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In this article, we analyze the behavior of a group of robots involved in an object retrieval task. The

robots’ control system is inspired by a model of ants’ foraging. This model emphasizes the role of

learning in the individual. Individuals adapt to the environment using only locally available infor-

mation. We show that a simple parameter adaptation is an effective way to improve the efficiency

of the group and that it brings forth division of labor between the members of the group. Moreover,

robots that are best at retrieving have a higher probability of becoming active retrievers. This se-

lection of the best members does not use any explicit representation of individual capabilities. We

analyze this system and point out its strengths and its weaknesses.
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1. INTRODUCTION

Nature is full of examples of animals that can cooperate efficiently in big groups.
Ants are probably the most cited: they can collectively retrieve big prey, adapt
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to the richness of the environment, or find the shortest path to food [Hölldobler
and Wilson 1990]. Other examples are termites that are able to build big and
complex nests, and bees that collectively choose a new location for their nest.
Amazingly, direct communication is seldom observed: these insects use only
locally available information, exploit features present in the environment, and
use indirect communication, for instance stigmergy [Grassé 1959].

Such collective insect behavior tends to be robust in the face of uncertainty
and environmental change. Also noteworthy is the fact that in most cases the
individual group members seem to lack an internal map of the environment.
Nor do the individuals in any sense seem to have a global plan to which they
adhere. Indeed the individuals have a limited knowledge and perception of their
environment. The results of collective insect behavior are usually well beyond
the capabilities of a single insect. The key mechanism at work tends to be that
of self organization [Camazine et al. 2001]. Researchers in the field of Multi-
Robot Systems look with interest at such examples because they might suggest
new ideas for developing robust and adaptive robotic control algorithms. At the
same time, biologists see robotics as a useful experimental tool for checking and
validating their theories [Webb 2000].

In this article, we study the collective behavior of a group of robots, both
real and simulated, performing an object search and retrieval task. The control
algorithm of each individual was inspired by a model of ants’ foraging, devel-
oped while observing the behavior of Pachycondyla apicalis (previously named
Neoponera apicalis). The robots we used for our experiments are quite simple.
They have very limited computational power, they do not communicate with
each other and they are equipped with simple sensors. The sensors are too
simple to allow them to build a map or any other model of the environment.
Nevertheless, we show in this article that they are able to cooperate in order
to increase the efficiency of the group. The control algorithm we use induces
division of labor at the group level. The controller also encourages a selection
mechanism at the group level—robots more suited to the task are more likely to
carry out the task than less capable robots. These results are achieved in a dis-
tributed fashion, without the use of explicit models either of the environment
or of the capabilities of the robots.

This work is part of a larger research agenda. We started from implementing
in real and simulated robots a model of ants’ foraging. This is studied, to the best
of our knowledge, only theoretically in the literature. The first steps, discussed
in this article, are the validation of the theoretical model and the analysis of
its features. Some of the results might be easily foreseen from the model, but
they need a formal validation to be useful. The results of the analysis will then
be used to perform comparisons with similar algorithms that are found in the
literature and eventually to improve and test them in other contexts. These
last steps are ongoing work and are not presented here.

The analytical methodology used in this work makes extensive use of sta-
tistical tools and concepts (e.g., nonparametric tests and the blocking design
of experiments). In fact, our experiments were designed in such a way as to
obtain statistically significant results even when using a limited number of
runs. This is useful especially when experimenting with real robots, a highly
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time-consuming activity. While such concepts are extensively used in other dis-
ciplines, we are aware of very few works that make use of this methodology in
robotics or that at least explicitly mention it. We hope that this article can be an
inspiration for other researchers to improve the efficiency of their experimental
work.

The next section describes the task of our robots. Section 3 fixes some is-
sues with the terminology, Section 4 explains the methods that we used for our
experiments that are reported and discussed in Section 5. Section 6 summa-
rizes related works in the literature, and Section 7 draws some conclusions and
indicates the directions of our future research.

2. THE APPLICATION DOMAIN: PREY RETRIEVAL

The test application we chose for our experiments is object search and retrieval:
a group of robots has to look for objects, termed prey, spread in the environment
and retrieve them to a special area, termed nest. In this article, we refer to
this task as prey retrieval to emphasise the similarity with the corresponding
behavior observed in ants.

Prey retrieval is often used as a model for other real-world applications (such
as toxic-waste cleanup, search and rescue, demining or collection of terrain sam-
ples in unknown environments) and is among the canonical tasks for collective
robotics [Cao et al. 1997]. The main scientific question is whether there is an
actual performance gain in using more than one robot since the task can be
accomplished by a single one [Cao et al. 1997]. Stated in another way, the ques-
tion is whether more robots are more efficient.

There are two components that must be taken into account in a prey retrieval
task in order to measure the efficiency of the group. On the one hand, retrieved
prey may be seen as an income for the group. On the other hand, searching and
retrieving also has drawbacks that can come from dangers in the environment,
from the interferences among robots (such as blocking the way to others, or
collisions that slow down their speed), or from the fact that robots spend energy
while moving. All these are costs for the group.

Income and costs depend on the number, X , of robots that are exploring
the environment. Both income and costs increase with X but not in the same
way. The income saturates when X becomes too high (robots can not retrieve
more prey than their actual number in the environment), but costs potentially
increase without limit. A straightforward definition of efficiency is

η = income
costs

. (1)

We indicate as performance of the group the number of retrieved prey items,
that is, the income.1

1Note that the words “performance” and “efficiency” have been used with different meanings in the

robotics literature. For instance, in some works, performance refers to the time it takes to retrieve

all the prey in the environment, while in others it refers to the number of retrieved prey. The choice

of which definition to use depends, in our opinion, on the particular application the researcher has

in mind: for instance, time is an important factor when considering search and rescue applications,

but the number of collected items is a more interesting measure in the case of spatial exploration.
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We see three possible strategies for increasing the efficiency of a group of
robots performing prey retrieval: increase the income by providing better sen-
sors or better search strategies; decrease the costs, for example, by introducing
communication in order to reduce interference; use an optimal number of robots.

The third strategy, the one that we follow in this article, comes from the
observation that if X = 0, the income is null and so is the efficiency (costs are
never null because they also include the energy spent by the robots in the nest).
When X becomes too high, costs increase faster than income, and the efficiency
tends towards 0. Therefore, there is a value X̂ that maximises η. We refer to
the mechanism that tunes the number of the robots involved in the retrieval
task as division of labor.2

The optimal number of robots can be estimated a priori if the characteristics
of the environment are well known and fixed as done, for instance, by Hayes
[2002]. Otherwise, the group of robots should use some form of adaptation in
order to cope with uncertain and dynamic environments. The robotic litera-
ture already offers algorithms for learning and adaptation (some of them are
described in Section 6), but we are at the moment interested in studying the
properties of the biological model described in the following section.

2.1 A Model of Ants’ Foraging

Although many aspects of ants’ foraging behavior are still under study, we
can summarize its main features as follows [Detrain and Deneubourg 1997;
Hölldobler and Wilson 1990]:

(1) Ants randomly explore the environment untill one of them finds a prey. If
the prey is not too heavy, the ant tries to pull it to the nest; otherwise, it
tries to cut it or to use short or long range recruitment (by spreading some
chemical substance in the environment or going back to the nest while
leaving a pheromone trail).

(2) The prey is pulled straight to the nest (pushing is never observed), both in
the case of individual or collective retrieval.3

(3) After the retrieval, the ant returns directly to the location where it found
the prey.

It has been noted that the foraging behavior of a single ant may be influ-
enced by several factors like age or genetic differences. Among the few authors
that pointed out that learning might play a key role, we refer to the work by
Deneubourg et al. [1987]. They model each ant of the species Pachycondyla
apicalis as an agent that has a probability to leave the nest Pl that changes

2In the robotics literature, the terms “division of labor” and “task allocation” are often used syn-

onymously. We see, however, some important differences in their use. Division of labor is more

typical for bio-inspired studies and the problem is usually “how many robot should perform a sin-

gle task?”. Task allocation is often used in more traditional robotic studies. In this case, there

are many tasks which can be executed by one or more robots and the problem is to find the best

assignment robots/tasks once the robots’ qualities are known (see Gerkey and Matarić [2004]).
3In this article, we consider only the simple case in which one robot can retrieve one prey without

either recruitment of other robots or dividing up (cutting) the prey.
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according to previous successes or failures. If an ant retrieves a prey, its Pl

increases by a constant �. If it spends too much time without retrieving a prey,
its Pl decreases by the same constant. Pl is always kept between a minimum
and a maximum value. They show, through numerical simulations, that this
model can explain the division of labor observed in ants and how the colony is
able to adapt to the environment.

The model that Deneubourg et al. [1987] propose emphasizes the role played
by learning during the lifetime of an individual. No direct communication, not
even signaling, is necessary for the colony to adapt to the environment.

The simplicity of this division of labor model indicates that it might be well
suited for use in the context of group robotics. This is the key idea we study in
this article. We have two goals. To date, the model has only been tested using
purely numerical simulations. Our first goal is, therefore, to subject the model
to further testing in a more real environment. Our second goal is to provide a
deeper level of analysis with a view to identifying the salient features of the
model that can then be reused in other contexts.

3. TERMINOLOGY

There are a few terms that we need to clarify before proceeding with our dis-
cussion. In fact, these terms are used with different meanings by roboticists
and biologists. Moreover, some of the definitions are still a subject of debate
in the research community. It is out of the scope of this work to argue for one
definition or another: here we limit ourselves to clearly stating what we mean
when we use these terms in this article.

We have so far used the word “learning” only when discussing ants. For
a biologist, learning is in fact a behavior observed in animals. It produces a
“durable modification of [another] behavior in response to information acquired
from specific experiences [within a given time scale]” [Alcock 1995]. Researchers
in robotics tend to associate learning with Reinforcement Learning (RL), a field
which studies “how to map situations to actions so as to maximise a numerical
reward signal” [Sutton and Barto 1998].4 As the setup for our experiments and
the algorithm we study are far simpler than those typically studied in RL, we
use the term “adaptation”, which seems more appropriate and avoids confusion.

In this article, we use the concept “indirect” communication, but unfortu-
nately there is still a lot of debate on how to define and classify the different
forms of communication. By indirect communication, we mean that there is
nothing in the robots’ controller that an observer can interpret as an act of
transmitting information to other robots. In our experiments, robots use nei-
ther wireless communication nor signaling. Nevertheless, they do communicate
by modifying the environment, for instance, by retrieving a prey.

It might also be argued that what we show is more a form of “specialization”
than of division of labor. The former has indeed a meaning in biology that is
different from what we show in Section 5.2, but we use it in a robotics context to
refer to the process of tuning the number of robots performing a task. Moreover,

4RL is in fact a particular mechanism of implementing learning in the biological meaning.
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some of the definitions given for specialization5 imply some form of individual
adaptation (behavioural or physical) in order to better perform a task. This
is not what we show either: some of our robots will perform a task more and
more often. However, how well the individual robot performs the task does not
change.

4. METHODS

This section describes the tools and the methodology that we used in our ex-
periments. Before doing so, we briefly explain the rationale behind our choices.
We used two different set-ups: real robots, built with Lego MindstormsTM, and
simulated s-bots.6 This choice was driven by the concepts explained later and
by the tools available at the time of experimentation.

Different set-ups allow us to draw conclusions that are less dependent on par-
ticular experimental conditions and that are potentially more generally valid.
The conclusions have a more qualitative than quantitative nature, given that
different platforms with different characteristics are compared.

As we wrote previously, we need to validate a theoretical model. Real robots
are preferable for this purpose in order to avoid erroneous validation due to ill-
chosen simulation models or parameters. Once we know that the model is valid
through experiments with real robots, we can use simulation after verifying it
against the empirical evidence brought by the real robots. The advantage of
simulation is that it speeds up analysis because it can produce more data in
shorter time.

We designed the experiments in order to exploit the best characteristics of
each set-up. With real robots, we validate the theoretical model and define the
path for further analysis. With simulation, we first crosscheck the results with
those obtained with real robots before continuing with more in depth analysis.

4.1 Real Robots

The robots, which we call MindS-bots (Figure 1(a)), were built using Lego Mind-
stormsTM. The CPU is a Hitachi H8300-HMS 1MHz, with 32Kb for both the
operating system and the user program. Figure 1(a) shows a top view of a
MindS-bot and its sensors. Two light sensors are used to sense prey, which are
black cylinders, and the nest, which is spotted in the experimental arena by a
light above it. Two bumpers are used for obstacle avoidance. The CPU controls
two tracks and a gripper. Random numbers were generated using the random
number generator of BrickOS (the operating system of the robots), which is
“inspired by Press et al. [1992, 279–281].7 Detailed instructions to replicate the
MindS-bot can be found in Labella [2003].

5For example, the following is taken by the Merriam-Webster English dictionary: “structural adap-

tation of a body part to a particular function or of an organism for life in a particular environment”.
6S-bots are small autonomous robots produced within the SWARM-BOTS project [Dorigo et al.

2004; Mondada et al. 2004]. See also the Web site of the project at http://www.swarm-bots.org.
7From BrickOS source code. See http://brickos.sourceforge.net/.
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Fig. 1. The robots, real and simulated, used for the experiments. Left: top view of a MindS-bot.
The circled bricks are light sensors and are used to locate prey and nest. There are two bumpers,

one on the front and one on the back, to avoid obstacles. The gripper is made of two arms that close

by rotating around two vertical axes relative to the MindS-bot (coming out of the picture). Right: an

s-bot. It has simulated light sensors placed around the main circular body and an omnidirectional

camera (not shown in the picture). The frontal parallelopiped is the gripper, which can stick to the

prey for retrieval.

4.2 Simulation

The simulator used for the experiments, named swarmbots3d, was developed
by the members of the SWARM-BOTS project and is described by Mondada
et al. [2004] in more detail. It is a dynamics simulator, based on Vortex,
a commercial dynamics engine.8 It simulates the s-bots, robots that can ex-
plore the environment autonomously and connect to each other whenever the
environmental contingencies require it. Among other features, swarmbots3d can
simulate the s-bots with different levels of detail, ranging from a simple cylin-
der with wheels to a nearly exact replica of the real s-bot. Obviously, the more
detailed the simulation is, the slower it runs. Figure 1(b) shows the model used
in our simulations.

Simulated light sensors placed around the main body and an omnidirec-
tional camera, which has limited perceptual range, are used to locate prey and
nest. Infrared sensors, also around the main body, are used to detect and avoid
obstacles. The simulation of the gripper is somewhat simplified but still func-
tional: the parallelopiped in front of the s-bots can stick and unstick to the prey
by dynamically creating and deleting a joint between the s-bots and the prey.
Random numbers are generated using the Mersenne Twister algorithm in the
implementation of the GNU Scientific Library.9

4.3 Control

Figure 2 depicts the control program both of the MindS-bots and of the s-bots.
Different states are the different phases of prey retrieval, that is, the subtasks
in which the overall prey retrieval task is decomposed. These subtasks are as

8http://www.cm-labs.com.
9http://www.gnu.org/software/gsl/.
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Fig. 2. Sketch of the control system of the robots. The states represent different phases of retrieval

(see text). The labels on each edge represent the conditions under which the robots change state.

The robots start in the Rest state. The transition from Rest to Search (dash-dotted) is based

on the probability Pl. The transition from Deposit to Rest (bold arrow) represents a successful

retrieval (Pl is increased), the one from Search to Return (also a bold arrow) is a failure (Pl is

decreased).

follows:

Search The robot looks for a prey, randomly exploring the environment and
changes direction when it encounters an obstacle. If a prey is found,
the robot grasps it. If a timeout occurs before the robot has grasped
a prey, the robot gives up searching.

Retrieve The robot looks for the nest and pulls the prey toward it.

Deposit The robot leaves the prey in the nest and turns to the point from
which it came (to mimic ants’ behavior).

Return The robot looks for the nest and returns to it.

Rest The robot rests in the nest.

Transitions between states occur when the labels on the edges in Figure 2
are true except the one from Rest to Search which occurs with probability Pl

every second. More details about the implementation of the behaviors are given
in Labella [2003].

4.4 Adaptation

The robots change from Rest to Search with probability Pl each second whose
value is updated during the transitions from Search to Return (henceforth
called failure) and from Deposit to Rest (henceforth called success). The prob-
ability to leave the nest Pl is adapted in a fashion similar to the one described by
Deneubourg et al. [1987] and is shown in Algorithm 1. While Deneubourg et al.
[1987] increment and decrement Pl by a fixed constant �, in our algorithm, � is
multiplied by the number of consecutive successes or failures. Also in our case,
Pl is bounded in the range [Pmin, Pmax].

ACM Transactions on Autonomous and Adaptive Systems, Vol. 1, No. 1, September 2006.
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Fig. 3. Set-up of the experiments. The nest is indicated by a light in the center. The robots in the

nest are resting and not active. The other robots are searching the environment, and one in each

picture has found and is retrieving a prey.

Algorithm 1 Adaptation rule of Pl, the probability to leave the nest. The variables
succ and fail are the number of consecutive successes and failures.

succ ← 0; fail ← 0; Pl ← Pinit;
if success then if failure then

succ ← succ + 1 succ ← 0
fail ← 0 fail ← fail + 1
Pl ← min{Pmax, Pl + succ · �} Pl ← max{Pmin, Pl + fail · �}

fi fi

It is out of the scope of this article to discuss different methods for adapting
Pl, but the origin of the difference between the method studied by Deneubourg
et al. [1987] and ours deserves some explanation. In fact, some preliminary
tests showed that the dynamics of adaptation would have been too slow if
the original algorithm had been used [Labella 2003]. With our modification,
individuals adapt faster, although the experiments with real robots still took
40 minutes each.10

4.5 Experimental Set-Up

For the experiments, we used a circular arena (Figure 3) with a diameter of
2.40 meters. A light bulb is used to signal the position of the nest in the center
of the arena. Walls and floors are white in the experiments with the real robots,
prey are black. The search timeout is fixed to 228 seconds for the MindS-bots
and 71.2 seconds for the s-bots.11 Pmin is set to 0.0015, Pmax to 0.05, Pinit to

10The length of the experiments is generally affected not only by the speed of adaptation, but also

by other factors such as the speed of the robots and how effective their search for prey is. The

latter are in fact the most limiting factors. For instance, the mean time for a MindS-bot to find and

retrieve a prey is nearly 300 seconds. As an approximation, under the hypothesis that there is no

timeout, that the MindS-bot is always successful, and that it never rests in the nest, the average

number of prey retrieved in 40 minutes is 8. Therefore, in each experiment, Pl can be updated a

maximum 8 times.
11These values are the estimated median times needed by a single robot to find one prey when it

is alone in the arena. Notice that these values do not depend only on the speed of the robots, but
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0.033, which correspond to a mean time spent in the nest of approximately
11 minutes, 20 seconds and 30 seconds respectively. � is set to 0.005. Prey
appear randomly in the environment during the experiments. The probability
with which this happens each second is referred to as prey density and changed
between experiments. A new prey is placed randomly in the arena so that its
distance from the center is in [0.5 meters, 1.1 meters]. We chose the values of
these parameters based on some a priori reasoning about the dynamics of the
system. The purpose was to find the set of parameter values that best shows
the effects of adaptation. More detail about the choice of the parameters are
given in Labella [2003].

4.6 Efficiency Index

It is not possible to directly measure the value of η (as given by Equation 1)
because the costs as we defined them are hard to be (or cannot be) quantified.
In fact, they comprise too many factors, some of which are generally unknown.
Therefore, we decided to use the group duty time as an estimate of the costs.
The group duty time is the sum of the time that each robot spent in searching
or retrieving, that is, the time it was on duty. The group duty time is directly
related to the costs: the higher it is, the higher the probability that some robot
gets lost or breaks down, the higher the energy consumption, and so forth. Thus,
as an efficiency index we used

ν = performance
∑

robots duty time
, (2)

where performance is the number of retrieved prey. It is easy to see that if ν

increases, η increases too.

4.7 Experimental Methodology

The results of our experiments are strongly stochastic. The randomness induced
by our particular adaptation algorithm adds to the natural noise coming from
the sensors. The final result of an experiment is therefore a random variable
with an unknown distribution. In order to draw sound conclusions, we need to
give statistical relevance to the results.

Some of the experiments described in Section 5 are designed in order to
identify the impact of varying a single experimental parameter (e.g., adapting
vs. nonadapting robots). The experiments were designed according to the con-
cept of block design [Montgomery 2000]. We generated a set of random instances
before running the experiments. An instance, parametrized by prey density, de-
scribes where and when prey appear in the environment. Then, we tested dif-
ferent set-ups against the same instances. Finally, the results were compared
using preferentially nonparametric statistical tests [Siegel and Castellan Jr.
1988]. This procedure often allows statistical significance to be demonstrated

also on their sensors. The s-bots can detect a prey in their surroundings with the omnidirectional

camera more easily than the MindS-bots which need to have the prey in front of their light sensor

to perceive it.
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Fig. 4. Left: Value of ν (Equation (2)) when Pl is adapted (bottom) and when it is not (top) in the

MindS-bots. Right: relative performance of the adapting and control group (1 on the x axis means

100% of prey retrieved in an experiment). The right and left limits of a box extend from the first to

the third quartile of the distribution of the results. The line in the box shows the median value. The

whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile

range from the box. Circles are considered outliers.

with fewer experiments. This, in turn, greatly speeds up research, especially
when working with real robots.

5. EXPERIMENTS AND RESULTS

We now analyze the effects of individual adaptation on the group of robots. We
focus mainly on three features: efficiency improvement (Section 5.1), division
of labor (Section 5.2) and selection of best individuals (Section 5.3). We also
describe some of the limitations that we observed and these will be used as a
basis for further research.

5.1 Efficiency

5.1.1 Real Robots. We used groups of four MindS-bots chosen out of a pool
of six. The four robots were changed after each experiment.12 Each trial lasted
2400 seconds (40 minutes). We created ten instances with prey density set to
0.006 s−1. We repeated each experiment with a control group made of the same
robots with Pl fixed to 1 and using the same instances.13 Figure 4 summarizes
the results: on the left side are the values of ν for both the adapting and the
control group; on the right side, we show the ratio between the number of re-
trieved prey and the total number of prey that appeared during the experiment.
When the robots used adaptation, there were 2.57 active robots and 2.44 prey
on average in the arena in the period between 1000 seconds and 2400 seconds.
In the control experiments, there were 3.63 active robots and 3.49 prey.

5.1.2 Simulation. The simulation experiments used groups which varied
from 2 to 8 s-bots with increments of two units. The groups were tested with prey
density equal to 0.005 s−1, 0.01 s−1, 0.02 s−1, and 0.04 s−1. We generated fifty in-
stances to be used for each combination of prey density/group size. As a base
result, we also tested a single robot on the same instances. The experiments
lasted 2400 seconds (simulated time). As we did with the MindS-bots, the

12The choice was not completely random but was biased by the status of the MindS-bots after each

experiment. For instance, those with low battery or those which needed some maintenance were

taken out and new ones were added to the group.
13In both original and control experiments, a computer next to the arena signaled to the experi-

menter the time and the position of the new prey.
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Fig. 5. Effects of prey density and group size on the efficiency of retrieval in the simulated s-bots.

The plots report the results of fifty experiments for each prey density (on the x axis), for each

group dimension (different filling of the boxes). Both the x and the y axes use a logarithmic scale.

The horizontal black line shows the median value of the efficiency of one adapting robot tested in

the same conditions as the other groups. The diamonds show the median value obtained in the

control experiments. We show only the median values and not the whole distribution for the sake

of readability of the plot.

experiments were replicated using the same instances but with a control group
that did not use adaptation. The results are summarized in Figure 5 which
reports the final distribution of the values of ν for different combinations of
prey density and group size. Figure 6 reports the final distribution of the per-
formances of the different groups in each environment.

5.1.3 Discussion. The group that uses adaptation is significantly more effi-
cient both in the case of the real robots (after 1400 seconds)14 and of simulation15

(confidence level 95%).
There is no statistical difference in the performances between the two groups

of MindS-bots,16 while in simulation, the control group performs better.17 In
the latter case, the average difference of retrieved prey is 3.4 units, that is, a
negligible amount with respect to the total.18 The group size seems not to have
any effect on the performance of the group, but this is mainly due to the fact

14Sign test for paired data [Siegel and Castellan Jr. 1988, 80-87]: Null hypothesis: ν is the same in

the two colonies. Alternative hypothesis: ν, and therefore the efficiency, improves with adaptation.
15Wilcoxon rank sum test. The null and alternative hypotheses are the same as in footnote 14.
16Permutation test, null hypothesis: the performances are the same. Alternative hypothesis: the

performances are different. The p-value is 0.53.
17Wilcoxon rank sum test. The null and alternative hypotheses are the same as in footnote 16.
18The only exception is for prey density 0.04 s−1 and 2 s-bots, where the control group retrieved on

average 8.9 more prey.
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Fig. 6. Performance of different set-ups in simulation. The x and y axes are in logarithmic scale.

The value plotted is the number of retrieved prey. For the meaning of the boxes and the other

symbols, see Figure 4 and Figure 5.

that the relative number of retrieved prey, that is, the number of retrieved prey
divided by the total number of prey, is on average already close to 1.

Both in simulation and with the real robots, the differences in performance,
if any, are not enough to explain the differences in efficiency. Therefore, the
improvements are due to the decrease of the group duty time. We show in
Section 5.2 that this is achieved by division of labor.

We see in Figure 5 that the gap between the adapting group and the control
group tends to decrease when the prey density increases. This is not surprising
because it is better to use all available robots, as the control group does, in rich
environments. It is important to observe that ν also decreases with the group
also when adaptation is used. One possible explanation is that our adaptation
algorithm is not good at reducing the number of explorers. For instance, if the
optimal number of explorers is 2 for a given prey density, our robots might end
up with 2.5 for a group of 4 s-bots and 3.5 for 8 s-bots. An alternative expla-
nation is related to the way we measure ν, which depends on the group duty
time. The latter depends on the group size. In fact, all the robots in a group
spend some time in searching because none of them can have Pl = 0 (remem-
ber that Pl ∈ [Pmin, Pmax] and Pmin > 0), so each robot contributes to the final
group duty time. These two explanations are not mutually exclusive, but it is
important to test if the first case does occur since this would demonstrate a limi-
tation of our adaptation algorithm. Section 5.2 provides a partial answer to this
issue.

5.2 Division of Labor

We showed that adaptation improves the efficiency of the group. The differ-
ences of the performances in both simulation and hardware when present are
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Fig. 7. (a) Frequency of Pl observed in the MindS-bots 2400 seconds after the beginning of exper-

iments. The two peaks demonstrate the occurrence of the division of labor. 40% of the observations

are above 0.025. (b) Distribution of the number of MindS-bots with Pl > 0.025 observed in each

experiment compared with the theoretical binomial distribution with p = 0.4.

not enough to explain the improvement. Therefore, we deduce that adapta-
tion reduces the group duty time. There are two ways in which the group
can achieve this. In the first case, all robots end up having the same, al-
beit low, Pl so that the mean number of robots in the foraging area is re-
duced. In the second case, only a few robots are active foragers with high Pl

and the others have low Pl. Obviously, the robots with high Pl would spend
more time in searching than the others, therefore we could observe division of
labor.

At any given instant t after the beginning of the experiment, the value of
Pl in a robot is a random variable which has different values for every robot
and every experiment. Whether the group uses division of labor or not can be
observed in the distribution of Pl: in case division of labour occurs, then at the
end of the experiments, the distribution of Pl will have two peaks; otherwise it
will have only one peak.

5.2.1 Real Robots. During the experiments of Section 5.1.1, we recorded
the value of Pl for each MindS-bot in order to estimate the distribution. The re-
sult after 2400 seconds plotted in Figure 7(a), clearly shows two peaks. Figure 8
reports the distribution of Pl over time.

5.2.2 Simulation. We used the data from the experiments of Section 5.1.2
to analyze the effects of group size and prey density on the division of labor.
We observed that the evolution of the distribution of Pl is similar to Figure 8,
for each combination of prey density and group size (data not shown). We also
noticed a wider gap between the two peaks of the distributions.

We classify the robots into three classes: foragers, loafers and undecided.
Foragers are those s-bots whose Pl is bigger than 0.042, while loafers have Pl

lower than 0.007, and the rest are undecided (notice that this last group spans
a range of values for Pl that is five times bigger than the others). Figure 9 plots
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Fig. 8. Dynamics of the observed frequency of Pl in the MindS-bots. The darkness of a cell in

position (t, p) is proportional to the number of MindS-bots with p = Pl after t seconds from the

beginning of the experiment. The relationship is given by the bar on the right. At t = 0, all the

MindS-bots have Pl = 0.033 (see the black stripe on the left). After 1000 seconds the number of

MindS-bots with low Pl drastically increases (see the dark stripe on the bottom). Similarly, after

1500 seconds, the number of robots with high Pl increases, although slowly and reaching a lower

value than that of the loafers (top-right part of the plot).

Fig. 9. Division of labor in the s-bots. Each group of four columns refers to different environments

with increasing prey density. Each bar refers to a group size (see the legend). Each bar is divided

into three parts whose height is proportional to the ratio of robots belonging to the following groups:

foragers (Pl > 0.043) on the top, loafers (Pl < 0.007) at the bottom, and undecided (0.007 ≤ Pl ≤
0.043) in between. For example, if the top part is 25% of the total height of the bar for a group of 8

robots, it means that on average 2 robots were foragers.

the proportions of s-bots belonging to each class at 2400 seconds. The graphs
clearly show a strong division of labor in the colonies. Individuals tend to have
either high or low Pl but seldom values in between.19

19The undecided category spans a broader range of Pl than either the forager or loafer categories.

Note that in Figure 9, therefore, even in cases where the percentages of undecided s-bots is similar

to the percentage of foragers or loafers, the undecided s-bots are still more sparsely distributed

over Pl.
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5.2.3 Discussion. One might object that the right peak of Figure 7(a) could
be the result of a few experiments in which all the MindS-bots happened to
have high Pl. To see that this is not the case, it is enough to look at the num-
ber of MindS-bots with Pl > 0.025 at the end of the experiments and how
this number is distributed. From the data in Figure 7(a), we know that 40%
of the population has Pl > 0.025. Therefore, we expect that the number of
MindS-bots with Pl > 0.025 in each experiment follows a binomial distribution
with p = 0.4. Figure 7(b) shows that the profiles of the theoretical and the
observed distributions are indeed very similar.

The evolution of the distribution of Pl over time (Figure 8) shows that the
MindS-bots with high Pl appear later than those with low Pl (the former at 1500
seconds, the latter at 1000 seconds). It may by hypothesized that the presence of
robots with low Pl are necessary for the group with high Pl to appear. All MindS-
bots start with the same Pl, as can be seen from the black stripe for t = 0 and
0.03 ≤ Pl ≤ 0.035. After some time, some MindS-bots reduce their Pl because
they are not successful (see the black stripes that start at 250 seconds and 500
seconds for Pl = 0.025 and Pl = 0.015), while the others alternate successes
with failures (indicated by the region in the middle of y range that remains dark
till 1500 seconds. The number of MindS-bots in the arena decreases, that is,
there are less competitors for those that managed to keep their Pl high enough.
Less competitors implies more and easier retrievals, which increase the Pl of
the remaining foragers.

As we expected, the ratio of foragers in the s-bot group increases with higher
prey density for a fixed group size. More interestingly, for most prey densities,
the proportions of foragers for groups of six and eight s-bots are nearly the
same, and thus there are on average more foragers in the latter group.20 This
phenomenon could explain the loss in efficiency when increasing the group size
even when s-bots adapt. Because of the particular set-up we used, we could not
test colonies with more than eight individuals: if more robots had been used,
there would not have been room enough in the nest for all of them. We speculate
that the particular rule we implemented, or the set of parameters we used, can
be effective only to a certain extent and that other rules or other parameter
settings could work better in such conditions.

5.3 Best-Individual Selection

The adaptation mechanism we are studying is based only on individual suc-
cesses or failures. If one robot, for any reason, is better than the others for the
task of retrieving, then it will be more successful, and therefore it is more likely
to become a forager. We might, in fact, have come to this conclusion intuitively.
It is still important, however, to validate it experimentally.

Generally speaking, the differences can be artificially created or intrinsic
in the robots. In the first case, for instance, some robots can be intentionally
designed for the task of retrieving, while the others are designed to explore
the environment to find and mark dangerous spots. In the second case, the

20This is true also for prey density 0.04 s−1, where there are on average 4.23 foragers in a group of

8 robots vs. 3.98 in a colony of 6.
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Table I. For each MindS-bot, identified by a unique name, the total number of experiments in

which it was used and the number of times it was a forager (Pl > 0.025) are reported. Data refers

to ten experiment, four MindS-bots per experiment.

ID Tot. Exp. #foragers ID Tot. Exp. #foragers
MindS-bot1 6 5 MindS-bot4 9 4

MindS-bot2 3 2 MindS-bot5 3 0

MindS-bot3 9 1 MindS-bot6 10 4

differences come from the imperfections of the robots’ components which can
never be identical (e.g., one motor that is less powerful than another). Any mech-
anism for division of labor should take into account this type of heterogeneity
of the group.

This section shows that individual adaptation can be effective to select the
best suited individuals for the retrieving task. We want to stress the fact that
the algorithm we are studying does not take into account the presence of other
robots. In fact, a robot neither knows how many nestmates are present nor
whether it is working in a group or alone. There is no explicit model of the
environment or of the robot’s own capabilities.

The MindS-bots are built identically. The only differences come from the com-
ponents. With the simulated s-bots, we artificially introduced some heterogene-
ity. In the following, we are interested in those robots whose Pl is greater than
0.025. Slightly modifying our earlier definition, we refer to them as foragers.21

Given the stochastic nature of the experiments, we can model the fact that a
robot i is a forager at the end of an experiment as a random event.

5.3.1 Real Robots. We took data from the experiments of Section 5.1 where
we use groups of 4 robots selected out of a pool of N = 6 robots. Table I reports
the number of times each MindS-bot was observed to be a forager at the end of
the experiments.

5.3.2 Simulation. We created six different s-bots that differ in their max-
imum speed. More precisely, we set the maximum speed of the first s-bot to
half the speed of the s-bots used in Section 5.1.2 and 5.2.2. The speed of each
of the other five robots was the speed used in Section 5.1.2 and 5.2.2, scaled
respectively at 0.7, 0.9, 1.1, 1.3, and 1.5. The six robots were combined into all
possible colonies of four robots, forming fifteen different groups. Each group was
tested in the same fifty instances randomly created with prey density 0.01 s−1.
The groups were simulated for 2400 seconds, and we counted how many times
each s-bot in each group ended up being a forager. The results are not shown
for reasons of space.

5.3.3 Discussion. If adaptation takes into account differences among in-
dividuals, the probability that each robot becomes a forager at the end of an
experiment either depends on the other robots in the same group or is different

21Note that both with MindS-bots and s-bots the robots are not aware of such concepts as being

a forager or being undecided. These are categories defined a posteriori by us, that is, they are

arbitrary definitions, whose purpose is to help us in the discussion. Therefore, we can modify them,

if this helps to better explain the results of our experiments.
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for at least one robot. Adaptation does not consider differences among robots if
the probability of becoming a foragers is constant for all the robots.

For the MindS-bots, the data in Table I allows us to reject the hypoth-
esis that the probability of becoming a forager is constant with confidence
95%.22 Thus one of the other two conditions can be assumed to be true. Both of
them prove that adaptation considers individual differences for the division of
labor.

This way of proving our thesis might seem complex but it has a great ad-
vantage. It allows us to reach significant conclusions with only 10 experiments.
Consider the simpler approach of testing all possible groups with different in-
stances. It would require 15 experiments (all the combinations of 4 robots out
of 6) for each instance.

A two-way ANOVA test on the data from simulation shows statistically rele-
vant differences both among robots and groups (confidence level 95%); therefore
we can conclude that both individual characteristics and average abilities of the
group are crucial to the selection of the best individuals. Not surprisingly, the
probability of becoming a forager is always higher for faster robots.23

6. RELATED WORK

When working with several robots, interference between them reduces the effi-
ciency of the group [Balch 1999; Goldberg and Matarić 1997]. To reduce interfer-
ence, smarter behaviors can be implemented as in Goldberg and Matarić [1997].
The authors estimate where the interferences occur the most by counting the
number of collisions or manoeuvres to avoid other robots. With this data, they
design a control algorithm that avoids the most problematic zones. Schneider-
Fontán and Matarić [1996] reduce interference by assigning a predefined part
of the arena to each robot and each robot to one particular area.

It is not surprising that cooperation and task allocation are extensively stud-
ied in the robotic literature as a means of reducing the interference problem. Jin
et al. [2003] and Flint et al. [2004] give some examples of distributed control and
task allocation for Unmanned Air Vehicles (UAV). Gerkey and Matarić [2004]
recently proposed a taxonomy of task allocation problems and analyzed some of
the known solutions which use intentional cooperation [Parker 1998]. In these
examples, however, robots have enough information in order to create explicit
models of the environments and of their own capabilities unlike our case.

Our working conditions are more akin to those usually found in swarm
robotics [Dorigo and Sahin 2004] or minimalistic robots as in Jones and Matarić
[2003]. They suggest a method for division of labor when robots have to collect
items of two different types. Their robots collect one type or the other with a
probability that changes according to estimates of the relative number of items
in the environment and of the relative number of robots already focusing on
one type. Krieger and Billeter [2000] show an example of division of labor in a

22χ2 test. Null hypothesis: all the probabilities are equal. Alternative hypothesis: there is at least

one robot with different probability.
23Paired Wilcoxon tests among the data for each robot, applying Bonferroni correction for multiple

tests.
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group of robots using the activation-threshold model [Bonabeau et al. 1996]. The
thresholds of the robots are assigned at the beginning and do not change during
the experiments. Their work is interesting because it is one of the first showing
that complex group behavior can be produced using simple control algorithms.

Among the works that use adaptation or learning, we would like to highlight
a few which show some similarity with our work. In the L-ALLIANCE frame-
work [Parker 1998], each robot has a set of behaviors associated with each task.
Two values, impatience and acquiescence, are associated with each set. Impa-
tience increases every time a robot is not performing a task, untill it reaches
a particular threshold. Then the robot executes the task, and its acquiescence
starts growing. The robot gives up performing the task when the acquiescence is
too high. Individual impatience and acquiescence rates of growth are adjusted
by each robot according to their experience and to the information coming from
other robots. The system can, however, work without communication.

Ijspeert et al. [2001] showed how robots can collaborate in order to pull a
stick out of a hole without using communication. The behavior of the robots is
characterised by a gripping time parameter (GTP) which sets the time to wait
for help from other robots. Li et al. [2004] proposed an adaptation algorithm to
adjust the GTP in order to improve the collaboration rate. They tested it only in
simulation and in an extended version of the problem where k robots are needed.
Their algorithm works by incrementing (or decrementing) the GTP by a variable
value. Both local information (i.e., the rate of personal successful collaborations)
and global information (i.e., the swarm collaboration rate evaluated globally
and broadcast to all the robots) are used by each robot to decide how to modify
the GTP.

Agassounon et al. [2004] propose an architecture, based on the threshold
model to allocate workers in a puck clustering application. Their algorithm is
also characterized by a time constant, that is, the time spent without finding
a puck to transport. If this time expires, a robot returns to the nest and does
not exit any more. They use a form of adaptation which consists of estimating
the density of pucks at the beginning of the experiment and setting the time
constant accordingly.

The three works described show some fundamental differences with respect
to ours. Unlike L-ALLIANCE, our approach neither needs intentional commu-
nication nor a model of other robots. Unlike the two other works, our actions
are not deterministic. It is still an open question whether the other adaptation
algorithms differ from ours in terms of performance or efficiency. Unfortunately,
the applications used by the authors and the set-ups are too different to draw
any scientifically sound conclusion.

7. CONCLUSIONS

We implemented and analyzed an algorithm for division of labor which is in-
spired by a model of ants’ foraging. The model stresses the role that learning
plays in the collective behavior of ants’ foraging. A simple form of adaptation
which occurs in each individual and which uses only information locally avail-
able can improve the efficiency of a group of robots. Efficiency improves by
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means of division of labor which implicitly takes into account heterogeneity
among robots. The robots do not need to communicate with each other, and, in
fact, their control algorithms do not need to know how many other robots, if
any, are present.

We are convinced that our work can be useful both for biologists and roboti-
cists. Biologists tend to downplay the importance of learning in collective behav-
iors. Many biologists still think that complex phenomena (like prey retrieval)
must imply some form of communication or some form of social hierarchy. Our
work is a strong argument against this point of view. Roboticists can take advan-
tage of the methodology that we used. For instance, to the best of our knowledge,
very few works exploit (at least explicitly) control groups for the statistical as-
sessment of hypotheses. In this way, we obtained statistical significance with a
few experiments.

We also pointed out some limitations of our adaptation algorithm. We showed
the negative effects of group size on the global efficiency and noticed that the
ratio of foragers seems to reach a fixed value for some prey density. We also
note that adaptation occurs quite slowly (the experiments with MindS-bots
took forty minutes). This still might not be a problem if the group is designed
to work for a long time as in the case of planetary explorations.

Future work will try to identify the causes of the problems in order to improve
the efficiency of the group and the division of labor. We will also compare our
approach with similar ones like those described in Section 6. The comparison
will be done by porting the different algorithms to a common application and
by analyzing the result in the same way as we did in this article. Hopefully, we
will be able to determine if different algorithms yield different results and, if
so, their strong and weak points are.

Finally, another future research line will investigate the effect of combining
our adaptation algorithm with signaling and more complex communication.
We expect that the the group will be more efficient, although it is an open
question whether communication and adaptation will interact synergically or
destructively. The results will integrate the conclusion already given by Balch
and Arkin [1994] who considered only the effect of communication on the group
performance.
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