
An Incremental Ant Colony Algorithm with Local Search
for Continuous Optimization

Tianjun Liao
IRIDIA, CoDE, Université

Libre de Bruxelles, Brussels,
Belgium

tliao@ulb.ac.be

Marco A. Montes de Oca
IRIDIA, CoDE, Université

Libre de Bruxelles, Brussels,
Belgium

mmontes@ulb.ac.be

Doǧan Aydın
Dept. of Computer

Engineering, Ege University,
Izmir, Turkey

dogan.aydin@ege.edu.tr
Thomas Stützle

IRIDIA, CoDE, Université
Libre de Bruxelles, Brussels,

Belgium
stuetzle@ulb.ac.be

Marco Dorigo
IRIDIA, CoDE, Université

Libre de Bruxelles, Brussels,
Belgium

mdorigo@ulb.ac.be

ABSTRACT
ACOR is one of the most popular ant colony optimization
algorithms for tackling continuous optimization problems.
In this paper, we propose IACOR-LS, which is a variant
of ACOR that uses local search and that features a grow-
ing solution archive. We experiment with Powell’s conju-
gate directions set, Powell’s BOBYQA, and Lin-Yu Tseng’s
Mtsls1 methods as local search procedures. Automatic pa-
rameter tuning results show that IACOR-LS with Mtsls1
(IACOR-Mtsls1) is not only a significant improvement over
ACOR, but that it is also competitive with the state-of-the-
art algorithms described in a recent special issue of the Soft
Computing journal. Further experimentation with IACOR-
Mtsls1 on an extended benchmark functions suite, which
includes functions from both the special issue of Soft Com-
puting and the IEEE 2005 Congress on Evolutionary Com-
putation, demonstrates its good performance on continuous
optimization problems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; G.1.6 [Numerical
Analysis]: Optimization

General Terms
Algorithms

Keywords
Ant Colony Optimization, Continuous Optimization, Local
Search, Automatic Parameter Tuning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

1. INTRODUCTION
Several algorithms based on or inspired by the ant colony

optimization (ACO) metaheuristic [4] have been proposed
to tackle continuous optimization problems [5, 9, 12, 14, 18].
One of the most popular ACO-based algorithms for con-
tinuous domains is ACOR [21–23]. Recently, Leguizamón
and Coello [11] proposed a variant of ACOR that performs
better than the original ACOR on six benchmark functions.
However, the results obtained with Leguizamón and Coello’s
variant are far from being competitive with the results ob-
tained by state-of-the-art continuous optimization algorithms
recently featured in a special issue of the Soft Computing
journal [13] (Throughout the rest of the paper, we will re-
fer to this special issue as SOCO). The set of algorithms
described in SOCO consists of differential evolution algo-
rithms, memetic algorithms, particle swarm optimization al-
gorithms and other types of optimization algorithms [13].
In SOCO, the differential evolution algorithm (DE) [24],
the covariance matrix adaptation evolution strategy with
increasing population size (G-CMA-ES) [1], and the real-
coded CHC algorithm (CHC) [6] are used as the reference
algorithms. It should be noted that no ACO-based algo-
rithms are featured in SOCO.

In this paper, we propose an improved ACOR algorithm,
called IACOR-LS, that is competitive with the state of the
art in continuous optimization. We first present IACOR,
which is an ACOR with an extra search diversification mech-
anism that consists of a growing solution archive. Then, we
hybridize IACOR with a local search procedure in order to
enhance its search intensification abilities. We experiment
with three local search procedures: Powell’s conjugate direc-
tions set [19], Powell’s BOBYQA [20], and Lin-Yu Tseng’s
Mtsls1 [27]. An automatic parameter tuning procedure, It-
erated F-race [2,3], is used for the configuration of the inves-
tigated algorithms. The best algorithm found after tuning,
IACOR-Mtsls1, obtains results that are as good as the best
of the 16 algorithms featured in SOCO. To assess the quality
of IACOR-Mtsls1 and the best SOCO algorithms on prob-
lems not seen during their design phase, we compare their
performance using an extended benchmark functions suite
that includes functions from SOCO and the Special Session
on Continuous Optimization of the IEEE 2005 Congress on

125

Evolutionary Computation (CEC 2005). The results show
that IACOR-Mtsls1 can be considered to be a state-of-the-
art continuous optimization algorithm.

2. THE ACOR ALGORITHM
The ACOR algorithm stores a set of k solutions, called so-

lution archive, which represents the algorithm’s “pheromone
model.” The solution archive is used to create a probabil-
ity distribution of promising solutions over the search space.
Solutions are generated on a coordinate-per-coordinate ba-
sis using mixtures of weighted Gaussian functions. Initially,
the solution archive is filled with randomly generated solu-
tions. The algorithm iteratively refines the solution archive
by generating m new solutions and then keeping only the
best k solutions of the k + m solutions that are available.
The k solutions in the archive are always sorted according
to their quality (from best to worst).

The core of the solution construction procedure is the es-
timation of multimodal one-dimensional probability density
functions (PDF). The mechanism to do that in ACOR is
based on a Gaussian kernel, which is defined as a weighted
sum of several Gaussian functions gij , where j is a solution
index and i is a coordinate index. The Gaussian kernel for
coordinate i is:

Gi(x) =

k∑
j=1

ωjg
i
j(x) =

k∑
j=1

ωj
1

σi
j

√
2π
e
−

(x−µij)
2

2σi
j
2

, (1)

where j ∈ {1, ..., k}, i ∈ {1, ..., D} with D being the prob-
lem dimensionality, and ωj is a weight associated with the
ranking of solution j in the archive, rank(j). The weight is
calculated using a Gaussian function:

ωj =
1

qk
√

2π
e

−(rank(j)−1)2

2q2k2 , (2)

where q is a parameter of the algorithm.
During the solution generation process, each coordinate is

treated independently. First, an archive solution is chosen
with a probability proportional to its weight. Then, the
algorithm samples around the selected solution component
sij using a Gaussian PDF with µi

j = sij , and σi
j equal to

σi
j = ξ

k∑
r=1

|sir − sij |
k − 1

, (3)

which is the average distance between the i-th variable of
the solution sj and the i-th variable of the other solutions
in the archive, multiplied by a parameter ξ. The solution
generation process is repeated m times for each dimension
i = 1, ..., D. An outline of ACOR is given in Algorithm 1.

3. THE IACOR ALGORITHM
IACOR is an ACOR algorithm with a solution archive

whose size increases over time. This modification is based
on the incremental social learning framework [15, 17]. A
parameter Growth controls the rate at which the archive
grows. Fast growth rates encourage search diversification
while slow ones encourage intensification [15]. In IACOR the
optimization process begins with a small archive, a parame-
ter InitArchiveSize defines its size. A new solution is added
to it every Growth iterations until a maximum archive size,

Algorithm 1 Outline of ACOR

Input: k, m, D, q, ξ, and termination criterion.
Output: The best solution found

Initialize and evaluate k solutions
// Sort solutions and store them in the archive
T = Sort(S1 · · ·Sk)
while Termination criterion is not satisfied do

// Generate m new solutions
for l = 1 to m do

// Construct solution
for i = 1 to D do

Select Gaussian gij according to weights

Sample Gaussian gij with parameters µi
j , σ

i
j

end for
Store and evaluate newly generated solution

end for
// Sort solutions and select the best k
T = Best(Sort(S1 · · ·Sk+m), k)

end while

denoted by MaxArchiveSize, is reached. Each time a new
solution is added, it is initialized using information from the
best solution in the archive. First, a new solution Snew is
generated completely at random. Then, it is moved toward
the best solution in the archive Sbest using

S′new = Snew + rand(0, 1)(Sbest − Snew) , (4)

where rand(0, 1) is a random number in the range [0, 1).
IACOR also features a mechanism different from the one

used in the original ACOR for selecting the solution that
guides the generation of new solutions. The new procedure
depends on a parameter p ∈ [0, 1], which controls the prob-
ability of using only the best solution in the archive as a
guiding solution. With a probability 1− p, all the solutions
in the archive are used to generate new solutions. Once a
guiding solution is selected, and a new one is generated (in
exactly the same way as in ACOR), they are compared. If
the newly generated solution is better than the guiding solu-
tion, it replaces it in the archive. This replacement strategy
is different from the one used in ACOR in which all the
solutions in the archive and all the newly generated ones
compete.

We include an algorithm-level diversification mechanism
for fighting stagnation. The mechanism consists in restart-
ing the algorithm and initializing the new initial archive with
the best-so-far solution. The restart criterion is the number
of consecutive iterations, MaxStagIter, with a relative so-
lution improvement lower than a certain threshold.

4. IACOR WITH LOCAL SEARCH
The IACOR-LS algorithm is a hybridization of IACOR

with a local search procedure. IACOR provides the explo-
ration needed to locate promising solutions and the local
search procedure enables a fast convergence toward good
solutions. In our experiments, we considered Powell’s conju-
gate directions set [19], Powell’s BOBYQA [20] and Lin-Yu
Tseng’s Mtsls1 [27] methods as local search procedures. We
used the NLopt library [10] implementation of the first two
methods and implemented Mtsls1 following the pseudocode
found in [27].

In IACOR-LS, the local search procedure is called using

126

the best solution in the archive as initial point. The lo-
cal search methods terminate after a maximum number of
iterations, MaxITER, have been reached, or when the toler-
ance, that is the relative change between solutions found in
two consecutive iterations, is lower than a parameter FTOL.
Like [16], we use an adaptive step size for the local search
procedures. This is achieved as follows: a solution in the
archive, different from the best solution, is chosen at ran-
dom. The maximum norm (|| · ||∞) of the vector that sepa-
rates this random solution from the best solution is used as
the local search step size. Hence, step sizes tend to decrease
over time due to the convergence tendency of the solutions
in the archive. This phenomenon in turn makes the search
focus around the best-so-far solution.

For fighting stagnation at the level of the local search,
we call the local search procedure from different solutions
from time to time. A parameter, MaxFailures, determines
the maximum number of repeated calls to the local search
method from the same initial solution that does not result
in a solution improvement. We maintain a failures counter
for each solution in the archive. When a solution’s failures
counter is greater than or equal to MaxFailures, the local
search procedure is not called again from this solution. In-
stead, the local search procedure is called from a random
solution whose failures counter is less than MaxFailures.

Finally, we use a simple mechanism to enforce boundary
constraints in IACOR-LS. We use the following penalty func-
tion in Powell’s conjugate directions method as well as in
Mtsls1:

P (x) = fes ·
D∑
i=1

Bound(xi) , (5)

where Bound(xi) is defined as

Bound(xi) =


0, if xmin ≤ xi ≤ xmax

(xmin − xi)2, if xi < xmin

(xmax − xi)2, if xi > xmax

(6)

where xmin and xmax are the minimum and maximum limits
of the search range, respectively, and fes is the number of
function evaluations that have been used so far. BOBYQA
has its own mechanism for dealing with bound constraints.
IACOR-LS is shown in Algorithm 2. The C++ implemen-
tation of IACOR-LS is available in http://iridia.ulb.ac.

be/supp/IridiaSupp2011-008/.

5. EXPERIMENTAL STUDY
Our study is carried out in two stages. First, we evalu-

ate the performance of ACOR, IACOR-BOBYQA, IACOR-
Powell and IACOR-Mtsls1 by comparing their performance
with that of the 16 algorithms featured in SOCO. For this
purpose, we use the same 19 benchmark functions suite
(functions labeled as fsoco∗). Second, we include 211 of the
benchmark functions proposed for the special session on con-
tinuous optimization organized for the IEEE 2005 Congress
on Evolutionary Computation (CEC 2005) [25] (functions
labeled as fcec∗).

In the first stage of the study, we used the 50- and 100-
dimensional versions of the 19 SOCO functions. Functions

1From the original 25 functions, we decided to omit fcec1,
fcec2, fcec6, and fcec9 because they are the same as fsoco1,
fsoco3, fsoco4, fsoco8.

Algorithm 2 Outline of IACOR-LS

Input: : ξ, p, InitArchiveSize, Growth, MaxArchiveSize,
FTOL, MaxITER, MaxFailures, MaxStagIter, D and ter-
mination criterion.

Output: The best solution found
k = InitArchiveSize
Initialize and evaluate k solutions
while Termination criterion not satisfied do

// Local search
if FailedAttemptsbest < MaxFailures then

Invoke local search from Sbest with parameters FTOL
and MaxITER

else
if FailedAttemptsrandom < MaxFailures then

Invoke local search from Srandom with parameters
FTOL and MaxITER

end if
end if
if No solution improvement then

FailedAttemptsbest||random + +
end if

// Generate new solutions
if rand(0,1)<p then

for i = 1 to D do
Select Gaussian gibest
Sample Gaussian gibest with parameters µi

best, σ
i
best

end for
if Newly generated solution is better than Sbest

then
Substitute newly generated solution for Sbest

end if
else

for j = 1 to k do
for i = 1 to D do

Select Gaussian gij
Sample Gaussian gij with parameters µi

j , σ
i
j

end for
if Newly generated solution is better than Sj then

Substitute newly generated solution for Sj

end if
end for

end if

// Archive Growth
if current iterations are multiple of Growth & k <
MaxArchiveSize then

Initialize new solution using Eq.4
Add new solution to the archive
k + +

end if
// Restart Mechanism
if # of iterations without improving Sbest =
MaxStagIter then

Re-initialize T but keeping Sbest

end if
end while

fsoco1–fsoco6 were originally proposed for the special ses-
sion on large scale global optimization organized for the
IEEE 2008 Congress on Evolutionary Computation (CEC
2008) [26]. Functions fsoco7-fsoco11 were proposed at the

127

http://iridia.ulb.ac.be/supp/IridiaSupp2011-008/
http://iridia.ulb.ac.be/supp/IridiaSupp2011-008/

Table 1: Benchmark functions
ID Name/Description Uni./Multi.Sep.Ro.

fsoco1 Shift.Sphere U Y N
fsoco2 Shift.Schwefel 2.21 U N N
fsoco3 Shift.Rosenbrock M N N
fsoco4 Shift.Rastrigin M Y N
fsoco5 Shift.Griewank M N N
fsoco6 Shift.Ackley M Y N
fsoco7 Shift.Schwefel 2.22 U Y N
fsoco8 Shift.Schwefel 1.2 U N N
fsoco9 Shift.Extended f10 U N N
fsoco10Shift.Bohachevsky U N N
fsoco11Shift.Schaffer U N N
fsoco12fsoco9 ⊕0.25 fsoco1 M N N
fsoco13fsoco9 ⊕0.25 fsoco3 M N N
fsoco14fsoco9 ⊕0.25 fsoco4 M N N
fsoco15fsoco10 ⊕0.25 fsoco7 M N N
fsoco16fsoco9 ⊕0.5 fsoco1 M N N
fsoco17fsoco9 ⊕0.75 fsoco3 M N N
fsoco18fsoco9 ⊕0.75 fsoco4 M N N
fsoco19fsoco10 ⊕0.75 fsoco7 M N N
fcec3 Shift.Ro.Elliptic U N Y
fcec4 Shift.Schwefel 1.2 Noise U N N
fcec5 Schwefel 2.6 Opt. on Bound U N N
fcec7 Shift.Ro.Griewank no Bound M N Y
fcec8 Shift.Ro.Ackley Opt. on Bound M N Y
fcec10 Shift.Ro.Rastrigin M N Y
fcec11 Shift.Ro.Weierstrass M N Y
fcec12 Schwefel 2.13 M N N
fcec13 Griewank plus Rosenbrock M N N
fcec14 Shift.Ro.Exp.Scaffer M N Y
fcec15 Hybrid Composition M N N
fcec16 Ro. Hybrid Composition M N Y
fcec17 Ro. Hybrid Composition M N Y
fcec18 Ro. Hybrid Composition M N Y
fcec19 Ro. Hybrid Composition M N Y
fcec20 Ro. Hybrid Composition M N Y
fcec21 Ro. Hybrid Composition M N Y
fcec22 Ro. Hybrid Composition M N Y
fcec23 Ro. Hybrid Composition M N Y
fcec24 Ro. Hybrid Composition M N Y
fcec25 Ro. Hybrid Composition M N Y

ISDA 2009 Conference. Functions fsoco12-fsoco19 are hybrid
functions that combine two functions belonging to fsoco1–
fsoco11. The detailed description of these functions is avail-
able in [8,13]. In the second stage of our study, the 19 SOCO
and 21 CEC 2005 functions on 50 dimensions were consid-
ered together. Some properties of the benchmark functions
are listed in Table 1. The detailed description is available
in [8, 25].

We applied the termination conditions used for SOCO and
CEC 2005 were used, that is, the maximum number of func-
tion evaluations was 5000×D for the SOCO functions, and
10000×D for the CEC 2005 functions. All the investigated
algorithms were run 25 times on each function. We report
error values defined as f(x)− f(x∗), where x is a candidate
solution and x∗ is the optimal solution. Error values lower
than 10−14 (this value is referred to as 0-threshold) are ap-
proximated to 0. Our analysis is based on either the whole
solution quality distribution, or on the median and average
errors.

5.1 Parameter Settings
We used Iterated F-race [2, 3] to automatically tune al-

gorithm parameters. The 10-dimensional versions of the
19 SOCO functions were randomly sampled as training in-

stances. A maximum of 50,000 algorithm runs were used as
tuning budget for ACOR, IACOR-BOBYQA, IACOR-Powell
and IACOR-Mtsls1. The number of function evaluations
used in each run is equal to 50,000. The best set of param-
eters, for each algorithm found with this process is given
in Table 2. The only parameter that we set manually was
MaxArchiveSize, which we set to 1,000.

5.2 Experimental Results and Comparison
Figure 1 shows the distribution of median and average er-

rors across the 19 SOCO benchmark functions obtained with
ACOR, IACOR-BOBYQA, IACOR-Powell, IACOR-Mtsls1
and the 16 algorithms featured in SOCO.2 We marked with
a + symbol those cases in which there is a statistically sig-
nificant difference at the 0.05 α-level with a Wilcoxon test
with respect to IACOR-Mtsls1 (in favor of IACOR-Mtsls1).
Also at the top of each plot, a count of the number of op-
tima found by each algorithm (or an objective function value
lower than 10−14) is given.

In all cases, IACOR-Mtsls1 significantly outperforms
ACOR, and is in general more effective than IACOR-
BOBYQA, and IACOR-Powell. IACOR-Mtsls1 is also com-
petitive with the best algorithms in SOCO. If we consider
medians only, IACOR-Mtsls1 significantly outperforms G-
CMA-ES, CHC, DE, EVoPROpt, VXQR1, EM323, and
RPSO-vm in both 50 and 100 dimensions. In 100 di-
mensions, IACOR-Mtsls1 also significantly outperforms MA-
SSW and GODE. Moreover, the median error of IACOR-
Mtsls1 is below the 0-threshold 14 times out of the 19 possi-
ble of the SOCO benchmark functions suite. Only MOS-DE
matches such a performance.

If one considers mean values, the performance of IACOR-
Mtsls1 degrades slightly. This is an indication that IACOR-
Mtsls1 still stagnates with some low probability. However,
IACOR-Mtsls1 still outperforms G-CMA-ES, CHC, GODE,
EVoPROpt, RPSO-vm, and EM323. Even though IACOR-
Mtsls1 does not significantly outperform DE and other algo-
rithms, its performance is very competitive. The mean error
of IACOR-Mtsls1 is below the 0-threshold 13 and 11 times
in problems of 50 and 100 dimensions, respectively.

We note that although G-CMA-ES has difficulties in deal-
ing with multimodal or unimodal shifted separable func-
tions, such as fsoco4 , fsoco6 and fsoco7, G-CMA-ES showed
impressive results on function fsoco8, which is a hyperellip-
soid rotated in all directions. None of the other investi-
gated algorithms can find the optimum of this function ex-
cept G-CMA-ES. This result is interesting considering that
G-CMA-ES showed an impressive performance in the CEC
2005 special session on continuous optimization. This fact
suggests that releasing details about the problems that will
be used to compare algorithms induces an undesired “over-
fitting” effect. In other words, authors may use the released
problems to design algorithms that perform well on them
but that may perform poorly on another unknown set of
problems. This motivated us to carry out the second stage
of our study, which consists in carrying out a more compre-
hensive comparison that includes G-CMA-ES and some of
the best algorithms in SOCO. For this comparison, we use
40 benchmark functions as discussed above. From SOCO,
we include in our study IPSO-Powell given its good perfor-
mance as shown in Figure 1. To discard the possibility that

2For information about these 16 algorithms please go to
http://sci2s.ugr.es/eamhco/CFP.php

128

Table 2: Best parameter settings found through iterated F-Race for ACOR, IACOR-BOBYQA, IACOR-Powell
and IACOR-Mtsls1. The parameter FTOL is first transformed as 10FTOL before using it in the algorithms.

ACOR
q ξ m k

0.04544 0.8259 10 85

IACOR-BOBYQA
p ξ InitArchiveSize Growth FTOL MaxITER MaxFailures MaxStagIter

0.6979 0.8643 4 1 -3.13 240 5 20

IACOR-Powell
p ξ InitArchiveSize Growth FTOL MaxITER MaxFailures MaxStagIter

0.3586 0.9040 1 7 -1 20 6 8

IACOR-Mtsls1
p ξ InitArchiveSize Growth MaxITER MaxFailures MaxStagIter

0.6475 0.7310 14 1 85 4 13

D
E

C
H

C

G
−

C
M

A
−

E
S

S
O

U
P

D
E

D
E

−
D

4
0
−

M
m

G
O

D
E

G
a
D

E

jD
E

ls
c
o
p

S
a
D

E
−

M
M

T
S

M
O

S
−

D
E

M
A

−
S

S
W

R
P

S
O

−
v
m

IP
S

O
−

P
o
w

e
ll

E
vo

P
R

O
p
t

E
M

3
2
3

V
X

Q
R

1

A
C

O
r

IA
C

O
r−

B
o
b
y
q
a

IA
C

O
r−

P
o
w

e
ll

IA
C

O
r
−

M
ts

ls
1

1e−14

1e−09

1e−04

1e+01

1e+06

+ + + + + + + + +
Optima 6 0 4 9 12 7 10 12 12 14 11 5 9 4 5 6 3 5 6 14

M
e
d
ia

n
 E

rr
o
rs

 o
f
F

it
n
e
s
s
 V

a
lu

e

D
E

C
H

C

G
−

C
M

A
−

E
S

S
O

U
P

D
E

D
E

−
D

4
0
−

M
m

G
O

D
E

G
a
D

E

jD
E

ls
c
o
p

S
a
D

E
−

M
M

T
S

M
O

S
−

D
E

M
A

−
S

S
W

R
P

S
O

−
v
m

IP
S

O
−

P
o
w

e
ll

E
vo

P
R

O
p
t

E
M

3
2
3

V
X

Q
R

1

A
C

O
r

IA
C

O
r−

B
o
b
y
q
a

IA
C

O
r−

P
o
w

e
ll

IA
C

O
r
−

M
ts

ls
1

1e−14

1e−09

1e−04

1e+01

1e+06

+ + + + + + + +
Optima 6 0 2 8 9 6 9 12 12 14 9 4 5 0 5 6 2 5 6 13

A
ve

ra
g
e
 E

rr
o
rs

 o
f
F

it
n
e
s
s
 V

a
lu

e

(a) 50 dimensions (b) 50 dimensions

D
E

C
H

C

G
−

C
M

A
−

E
S

S
O

U
P

D
E

D
E

−
D

4
0
−

M
m

G
O

D
E

G
a
D

E

jD
E

ls
c
o
p

S
a
D

E
−

M
M

T
S

M
O

S
−

D
E

M
A

−
S

S
W

R
P

S
O

−
v
m

IP
S

O
−

P
o
w

e
ll

E
vo

P
R

O
p
t

E
M

3
2
3

V
X

Q
R

1

A
C

O
r

IA
C

O
r−

B
o
b
y
q
a

IA
C

O
r−

P
o
w

e
ll

IA
C

O
r
−

M
ts

ls
1

1e−14

1e−09

1e−04

1e+01

1e+06

+ + + + + + + + + + +
Optima 6 0 3 9 11 6 11 12 12 14 10 5 8 3 6 6 3 5 6 14

M
e
d
ia

n
 E

rr
o
rs

 o
f
F

it
n
e
s
s
 V

a
lu

e

D
E

C
H

C

G
−

C
M

A
−

E
S

S
O

U
P

D
E

D
E

−
D

4
0
−

M
m

G
O

D
E

G
a
D

E

jD
E

ls
c
o
p

S
a
D

E
−

M
M

T
S

M
O

S
−

D
E

M
A

−
S

S
W

R
P

S
O

−
v
m

IP
S

O
−

P
o
w

e
ll

E
vo

P
R

O
p
t

E
M

3
2
3

V
X

Q
R

1

A
C

O
r

IA
C

O
r−

B
o
b
y
q
a

IA
C

O
r−

P
o
w

e
ll

IA
C

O
r
−

M
ts

ls
1

1e−14

1e−09

1e−04

1e+01

1e+06

+ + + + + + + + +
Optima 6 0 2 8 9 6 9 10 12 13 8 4 5 0 4 5 2 5 6 11

A
ve

ra
g
e
 E

rr
o
rs

 o
f
F

it
n
e
s
s
 V

a
lu

e

(c) 100 dimensions (d) 100 dimensions

Figure 1: The box-plots show the distribution of the median (left) and average (right) errors obtained on the 19

SOCO benchmark functions of 50 (top) and 100 (bottom) dimensions. The results obtained with the three reference

algorithms in SOCO are shown on the left part of each plot. The results of 13 algorithms published in SOCO are shown

in the middle part of each plot. The results obtained with ACOR, IACOR-BOBYQA, IACOR-Powell, and IACOR-Mtsls1

are shown on the right part of each plot. The line at the bottom of each plot represents the 0-threshold (10−14). A +

symbol on top of a box-plot denotes a statistically significant difference at the 0.05 α-level detected with a Wilcoxon

test between the results obtained with the indicated algorithm and those obtained with IACOR-Mtsls1. The absence

of a symbol means that the difference is not significant with IACOR-Mtsls1. The numbers on top of a box-plot denotes

the number of optima found by the corresponding algorithm.

the local search procedure is the main responsible for the
obtained results, we also use Mtsls1 with IPSO, thus gener-
ating IPSO-Mtsls1. In this second stage, IPSO-Powell and
IPSO-Mtsls1 were tuned as described in Section 5.1.

Table 3 shows the median and average errors obtained by
the compared algorithm on each of the 40 benchmark func-
tions. Two facts can be noticed from these results. First,

Mtsls1 seems to be indeed responsible for most of the good
performance of the algorithms that use it as a local search
procedure. Regarding median results, the SOCO functions
for which IPSO-Mtsls1 finds the optimum, IACOR-Mtsls1
does it as well. However, IACOR-Mtsls1 seems to be more
robust given the fact that it finds more optima than IPSO-
Mtsls1 if functions from the CEC 2005 special session or

129

Table 3: The median and average errors of objective function values obtained with G-CMA-ES, IPSO-Powell,
IPSO-Mtsls1, and IACOR-Mtsls1 on 40 functions with D = 50. The lowest values were highlighted in boldface.
The values below 10−14 are approximated to 0. The results of fcec1, fcec2, fcec6, fcec9 are not presented to avoid
repeated test on the similar functions such as fsoco1, fsoco3, fsoco4, fsoco8. At the bottom of the table, we report
the number of times an algorithm found the lowest error.

Median errors Mean errors

Function G-CMA-ESIPSO-PowellIPSO-Mtsls1IACOR-Mtsls1 Function G-CMA-ESIPSO-PowellIPSO-Mtsls1IACOR-Mtsls1

fsoco1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 fsoco1 0.00E+00 0.00E+00 0.00E+00 0.00E+00
fsoco2 2.64E−11 1.42E−14 4.12E−13 4.41E−13 fsoco2 2.75E−11 2.56E−14 4.80E−13 5.50E−13
fsoco3 0.00E+00 0.00E+00 6.38E+00 4.83E+01 fsoco3 7.97E−01 0.00E+00 7.29E+01 8.17E+01
fsoco4 1.08E+02 0.00E+00 0.00E+00 0.00E+00 fsoco4 1.05E+02 0.00E+00 1.31E+00 0.00E+00
fsoco5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 fsoco5 2.96E−04 6.72E−03 5.92E−04 0.00E+00
fsoco6 2.11E+01 0.00E+00 0.00E+00 0.00E+00 fsoco6 2.09E+01 0.00E+00 0.00E+00 0.00E+00
fsoco7 7.67E−11 0.00E+00 0.00E+00 0.00E+00 fsoco7 1.01E−10 4.98E−12 0.00E+00 0.00E+00
fsoco8 0.00E+00 1.75E−09 2.80E−10 2.66E−05 fsoco8 0.00E+00 4.78E−09 4.29E−10 2.94E−05
fsoco9 1.61E+01 0.00E+00 0.00E+00 0.00E+00 fsoco9 1.66E+01 4.95E−06 0.00E+00 0.00E+00
fsoco10 6.71E+00 0.00E+00 0.00E+00 0.00E+00 fsoco10 6.81E+00 0.00E+00 0.00E+00 0.00E+00
fsoco11 2.83E+01 0.00E+00 0.00E+00 0.00E+00 fsoco11 3.01E+01 8.19E−02 7.74E−02 0.00E+00
fsoco12 1.87E+02 1.02E−12 0.00E+00 0.00E+00 fsoco12 1.88E+02 1.17E−11 7.27E−03 0.00E+00
fsoco13 1.97E+02 2.00E−10 5.39E−01 6.79E−01 fsoco13 1.97E+02 2.65E−10 2.75E+00 3.03E+00
fsoco14 1.05E+02 1.77E−12 0.00E+00 0.00E+00 fsoco14 1.09E+02 1.18E+00 5.26E−01 3.04E−01
fsoco15 8.12E−04 1.07E−11 0.00E+00 0.00E+00 fsoco15 9.79E−04 2.62E−11 0.00E+00 0.00E+00
fsoco16 4.22E+02 3.08E−12 0.00E+00 0.00E+00 fsoco16 4.27E+02 2.80E+00 2.46E+00 0.00E+00
fsoco17 6.71E+02 4.35E−08 1.47E+01 6.50E+00 fsoco17 6.89E+02 3.10E+00 7.27E+01 6.19E+01
fsoco18 1.27E+02 8.06E−12 0.00E+00 0.00E+00 fsoco18 1.31E+02 1.24E+00 1.68E+00 0.00E+00
fsoco19 4.03E+00 1.83E−12 0.00E+00 0.00E+00 fsoco19 4.76E+00 1.19E−11 0.00E+00 0.00E+00
fcec3 0.00E+00 8.72E+03 1.59E+04 8.40E+05 fcec3 0.00E+00 1.24E+04 1.62E+04 9.66E+05
fcec4 4.27E+05 2.45E+02 3.88E+03 5.93E+01 fcec4 4.68E+05 2.90E+02 4.13E+03 7.32E+01
fcec5 5.70E−01 4.87E−07 7.28E−11 9.44E+00 fcec5 2.85E+00 4.92E−06 2.32E−10 9.98E+00
fcec7 3.85E−14 0.00E+00 0.00E+00 0.00E+00 fcec7 5.32E−14 0.00E+00 0.00E+00 0.00E+00
fcec8 2.00E+01 2.00E+01 2.00E+01 2.00E+01 fcec8 2.01E+01 2.00E+01 2.00E+01 2.00E+01
fcec10 9.97E−01 8.96E+02 8.92E+02 2.69E+02 fcec10 1.72E+00 9.13E+02 8.76E+02 2.75E+02
fcec11 1.21E+00 6.90E+01 6.64E+01 5.97E+01 fcec11 1.17E+01 6.82E+01 6.63E+01 5.90E+01
fcec12 2.36E+03 5.19E+04 3.68E+04 1.37E+04 fcec12 2.27E+05 5.68E+04 5.86E+04 1.98E+04
fcec13 4.71E+00 3.02E+00 3.24E+00 2.14E+00 fcec13 4.59E+00 3.18E+00 3.32E+00 2.13E+00
fcec14 2.30E+01 2.35E+01 2.36E+01 2.33E+01 fcec14 2.29E+01 2.34E+01 2.35E+01 2.31E+01
fcec15 2.00E+02 2.00E+02 2.00E+02 0.00E+00 fcec15 2.04E+02 1.82E+02 2.06E+02 9.20E+01
fcec16 2.15E+01 4.97E+02 4.10E+02 3.00E+02 fcec16 3.09E+01 5.22E+02 4.80E+02 3.06E+02
fcec17 1.61E+02 4.54E+02 4.11E+02 4.37E+02 fcec17 2.34E+02 4.46E+02 4.17E+02 4.43E+02
fcec18 9.13E+02 1.22E+03 1.21E+03 9.84E+02 fcec18 9.13E+02 1.18E+03 1.19E+03 9.99E+02
fcec19 9.12E+02 1.23E+03 1.19E+03 9.93E+02 fcec19 9.12E+02 1.22E+03 1.18E+03 1.01E+03
fcec20 9.12E+02 1.22E+03 1.19E+03 9.93E+02 fcec20 9.12E+02 1.20E+03 1.18E+03 9.89E+02
fcec21 1.00E+03 1.19E+03 1.03E+03 5.00E+02 fcec21 1.00E+03 9.86E+02 8.59E+02 5.53E+02
fcec22 8.03E+02 1.43E+03 1.45E+03 1.13E+03 fcec22 8.05E+02 1.45E+03 1.47E+03 1.14E+03
fcec23 1.01E+03 5.39E+02 5.39E+02 5.39E+02 fcec23 1.01E+03 7.66E+02 6.13E+02 5.67E+02
fcec24 9.86E+02 1.31E+03 1.30E+03 1.11E+03 fcec24 9.55E+02 1.29E+03 1.30E+03 1.10E+03
fcec25 2.15E+02 1.50E+03 1.59E+03 9.38E+02 fcec25 2.15E+02 1.18E+03 1.50E+03 8.89E+02

of best 18 15 18 21 # of best 14 10 10 22

mean values are considered. Second, G-CMA-ES finds more
best results on the CEC 2005 functions than on the SOCO
functions. Overall, however, IACOR-Mtsls1 finds more best
results than any of the compared algorithms.

Figure 2 shows correlation plots that illustrate the rela-
tive performance between IACOR-Mtsls1 and G-CMA-ES,
IPSO-Powell and IPSO-Mtsls1. On the x-axis, the coordi-
nates are the results obtained with IACOR-Mtsls1; on the y-
axis, the coordinates are the results obtained with the other
algorithms for each of the 40 functions. Thus, points that
appear on the left part of the correlation plot correspond to
functions for which IACOR-Mtsls1 has better results than
the other algorithm.

Table 4 shows a detailed comparison presented in form
of (win, draw, lose) according to different properties of
the 40 functions used. The two-sided p-values of Wilcoxon
matched-pairs signed-ranks test of IACOR-Mtsls1 with other
algorithms across 40 functions are also presented. In gen-

eral, IACOR-Mtsls1 performs better more often than all the
other compared algorithms. IACOR-Mtsls1 wins more often
against G-CMA-ES; however, G-CMA-ES performs clearly
better than IACOR-Mtsls1 on rotated functions, which can
be explained by the covariance matrix adaptation mecha-
nism [7].

6. CONCLUSIONS
In this paper, we have introduced IACOR-LS, an ACOR

algorithm with growing solution archive hybridized with a
local search procedure. Three different local search proce-
dures, Powell’s conjugate directions set, Powell’s BOBYQA,
and Mtsls1, were tested with IACOR-LS. Through automatic
tuning across 19 functions, IACOR-Mtsls1 proved to be su-
perior to the other two variants.

The results of a comprehensive experimental comparison
with 16 algorithms featured in a recent special issue of the

130

1e−14 1e−04 1e+061
e
−

1
4

1
e
−

0
4

1
e
+

0
6

IACOr−mtsls1 (16 optima)

G
−

C
M

A
−

E
S

 (
5
 o

p
ti
m

a
) IACOr−mtsls1

Win 21

Draw 3

Lose 16

Median Errors

1e−14 1e−04 1e+061
e
−

1
4

1
e
−

0
4

1
e
+

0
6

IACOr−mtsls1 (14 optima)

G
−

C
M

A
−

E
S

 (
3
 o

p
ti
m

a
) IACOr−mtsls1

Win 24

Draw 1

Lose 15

Average Errors

1e−14 1e−04 1e+061
e
−

1
4

1
e
−

0
4

1
e
+

0
6

IACOr−mtsls1 (16 optima)

T
u
n
e
d
 I
P

S
O

−
P

o
w

e
ll

(1
0
 o

p
ti
m

a
)

IACOr−mtsls1

Win 22

Draw 11

Lose 7

Median Errors

1e−14 1e−04 1e+061
e
−

1
4

1
e
−

0
4

1
e
+

0
6

IACOr−mtsls1 (14 optima)

T
u
n
e
d
 I
P

S
O

−
P

o
w

e
ll

(6
 o

p
ti
m

a
)

IACOr−mtsls1

Win 27

Draw 6

Lose 7

Average Errors

1e−14 1e−04 1e+061
e
−

1
4

1
e
−

0
4

1
e
+

0
6

IACOr−mtsls1 (16 optima)

T
u
n
e
d
 I
P

S
O

−
m

ts
ls

1
 (

1
5
 o

p
ti
m

a
)

IACOr−mtsls1

Win 16

Draw 17

Lose 7

Median Errors

1e−14 1e−04 1e+061
e
−

1
4

1
e
−

0
4

1
e
+

0
6

IACOr−mtsls1 (14 optima)

T
u
n
e
d
 I
P

S
O

−
m

ts
ls

1
 (

8
 o

p
ti
m

a
)

IACOr−mtsls1

Win 24

Draw 9

Lose 7

Average Errors

Figure 2: The correlation plot between IACOR-
Mtsls1 and G-CMA-ES, IPSO-Powell and IPSO-
Mtsls1 over 40 functions. Each point represents a
function. The points on the left part of correlation
plot illustrate that on those represented functions,
IACOR-Mtsls1 obtains better results than the other
algorithm.

Soft Computing journal show that IACOR-Mtsls1 signifi-
cantly outperforms the original ACOR and that IACOR-
Mtsls1 is competitive with the state of the art. We also con-
ducted a second comparison that included 21 extra functions
from the special session on continuous optimization of the
IEEE 2005 Congress on Evolutionary Computation. From
this additional comparison we can conclude that IACOR-
Mtsls1 remains very competitive. It mainly shows slightly
worse results than G-CMA-ES on functions that are rotated
w.r.t. the usual coordinate system. In fact, this is maybe
not surprising as G-CMA-ES is the only algorithm of the
20 compared ones that performs very well on these rotated
functions. In further work we may test ACOR in the version
that includes the mechanism for adjusting for rotated func-
tions [23] to check whether these potential improvements
transfer to IACOR-Mtsls1. Nevertheless, the very good per-

Table 4: The comparison is conducted based on me-
dian and average errors of objective value and the
results of IACOR-Mtsls1 are presented in form of
(win, draw, lose), respectively. The tested 40 func-
tions were divided into different properties for de-
tails. The two-sided p-values of Wilcoxon matched-
pairs signed-rank test of IACOR-Mtsls1 at a 0.05 α-
level with other algorithms are also presented

Median Errors

Properties IACOR-Mtsls1IACOR-Mtsls1IACOR-Mtsls1
of vs vs vs

Functions G-CMA-ES IPSO-Powell IPSO-Mtsls1
Separable (3, 1, 0) (0, 4, 0) (0, 4, 0)

Non-Separable (18, 2, 16) (22, 7, 7) (16, 13, 7)
Non-Separable

(7, 2, 8) (6, 6, 5) (6, 6, 5)
(Non-Hybrid)
Non-Separable

(11, 0, 8) (16, 1, 2) (10, 7, 2)
(Hybrid)
Unimodal (6, 1, 3) (1, 5, 4) (1, 5, 4)

Multimodal (15, 2, 13) (21, 6, 3) (15, 12, 3)
Non-rotated (16, 2, 6) (10, 8, 6) (10, 8, 6)

Rotated (5, 1, 10) (12, 3, 1) (12, 3, 1)
SOCO (15, 2, 2) (6, 8, 5) (1, 14, 4)

CEC 2005 (6, 1, 14) (16, 3, 2) (15, 3, 3)
In total (21, 3, 16) (22, 11, 7) (16, 17, 7)
p-value 8.33E−01 6.03E−03 1.32E−02

Average Errors

Properties IACOR-Mtsls1IACOR-Mtsls1IACOR-Mtsls1
of vs vs vs

Functions G-CMA-ES IPSO-Powell IPSO-Mtsls1
Separable (3, 1, 0) (1, 3, 0) (1, 3, 0)

Non-Separable (21, 0, 15) (26, 3, 7) (23, 6, 7)
Non-Separable

(10, 0, 7) (9, 3, 5) (8, 4, 5)
(Non-Hybrid)
Non-Separable

(11, 0, 8) (17, 0, 2) (15, 2, 2)
(Hybrid)
Unimodal (6, 1, 3) (4, 2, 4) (2, 4, 4)

Multimodal (18, 0, 12) (23, 4, 3) (22, 5, 3)
Non-rotated (20, 1, 3) (13, 5, 6) (11, 7, 6)

Rotated (4, 0, 12) (14, 1, 1) (13, 2, 1)
SOCO (16, 1, 2) (10, 4, 5) (8, 7, 4)

CEC 2005 (8, 0, 13) (17, 2, 2) (16, 2, 3)
In total (24, 1, 15) (27, 6, 7) (24, 9, 7)
p-value 4.22E−01 1.86E−03 1.66E−03

formance of IACOR-Mtsls1 on most of the Soft Computing
benchmark functions is a clear indication of the high po-
tential ACO algorithms have for this problem domain. In
fact, IACOR-Mtsls1 is clearly competitive with state-of-the-
art continuous optimizers.

7. ACKNOWLEDGMENTS
This work was supported by the E-SWARM project,

funded by an ERC Advanced Grant, and by the Meta-X
project, funded by the Scientific Research Directorate of the
French Community of Belgium. Thomas Stützle and Marco
Dorigo acknowledge support from the Belgian F.R.S.-FNRS,
of which they are a Research Associate and a Research Di-
rector, respectively.

8. REFERENCES
[1] A. Auger and N. Hansen. A restart CMA evolution

strategy with increasing population size. In Proc. of

131

CEC 2005, pages 1769–1776, Piscataway, NJ, 2005.
IEEE Press.

[2] P. Balaprakash, M. Birattari, and T. Stützle.
Improvement strategies for the F-Race algorithm:
Sampling design and iterative refinement. In Proc. of
HM 2007, volume 4771 of LNCS, pages 108–122,
Germany, 2007. Springer.

[3] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle.
F-Race and iterated F-Race: An overview.
Experimental Methods for the Analysis of Optimization
Algorithms, pages 311–336, 2010. Germany, Springer.

[4] M. Dorigo and T. Stützle. Ant Colony Optimization.
MIT Press, Cambridge, MA, 2004.

[5] J. Dréo and P. Siarry. Continuous interacting ant
colony algorithm based on dense heterarchy. Future
Generation Computer Systems, 20(5):841–856, 2004.

[6] L. Eshelman and J. Schaffer. Real-coded genetic
algorithms and interval-schemata. Foundations of
Genetic Algorithms, 2(1993):187–202, 1993.

[7] N. Hansen, A. Ostermeier, and A. Gawelczyk. On the
adaptation of arbitrary normal mutation distributions
in evolution strategies: The generating set adaptation.
In Proc. of 6th ICGA, pages 57–64, San Francisco,
CA, 1995. Morgan Kaufmann.

[8] F. Herrera, M. Lozano, and D. Molina. Test suite for
the special issue of soft computing on scalability of
evolutionary algorithms and other metaheuristics for
large scale continuous optimization problems, 2010.
URL: http://sci2s.ugr.es/eamhco/updated-
functions1-19.pdf.

[9] X. Hu, J. Zhang, and Y. Li. Orthogonal methods
based ant colony search for solving continuous
optimization problems. Journal of Computer Science
and Technology, 23(1):2–18, 2008.

[10] S. Johnson. The NLopt nonlinear-optimization
package, 2008. URL:
http://ab-initio.mit.edu/wiki/index.php/NLopt.

[11] G. Leguizamón and C. Coello. An alternative ACOR
algorithm for continuous optimization problems. In
M. Dorigo et al., editors, Proc of ANTS 2010, volume
6234 of LNCS, pages 48–59, Germany, 2010. Springer.

[12] C. Ling, S. Jie, Q. Ling, and C. Hongjian. A method
for solving optimization problems in continuous space
using ant colony algorithm. In M. Dorigo et al.,
editors, Proc. of ANTS 2002, volume 2463 of LNCS,
pages 288–289, Germany, 2002. Springer.

[13] M. Lozano, D. Molina, and F. Herrera. Editorial:
Scalability of evolutionary algorithms and other
metaheuristics for large-scale continuous optimization
problems. Soft Computing, 2011. In Press.

[14] N. Monmarché, G. Venturini, and M. Slimane. On
how Pachycondyla apicalis ants suggest a new search
algorithm. Future Generation Computer Systems,
16(9):937–946, 2000.

[15] M. A. Montes de Oca, T. Stützle, K. Van den Enden,
and M. Dorigo. Incremental social learning in particle
swarms. IEEE Transactions on Systems, Man, and
Cybernetics – Part B: Cybernetics, 41(2):368–384,
2011.

[16] M. A. Montes de Oca, D. Aydın, and T. Stützle. An
incremental particle swarm for large-scale optimization
problems: An example of tuning-in-the-loop (re)design

of optimization algorithms. Soft Computing, 2011. In
press. DOI: 10.1007/s00500-010-0649-0

[17] M. A. Montes de Oca and T. Stützle. Towards
incremental social learning in optimization and
multiagent systems. In W. Rand et al., editors,
ECoMASS Workshop of the Genetic and Evolutionary
Computation Conference (GECCO 2008), pages
1939–1944. ACM Press, New York, 2008.

[18] S. Pourtakdoust and H. Nobahari. An extension of ant
colony system to continuous optimization problems. In
M. Dorigo et al., editors, Proc. of ANTS 2004, volume
3172 of LNCS, pages 158–173, Germany, 2004.
Springer.

[19] M. Powell. An efficient method for finding the
minimum of a function of several variables without
calculating derivatives. The Computer Journal,
7(2):155, 1964.

[20] M. Powell. The BOBYQA algorithm for bound
constrained optimization without derivatives.
Cambridge NA Report NA2009/06, University of
Cambridge, UK, 2009.

[21] K. Socha. ACO for continuous and mixed-variable
optimization. In M. Dorigo et al., editors, Proc. of
ANTS 2004, volume 3172 of LNCS, pages 25–36,
Germany, 2004. Springer.

[22] K. Socha and C. Blum. An ant colony optimization
algorithm for continuous optimization: application to
feed-forward neural network training. Neural
Computing & Applications, 16(3):235–247, 2007.

[23] K. Socha and M. Dorigo. Ant colony optimization for
continuous domains. European Journal of Operational
Research, 185(3):1155–1173, 2008.

[24] R. Storn and K. Price. Differential evolution–a simple
and efficient heuristic for global optimization over
continuous spaces. Journal of Global Optimization,
11(4):341–359, 1997.

[25] P. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen,
A. Auger, and S. Tiwari. Problem definitions and
evaluation criteria for the CEC 2005 special session on
real-parameter optimization. Technical Report
2005005, Nanyang Technological University, 2005.

[26] K. Tang, X. Yao, P. Suganthan, C. MacNish, Y. Chen,
C. Chen, and Z. Yang. Benchmark functions for the
CEC 2008 special session and competition on large
scale global optimization. Technical report, Nature
Inspired Computation and Applications Laboratory,
USTC, China, 2007. URL:
http://nical.ustc.edu.cn/cec08ss.php.

[27] L. Tseng and C. Chen. Multiple trajectory search for
large scale global optimization. In Proc. of CEC 2008,
pages 3052–3059, Piscataway, NJ, 2008. IEEE Press.

132

http://ab-initio.mit.edu/wiki/index.php/NLopt

	Introduction
	The ACOR Algorithm
	The IACOR algorithm
	IACOR with Local Search
	Experimental Study
	Parameter Settings
	Experimental Results and Comparison

	Conclusions
	Acknowledgments
	References

