team of robots).
We propose supervised morphogenesis – an approach that
enables aerial robots i) to detect tasks on the ground that
require ground-based robots to self-assemble, and ii) if neces-
sary, to initiate and control (i.e., supervise) the formation of
appropriate morphologies. That is, ground-based robots del-
egate the decision-making concerning if and what morpholo-
gies to form to the aerial robots. The aerial robots exploit
their elevated position and their richer sensory equipment to
determine exact characteristics of tasks. Subsequently, they
use on-board simulations to determine an appropriate target
morphology. In particular, the aerial robots build a model of
the perceived environment and then simulate the behavior
of different morphologies within this environment. In this
manner, aerial robots can assess how different morphologies
perform when executing a task without requiring any phys-
ical realization of morphologies on the ground. Depending
on the outcome of the simulations, aerial robots then deter-
mine the most appropriate target morphology and supervise
its formation. Such a system has the ability to adapt to
completely unknown environments and thus to significantly
increase its level of autonomy.

We present the results of a first implementation of super-
vised morphogenesis. We report on experiments conducted
to evaluate our approach in a real-world hill-climbing task.
In this task, a group of ground-based robots and an aerial
robot are required to reach a light source by navigating over
a hill of unknown steepness. In our approach, the aerial
robot calculates a height map using stereo images to build an
internal representation of the perceived environment. They
then execute on-board simulations to estimate the steepness
each ground-based robot may experience when navigating to
the light source. In case the simulations predict a ground-
based robot to topple over, because of a too steep slope,
the aerial robot positions itself over the hill to supervise the
formation of target morphologies that guarantee safe cross-
ing of the hill. In this initial implementation of supervised

Figure 2: The two robot types considered in this study. The
foot-bot is shown on the left while the eye-bot is on the right.
1) The upward-pointing camera, 2) the ARM11TMprocessor,
3) the docking unit, 4) the docking ring with integrated
LEDs, 5) the ceiling attachment device, 6) the downward-
facing LED ring, and 7) the downward-pointing camera.

morphogenesis, we restrict target morphology to chain mor-
phologies1 composed of either two or three ground-based
robots.

2. HARDWARE PLATFORM
In our experiments, we use a set of self-assembling robots

called foot-bots and a flying robot called eye-bot (see Fig. 2).
Both robot types were developed as part of the SWAR-
MANOID project [16].

A foot-bot is a mobile robot with a circular chassis of
17 cm diameter. A combination of tracks and wheels pro-
vides the foot-bots with differential drive motion capabili-
ties. The docking module provides self-assembling capabil-
ities with other foot-bots. This module is composed of a
docking unit with three fingers, a docking ring, and an in-
tegrated force sensor that can register the forces applied to
the unit. A foot-bot can physically attach to another foot-
bot by inserting the docking unit into its docking ring and
then opening the three fingers. A foot-bot is also equipped
with 12 RGB LEDs distributed around its docking ring. The
LEDs allow a foot-bot to visually display its internal state
to nearby robots. Other features include a 2D distance scan-
ner, 24 IR proximity and light sensors, one upward-pointing
and one omnidirectional 2 mega pixel HD camera supporting
high quality vision in both vertical and horizontal planes. A
custom-made on-board device named mxRAB can be used
to exchange messages (10 bytes) and to estimate the relative
range and bearing (up to a distance of 5 m) between adja-
cent foot-bots. This device combines radio frequency and
infrared and is based on the work presented in [17].

An eye-bot is 54 cm high and has a diameter of 50 cm.
Eight rotors, mounted in a co-axial quadrotor configuration,
provide the eye-bot with thrust and control. The eye-bot

1
A linear structure in which each robot besides the first one is con-

nected to the rear of the preceding robot.
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Figure 3: The experimental setup: 5 foot-bots, an eye-bot
attached to the ceiling, a light source, and a mock-up hill.

has an on-board battery that allows 10-20 minutes of au-
tonomous flight. It is also equipped with a ceiling attach-
ment device that can be used in indoor environments to
extend mission endurance. A downward-pointing 2 mega
pixel HD 360 ◦ pan-and-tilt camera allows the eye-bot to
survey the ground and to detect the foot-bots. The down-
ward facing RGB LED ring with 16 RGB LEDs can be used
to communicate internal state information to the foot-bots.
Other features include a light weight body (270 g) made
out of carbon-fiber, a 3D relative positioning sensor (with a
maximum range of 12 m), an altitude sensor, and a magne-
tometer to detect heading direction.

Foot-bots and eye-bots are equipped with an on-board
ARM11TMprocessor (i.MX31 operating at 533 MHz with
128 MB RAM) running a Linux-based operating system that
is interfaced with all on-board sensors and actuators.

3. TASK AND EXPERIMENTAL SETUP
A group consisting of 5 foot-bots and one eye-bot is given

the task to navigate from a deployment area to a light source
by crossing a hill of a priori unknown steepness (see Fig. 3).
The inclination of the hill can vary between 0 ◦ (i.e., no in-
clination) and 30 ◦. Individual foot-bots are only able to
withstand a maximum inclination of 25 ◦ without toppling
over. If for a hill the maximum inclination is less than 25 ◦,
individual foot-bots can cross without requiring further as-
sistance. If, on the other hand, the maximum inclination
is higher than 25 ◦, the foot-bots have to self-assemble into
chain morphologies that offer sufficient stability when pass-
ing over the hill. The number of chain morphologies that
have to be formed and their individual sizes depend on the
total number of foot-bots allocated to the task and are not
known to any of the robots. In our experiments, the eye-bot
is assumed to have flown in advance and attached to the ceil-
ing2 at a height of 2.96 m immediately before the hill. The
task is considered accomplished if all 5 foot-bots manage to
reach the light source.

2
As it is irrelevant to the work presented in this paper and because

it goes beyond the scope of this work, we do not discuss flight control
algorithms that may result in this behavior of the eye-bot.

4. METHODOLOGY
We describe the methodology employed to solve the task

considered in this work. First, the eye-bot uses its downward-
pointing camera from an elevated position to build an inter-
nal representation of the environment. In particular, two
sequentially taken images from two distinct positions in the
environment are used to compute a height map of the envi-
ronment in the field of view (details are given in Sect. 4.1).
Second, this height map is used to calculate height pro-
files along each foot-bot’s estimated trajectory to the light
source. Subsequently, on-board simulations are performed
to estimate whether each foot-bot is able to drive over the
computed height profile of its estimated trajectory without
toppling over (see Sect. 4.2). In case the simulation predicts
that a foot-bot would topple over, the eye-bot supervises
the formation of target morphologies that offer the physical
stability required to cross the hill. To initiate morphology
formation, the eye-bot selects a favorably situated foot-bot.
The eye-bot then establishes a dedicated one-to-one commu-
nication link with the selected foot-bot (see Sect. 4.3). The
dedicated communication link is then used to initiate the
formation of a target morphology by activating the execu-
tion of a SWARMORPH-script [2]. SWARMORPH-script
is a language that permits arbitrary morphology generation
using self-assembling robots in a distributed manner. The
foot-bots are pre-loaded with two different SWARMORPH-
scripts that, when executed, can generate a chain morphol-
ogy composed of two or three foot-bots each.3 Physical
connections between a connection inviting foot-bot and a
neighboring foot-bot are formed using the recruitment and
guidance based mechanism presented in [18]. In Sect. 4.4,
we finally present robot controllers we have developed while
following a distributed control paradigm.

4.1 Internal representation of the environment
The eye-bot builds an internal representation of the ground

underneath by computing a height map. Most flying robots
are subject to payload limitations that reduce the possibil-
ities for dedicated, on-board sensing hardware (such as Mi-
crosoft’s Kinect) capable of computing height maps. In this
section, we describe how the eye-bot obtains the height map
using its comparatively lightweight monocular vision system.

The eye-bot takes two images (each from a different po-
sition) such that the closest foot-bot to the light source is
always in the field of view. Based on the two images, the eye-
bot computes the height of the surfaces and the objects in
the scene. The extraction of three-dimensional information
of a scene based on stereo images is a problem that has been
studied by the computer vision community for decades [19].

We make a series of assumptions when acquiring the im-
ages. First, we assume that the eye-bot is able to hover
above the ground at a fixed height using its altitude sensor
and that the image plane is parallel to the ground. Second,
the exact distance of the eye-bot to the ground and the dis-
tance between the two positions is assumed to be accessible
to the eye-bot through its 3D relative positioning sensor.
Third, we assume to know the focal length of the camera,
obtained through a prior calibration step [20].

Both images are taken at a resolution of 640x480 pixels
(see Fig. 4a and Fig. 4b). In order to compute a height map,

3
In our experiments, the eye-bot makes the simplifying assumption

that chain morphologies provide the physical stability required to
cross any detected hill.
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Figure 4: (a,b) Images acquired by the eye-bot at a distance of 30 cm from each other. (c) A grayscale representation of the
disparity map computed. (d) The trajectory estimations of five foot-bots to the light source. (e) The height profile of the
trajectory estimated for foot-bot #3. (f) A schematic of an on-board simulation run. The inclination computed at six different
positions is shown. The arrows depict the location of computed inclinations that are higher than 25 ◦. (g) The eye-bot detects
two GREEN and three BLUE signals. (h) A foot-bot detects the signal RED/GREEN sent by the eye-bot.
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Figure 5: A flowchart depicting the individual steps included
in the computation of the height map.

we first generate a so-called disparity map. For each point
in the first image, a disparity map contains the distance (in
pixel) by which the point has moved in the second image.
Points further away from the camera move less compared
to points closer to the camera. Based on the disparity of
a point, the knowledge about the distance of the eye-bot
to the ground, the displacement of the eye-bot between the
positions from which the two images have been acquired, and
the exact properties of the camera, the eye-bot can calculate
the height of the point in real-world distances.

Fig. 5 shows a flowchart containing the individual steps of
the process that leads to the computation of a height map.
The Undistortion step takes both images as input and com-
pensates for tangential and radial distortion introduced by
the lens and modeled by the coefficients found by the cal-
ibration step. The next three steps transform the images
so that the search for the correspondence of a point in the
first image can be limited to a horizontal scan in the sec-
ond image. This process is called rectification. First, the
Corner Detection step finds interesting feature points in the
first image as described in [21]. Then, in the Corner Track-
ing step, the iterative Lucas-Kanade method [22] is used to
track the interesting points in the second image. The out-
put of this step is a set of sparsely matched points. In the
Rectification step, this set of correspondences is used to find
the transformation matrix that vertically aligns the second
image to the first. The transformation matrix is used to rec-
tify the second image. To derive the disparity of each point
in the image we then apply the Dense matching step. The
algorithm used here is described in [23]. Figure 4c shows a
grayscale representation of the disparity map. Finally, the
last step applies stereo triangulation to each disparity value
to produce the height map. The computed height map is
a two-dimensional matrix of size 640x480. For each real-
world point visible in both images, the height map contains
its elevation from the ground in cm.

4.2 On-board simulation-based reasoning
Here we describe how the eye-bot uses the height map to

perform on-board simulations. Based on these simulations,
the eye-bot evaluates whether or not individual foot-bots are
able to continue their navigation towards the light source
without self-assembling.

The task considered in this work requires each foot-bot to
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execute a phototaxis behavior that guides the foot-bot di-
rectly to the light source. Therefore, as shown in Fig 4d, the
eye-bot estimates a foot-bot’s trajectory to the light source
to be a straight line. Note that while the position of a foot-
bot in the image returned by the camera is calculated using
the computer vision algorithms presented in Sect. 4.3, the
light source is assumed to be situated on the right edge of
the image. For each foot-bot, the eye-bot reads out the cell
values in the height map on a line (of 1 pixel width) that
connects the position of the foot-bot to the right edge of the
image horizontally. These values represent the height profile
of the foot-bot’s estimated trajectory to the light source. An
example of a height profile is plotted in Fig. 4e.

For each computed depth map, the eye-bot simulates a
virtual navigation of each foot-bot in the field of view to
the light source along its respective height profile. Each
foot-bot is placed at its current position on the height pro-
file and the inclination experienced by the foot-bot in this
position is calculated. In particular, the inclination of the
surface underneath the front and the rear end of the simu-
lated foot-bot’s chassis is calculated. Then, the foot-bot is
moved pixel-by-pixel, until the foot-bot’s chassis reaches the
light source, and the inclination is calculated each time the
foot-bot is moved (see Fig. 4f for a visualization). In case
a calculated inclination for a foot-bot is higher than 25 ◦,
the inclination a foot-bot can endure without toppling over,
the eye-bot halts performing simulations and requires the
foot-bots to self-assemble.

4.3 LEDs and camera-based communication
The robots considered in this work use their on-board

LEDs and cameras to communicate with each other. The
eye-bot uses its downward-pointing camera to perceive the
LEDs of the foot-bots (see Fig. 4g). A foot-bot, in turn,
uses its upward-pointing camera to perceive the LEDs of an
eye-bot (see Fig. 4h).

A foot-bot can transmit three distinctive signals to the
eye-bot by displaying either one of the three primary RGB
colors on its LED ring (i.e., RED, GREEN, or BLUE). The
eye-bot executes the following two steps to perceive the sig-
nal transmitted by each foot-bot and detect the total num-
ber of foot-bots in the field of view. First, the eye-bot carries
out a threshold-based RGB color detection on the images re-
turned by its downward-pointing camera. Second, for each
RGB color channel, a circle detection algorithm is run to
determine the number of foot-bots in the field of view. Each
detected circle is assumed to be a foot-bot with its unique
position (i.e., the center of the circle) in the environment.

In addition to the three signals used by the foot-bots, the
eye-bot uses the following two signals to communicate to the
foot-bots: RED/BLUE and RED/GREEN. These signals
are based on two primary RGB colors displayed simultane-
ously using alternating LEDs. A foot-bot processes the im-
age returned by its upward-pointing camera to detect RGB
color blobs. The signal transmitted by the eye-bot is then
determined by evaluating the total number of detected red,
green and blue blobs respectively. For instance, if only red
blobs are detected, the signal transmitted by the eye-bot is
detected as RED. If, on the other hand, both red and green
blobs are detected simultaneously the signal transmitted by
the eye-bot is detected as RED/GREEN (see Fig. 4h).

In self-assembling robotic systems, morphology formation
is usually initiated by a single robot. We use the mechanism

presented in [24] to let the eye-bot select a favorably located
foot-bot to initiate morphology formation by establishing a
dedicated communication link to the foot-bot. The eye-bot
uses the signals RED, GREEN, and BLUE in combination
with an iterative selection process to narrow down the num-
ber of potential recipients of a broadcast signal (i.e., a color
displayed on the LEDs) to a single foot-bot. In [24], this it-
erative selection process is shown to scale well with respect
to the number of participating foot-bots. The established
communication link with a particular foot-bot enables the
eye-bot to ensure that a subsequently transmitted signal (for
instance RED/GREEN or RED/BLUE) will only be pro-
cessed by the selected foot-bot even though other foot-bots
may also be able to receive the broadcasted signal.

4.4 Distributed robot control
We present two behavior-based controllers we have devel-

oped: one for the eye-bot and one for the foot-bots. Each
robot is autonomous and independently executes its respec-
tive controller on the on-board ARM11TMprocessor.

The behavior-based controller of the eye-bot is described
by the finite state machine shown in Fig. 6a. Initially, the
eye-bot executes a phototaxis behavior by flying ahead of
the foot-bots towards the direction of the light source. The
light source is detected using the downward-pointing pan-
and-tilt camera. Simultaneously, the eye-bot estimates the
distance traveled by using the 3D relative positioning sen-
sor in combination with at least one stationary robot (for
instance in the deployment area) that provides a static ref-
erence point. At fixed distance intervals, the eye-bot takes
images of the ground.4 Sequentially taken images are then
used to compute a height map of the surface in the field of
view. If subsequently performed on-board simulations do
not predict danger in the surveyed area (i.e., foot-bots can
act independently), the eye-bot continues heading towards
the light source by executing the phototaxis behavior. If,
on the other hand, simulations detect a surface too steep for
individual foot-bots, the eye-bot positions itself (by attach-
ing to the ceiling in indoor environments or otherwise by
hovering) above the hazardous area. The eye-bot sends the
signal RED to issue a warning to the foot-bots underneath.

From its elevated position, the eye-bot uses the signals
RED, GREEN, and BLUE to establish a one-to-one com-
munication link to a favorably located foot-bot that will ini-
tiate a target morphology formation. Each foot-bot that
acknowledges the warning using the BLUE signal is a selec-
tion candidate. Among these, the eye-bot selects the foot-
bot that is situated in the center (relative to the hill) and
that is closest to the light source. This allows target mor-
phologies to be formed away from the two edges of the hill
while allowing completed target morphologies to navigate
directly to the light source without colliding with individ-
ual foot-bots along the way. Depending on the total num-
ber of foot-bots that have acknowledged the issued warning,
the eye-bot uses the established communication link to form
a chain morphology of either size two or three. That is,
if three foot-bots have acknowledged, a chain morphology
of size three is formed by sending the signal RED/BLUE
to activate the execution of SWARMORPH-script 2 in the

4
We have empirically determined that images taken at a distance of

30 cm from each other and from a height of 2.42 m (measured from
the ground to the tip of the camera) yield the best results in our
experimental setting.
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(a)

(b)

Figure 6: Finite state machine respresentation of the control logic of (a) the eye-bot and (b) the foot-bots. Transitions shown
in dashed lines are not considered in this study, as they are only applicable if flight control algorithms are executed on the
eye-bot. The signals sent using the LEDs in each state are shown in parentheses.

foot-bots. In all other cases, a chain morphology of size two
is formed by sending the signal RED/GREEN to activate
the execution of SWARMORPH-script 1. As only one mor-
phology is formed at a time, counting the number of foot-
bots sending the RED signal allows the eye-bot to determine
when target morphologies are completed. The morphology
formation process is iterated until no foot-bots are detected
in the field of view. In this manner, by sequentially form-
ing chain morphologies composed of two or three robots, the
eye-bot guarantees the crossing of potentially any number of
foot-bots given there is more than one foot-bot deployed.

Figure 6b shows the individual states in the behavior-
based controller of the foot-bots. Each foot-bot executes
a phototaxis behavior to navigate to the light source. The
light source is detected using the on-board light sensors. Si-
multaneously, it uses the upward-pointing camera to detect
potential warnings (i.e., the RED signal) issued by the eye-
bot. Note that due to the wider field of view of the eye-bot,
it is not necessarily the case that a foot-bot in the field of
view of the eye-bot has in turn the eye-bot in its field of view.
The foot-bots closest to the light source are more probable
to detect signals sent by the eye-bot first, as the eye-bot first
enters their field of view. Therefore, the foot-bot that de-
tects a RED signal sent by the eye-bot broadcasts a message
through the mxRAB device to inform the other foot-bots.
All foot-bots become stationary and use the BLUE signal to
acknowledge the warning issued by the eye-bot.

Stationary foot-bots use the signals RED, GREEN, and
BLUE to establish a one-to-one communication link to the
eye-bot. Foot-bots that do not perceive the eye-bot in the
field of view or get excluded from the selection process seek
for a connection that has to be formed. A connection seek-
ing foot-bot does not move until it is invited by a connec-
tion inviting foot-bot. Once the commmunication link is es-
tablished, the selected foot-bot uses the signal subsequently
transmitted by the eye-bot (RED/GREEN or RED/BLUE)
to execute the appropriate SWARMORPH-script that leads
to the formation of the requested target morphology. The
selected foot-bot initiates the morphology formation process
by inviting a connection at its rear. Morphologies are com-
pleted when connection inviting foot-bots and connection
seeking foot-bots execute basic robot behaviors described in
a SWARMORPH-script. The underlying connection form-
ing mechanism used in this study allows a connection invit-

ing foot-bot to actively recruit an optimally situated con-
nection seeking foot-bot and guide the recruit to the loca-
tion where the connection is required. Note that the con-
nection inviting foot-bots and the foot-bots in the selection
process use the mxRAB device to send messages that in-
hibit nearby connection seeking foot-bots from leaving the
mophology formation area and driving towards the light.
Foot-bots in a completed morphology execute a connected
phototaxis behavior that allows the foot-bots to cross the
hill as a composite entity. The execution of controllers is
stopped on foot-bots that have successfully crossed the hill
and reached the light source.

5. EXPERIMENTS AND RESULTS
We performed a series of experiments to assess the perfor-

mance of the decision-making process (i.e., whether or not
to require self-assembly) carried out by the eye-bot. We also
validated our approach on real robots using the task and ex-
perimental setup described in Sect. 3. The properties of the
self-assembly mechanism (i.e., precision, speed and reliabil-
ity) used by the foot-bots in our approach have already been
studied and were presented in [18].

In our experiments, we consider a mock-up of a hill (with
a maximum inclination of 30 ◦) that cannot be crossed by in-
dividual foot-bots. Therefore, a successful task completion
requires the eye-bot to detect the hazardous situation. We
let the eye-bot take 10 different sets of images in which the
hill and the 5 foot-bots are always visible. Each set consists
of two images taken at 30 cm from each other. The images
in each set are used to compute a height map from which
a height profile is retrieved for the estimated trajectory of
each foot-bot in the field of view. Simulations are run on
the resulting 50 height profiles to determine the maximum
inclination on each trajectory. The mean of the computed
maximum inclination is 29.12 ◦ with a standard deviation of
4.1 ◦. This result indicates that, on average, the internal rep-
resentation of the environment closely correspond to reality.
Also, the low standard deviation indicates that the decision-
making process is often able to identify the encountered en-
vironment as hazardous to individual foot-bots. However,
the eye-bot may need to assume a more defensive threshold
angle (e.g., 20 ◦) an individial foot-bot can withstand in or-
der to entirely avoid faulty decisions that can cause foot-bots
to topple over.
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Figure 7: Snapshots of a supervised morphogenesis experiment in the hill-crossing task considered in this paper. For the
sake of better visibility, the background has been removed in all images. The letters represent the signals transmited by the
robots: R=RED, G=GREEN, B=BLUE, RG=RED/GREEN, and RB=RED/BLUE. (a) Deployment phase. Foot-bots drive
towards the light source. The eye-bot runs on-board simulations. (b) The eye-bot attracts the attention of foot-bots using
the RED signal: the foot-bots halt. (c) The eye-bot selects a foot-bot and activates the execution of SWARMORPH-script
1 (RED/GREEN signal). (d) A chain morphology composed of two foot-bots is formed. (e) The morphology moves towards
the light while the eye-bot selects a next foot-bot and (f) activates the execution of SWARMORPH-script 2 (RED/BLUE
signal). (g) A chain morphology composed of three foot-bots is formed. (h) The morphology executes connected phototaxis.

The decision-making process of the eye-bot is, if necessary,
followed by the supervised morphology formation process.
In our experiments, the stationary eye-bot is not able to
acquire the two images required to build the internal repre-
sentation of the environment. Hence, it uses a pre-calculated
height map that was computed using images taken prior to
running the experiment. Initially, all five foot-bots execute a
phototaxis behavior to navigate to the light source. The eye-
bot transmits the RED signal to attract the attention of the
foot-bots as soon as on-board simulations detect a slope too
steep for individual foot-bots to cross. Immediately before
reaching the slope, the closest foot-bots to the light source
detect the signal RED on the eye-bot and therefore become
stationary. These foot-bots inform their neighboring foot-
bots, yet unaware of the hazardous situation, by broadcast-
ing a message through the mxRAB device. In what follows,
the eye-bot selects one of the foot-bots able to perceive the
eye-bot and establishes a communication link to it. Once the
communication link is established, the eye-bot initiates mor-
phology formation by transmitting either the RED/GREEN
or the RED/BLUE signal as a function of the total number
of foot-bots in the field of view. While completed morpholo-
gies move towards the light and successfully cross the hill,
the eye-bot continues to supervise the formation of further
morphologies using the remaining foot-bots.

Figure 7 shows snapshots of an experimental run of super-
vised morphogenesis. The complete video footage of the ex-
periment and more details on the results can be found online
at http://iridia.ulb.ac.be/supp/IridiaSupp2011-019/.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have enhanced the sensing capabilities of

a ground-based self-assembling robotic system by incorpo-
rating aerial robots into the system. We introduced super-
vised morphogenesis – a novel approach that enables aerial
robots i) to detect tasks on the ground that cannot be de-
tected by ground-based robots and ii) to initiate and con-
trol the formation of morphologies that meet the challenges
posed by the task. A key feature of supervised morphogene-
sis is that the aerial robots perform on-board simulations to
evaluate the adequacy of different morphologies to a consid-
ered task. We reported on experiments conducted in which
supervised morphogenesis was tested on real robotic hard-
ware in a hill-crossing task.

To the best of our knowledge, the work presented in this
paper represents the first implementation of a robotic system
that enables aerial robots to control morphology formation
of ground-based self-assembling robots. We have shown how
our approach can be used to enhance the adaptivity of self-
assembling robot systems to previously unknown tasks. Our
approach does not require any proprietary hardware and
only relies on off-the-shelf components such as LEDs and
digital cameras to enable communication between the two
robot types. Therefore, our approach can also be applied on
other robotic platforms.

In our ongoing work, we are studying how to leverage
the approach presented in this study to operate in envi-
ronments composed of various, different tasks that require
the formation of a variety of morphologies in parallel. We
are also considering to provide aerial robots with the abil-
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ity to determine an appropriate morphology to a task by
simulating the perceived environment and the robots on the
ground using on-board physics-based simulations. Moreover,
we intend to couple physics-based simulations with machine
learning techniques to let aerial robots learn about task-to-
morphology mappings. Such a system can feature the ability
to produce the most appropriate morphology for potentially
any type of physically plausible task and environment.
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