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Abstract Ant-based clustering and sorting is a nature-inspired
heuristic first introduced as a model for explaining two types of
emergent behavior observed in real ant colonies. More recently,
it has been applied in a data-mining context to perform both
clustering and topographic mapping. Early work demonstrated some
promising characteristics of the heuristic but did not extend to a
rigorous investigation of its capabilities. We describe an improved
version, called ATTA, incorporating adaptive, heterogeneous ants,
a time-dependent transporting activity, and a method (for clustering
applications) that transforms the spatial embedding produced by the
algorithm into an explicit partitioning. ATTA is then subjected to the
most rigorous experimental evaluation of an ant-based clustering and
sorting algorithm undertaken to date: we compare its performance
with standard techniques for clustering and topographic mapping
using a set of analytical evaluation functions and a range of synthetic
and real data collections. Our results demonstrate the ability of
ant-based clustering and sorting to automatically identify the number
of clusters inherent in a data collection, and to produce high quality
solutions; indeed, we show that it is particularly robust for clusters
of differing sizes and for overlapping clusters. The results obtained
for topographic mapping are, however, disappointing. We provide
evidence that the solutions generated by the ant algorithm are
barely topology-preserving, and we explain in detail why results
have—in spite of this—been misinterpreted (much more positively)
in previous research.
1 Introduction
The large volumes of data arising today in fields such as bioinformatics and electronic document
retrieval exemplify a trend that is occurring throughout our knowledge economy. Novel technol-
ogies (such as the Internet in document retrieval, microarray experiments in bioinformatics,
physical simulations in scientific computing, and many more) give rise to enormous warehouses of
data, which can only be handled and processed by means of computers. While the ever-increasing
storage and speed of computers facilitate this trend, it nonetheless relies upon a continuous
development in database technology and information processing techniques. The automatic analysis
of data and their lucid presentation to humans is crucial in this context, as it is only when the data
are interpreted that they become meaningful and can provide new knowledge and insight. The
research field addressing these major challenges is generally referred to as data mining. In the
following, we focus on two subproblems encountered in data mining, namely cluster analysis and
topographic mapping.
Artificial Life 12: 35–61 (2006)
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Cluster analysis is concerned with the division of data into homogeneous groups such that data
within one cluster are similar to each other, and those within different clusters are dissimilar.
Clustering methods have been studied for many years, but they continue to be the subject of active
research. Due to this, many clustering methods are available nowadays, differing not only in the
principles of the underlying algorithm (which determine running-time behavior and scalability)
but also in other characteristics, such as the types of attributes handled or the shapes of identifiable
clusters. To date, the four main classes of clustering algorithms are partitioning methods, hierarchical
methods, density-based clustering, and grid-based clustering. For an extensive survey the reader is referred
to [15].

Algorithms performing topographic mapping go one step further than those for mere clustering.
They are not limited to the detection of homogeneous groups within the data, but aim to capture
neighborhood relations within a two-dimensional (or possibly three- or higher-dimensional)
visualization of a high-dimensional data space. This is realized by pinpointing additional information
in the form of (1) relationships between individual clusters and (2) relationships between data
belonging to the same cluster. In this sense, a kind of sorting of the data in two (or more) dimensions
is obtained.

In the literature the resulting topographic maps are also termed neighborhood-preserving, topological,
topolog y-preserving, ordering, or systematic maps. We can distinguish between two main types of
algorithms used for producing topographic maps. On the one hand, there are theoretically well-
founded and mathematically exact algorithms, which are usually based on the explicit computation of
a mapping from data space to map space. Unfortunately, these techniques do not necessarily
generate the most visually informative representation and may often be computationally expensive.
On the other hand, there are approximation methods that gradually improve an optimization
criterion (either implicitly or explicitly). Even though the latter can be prone to suboptimal solutions,
they have been shown to perform well in many applications. For a discussion of different algorithms
for topographic mapping see [3].

Ant-based clustering and sorting—the focus of our work—is a local, distributed heuristic that has
been applied to both of the above tasks: clustering [26] and topographic mapping [23, 18, 21, 20, 13,
14, 27]. Indeed, some works claim that, like self-organizing maps, ant-based clustering and sorting is
capable of performing both of these tasks simultaneously [22, 20]. The analyses of the algorithm’s
performance undertaken to date, however, do not fully support these claims. Experiments on
artificial data have been restricted to very few and simple toy problems. The evaluation of the results
on these data has mostly been based on visual observation, and very little experimental evaluation has
been carried out. On the contrary, those experimental results that are available tend to raise doubts
concerning the heuristic’s suitability for topographic mapping [13]. The reported experiments on real
data are similarly limited and have been subject to even less experimental evaluation. Finally, for both
artificial and real test data, there have been no convincing comparisons with alternative methods.

In an effort to close this gap, it is the main goal of this work to evaluate thoroughly the
performance of ant-based clustering and sorting, and to compare it with a number of standard
techniques for both clustering and topographic mapping. We make this evaluation not on the basic
algorithm, but on a much-improved version, called ATTA, which we present in detail here. This
algorithm remains faithful to the underlying principles of ant-based clustering and sorting, but
introduces a number of modifications that are crucial to its experimental evaluation. In particular, the
changes improve the spatial separation of the clusters, and enable the algorithm to be run robustly
over a range of data sets.

To obtain a thorough understanding of all aspects of the capabilities of ant-based clustering and
sorting, we employ a range of artificial and real test data. These enable us to, respectively, control
different properties of the data sets and verify the overall performance on realistic benchmarks. In
each case, we employ a number of selected evaluation functions to give a precise picture of the
performance achieved by ATTA and by the algorithms against which we compare it, on these data
sets. Some of the results on the clustering performance of our algorithm have been previously
reported in [11, 12] in a less complete form.
Artif icial Life Volume 12, Number 136
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The remainder of this article is structured as follows. Section 2 summarizes the basic concepts of
ant-based clustering and sorting and gives a survey of previous research in this field. Section 3
describes the improved algorithm used in this article, giving an account of each modification made
and the advantage it confers. We present a version of the algorithm that returns an explicit
partitioning of the data so that clustering results can be unambiguously obtained. In preparation for a
thorough experimental evaluation of the algorithm, we also present a scheme to derive parameter
settings across arbitrary data sets. We then proceed to describe our evaluation and comparative study.
In order to study the algorithm’s performance in clustering and topographic mapping, each in
isolation, the evaluation has been divided into two parts. First, in Section 4, we present the
algorithms, evaluation functions, and test data used for clustering and discuss the results obtained.
Subsequently, in Section 5, we describe the equivalent for topographic mapping. Finally, Section 6
discusses future work and concludes.

2 Ant-Based Clustering and Sorting

Ant-based clustering and sorting was first introduced by Deneubourg et al. [4] to explain different
types of naturally occurring emergent phenomena. It is an instance of the broad category of ant
algorithms [5], that is, algorithms that model some behavior observed in real ants.1 In the case of ant-
based clustering and sorting, two related types of natural ant behavior are modeled [2]. When
clustering, ants gather items to form heaps, an example of this being cemetery formation (that is, the
clustering of corpses) observed in the species Pheidole pallidula. And when sorting, ants discriminate
between different kinds of items and spatially arrange them according to their properties, a type of
activity that can, for example, be observed in nests of Leptothorax unifasciatus, where larvae are
arranged according to their size.

In their article [4], Deneubourg et al. proposed a continuous model to describe these behaviors.
From this, a discrete Monte Carlo model was derived, which was experimentally validated. In the
computer simulation ants were represented as simple agents, which randomly moved in their
environment, a square grid with periodic boundary conditions. Items that were scattered within this
environment could be picked up, transported, and dropped by the agents. These operations were
biased by the distribution of items within the agents’ local neighborhoods, such that items that were
either isolated or surrounded by dissimilar ones were more likely to be picked up, and then tended to
be dropped again in the vicinity of similar ones. As a result, a clustering and sorting of the items on
the grid was obtained.

Deneubourg et al.’s work [4] mainly aimed at deriving a model applicable to collective robotics,
but it was soon applied to data analysis. Lumer and Faieta [22] introduced a number of modifications
to the model that both enabled the handling of numerical data and improved solution quality and the
algorithm’s convergence time. It was in that article that the ants’ sorting process was for the first time
termed a ‘‘heuristic mapping of a possibly high-dimensional and sparse data set on a plane, in a way
which preserves neighborhood relationships as much as possible,’’ that is, as an approximate
topographic mapping (as opposed to a pure clustering). However, it is our contention that the results
presented in that article, although understandably leading to initial excitement and activity, do not
suffice in demonstrating a true topology-preserving capability. In particular, the analytical measures
used (mean local fit and grid entropy) do not capture the preservation of inter-cluster relationships at
all and reflect only a limited, loose intra-cluster sorting.

Nonetheless, Lumer and Faieta’s [22] work was followed by a number of applications of ant-
based clustering and sorting to topographic mapping—partly motivated by the favorable scaling
properties that result from the algorithm’s local and distributed operation. In several articles the
algorithm’s use for the two-dimensional visualization of document collections in the form of topic
maps [14, 27, 13] and its applicability to graph partitioning [19, 21, 20] were investigated. In one of
1 To date, the metaheuristic Ant Colony Optimization (ACO) [6 –8] is the best-known and most successful algorithm of this type.
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those articles, [20], the Pearson correlation of the dissimilarities between pairs of data in data space
and their respective spatial distances on the grid was measured in order to support the claimed
capability of the ants to generate an isometric embedding. While the results obtained were far from
optimal, the deficit from a perfect correlation of 1.0 was due—it was argued—to the gathering of
‘‘vertices with a small dissimilarity’’ without any further discrimination (that is, merely a result of
defects in highly local topology preservation). In Section 5 we will demonstrate that the implied
assumption of good global topolog y preservation is not generally valid and provide an explanation
for earlier misinterpretations of the evidence arising from the use of the Pearson correlation.

The evaluation of ant-based clustering and sorting in a clustering context has been equally limited.
Only in [26] have both suitable measures and a satisfyingly large test suite been used. However, as the
algorithm studied by Monmarché is a hybridization of the k-means algorithm with ant-based
clustering and sorting (and differs significantly from the latter), the results obtained with this method
are not pertinent to an evaluation of ordinary ant-based clustering and sorting.
3 ATTA: An Improved Ant-Based Clustering and Sorting Algorithm
3.1 Questions of Interest
Previous research on ant-based clustering and sorting has left several questions related to the
algorithm’s performance broadly unanswered, many of which fall into one of the following three
categories.
� Clustering performance. Seen purely as a clustering algorithm, how does the ant algorithm
perform? How do its results compare to those obtained using classical clustering methods
from the data-mining literature? In particular, is the algorithm competitive in its running
time and the quality of its solutions?

� Sorting performance. To what degree is the spatial embedding generated by the ant algorithm
topology-preserving? Are neighborhood relations preserved on a local or a global scale, or
both? How do its results compare to those obtained using classical methods for
topographic mapping from the data-mining literature? In particular, is the algorithm
competitive in its running time and the quality of its solutions?

� Sensitivity to data properties. How robust is the ant algorithm’s clustering and sorting
performance with respect to different data properties? In particular, how strongly is it
affected by the use of high-dimensional and/or large data sets, by increasing overlap
between clusters, or by distinct deviations in the sizes of individual clusters?
The above questions reflect the main issues investigated in our work. In order to undertake a
suitably objective and general analysis of them, a standard implementation of ant-based clustering
and sorting cannot be employed, however. This is because the latter does not: (i) return an explicit
partitioning of data, which would allow clustering solutions to be evaluated without human inter-
vention, or (ii) work robustly with the same parameter settings across different data sets. With regard
to (i), the basic algorithm must be improved so that the embedding generated contains clearly
separated, compact clusters, which can be unambiguously converted into an explicit clustering
solution (or partition) by an automatic process, thereby removing the bias associated with human
interpretation of the embedding. With respect to (ii), we seek an algorithm that is sufficiently robust
that we can define, a priori, how we shall derive the parameters for a given data set, without any need
of exploratory runs.

In this section, starting off with a generic ant algorithm based on earlier work [4, 22, 13], we
introduce a number of modifications that, together, overcome the two problems identified above.
Experimental results demonstrating the importance of individual modifications are not presented in
this article, but can be found in [10].
Artif icial Life Volume 12, Number 138
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The algorithm that we finally arrive at is operationally different in a number of key areas from
previous ant-based clustering and sorting approaches. To differentiate our approach from those, we
call our algorithm ATTA,2 for Adaptive Time-dependent Transporter Ants.

3.2 Basics
A basic, generic ant algorithm derived from the algorithms presented in [4, 22, 13] is described in
Table 1. It begins with an initialization phase, in which #items data are randomly scattered on the
toroidal grid ( line 2); each of #agents agents randomly picks up one datum ( lines 4–5); and each
agent is placed at a random position on the grid ( lines 6–7). Subsequently, the clustering and sorting
phase starts: this is a simple loop, in which one agent is randomly selected ( line 10); it performs a
step of a given stepsize on the grid ( line 11); and it (probabilistically) decides whether to drop its
datum or not ( lines 12–13). In the case of a drop decision, the agent drops the datum at its current
grid position, or, if this grid cell is occupied by another datum, in the immediate neighborhood of it
(the agent locates a nearby free grid cell by means of a random search) ( lines 14–16). It then
immediately searches for a new datum to pick up. This is done using an index that stores the
positions of all free data on the grid: the agent randomly selects one datum i out of the index, jumps
to i ’s position on the grid, and evaluates the neighborhood function f (i ). Based on the value of f (i ),
which provides information on the similarity and density of the data in i ’s local neighborhood, the
agent then (probabilistically) decides whether to pick up i or not. It continues this search until a
successful picking operation occurs ( lines 17–21). Only then is the loop repeated with another
agent. After a predefined number of iterations, the algorithm terminates, and the output is a spatial
embedding of the data on the toroidal grid.

The picking and dropping operations in the algorithm are probabilistic decisions. Their respective
probabilities (given a grid position and a particular datum i ), may be computed using Deneubourg
et al.’s [4] density functions:

ppickðiÞ ¼
kþ

kþ þ f ðiÞ

� �2

; ð1Þ

and

pdropðiÞ ¼
f ðiÞ

k� þ f ðiÞ

� �2

; ð2Þ

where commonly k+ = 0.1 and k� = 0.3, and f (i ) is Lumer and Faieta’s [22] neighborhood function:

f ðiÞ ¼ max 0:0;
1

j2

X
j2L

1� yði; jÞ
a

� � !
: ð3Þ

Here, y(i, j ) 2 [0, 1] is a dissimilarity function defined between points in data space, a 2 [0, 1]
is a data-dependent scaling parameter, and j2 is the size of the local neighborhood L (typically,
j2 2 {9, 25}). The agent is located in the center of this neighborhood, and its radius of perception in
each direction is given by j�1.
2

2 Also the name of a genus of leaf-cutter ant, which transports leaves.
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Table 1. Basic ant algorithm.

1: procedure BASIC_ALGORITHM

/* INITIALIZATION PHASE */

2: Randomly scatter data on the toroidal grid

3: for j = 1 to #agents do

4: i := random_select(free_data_items)

5: pick_up(agent( j), i)

6: g := random_select(empty_grid_locations)

7: place_agent(agent( j), g)

8: end for

/* MAIN LOOP */

9: for it_ctr = 1 to #iterations do

10: j := random_select(all_agents)

11: step(agent( j), stepsize)

12: i := carried_item(agent( j))

13: drop := drop_item?( f (i)) // see equations 2 and 3

14: if drop = TRUE then

15: drop(agent( j), i)

16: pick := FALSE

17: while pick = FALSE do

18: i := random_select(free_data_items)

19: pick := pick_item?( f (i)) // see Equations 1 and 3

20: end while

21: pick_up(agent( j), i)

22: end if

23: end for

24: end procedure

Artif icial Life Volume 12, Number 140
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3.3 Modif ied Neighborhood Function
As a first modification to this generic ant algorithm we introduce a small supplement to the
neighborhood function. We redefine f (i ) as

f �ðiÞ ¼f 1

j2

X
j2L

�
1� yði; jÞ

a

�
if 8j

�
1� yði; jÞ

a

�
> 0;

0:0 otherwise;
ð4Þ

where the constraint 8j ð1� dði; jÞ
a Þ > 0 serves the purpose of heavily penalizing high dissimilarities,

which improves the spatial separation between clusters.
3.4 Short-Term Memory with Lookahead
The clustering process on the grid can be accelerated significantly by the use of a short-term memory as
introduced by Lumer and Faieta [22]. In their approach, each agent remembers the last few carried
data and their respective dropping positions. When a new datum is picked up, the position of the
best-matching memorized datum is used to bias the direction of the agent’s random walk. Here, the
best-matching datum is the one of minimal dissimilarity y(i, j ) to the datum i currently being carried. We
have extended this idea as follows.

In a multi-agent system the items stored in the memory might already have been removed from
the remembered position. In order to determine more robustly the direction of the bias, we permit
each agent to look ahead. An agent carrying a datum i uses its memory to examine all remembered
positions, one after the other. Each of them is evaluated using the neighborhood function f *(i ), that
is, the suitability of each of them as a dropping site for the currently carried datum i is examined.

Out of all positions evaluated, the one of best match is the grid cell for which the neighborhood
function yields the highest value. For the subsequent step of the agent on the grid, we replace the use
of a biased random walk with an agent jump directly to the position of best match. However, this
jump is only made with some probability, dependent on the quality of the match; the same
probability threshold that we use for a dropping operation is used for this purpose (Equation 2 or 6,
as appropriate). If the jump is not made, the agent’s memory is deactivated, and in future iterations it
reverts to trying random dropping positions until it drops the item successfully.
3.5 Increasing Radius of Perception
The size of the local neighborhood perceived by the agents limits the information used during the
sorting process. It is therefore attractive to employ larger neighborhoods in order to improve the
quality of the clustering and sorting on the grid. However, the use of a larger neighborhood is not only
more expensive (as the number of cells to be considered for each action grows quadratically with the
radius of perception), but it also inhibits the quick formation of clusters during the initial sorting phase.

For this reason we use a radius of perception that gradually increases over time. This saves
computations in the first stage of the clustering process and prevents difficulties with the initial
cluster formation. At the same time it accelerates the dissolution of preliminary small clusters.

In the current implementation, we start with an initial perceptive radius of 1 and linearly increase
it to 5 in the end. While doing so, we leave the scaling parameter 1/j2 in Equation 4 unchanged, as
its increase results in a loss of spatial separation.
3.6 Time-Dependent Modulation of the Neighborhood Function
As stated above, the spatial separation of clusters on the grid is crucial in order for individual clusters to
be well defined, enabling unambiguous (automatic) cluster retrieval. Spatial closeness, when it does occur,
is, to a large degree, an artifact of early cluster formation. This is because, early on in a run, clusters will
tend to form wherever there are locally dense regions of similar data; and thereafter these clusters tend
Artificial Life Volume 12, Number 1 41
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to drift only very slowly on the grid. After an initial clustering phase, we therefore use a short interlude
(from time tstart to tend) with a modified neighborhood function, which replaces the scaling parameter
1/j2 by 1/Nocc in Equation 4, whereNocc is the number of occupied grid cells observed within the local
neighborhood. Hence only similarity, not density, is taken into account, which has the effect of spreading
data out on the grid again, but in a sorted fashion; the data belonging to different clusters will now
occupy their own regions on the grid. Subsequently, we turn back to using the traditional neigh-
borhood function. Once again, clear clusters are formed, but they now have a high likelihood of being
generated along the centers of these regions, due to the lower neighborhood quality at their boundaries.

In order to give a better idea of the functioning of this strategy, Figure 1 provides three snapshots
of the spatial distribution on the grid, at different stages in the clustering process.

3.7 Modified Threshold Functions
We also introduce a set of threshold functions that are different from those proposed by Deneubourg
et al. [4] or Lumer and Faieta [22]. The probability for a picking operation is now given by

p�pickðiÞ ¼f1:0 if f �ðiÞ V 1:0;

1=f �ðiÞ2 otherwise;

ð5Þ

and for a dropping operation

p�dropðiÞ ¼f1:0 if f �ðiÞ z 1:0;

f �ðiÞ4 otherwise:
ð6Þ

Equations 5 and 6 have been experimentally derived, but, in order to further clarify their
characteristics, the graphs in Figure 2 compare them with those used by Deneubourg et al. [4]
(with k+ = 0.1 and k� = 0.3).

The new threshold functions make picking operations deterministic for the entire range f *(i ) 2
[0.0, 1.0]. Only for neighborhood values f *(i ) z 1.0 do picking operations become less likely.
Analogously, dropping of data is now completely deterministic for neighborhood values f *(i ) z 1.0.
However, the dropping probabilities in the low-similarity region of the density function are lower,
making this strategy more conservative than the original one (Equation 2).
Figure 1. Spatial distribution on the grid at different stages of the run of our algorithm (with all modifications). (a) After
the initial clustering phase: the clusters touch. (b) After the interlude with the modified neighborhood function: the
clusters have dissolved, with data spread out but remaining sorted. (c) Final result: the clusters are clearly separated.
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Figure 2. Old and new threshold functions. (a) Picking operation. (b) Dropping operation.
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Note that Equations 5 and 6 are quite different from the ones suggested in previous work and are
not appropriate for the basic ant algorithm. They have been experimentally derived for use with our
enhanced version (which includes the short-term memory with lookahead, the increasing radius of
perception, and the interlude with the modified neighborhood function discussed above), for which
they significantly speed up the clustering process. In particular, they have to be seen in the context of
the shift in the range of attainable values f *(i ) resulting from our increase of the radius of perception
(see Section 3.5). In the starting phase of the algorithm, f *(i ) is limited to the interval [0, 1]; the
upper bound, however, increases with each increment of the neighborhood radius, so that, in our
implementation, f *(i ) can yield values within the interval [0, 15] after the last increment.
Consequently, the picking operation is purely deterministic in the beginning, and at this stage it is
solely the dropping operation that favors dense and similar neighborhoods. Gradually, with the rise
of f *(i ), an additional bias towards the picking of misplaced data is introduced. The shift of the
values of f *(i ) combined with the use of the threshold functions p*pick(i ) and p*drop(i ) (Equations 5
and 6) has the effect of decreasing the effect of density on the dropping threshold while
simultaneously increasing its effect on the picking threshold. This results in improved spatial
separation between clusters.

3.8 Parameter Settings
The modifications described above improve the reliability with which clearly separated, compact
clusters are obtained on the grid, which is the prerequisite for automatic cluster retrieval (see
Section 3.9). Our other goal, of setting parameters without the need for exploratory runs, is
addressed in this section.

Several of the parameters of our algorithm can be set independently of the data. These in-
clude the number of agents, which we set to 10; the size of the agents’ short-term memory,
which we likewise set to 10; and the starting and ending times of the interlude with the modified
neighborhood function, tstart and tend, which we set to 0.45 � #iterations and 0.55 � #iterations,
respectively.

3.8.1 Parameters to Be Set as a Function of the Size of the Data Set
A number of other parameters should, however, be selected as a function of the size of the data
set tackled, as they otherwise impair convergence speed. Given a set of size #items, the grid
(comprising a total of #cells grid cells) should offer a sufficient amount of free space to permit
the quick dropping of data (note that each grid cell can only be occupied by one datum). This can be
achieved by keeping the ratio roccupied = #items/#cells constant. A good value, found experimentally,
is roccupied ¼ 1

10. We obtain this by using a toroidal square grid with a resolution of q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 � #items

p
a 

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 � #items

p
a grid cells. The step size of the agents (which they use only if their memory is

deactivated) is set to stepsize ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20 � #items

p
a . Specifically, every step is composed of a horizontal

and a vertical proportion, whose absolute magnitudes sum up to stepsize. Note that the use of such a
large step size speeds up the clustering process.
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The total number of iterations has to grow with the size of the data set. Linear growth proves to
be sufficient, as this keeps the average number of times each grid cell is visited constant. Here,
#iterations = 2000 � #items, with a minimal number of 1 million iterations imposed.
3.8.2 Activity-Based a Adaptation
An issue addressed previously in [13] is the automatic determination of the parameter a (recall that
a is the parameter scaling the dissimilarities in the neighborhood function f *(i )), upon which
the functioning of the algorithm crucially depends. During the sorting process, a determines the
percentage of data items on the grid that are classified as similar: a too small choice of a prevents
the formation of clusters on the grid; on the other hand, a too large choice of a results in the fusion
of clusters that should be separated.

Setting this parameter is not straightforward, as a suitable choice for a is highly dependent on the
structure of the data set. However, an unsuitable value is reflected by excessive or extremely low
sorting activity on the grid. Therefore, an automatic adaptation of a may be obtained through the
tracking of the amount of activity, which is reflected by the frequency of the agents’ successful
picking and dropping operations.

To achieve this, we use a heterogeneous population of agents in which each agent makes use of its
own independent parameter a. All agents start with an a value randomly selected from the interval
[0, 1]. An agent considers an adaptation of its own parameter after it has performed #active moves.
During this time, it keeps track of the number of failed dropping operations, #fail. The rate of failure
is determined as rfail ¼ #fail=#active, where #active is fixed at 100. The agent’s individual parameter a
is then updated using the experimentally derived rule

a p f aþ 0:01 if rfail > 0:99;

a� 0:01 if rfail V 0:99:

The value of the parameter a is kept adaptive during the entire sorting process. This makes the
approach more robust than an adaptation method with a fixed stopping criterion. Also, it allows for
the specific adaptation of a within different phases of the sorting process.

The algorithm defined by the preceding sections—starting with the basic algorithm given in
Section 3.2 (Table 1), and including the modifications described in Sections 3.3�3.7, as well as the
method for deriving parameter settings above, constitutes our improved ant-based clustering and
sorting algorithm, ATTA.
3.9 ATTA-C: Cluster Retrieval
To enable ATTA’s use for pure clustering tasks it is necessary that the two-dimensional embedding
generated by the algorithm be converted into a clustering: that is, an explicit partitioning of the data
set. To achieve this, a version of the algorithm, ATTA-C (ATTA for clustering), which includes an
explicit cluster-retrieval step, was devised.

Methods for retrieving the visually obvious clusters from the grid have been used in some earlier
work. In [25] methods from pattern recognition were employed to identify the size of the clusters on
the grid and to examine their density. In [21] the k-means algorithm was used towards this goal. This
latter approach, however, has the disadvantage that the number of clusters must be specified, which
either requires user interaction (if the visually apparent number of clusters is provided by a human) or
distorts the final results (if it is assumed that the correct number of clusters is identified in all cases).

To avoid these difficulties, we elect to apply instead a clustering algorithm that does not require k,
namely agglomerative hierarchical clustering. This algorithm starts by assigning each datum on the
grid to an individual cluster, and proceeds by merging the two least distant clusters (in terms of their
spatial distance on the grid) in each iteration, until a stopping criterion is met.
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Given compact clusters and a distinct spatial separation between clusters, an agglomerative
algorithm based on the single-link criterion will clearly work very well, and a stopping criterion
for the clustering algorithm can easily be derived. However, as data around the cluster borders
are sometimes slightly isolated (so that they are prone to mislead the single-link metric by estab-
lishing individual clusters or by bridging gaps between clusters), we have introduced an addi-
tional weighting term weight(C1,C2), which encourages the merging of these elements with the
core clusters.

Given two clusters C1 and C2 on the grid and, without loss of generality, |C1| V |C2|, we define
their spatial distance in grid space as

weighted singlelinkðC1;C2Þ ¼ singlelinkðC1;C2Þ � weightðC1;C2Þ:

Here, singlelink(C1, C2) is the standard linkage metric of single link, that is, the minimal distance
between all possible pairs of data elements i and j with i 2 C1 and j 2 C2. In our case, the dis-
tance between two data elements is given by the Euclidean distance between their grid positions. The
factor weight(C1, C2) is a scaling factor taking the relative sizes of the clusters into account:

weightðC1;C2Þ ¼ 1:0þ log10

 
1:0þ 9:0

jC1j
jC2j

!
:

Clearly, weight(C1, C2) is restricted to the range [1, 2].
The radius of perception used within the last phase of the ant-based algorithm reflects the

minimum distance clusters should have on the grid, and therefore provides a suitable stopping
criterion for the agglomerative clustering algorithm. The merging of clusters stops once all the
distances between the clusters have reached a value larger than this radius.
3.10 ATTA-TM: Topographic Mapping
To differentiate between the algorithms for clustering and topographic mapping, we use the
denomination ATTA-TM for the topographic mapping version of ATTA, which differs only in
that it does not include the cluster-retrieval step described above.
4 Analyzing ATTA-C’s Clustering Performance

Having explicitly defined an improved algorithm for ant-based clustering and sorting, ATTA, in the
previous section, we are now in a position to proceed with our performance analysis. In this section,
the clustering performance of ATTA-C is evaluated and compared with three alternative clustering
methods and with one statistical method for the automatic determination of the number of clusters
in the data. A range of synthetic and real data sets, and three distinct analytical evaluation functions,
are used for this purpose. Both the experimental setup and the clustering results are presented in
this section.
4.1 Algorithms for Clustering
As methods for comparison with ATTA-C we select three of the most popular clustering algorithms
from the literature, as well as a statistical method for determining the number of clusters inherent in
a data set. These are, respectively: the partitioning method k-means [24], a hierarchical agglomerative
approach based on the average-link linkage criterion [31], one-dimensional self-organizing maps
(1D-SOM [16]), and the Gap statistic [29].
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While k-means has a favorable (linear) running time behavior, average-link agglomerative
clustering is known for its high quality solutions, so that a comparison against both of them provides
a good basis for judgments on the performance of the ant algorithm. The choice of 1D-SOM was
predominantly motivated by the fact that SOMs simultaneously perform the tasks of clustering and
topographic mapping—exactly the claim made for ant-based clustering and sorting in [20, 22].

Both k-means and 1D-SOM require the a priori determination of the desired number of clusters,
k; for average-link agglomerative clustering an appropriate stopping criterion must be derived. In
order to avoid the introduction of an additional source of variation, we have decided to directly
provide the correct number of clusters, k, to each of the three algorithms, thus giving the same
advantage to each of them. Hence, in our study, ATTA-C is the only clustering algorithm that
automatically derives k from the data. However, in order to evaluate how well this task is performed
by ATTA-C, we also compare it with the Gap statistic, a method not for clustering (as a whole) but
just for determining the number of inherent clusters in a data set. The implementation of these four
competing methods is briefly described below.
4.1.1 k-Means
Starting from a partitioning of the data in k randomly generated clusters, the k-means algorithm
repeatedly ( i) computes the current cluster centers (that is, the average vector of each cluster in data
space) and (ii) reassigns each datum to the cluster whose center is closest to it. It terminates when no
more reassignments take place. By this means, the intra-cluster variance, that is, the sum of squares
of the differences between data items and their associated cluster centers, is locally minimized.

Our implementation of the k-means algorithm is based on its batch version, that is, cluster
centers are only recomputed after the reassignment of all data items. As k-means can sometimes
generate empty clusters, these are identified in each iteration and are randomly reinitialized. This
enforcement of the correct number of clusters can prevent convergence, and we therefore set the
maximum number of iterations to 1000. To reduce suboptimal solutions k-means is run repeatedly
(20 times) using random initialization, and only the best result in terms of intra-cluster variance is
returned.
4.1.2 Average-Link Agglomerative Clustering
As a second method, an agglomerative hierarchical clustering algorithm based on the average-link
linkage metric is used. The algorithm starts with the finest partitioning possible (that is, singletons)
and, in each iteration, merges the two least-distant clusters. The distance between two clusters Ci and
Cj is computed as the average dissimilarity between all possible pairs of data elements i and j with i 2
Ci and j 2 Cj.

Our implementation of average-link agglomerative clustering uses a distance matrix of the
pairwise distances between clusters that is incrementally updated. Initially, this is simply the data set’s
complete dissimilarity matrix. After each merging step this matrix is updated using Ward’s formula:
the fusion of the two clusters Ci and Cj to form cluster Ck requires the computation of the distances
between Ck and each remaining cluster Cl . These distances are given as

yðCk;Cl Þ ¼
jCi j

jCi j þ jCj j
� yðCi ;Cl Þ þ

jCj j
jCi j þ jCj j

� yðCj ;Cl Þ:

The algorithm terminates when the correct number of clusters has been obtained.
4.1.3 One-Dimensional Self-Organizing Maps
SOMs are two-layered unsupervised neural networks that adapt a set of weight vectors to
approximately model the input data. Each of these weight vectors is associated with one of the
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neurons in the neural layer that are arranged in the form of a grid (which is one-dimensional, if
applied to clustering), and are randomly initialized.

During training, individual input vectors
!
x are successively presented to the network, and, for

each of these stimuli, the best-matching unit (BMU)
!
y (that is, the most similar weight vector) and its

local neighbors are determined and updated according to the learning rule

!
w p !

w þ e � hð !
y;jÞð!x � !

wÞ:

Here, e is the learning rate, and hð !
y;jÞ is a neighborhood function (centered around the BMU

!
y ) whose

spread is determined by the parameter j.
Our implementation of 1D-SOM is based on the guidelines given in the description of the SOM

Toolbox [30]. The correct number of clusters, k, is used to set the grid resolution to 1  k
rectangular grid cells; the weight vectors are uniformly randomly initialized. The SOM is trained in
two training phases, a first coarse approximation phase and a second fine-tuning phase. The first
phase starts with a neighborhood size of j1

start = max(1.0, 1
4
k), which is exponentially decreased to

j1
end = max(1.0, 1

4
j1
start ). The learning rate during this phase is e1 = 0.5. The second phase starts with

the final neighborhood size of phase 1, that is, j2
start = j1

end, and continues to decrease it to j2
end = 1.0.

The learning rate in phase 2 is e2 = 0.05. The number of iterations for the two phases is it1 = 10
and it2 = 40, respectively, and in each iteration all data are presented to the SOM in random order.
Finally, in the classification step all data are assigned to the best-matching output neuron. Each
output neuron is interpreted as one cluster.
4.1.4 The Gap Statistic
For the evaluation of ATTA-C’s performance in identifying the correct number of clusters in the
data, we additionally compare against the results returned by the Gap statistic, a recently proposed
automated method for the determination of the number of clusters in a data set [29].

The Gap statistic is based on the expectation that the most suitable number of clusters can be
identified by a significant knee in a plot of the observed clustering quality obtained by an algorithm3

as a function of the number of specified clusters, k. Thus, to compute the statistic, the clustering
problem is first solved for a range of different values of k, and then for each k the resulting
partitioning C = {C1, . . . ,Ck} is evaluated by means of some chosen measure of clustering solution
quality. Most clustering quality measures are, unfortunately, not independent of the number of
clusters; a better evaluation may result only because k is larger or smaller. To overcome this, the Gap
statistic uses a number of reference curves to normalize the quality curve. The purpose of the
reference curves is to estimate, for a range of values of k, the contribution to the observed quality
that arises only from the k-dependent bias in the measure, and not from a particular choice of
k reflecting the true number of clusters in the data.

To implement the method, B reference curves Rb(k) (with b 2 {1, . . . , B}) are computed, which
are the performance curves obtained when the same clustering algorithm is applied, again using a
range of values of k, to B different, uniformly random data distributions (that is, having no clear
cluster structure) of the same size and dimension as the real data set. Using these, the normalized
performance curve (Gap curve) for a quality curve Q(k) is given as

1 XB !

GapðkÞ ¼

B
b¼ 1

log RbðkÞ � log QðkÞ:

3 One in which k is given as a parameter.
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The most suitable number of clusters is then determined as the smallest k such that

GapðkÞ z Gapðkþ 1Þ � skþ1; where sk ¼ sdk

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

B

r
;

and sdk is the standard deviation within the set of the B log-scaled reference points Rb(k).
For our implementation of the Gap statistic we use the above described k-means algorithm and

use the intra-cluster variance (see Section 4.2.3) as the quality measure. We compute the quality
curves for k 2 {1, . . . , 20}, and for each k we generate B = 20 reference curves.

4.2 Evaluation Functions
The clustering results of the different algorithms are compared using three analytical evaluation
measures. The first of these makes use of the correct classification, which is known for all of our test
sets. The other two estimate intrinsic properties of a clustering solution.

4.2.1 The F Measure
The F measure [28] uses the ideas of precision and recall from information retrieval. Each class i (as
given by the class labels of the particular benchmark data set) is regarded as the set of ni items desired
for a query; each cluster j (generated by the algorithm) is regarded as the set of nj items retrieved for a
query; nij gives the number of elements of class i within cluster j. For each class i and cluster j, the
precision and recall are then defined as pði; jÞ ¼ ni j=nj and rði; jÞ ¼ ni j=ni , and the corresponding
value under the F measure is

Fði; jÞ ¼ ðb2 þ 1Þ � pði; jÞ � rði; jÞ
b2 � pði; jÞ þ rði; jÞ ;

where we chose b = 1 to obtain equal weighting for p(i, j ) and r(i, j ). The overall F value for the
partitioning is computed as

F ¼
X
i

ni

n
max

j
fFði; jÞg;

where n is the total size of the data set. F is limited to the interval [0, 1] and should be maximized.

4.2.2 The Dunn Index
The Dunn index [9] determines the minimal ratio between inter-cluster distance and cluster diameter
for a given partitioning. Thus, it captures the notion that, in a good clustering solution, data elements
within one cluster should be much closer than those within different clusters. It is defined as

D ¼ min
c; d2C

dðAc ; Ad Þ
maxe2C diamðeÞ½ �


 �
;

where C is the set of all clusters, the diameter diam(c) of a cluster c is computed as the maximum
intra-cluster distance, and y(Ac, Ad) is the distance between the centroids of clusters c and d. It is to be
maximized.
Artif icial Life Volume 12, Number 148



Ant-Based Clustering and Topographic MappingJ. Handl, J. Knowles, and M. Dorigo
4.2.3 The Intra-cluster Variance
The intra-cluster variance computes the sum of squared deviations between all data and their associated
cluster center, which reflects the common agreement that data elements within individual clusters
must be similar. It is given by

I ¼
X
c2C

X
i2c

yði; AcÞ2;

where C is the set of all clusters, Ac is the centroid of cluster c, and y(i, Ac) is the distance function
employed to compute the deviation between each datum i and its associated cluster center. It is to be
minimized. However, as all other measures used are to be maximized, we will, for ease of
interpretation, use the transformed value I * = 10.0 � I in our boxplots.
4.3 Experimental Data
Two different types of benchmark data sets are used. First, seven real data sets from the Machine
Learning Repository [1], which we summarize in Table 2. Second, a range of two-dimensional
synthetic data sets that permit the modulation of specific data properties.

In the latter, each cluster is described by a two-dimensional normal distribution Nð!A;!jÞ. The
number of clusters, the sizes of the individual clusters, and the mean vector

!A and standard deviation
vector

!j for each normal distribution are manually fixed. In each run of the experiments, a new set of
data is sampled from these distributions. These synthetic benchmarks are variations of Square, a data
set that has been frequently employed in the literature on ant-based clustering and sorting. It is two-
dimensional and consists of four clusters of equal size (250 data each), which are generated by
normal distributions with a standard deviation of 2 in both dimensions and are arranged in a square.
The data sets Square1 to Square7 only differ by the distance between the individual clusters (that is,
the length of the edges of the square), which has values 10, 9, 8, 7, 6, 5, and 4, respectively. They
were generated in order to study the relative sensitivity of the algorithms to increasing overlap
between clusters. In the Sizes1 to Sizes5 data sets, edge length and standard deviation are kept
constant, and instead they differ in the sizes of the individual clusters. In particular, the ratio between
Table 2. Summary of the real data sets from the Machine Learning Repository. N is the total number of data in the data
set, Ni is the number of data for cluster i, and D and C give the dimensionality and the number of clusters, respectively.

Name N Ni D C Type

Dermatology 366 112, 61, 72, 49, 52, 20 34 6 Integer

Digits 3498 363, 364, 364, 336, 364,

335, 336, 364, 336, 336

16 10 Integer

Iris 150 3  50 4 3 Continuous

Wine 178 59, 71, 48 13 3 Continuous

Wisconsin 699 458, 241 9 2 Integer

Yeast 1484 463, 429, 244, 163, 51,

44, 37, 30, 20, 5

8 10 Continuous

Zoo 101 41, 20, 5, 13, 4, 8, 10 16 7 Boolean
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Figure 3. Performance as a function of the distance between the cluster centers on the Square data sets. Mean values over
50 runs. (a) F measure; (b) number of identified clusters.

Ant-Based Clustering and Topographic MappingJ. Handl, J. Knowles, and M. Dorigo
the smallest and the largest cluster increases from Sizes1 (where it is 2) to Sizes5 (where it is
approximately 10). This is used to investigate the algorithms’ sensitivity to unequal-size clusters.

4.3.1 Data Preprocessing
All types of data are subject to a number of preprocessing steps: missing values are replaced by
zeros; the data vectors are normalized in each dimension; dissimilarities between data vectors are
computed using Euclidean distance (for the synthetic data) and cosine similarity (for the real data),
and are normalized to lie within the interval [0, 1].
4.4 Results
We begin by presenting results for the synthetic data sets, focusing on the sensitivity of the
algorithms to two important data properties: degree of overlap of clusters, and differences in cluster
sizes. Results on the real data sets follow on.

4.4.1 Sensitivity to Overlapping Clusters
We study the sensitivity to overlapping clusters using the data sets Square1 to Square7. It is clear that
the performance of all four algorithms necessarily has to decrease with shrinking distance between
the clusters, as points within the region of overlap cannot be correctly classified. It is, however,
interesting to see whether the performance of the individual algorithms degrades gracefully or more
catastrophically, as graceful degradation would indicate that the main cluster structures are still
correctly identified.

Figure 3a shows a plot of the algorithms’ performance (as reflected by the F measure) versus the
distance between neighboring clusters. A number of trends can be observed in this graph. There is
the very strong performance of k-means, which performs best on the first four data sets. The
1D-SOM starts on a lower quality level, but its relative drop in performance is less than that
of k-means: it clearly profits from its topology-preserving behavior, which makes it less sus-
ceptible to noise. Average-link agglomerative clustering, in contrast, has trouble in identifying the
principal clusters and performs quite badly, especially on the data sets with a smaller inter-cluster
distance.

The results of ATTA-C are very close to those for k-means on the simplest data set, Square1,
but its performance drops slightly more quickly. Still, it performs significantly4 better than the average
link on the first five test sets. Also, in spite of the fact that the clusters touch, the ant algorithm
reliably identifies the correct number of clusters on the first five test sets (Figure 3b), and it can thus
be concluded that the algorithm does not rely on the spatial separation between clusters, but distinct
4 Based on tabulated mean and standard deviation values given in [10].
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changes in the density distribution are sufficient for it to detect the clusters. Notice also from
Figure 3b that ATTA-C is significantly better than the state-of-the-art Gap statistic on these data.

For the Square6 and Square7 test data, the performance of ATTA-C drops significantly, as it fails
to detect the four clusters reliably. For the Square6 test set the number of identified clusters varies
between 1 and 4; for Square7 only 1 cluster is identified. However, a plot of the theoretical density
distribution along the edge between two neighboring clusters in this data set puts this failure into
perspective: Figure 4 makes clear that due to the closeness of the clusters, the density gradient is very
weak for the Square6 data, and the distribution of data is nearly uniform for the Square7 data. Notice
that the other three algorithms are not affected by this lack of gradient, because they have been
explicitly provided with the correct value of k.

4.4.2 Sensitivity to Differing Cluster Sizes
The sensitivity to unequal-size clusters is studied using the data sets Sizes1 to Sizes5. Again, we show
the algorithms’ performance on these data sets as reflected by the F measure (Figure 5a).

ATTA-C performs very well on all five test sets; in fact, it is hardly affected at all by the increasing
deviations between cluster sizes. Of its three rivals, only average-link agglomerative clustering
performs similarly robustly. 1D-SOM is very strongly affected by the increase of the ratio between
cluster sizes, and the performance of k-means also suffers. Notice again that the performance of the
Gap statistic is very weak compared to ATTA-C (see Figure 5b).

4.4.3 Summary of the Performance on Real Data
To gain an impression of the average performance of the algorithms on more general data, we
analyze their performance under the different measures on the real data sets. Boxplots [32] for the
results obtained in 50 independent runs are shown in Figure 6. Overall, the picture obtained on these
data sets is far less uniform. No algorithm consistently dominates the others; in particular, a clear
discrepancy can be observed between the ratings returned by the individual measures.
� In contrast to its behavior on the synthetic benchmarks, ATTA-C frequently fails to
identify the correct number of clusters in these data sets. In particular, the number
of clusters determined on the Dermatolog y, the Digits, the Yeast, and the Zoo data sets is
distinctively too low, which seriously affects the values obtained under the F measure
and the intra-cluster variance. In spite of this, the values obtained are the worst only on
one of these test sets (the Digits data), and ATTA-C even shows very good performance
under the Dunn index. These results indicate that the clusters identified by ATTA-C
must correspond to actual structure within the data. Seemingly, the data sets contain cluster
structures on various levels. While several classes in the data are not well separated (either
spatially or by a clear density gradient), more distinct cluster structures can be observed on
a coarser level (that is, there seems to be a clear spatial separation between certain groups of
clusters). ATTA-C only manages to identify these upper-level structures and fails to further
Figure 4. Theoretical density distribution along the connecting line between two cluster centers in the Square5, the
Square6, and the Square7 test set (from left to right). Constructed as the superposition of two one-dimensional normal
distributions with standard deviation 2 and distances of 6, 5, and 4, respectively.
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Figure 5. Performance as a function of the ratio between cluster sizes on the Sizes data sets. Mean values over 50 runs. (a)
F measure; (b) number of identified clusters.
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distinguish between groups of data within them. Our impression of a lack of separation
between some classes of these data is confirmed by both the poor performance of all other
clustering methods and the number of clusters predicted by the Gap statistic, which is
frequently too low (results not shown here; see [10] for the full result tables).

� The results obtained on the Zoo data set reveal a hitherto unnoticed weakness of ant-based
clustering and sorting. Due to the current definition of the neighborhood function, the
algorithm requires clusters to have a minimum size in order to construct stable clusters on
the grid. The Zoo data contain several extremely small clusters (the smallest is of size 5) that
ATTA-C fails to identify and consequently assigns to larger clusters (results not shown).
This results in a poor performance of ATTA-C under the intra-cluster variance (see
Figure 6). While this is a clear limitation of the algorithm, it could possibly be overcome
through the use of a modified neighborhood function.

� The running times of the four algorithms, provided in [10], show that, while ATTA-C is
relatively slow on small and low-dimensional data sets, it has a favorable scaling behavior.
Thus, with an increase in the dimensionality and the size of the data set, it quickly starts to
outperform its rivals. For an increase in the number of data elements, a quadratic rise in
running time can be observed for average link agglomerative clustering, whereas k-means,
1D-SOM, and ATTA-C all scale linearly. On the other hand, only ATTA-C and average
link agglomerative clustering (which can work with a precomputed dissimilarity matrix)
are not affected by a rise in dimensionality.
4.4.4 Discussion
In conclusion, we can say that there are a number of properties that make ant-based clustering and
sorting an interesting candidate as an algorithm for cluster analysis.

It is one of the few clustering algorithms that have the intrinsic capability to identify the number
of clusters, k, in the data. Most other clustering methods (like the considered k-means, average-link
agglomerative clustering, and 1D-SOM) rely on the specification of k as an input parameter. This
requires a priori knowledge or the interaction with another algorithm, which can be problematic, as
current methods for the automatic determination of the number of clusters in a data set are rather
limited (indeed, we have seen here that the Gap statistic is not reliable). On the other hand, the
impossibility of specifying k can also be considered a disadvantage of ant-based clustering and
sorting. In specific applications the user might have precise ideas about the number of clusters to be
identified, and in ant-based clustering and sorting, there is currently no possibility of adjusting the
number of clusters that are to be generated.

As far as the quality of the generated partitionings is concerned, ATTA-C’s robustness with
respect to different data properties is quite impressive. In our comparison, it is the only algorithm to
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Figure 6. Boxplots [32] giving the distribution of F measure, Dunn index, and variance values achieved for 50 runs of each
algorithm on the seven real data sets. Key: ATTA=ATTA-C, AV=average-link agglomerative clustering, KM=k-means,
SM=1D-SOM.
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perform consistently well on all synthetic data sets, whereas k-means, 1D-SOM, and average-link
agglomerative clustering all have their individual problems. Both k-means and 1D-SOM are
significantly affected by differences in the sizes of the clusters, and the performance of average-
link agglomerative clustering strongly decreases with increasing overlap between clusters.

On the other hand, the results obtained on real data also show the limitations of ant-based
clustering and sorting: if cluster structures on several levels exist, it only identifies the upper level
ones. A recursive application of the algorithm on the resulting clusters might be a way—to be tested
in future work—to overcome this problem.
5 Analyzing ATTA-TM’s Performance for Topographic Mapping

Having established an objective evaluation of ATTA-C’s clustering performance in the last section, we
now proceed to study the suitability of ATTA-TM for tasks of topographic mapping. For this purpose,
we select two alternative approximation algorithms to compare against, and we use an additional
randomized approach to obtain a lower bound on mapping quality. Again, three distinct analytical
evaluation functions are used, and we employ the same benchmark data sets as used for clustering.

5.1 Algorithms for Topographic Mapping
From the pool of different approaches to topographic mapping, we select two well-known
approaches: non-metric multidimensional scaling and two-dimensional self-organizing maps.

5.1.1 Non-metric Multidimensional Scaling
Non-metric multidimensional scaling [17] is implemented using a gradient descent method to
(locally) minimize non-metric stress. After an initial random placement of all data close to the origin
of the two-dimensional map, the following iteration scheme starts. At the beginning of each iteration
all data are randomly permuted. One after the other, each datum is then pinned, and the positions of
all other data are shifted (in the horizontal and the vertical direction) with respect to the pinned item.
With datum p pinned, the update of datum i ’s position in the x direction is

dx ¼ �lr � dð p; iÞ � yð p; iÞ
dð p; iÞ � dxð p; iÞ;

where lr is the learning rate, which we set to 0.05, d( p, i ) is the Euclidean distance between the data
in map space, dx( p, i ) is the distance in the x direction between the data in map space, and y( p, i ) is
the dissimilarity between the data in data space. The update dy (in the y direction) is computed
analogously. The algorithm is stopped after 10 iterations have been performed. ( It was empirically
observed that improvements to the mapping rarely occur after the fifth iteration.)

5.1.2 Two-Dimensional Self-Organizing Maps
Two-dimensional self-organizing maps [16] are a straightforward extension of one-dimensional self-
organizing maps. All our implementation details are equivalent to the 1D case (see Section 4.1.3),
except for the use of a square grid with a resolution of q

ffiffiffiffiffiffiffiffiffiffiffiffi
#items

p
a q

ffiffiffiffiffiffiffiffiffiffiffiffi
#items

p
a (that is, the number

of grid cells is equal to the size of the data set tackled).

5.1.3 Lower Bound
A lower bound on map quality is obtained using the known cluster structure of the data. For each
cluster (as described by the class labels), we randomly determine a position on the grid. The data
elements of the individual clusters are then randomly scattered on the grid cells in the close
proximity of the respective grid position (one datum per grid cell only).
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During the generation of the cluster positions, care is taken that clusters have a sufficient spatial
separation: the Euclidean distance between each pair of cluster positions must be at least

ffiffiffiffiffiffiffiffiffiffi
#cells

p
=k,

otherwise one of the colliding positions is regenerated. Here, #cells gives the overall number of grid
cells, and k is the number of clusters in the data set.

It is intuitively clear that the resulting ‘‘mapping’’ is not topology-preserving to any significant
degree, as it does not provide more information than a pure clustering.
5.2 Evaluation Measures
Three distinct analytical measures are used to evaluate the quality of the resulting topographic
mappings. Each of these reflects different aspects of the mapping quality, so that, combined, they
provide an overall picture of the algorithms’ performance.

5.2.1 Overall Pearson Correlation
The Pearson correlation coefficient provides information on the degree of linear relationship between
the distributions of two variables. In the context of topographic mappings it can therefore be
employed to determine the degree to which a mapping preserves a linear relationship between
the distances in data space (described by the distribution X ) and those in map space (described by the
distribution Y ):

P ¼ covarianceðX ;Y Þ
varianceðXÞ � varianceðYÞ :

P takes values in the interval [�1, 1], with 1 signifying perfect positive correlation, �1 signifying
perfect negative correlation, and 0 signifying a complete lack of linear correlation. The Spearman
rank correlation, which is able to capture nonlinear correlations, has also been used. However, as the
results obtained using this measure do not differ significantly from those under the Pearson
correlation, we do not report them here.

5.2.2 Inter-cluster Pearson Correlation
When the real cluster distribution is known, the correlation of the respective distances between
cluster centers in data space and in map space can additionally be computed. This gives insight into
the preservation of global relationships, that is, the relative distances between clusters. We refer to
this measure as the inter-cluster Pearson correlation.

5.2.3 Intra-cluster Pearson Correlation
Similarly, the Pearson correlation can be applied to obtain more detailed information on the sorting
within individual clusters. The correlation coefficient computed for the dissimilarities of the data
belonging to individual clusters provides information about the preservation of more local
relationships. We refer to this measure as the intra-cluster Pearson correlation.
5.3 Results
Extensive experiments carried out on both synthetic and real data permit us to gain an impression of
the algorithms’ strengths and weaknesses. The data sets used were the same as those employed for
our study on clustering, that is, we obtained results on the Square, the Sizes, and the real data sets
from the Machine Learning Repository (see Section 4.4). To further evaluate topology preservation,
we also ran experiments on synthetic, randomly generated data sets of up to 100 dimensions (see
[10]). In each case, 50 independent runs of each algorithm were performed. Tables giving the mean
value and standard deviation for each of our three measures for all algorithms and data sets can be
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found separately in [10]. Here we provide representative plots and a summary table only. In the
following, we discuss our main findings.
5.3.1 Summary of the Performance on Synthetic and Real Data
� In all of our experiments, multidimensional scaling shows very strong performance, and it
is the clear winner under all of the measures that reflect the preservation of global
relationships in the data, that is, the overall Pearson correlation and the inter-cluster
Pearson correlation. For the two-dimensional data (for example, the Square data sets; see
Figure 7a), where no topological defect needs to occur, all correlation values are close to the
maximum value of 1.0, and a scatterplot of the distances in data space versus those in map
space reveals that distance ratios are nearly perfectly preserved (see Figure 8a). With an
increase in dimensionality both global and local topolog y preservation do suffer, however.
(See Table 3 and [10] for the full result tables.)
Figure 7 . Results (mean and standard deviation over 50 runs) under the correlation measures for the Square data sets: (a)
multidimensional scaling, (b) 2D-SOM, (c) ATTA-TM, (d) the random lower bound.
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Figure 8. Scatterplots of the distances in data space versus those in map space for a solution generated on the Square1
data set by (a) multidimensional scaling, (b) 2D-SOM, (c) ATTA-TM, (d) the random lower bound.
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� While MDS clearly preserves local topolog y to a significant degree, it is, in this
respect, repeatedly outperformed by the 2D-SOM for high-dimensional data. When
looking at the correlation values obtained by 2D-SOM (see Figure 7b), it is notable
that the overall correlation and the intra-cluster correlation coincide almost perfectly:
the overall Pearson correlation obtained is a result of local topology preservation
only. The value of the inter-cluster correlation confirms this. Even for two-dimensional
data (where no topological defect would need to occur), its average value is close
to 0 with an extremely high standard deviation, showing that cluster positions are
determined virtually at random.
Table 3. Mean intra-cluster correlation values for the algorithms over groups of the data sets: all the real data, all the Sizes
data, all the Square data, and the 10-dimensional and the 100-dimensional synthetic data.

Group MDS SOM ATTA-TM Lower bound

Real 0.8322889 0.5127919 0.4099512 �0.0211883

Sizes 0.9936002 0.5128746 0.2277882 �0.0005318

Square 0.9980671 0.6015531 0.3285400 �0.0014220

10D 0.6438175 0.5598625 0.0159658 0.0000151

100D 0.3703910 0.5629750 0.0108312 0.0006323
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� These results are in accordance with the particular focus of the two methods, MDS and
2D-SOM. While MDS trades off global and local topolog y preservation, 2D-SOM is
primarily concerned with the optimization of local topology. While it could be argued that
local topology preservation might induce topology preservation on a more global scale, our
experimental evaluation shows that this is not the case. Consequently, 2D-SOM is quite far
from achieving perfect preservation of distance ratios even for two-dimensional data (also
see the scatterplot in Figure 8b). It has the advantage, however, that due to its focus on
local topology, it seems to cope much better with a rise in dimensionality (see Table 3).

� ATTA-TM never achieves an overall Pearson correlation to match MDS. The values it
obtains are, however, reasonably high (up to a mean value of 0.798703 achieved on the Iris
data set). This is in agreement with the results reported by other researchers [20] leading
them to claim that the algorithm exhibited topology-preserving behavior. However, these
results are strongly at odds with those obtained under the measures of intra- and inter-
cluster correlation. The local topology preservation of the ant-based algorithm amounts
only to a weak sorting (see Table 3, where intra-cluster correlations are summarized).
Similarly, the global topology preservation is weak: the average inter-cluster correlation is
often very low with large standard deviations, indicating a random placement of the clusters
(analogously to 2D-SOM). Scatterplots of the distances in map space versus those in
data space give an additional idea of how poor the topology preservation really is
(see Figure 8c).

� Running times (provided in [10]) show that the ant-based algorithm has a favorable (linear)
scaling behavior in comparison with its rivals, which are both quadratic in the number of data.
5.3.2 The Pitfalls of the Pearson Correlation
The discrepancy observed between the overall Pearson correlation, the inter-cluster correlation, and
the intra-cluster correlation obtained for ATTA-TM seems particularly strange, in that one might
assume that inter- and intra-cluster correlation make up the overall correlation value. Our results
show that this is not necessarily true.

The high overall correlation values obtained for ATTA-TM primarily emerge as an artifact of the
preservation of cluster memberships and the clear spatial separation between clusters on the grid:
this ensures that small distances in data space are matched by small distances in map space and,
similarly, large ones are matched by large ones. Such a matching of extremes without any more
precise discrimination is enough to yield reasonably high overall correlation values, particularly on
data sets with large inter-cluster distances.
5.3.3 Is Ant-Based Clustering and Sorting Better Than Random Cluster Mapping?
In order to demonstrate the above more clearly, that is, to show that a high Pearson correlation value
can emerge purely as a result of clustering and no sorting, we evaluate the mappings generated by
our lower bound method. Recall that this method generates an embedding that preserves cluster
memberships, but randomly positions the clusters and performs no sorting within individual clusters.

When we look at the scatterplots obtained for both ATTA-TM and the lower bound method,
clear similarities can be observed (compare Figure 8c and Figure 8d). Experimental evaluation
reveals that the Pearson correlation obtained for the lower bound is almost as high as that for
ATTA-TM. This is the case for most data sets, except for a number of the real data benchmarks
where the correlation values obtained by random cluster mapping are close to zero. The latter seems
to be an indication that at least some of the classes in these data are spatially not (well) separated, so
that their mapping to spatially well-separated clusters has a negative effect on the overall correlation.
By comparison, the high correlation values obtained for ATTA-TM show that those clusters
identified by the ant algorithm correspond to distinctive structures within the data (recall from the
previous section that ATTA-C frequently discovers a too low number of clusters on the real data).
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5.3.4 Data Dependence
One may observe that, differently from MDS and 2D-SOM, the performance of ATTA-TM varies
significantly as a function of the data set tackled. In particular, the results obtained under the intra-
cluster and the inter-cluster correlation are far from uniform across the range of data sets.
Particularly interesting trends can be seen on the Square data sets.

First, the inter-cluster correlation differs for different degrees of overlap between the clusters (see
Figure 7c). Recalling the clustering results presented in Section 4.4, we can understand this
phenomenon more clearly. We have seen that, for the Square6 and the Square7 data sets, the density
gradient is not sufficient for ATTA-TM to identify individual clusters, and the algorithm therefore
gathers all four clusters in a single cluster on the grid. Nonetheless, visual representation of this
resulting cluster shows a rough sorting of the data elements into four distinct regions, which are
sorted in the correct order. This is the reason for the high inter-cluster correlation obtained on these
data. In contrast, on data in which the clusters are actually identified and separated on the grid, the
locations of the centers is random; hence the inter-cluster correlation measure is lower and has a
higher standard deviation.

Secondly, distinct variation in the intra-cluster correlation can also be observed (see Figure 7c). In
particular, it increases with increasing overlap between clusters. This effect is caused by the change in
distance ratios: the maximum distance found between elements decreases relative to the distance
between elements belonging to the same cluster. This permits the ant algorithm to obtain a better
intra-cluster sorting, as it succeeds in distinguishing more precisely between gradations in distance.

5.3.5 Discussion
In conclusion, we must state that we do not find ant-based clustering and sorting to be a satisfactory
method for topographic mapping. Its capacity both for intra- and for inter-cluster sorting is very
limited and unreliable, and it therefore does not prove to be competitive with the established
methods of MDS and 2D-SOM. (That these results apply equally to more basic versions of ant-
based clustering and sorting can be deduced from results given in [10], where it is shown that both
intra- and inter-cluster Pearson correlation have been improved by the modifications made to the
basic algorithm.) In particular, our results indicate that the overall Pearson correlation is unreliable as
a means of characterizing topology preservation, unless great care is taken with it. This observation
explains why earlier work on ant-based clustering and sorting reported that it exhibited topology-
preserving properties, whereas we find little evidence for such behavior. Using the measures of intra-
and inter-cluster correlation, and a comparison with random mappings, we have been able to
distinguish true topology preservation from mere clustering. We find the latter a more realistic
explanation for the high values of Pearson correlation reported in the literature.
6 Conclusion

In the preceding sections we have presented the key issues and insights resulting from our work with
ant-based clustering and sorting, which we hope will serve to answer some of the open questions
about the approach. The main goal of this work has been to determine the true potential of ant-
based clustering and sorting in data-mining applications. To achieve this, and to advance the state of
the art in ant-based clustering and sorting, we have presented an improved version of the heuristic,
called ATTA, which incorporates improvements leading to gains in efficiency, robustness, and
overall solution quality.

The extensive evaluation and comparison of ATTA we have carried out seems to indicate that
the use of ant-based clustering and sorting for clustering tasks is indeed justified. In cases where
the number of clusters in the data is not known, the application of the heuristic is particularly
promising. However, as far as topographic mapping is concerned, we would advise against its
use, as much better methods exist for this purpose. (Its sole advantage seems to be a linear running
time.)
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There are a number of directions in which research on ant-based clustering and sorting can be
continued. Indeed, we are convinced that there is still room for improvement of the algorithm itself,
though it will become increasingly difficult to obtain more than marginal performance gains. In our
opinion, the hybridization of the algorithm with alternative clustering methods might therefore be a
more rewarding and promising line of research.

Finally, we find it particularly interesting to reflect on, and in future to analyze, the working
principles that ant-based clustering and sorting shares with other clustering methods. For example,
one can regard ant-based clustering and sorting as a randomized partitioning method with a cluster
representation based on representative point sets. Unlike in other clustering algorithms, this point set
is not fixed but constantly being resampled. Ant-based clustering and sorting also has certain
similarities with density-based methods; in particular, the scaling parameter a plays a role similar to
the density thresholds in density-based clustering. Studying the algorithm’s working principles in
more detail remains a fascinating prospect and might yield a slimmer version of ant-based clustering
and sorting that incorporates the algorithm’s essential mechanisms only.
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