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CHAPTER 6 SWARM-BOT:
DESIGN AND IMPLEMENTATION OF COLONIES

OF SELF-ASSEMBLING ROBOTS

Marco Dorigo, Elio Tuci, Vito Trianni, Roderich Groβββββ,
Shervin Nouyan, Christos Ampatzis, Thomas Halva Labella,
Rehan O’Grady, Michael Bonani, and Francesco Mondada

Recently, there has been a growing interest in multi-robot systems. This interest is
motivated by the fact that inherent parallelism and redundancy make multi-robot sys-
tems more robust than single robot systems. Furthermore, a multi-robot system can be
versatile enough to generate the different structures and functions required to under-
take missions in unknown environmental conditions. Research in autonomous multi-
robot systems often focuses on mechanisms to enhance the efficiency of the group
through some form of cooperation among the individual agents. In the SWARM-BOTS
project, the results of which are summarized in this paper, we investigated an innovative
cooperation mechanism based on the self-assembly capabilities of the s-bot, a robot that
we designed and built.
     Self-assembly is the mechanism whereby a group of mobile robots autonomously
form physical connections with one another. Self-assembly can allow a group of agents
to cope with environmental conditions which prevent them from carrying out their task
individually. For example, robots designed for all-terrain navigation could self-assemble
when navigating in particularly rough terrains to reduce the risk of toppling over, or to
reduce the risk of falling into holes larger than the body of a single robot. When required
to transport an object, a group of self-assembled robots might be capable of pushing/
pulling an object which, due to its characteristics (e.g., mass, size, shape), cannot be
transported by a single robot.
     Despite the relevance of self-assembly in the domain of multi-robot systems, progress
in the design of control policies for self-assembling robots has been slow and fraught
with difficulties. Excluding the work presented here, there are no other examples of self-
assembling robots in which more than two autonomous mobile units managed to ap-
proach and connect with each other.
     Self-assembly is likely to play a key role in multi robot systems of the future. Despite
this, there is a lack of efficient self-assembling systems in the literature. The reasons for
this are twofold.  Firstly, surprisingly little attention has been devoted to this research
field. Secondly, the mechanism of self-assembly is intrinsically complex, and existing
systems have not succeeded in overcoming this complexity. All self-assembling sys-
tems to date require a high level of hardware precision both for the creation of the
assembled structure and in the operation of the aggregate structure once assembled
(see Tuci et al., 2006). Our goal in the SWARM-BOTS project was to address this
discrepancy and bring self-assembly to the forefront of multi-robot research. To do so,
we needed to build a robust, reliable, and scalable self-assembling system: a system
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II. GENERAL PRINCIPLES
FOR THE DESIGN OF THE

S-BOTS

composed of multiple mobile autonomous robots capable of using self-assembly and
self-organization to adapt to different environmental conditions.

The project focused on the design and implementation of 35 small robots, called s-
bots (see Fig. 1). These robots are equipped with a number of sensors and actuators,
basic communication devices, and on-board computational capabilities. Additionally,
these robots are endowed with physical connection mechanisms that allow them to
attach to (and detach from) each other to form collective physical structures. We call
these collective physical structures swarm-bots: a swarm-bot is an aggregate of s-bots
that has the potential to exhibit capabilities that go beyond those of a single s-bot (see
Mondada et al., 2004, 2005a,b).  A swarm-bot forms as the result of self-organizing rules
followed by each individual s-bot rather than via a global template and is expected to
move as a whole and reconfigure when needed. For example, it might have to adopt a
different shape in order to go through a tunnel or overcome an obstacle.
     The scientific challenge of the SWARM-BOTS project was the design and realization
of the hardware and software for such a robotic system. In this chapter, our aim is to
introduce the theory underlying our research agenda and to present some of our results.
In Section II, we illustrate the general principles and methodological choices that guided
our research.  In Section III, we give a brief description of the robot hardware, and of the
experimental methodology employed to develop the s-bots controllers. In Section IV, we
first introduce the experimental scenario that we have chosen as a test-bed for our
approach. We go on to present the results of several experiments in which s-bots au-
tonomously perform tasks related to this scenario. Subsections in Section IV describe
(1) a set of cooperative navigation strategies that enable a swarm-bot to move effi-
ciently as a result of the individual actions of the connected s-bots, (2) empirical studies
in which the capability of an s-bot to assemble to objects and to other s-bots (self-
assembly) was investigated in the context of object retrieval. Here, self-assembly and
coordinated action of several robots is required when the object to be retrieved cannot
be transported by a single robot, due to its size, shape and/or mass, and (3) empirical
studies in which we investigate the capability of a group of s-bots to establish a path
between two distant locations in the environment. The path is formed through the
creation of a chain of visually linked s-bots. The chain of s-bots begins close to the
starting location and terminates close to the goal location. The chapter closes with
sections dedicated to general discussion and conclusions.

Swarm robotics is a rapidly expanding field of collective robotics that studies robotic
systems composed of swarms of robots tightly interacting and cooperating to reach
their goals (Dorigo and Sahin, 2004). Swarm robotics has its theoretical roots in recent
studies of social insect societies, such as those of ants and bees. Social insects are
highly successful at performing group-level tasks even when there is noise in the envi-
ronment, when information processing errors occur, when there is no global information
available, and even when some individuals make errors in performing the task. In keep-
ing with the social insect metaphor, swarm robotics emphasizes principles of decentrali-
zation of control, limited communication between robots mainly through stigmergy, and
“genetic relatedness.” This latter characteristic is “imported” into robotics through the
use of homogeneous systems. [Note that swarm robotic systems should consist of
relatively few homogeneous groups of robots, and the number of robots in each group
should be large. Studies that are concerned with highly heterogeneous robot groups,
no matter how large the group size, are considered to be less “swarm robotic” (see
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Figure 1. (a) Above: The s-bot. (b)
Below: The s-bot close to a one Euro
coin.
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Dorigo and Sahin, 2004).] That is, groups of robots in which all the agents share the
same physical and control structure (see Bonabeau et al., 1999).
     The SWARM-BOTS project approach to the design and realization of self-assem-
bling and self-organizing robotic systems is highly innovative. We designed and imple-
mented a robotic system comprised of many autonomous robots with the unique ability
to attach to (and detach from) one another. Our choices were motivated by the desire to
ensure that our robotic system – the swarm-bot – would be robust and versatile. We
also wanted a system capable of operating on rough terrain.
     Conceptually, the swarm-bot lies somewhere between a traditional monolithic robot
and a colony of cooperating robots. This is the key innovation of the SWARM-BOTS
project. A swarm-bot can be considered as a single complex robot composed of many
detachable parts (the individual s-bots). As in conventional cooperative robotics, these
parts are capable of autonomous movement and control. The s-bots use their autonomy
to act independently when they are not attached to each other, to self-assemble into a
swarm-bot when necessary, and to implement autonomous reconfiguration and shape-
changing activities when in swarm-bot configuration. A swarm-bot, once assembled, is
not limited to a single configuration, but can change its shape according to its needs (as
dictated by the demands of the task or environment).
     Our approach to controller design was also innovative. We rigorously applied swarm
intelligence principles throughout. In particular we only used distributed control mecha-
nisms and our controllers only made use of locally available information. Our adherence
to these principles is further reflected by our use of evolutionary computation tech-
niques and behavior-based control architectures.
     The behavior-based approach implies the design of controllers through the identifi-
cation of a set of tasks and a set of behaviors (Brooks, 1991). Each behavior corre-
sponds to a particular task or subtask the robot must perform. A behavior is a set of
simple actions triggered by a particular set of sensory inputs. If, after an evaluation of
the state of the robot’s sensors, it turns out that there are two or more behaviors poten-
tially capable of solving the task the robot is currently facing, an arbitration mechanism
is used to choose which behavior to employ. This approach is particularly applicable in
cases where it is possible to decompose each agent’s task into a set of sub-tasks and a
set of corresponding behaviors.
     However, in swarm robotic applications, it is often very difficult to map the goals of
the system into a clearly defined set of tasks and behaviors for each agent. In these
cases evolutionary computation techniques provide a solution, since their use does not
require an explicit analysis of the robotic task (Dorigo et al., 2004). Evolutionary compu-
tation automates the design process of robot control policies through the use of mecha-
nisms inspired by natural selection (see Nolfi and Floreano, 2000, for details). Artificial
evolution bypasses the problem of decomposition at two levels. It is no longer neces-
sary to determine the mechanisms that lead to the emergent global behavior, nor are we
faced with the challenge of implementing low-level behaviors on the s-bots. Artificial
evolution relies on the evaluation of the system as a whole. The human designer only
has to specify the desired global behavior – the individual agent behaviors that will
create this emergent global behavior are then found by a process of trial and error using
evolutionary algorithms.
     The evolutionary approach is most commonly used to synthesize artificial neural
networks (ANNs). These ANNs are then used to control the robots. ANNs are distrib-
uted computational systems whose structural and functional properties loosely resemble
the brain of natural organisms (see Haykin, 1999). To develop the s-bots’ controllers with
evolutionary computation techniques, we used a 3D dynamics simulator called
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Swarmbot3d, which provides realistic simulations of dynamics and collisions of rigid
bodies in 3 dimensions. Swarmbot3d implements s-bot models with the functionality
available on the real s-bots.

S-bots are the constituent components of a swarm-bot. Each s-bot (see Fig. 1) is a fully
autonomous mobile robot capable of performing simple tasks such as autonomous
navigation, perception of the environment and grasping of objects. In addition to these
features, one s-bot can communicate with other s-bots and physically connect to them,
thus forming a swarm-bot. A swarm-bot can perform tasks that are impossible for a
single s-bot. Such tasks can include exploration, navigation, and transportation of heavy
objects on rough terrain. The s-bots’ individual and collective responses are triggered
by several sensor modalities and accomplished through the exploitation of multiple
actuators mounted on each agent.
     The s-bot’s innovative navigation system makes use of both tracks and wheels (see
Fig. 2a). One motor controls the wheel and track for a single side of the s-bot. The
combination of the left- and right-side motors provides a differential drive system. This
differential drive system allows efficient rotation on the spot due to the large diameter of
the wheels. It also gives the traction system a shape close to that of the cylindrical main
body (turret), thus avoiding the typical rectangular shape of simple tracks and improv-
ing the s-bot’s mobility. The s-bot’s traction system can rotate with respect to the main
body – i.e., the robot’s turret – by means of a motorized joint. The turret holds the rigid
gripper: a device which allows the s-bots to establish physical interconnections, thus
enabling self-assembly into a swarm-bot configuration (see Fig. 2b). Such a gripper has
a very large acceptance area allowing it to realize a secure grasp at any angle and, if
necessary, to support the full weight of or lift another s-bot (see Fig. 3).

S-bots have a wide range of sensory systems, used both for the perception of the
surrounding environment and for proprioception. Infrared proximity sensors are distrib-
uted around the rotating turret, and can be used for detection of obstacles and of other
s-bots. Four proximity sensors are placed under the chassis, and can be used for perceiv-
ing holes or the terrain’s roughness. Additionally, an s-bot has eight light sensors, two
temperature/humidity sensors, a 3-axes accelerometer, and incremental encoders on each
degree of freedom. Each s-bot is also equipped with audio and video devices to detect
and communicate with others-bots: an omni-directional camera, colored LEDs around
the s-bot’s turret, microphones and loudspeakers.  Eight groups of three colored LEDs
each – red, green, and blue – are mounted around the s-bot’s turret.  The color emitted by
a robot’s LEDs can be detected by other s-bots by using the omni-directional camera,
enabling a form of local communication.  The omni-directional camera allows the s-bots
to grab panoramic views of its surroundings.

Proprioceptive sensors provide the s-bot with information about internal efforts, physi-
cal connections, and reactions at connection points with other s-bots. These include
torque sensors on all joints as well as a traction sensor to measure the pulling/pushing
forces exerted on the s-bot’s turret. The traction sensor is placed at the junction between
the turret and the chassis. This sensor measures the direction (i.e., the angle with re-
spect to the chassis orientation) and the intensity of the traction force (henceforth
called “traction”) that the turret exerts on the chassis. The traction perceived by one
robot can be caused either by the force applied by the robot itself while pulling/pushing
an object grasped through the gripper element, or by the mismatch of its movement with
respect to the movement of other robots connected to it, or by both the previous circum-
stances at the same time. The turret of an s-bot physically integrates, through a vector
summation, the forces that are applied to it by another s-bot, as well as the force the s-bot

III. S-BOTS AND
SWARM-BOTS
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Figure 2. (a) Above: The traction system
of an s-bot. (b) Below: The
s-bot’s rigid gripper.
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Figure 3. (a) Above: Two connected
s-bots. (b) Below: Detailed view of a
connection between two s-bots.
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IV. THE DESIGN OF THE
S-BOT’S CONTROL

STRUCTURES

itself applies to an object grasped. The traction sensor plays an important role in the
context of coordinated movement of a group of physically connected s-bots – i.e., a
swarm-bot. In particular, it can be employed to provide an s-bot with an indication of the
average direction toward which the swarm-bot is trying to move. The traction sensor
measures the mismatch between the direction in which the s-bot’s own chassis is trying
to move and the direction in which the whole group is trying to move (see Baldassarre
et al., 2004a, for details).

To structure our research, we came up with the following scenario. The scenario con-
sists of a series of tasks to be performed by our robotic system, in order to achieve the
following goals: object retrieval and transport (Fig. 4).

A swarm of up to 35 s-bots must find and transport a heavy object
from its initial location to a goal location. There are several possible
paths from the initial to the goal location and these paths may have
different lengths and may require avoiding obstacles (i.e., walls and
holes). The weight of the object is such that its transportation re-
quires the coordinate effort of at least n s-bots, where n  > 1 is a
parameter.

This scenario acted as yardstick against which we could measure the performance of
our system on an ongoing basis.  In addition, it directed our controller development. We
focused on the design of controllers corresponding to the individual and collective
behaviors required by the subtasks of the scenario.

• Coordinated motion and hole avoidance. This is the capacity of a
group of s-bots assembled in a swarm-bot to coordinate their actions
to choose a common direction of motion. Such coordination is essen-
tial for efficient motion of the swarm-bot as a whole. Moreover, if the
environment presents holes in which the swarm-bot risks remaining
trapped, an avoidance action should be cooperatively performed by
the s-bots, letting the swarm-bot take a safer direction of motion.

• Self-assembly. This is the capacity of a group of s-bots to autono-
mously connect to and disconnect from each other using their rigid
grippers.

• Cooperative transport. This is the capacity of a group of s-bots to
transport a heavy object from its initial location to a target location.

• Path formation. This is the capacity of a group of s-bots to establish
a path between two distant locations in their environment. The path
is formed through the creation of a chain of visually linked s-bots. The
chain of s-bots must begin close to the starting location and terminate
close to the goal location.

These subtasks are addressed in each of the following subsections, respectively.

Coordinated Motion and Hole Avoidance

The most basic ability for a mobile robotic system is navigating in the environment while
avoiding hazards that would hinder its motion. When s-bots are physically assembled
into a swarm-bot, they first need to coordinate their actions in order to choose a com-
mon direction of motion. They then have to collectively avoid hazardous areas of the
environment, for example holes in which the swarm-bot risks getting trapped. We chose
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Figure 4.  Example of a possible integration
scenario: A swarm of up to 35 s-bots must
transport a heavy object from an initial to a
goal location. On the right is the yellow goal
location. On the left is the grey object to be
transported, surrounded by s-bots. A few
colored s-bots mark a path connecting the
grey object to the goal location. Also visible
are two types of obstacles: walls and a hole.

the study of hole avoidance because individual s-bots suffer severe limitations in the
perception of holes. Obstacle avoidance, in contrast, is more easily performed by a
single s-bot using its infrared proximity sensors. The position of the ground sensors
prevents the detection of holes that are sidelong with respect to the direction of motion.
The swarm-bot can overcome the limitations of single s-bots and perform hole avoid-
ance by exploiting its larger physical structure and making use of cooperation among its
constituent s-bots.  Due to the complex dynamics that characterize the movement of s-
bots connected in a swarm-bot, it is difficult to handcraft efficient controllers. For this
reason, we make use of artificial evolution to synthesize neural controllers for the s-bot
(see also Trianni and Dorigo, 2006). In the following, we detail the experimental setup
and the results we obtained.

MARCO DORIGO ET AL.
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Experimental Setup

In this section we present experiments on the evolution of coordinated motion and hole
avoidance behaviors. Additionally, we describe the development of communication
modalities appropriate to the task. For the latter purpose, we compare three different
approaches for communication among the s-bots. In the first setup – referred to as
Direct Interactions setup (DI) – the s-bots communicate only through pulling/pushing
forces that they exert on each other, as perceived by their traction sensor. The second
and third setup also make use of sound signals for communication. In the second setup
– referred to as Direct Communication setup (DC) – the s-bots emit a tone as a
handcrafted reflex action to the perception of a hole. In the third setup – referred to as
Evolved Communication setup (EC) – the signaling behavior is not defined a priori,
but it is evolved.
     Our goal is to evolve coordinated motion and hole avoidance behaviors for a group
of four s-bots. To this end, we test the swarm-bot in environments both with and without
holes (see Fig. 5).  The evolutionary process is performed using the Swarmbot3d simu-
lator. The best evolved controllers are subsequently downloaded and tested on the real
robots. The s-bots are controlled by identical feed-forward neural networks. In the basic
DI setup, the traction and the ground sensors are used as inputs, while the two outputs
directly control the left and the right wheel. In the DC and EC setups, additional binary
inputs encode the information perceived by the microphones. The activation of the
loudspeaker has been handcrafted in the DC setup in such a way that an s-bot emits a
sound signal whenever one of its ground sensors detects the presence of a hole. Here,
evolution is responsible for shaping the correct reaction to the perceived signals. By
contrast, in the EC setup the sound signal is controlled by an additional output added
to the neural network. Therefore, in this setup, evolution is responsible for shaping not
only the response to the emission of a signal, but also the signaling behavior – i.e., the
complete communication paradigm.

The weights of the synaptic connections are genetically encoded parameters. The
simple evolutionary algorithm used in these experiments exploits a fitness function that
rewards straight and fast motion of the s-bots, and penalizes those groups of s-bots that
do not coordinate their movements or that spend too much time in the vicinity of a hole.
This last component is computed simply looking at the activation of the traction and the
ground sensors. Additionally, if the behavior results in the swarm-bot falling into a hole,
the corresponding genotype is penalized. The fitness assigned to a genotype is the
average performance measured over different trials. We have defined three different
conditions for the evolution of coordinated motion and hole avoidance (see Fig. 5).
During evolution, the swarm-bot is initialized to one of these different conditions for 4
trials, thus obtaining 12 trials in total per genotype (for more details, see Trianni and
Dorigo, 2006).

Results

For all setups – DI, DC and EC – the evolutionary experiments were replicated 10 times,
so that 30 evolutionary runs have been performed in total.  All evolutionary runs were
successful, each achieving a high level of performance. Observing the behavior pro-
duced by the evolved controllers, we note that the coordination phase is largely consis-
tent between the controllers evolved in the three different setups.  At the beginning of
the trial, the s-bots move in the direction they are initially positioned. Within a few
simulation cycles, the physical connections transform this disordered motion into trac-
tion forces that are exploited to coordinate the group. When an s-bot feels a traction
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Figure 5. Experimental conditions in
which the swarm-bot is evolved. In
conditions “a” and “b” (above left and
right), a swarm-bot is initialized on a flat
terrain and has to perform coordinated
motion. The swarm-bot’s shape is either a
line or a square. In condition “c” (below),
a square swarm-bot is positioned in an
arena with open borders and holes.
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force, it rotates its chassis in order to reduce this force. Once the chassis of all the s-bots
are oriented in the same direction, the traction forces disappear and the coordinated
motion of the swarm-bot starts (see also Baldassarre et al., 2004b; Trianni and Dorigo,
2006).
     In contrast, the hole avoidance behavior is significantly influenced by the communi-
cation abilities of the s-bots. Therefore, various differences can be observed between
the three experimental setups. In the DI setup, s-bots can rely only on direct interactions
in the form of traction forces in order to communicate the presence of a hole. As a
consequence, the avoidance action of the group can be triggered only if the force
produced by the s-bot that first perceives the hole is high enough. A faster reaction to
the detection of a hole seems to be achieved in the DC and EC setup, in which s-bots
have the possibility to exploit direct communications in the form of sound signals. In
the DC setup, the perception of the signal generally activates the rotation on the spot
of the chassis of all the s-bots except for the one that perceives the hole. The latter tries
to move away from the arena border and, in doing so, it does not encounter much
resistance from the others. It continues to move away from the hole until it ends up not
detecting the hole any more. At this point, the signaling ceases and the group reorga-
nizes, moving in a new direction. The situation is more complex for the EC setup. In fact,
evolution produced a variety of different responses to the sound signal, all well adapted
to the hole-avoidance task. In this case too, sound is interpreted as an alarm signal that
speeds up the response of the swarm-bot to the perception of a hole. However, the
evolved communication and behavioral strategies are characterized by various mecha-
nisms for the inhibition of sound signaling. These mechanisms help in reducing the
influence that a continuous tone has on the s-bots that perceive it, thus contributing to
achieve a fast and reliable reaction to the perception of the hole.
     The qualitative analysis suggests that the use of direct communication results in a
faster reaction to the detection of a hole and therefore in a more efficient avoidance
behavior. In addition, the evolved communication strategy appears more adaptive than
the handcrafted solution. This intuition is confirmed by a statistical analysis, performed
by re-evaluating all the best genotypes synthesized in the different evolutionary runs
(see Fig. 6). This analysis revealed with 99% confidence that the EC setup is indeed
better than both the DC and the DI setups. Moreover, the DC setup also outperforms
the DI setup, confirming that direct communication is beneficial for the hole-avoidance
task (see Trianni and Dorigo, 2006, for more details).

The controllers evolved in simulation prove robust enough to be tested on real
robots. We chose to test a single controller per setup in order to compare the perfor-
mance between simulation and reality. To do this, we used a performance metric that
corresponds to the distance covered by the swarm-bot along its trajectory.  This mea-
sure allowed us to compare the results obtained in simulation and on the real robots –
it was not possible to use the original fitness function due to the high levels of noise
present in the real s-bot sensors.

The swarm-bot was put in a small square arena, its side measuring 180 cm. This arena
was actually built, making the comparison between simulation and reality possible (see
Fig. 7a). On the basis of the obtained results, a controller has been chosen to represent
each setup: the controllers evolved in the 9th, 6th, and 10th evolutionary runs, respec-
tively, for the DI, DC and EC setup.  Each selected controller was downloaded onto the
real s-bots and evaluated in 30 trials, always starting with a different random initializa-
tion. The obtained data were used to compute the performance of the system.

Qualitatively, the behavior produced by the evolved controllers tested on the physi-
cal s-bots is very good and closely corresponds to that observed in simulation (see Fig.
7). S-bots coordinate more slowly in reality than in simulation, taking a few seconds to
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Figure 6. Post-evaluation analysis of the
best controller produced by all evolution-
ary runs of the three different setups.
Boxes represent the inter-quartile range of
the data, while the horizontal lines inside
the boxes mark the median values. The
whiskers extend to the most extreme data
points within the inter-quartile range from
the box. The empty circles mark the
outliers. Note that the EC setup tends to
outperform the other two setups. This is
confirmed by the statistical analysis
performed on these data.

agree in a common direction of motion. Hole avoidance is also performed with the same
modalities observed in simulation. From a quantitative point of view, it is possible to
recognize some differences between simulation and reality, as shown in Fig. 8. We
compare the performance recorded in 100 trials in simulation with that obtained from the
30 trials performed on the real s-bots. Generally, we observe a decrease in the maximum
performance, mainly due to a slower coordination among the s-bots. This means that
physical s-bots start moving in coordination later than the simulated ones, both at the
beginning of a trial and after the perception of a hole. This influences the performance,
as the swarm-bot cannot cover high distances until coordination among the s-bots is
achieved. Looking at Fig. 8, we notice that the performance of the DI controller is better
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Figure 7. (a) Above: The square arena
used for the comparison between
simulation and physical s-bots. (b)
Below: A physical swarm-bot performing
hole avoidance. Note how physical
connections among the s-bots can serve as
support when a robot is suspended out of
the arena, still allowing the whole system
to work.  Even in the difficult situation
above, the swarm-bot still manages to
avoid falling.

.
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Figure 8. Comparison of the perfor-
mance produced in the different settings
by the selected controllers tested both in
simulation and reality. For an explanation
of the plot, see Fig. 6.

.

in reality, as a consequence of the high friction provided by the tracks of the real s-bots,
which enhances the effect of the direct interactions among the s-bots. For the DC con-
troller, the performance difference between simulation and reality is minimal.  In this case,
we observed some communication failure, whose negative effects were compensated by
the higher force transmitted from one s-bot to the other due to the high friction of the
treels system. Finally, the best controller of the EC setup does not perform as well on the
real s-bots as it does in simulation. S-bots are always able to coordinate and to perform
coordinated motion and hole avoidance. However, we observe here that s-bots are slower
in avoiding holes due mainly to some failures in the communication system, which is
necessary to trigger and support the avoidance action. For this reason, quantitatively
the performance decreases. However, the behavior is by in large good and corresponds
closely to that observed in simulation from a qualitative point of view.

Self-Assembly

Probably the most characteristic capacity of the swarm-bot system is that it can self-
assemble, that is, move from a situation characterized by the independent activity of a
number n >1 of s-bots to a situation in which these n s-bots physically connect to each
other to form a swarm-bot. We used similar evolutionary computation techniques to
those described above in the coordinated motion experiments. To develop controllers
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capable of letting s-bots self-assemble we used an artificial neural network whose con-
nection weights were evolved using an evolutionary algorithm (Groß and Dorigo, 2004;
Groß et al., 2006a). Below, we start by describing the control structure we designed to
allow the s-bots to self-assemble. We go on to illustrate the results of an experiment in
which we tested the performance of the resulting self-assembly behavior.

The Control Structure

Algorithm I – The assembly module
1  activate color ring in blue
2  repeat
3 (i1, i2) 

 feature extraction (camera)
4 (i3, i4) 

 sensor readings (proximity)
5     (o1,o2, o3)  neural network (i1, i2, i3, i4)
6
7 if (o3 > 0.5) ̂  (grasping requirements fulfilled)
8 then
9 close gripper
10 if  (successfully connected)
11 then
12 activate color ring in red
13 halt until timeout reached
14 else
15 open gripper
16 fi
17 fi
18 apply  (o1,o2) to traction system
19  until timeout reached

Algorithm I, called “assembly module,” controls the self-assembly behavior of the s-
bots. It implements a set of mechanisms designed to allow an s-bot to connect to
another s-bot or to the s-toy (see Fig. 9a). In a group of disconnected s-bots, the process
of self-assembly is triggered by the perception of colors. In fact, the assembly module
allows an s-bot to move towards the nearest red object and avoid collisions with blue
objects. If an s-bot manages to successfully connect to a red object, it changes the color
ring from blue to red. In so doing, it becomes itself an object with which other s-bots
seek to establish a connection. At the heart of the assembly module is a feed-forward
artificial neural network – a single-layer perceptron – along with some hand-designed
code to pre-process sensory input and to make sure that the output of the network is
correctly “interpreted” by the s-bots’ actuators. The parameters of the neural network –
i.e., the connection weights – have been determined in simulation by using evolution-
ary algorithms (Groß and Dorigo, 2004). As illustrated in Fig. 9b, the neural network of
the assembly module has four input nodes i1, i2, i3, and i4, a bias i0, three output nodes
o1, o2, and o3, and 15 connection weights (wij). At each cycle, the network takes as input
the s-bot’s sensor readings. The input neuron i1 and i2 are set by extracting and pre-
processing data from the s-bot’s vision system (Algorithm I, line 3). In particular, the
feature extraction algorithm first checks whether any red or blue colored object is per-
ceived within a limited perceptual range bounded to the left and right side of the s-bot’s
heading. Subsequently, the algorithm assigns a value to the input i1 ∈ {0,1} and i2 ∈
{0,1} according to the rules detailed in (Groß et al., 2006a). The input variable i3 ∈ [0,1]
and i4 ∈ [0,1] are set by taking the reading of the front-left-side and front-right-side
proximity sensors (Algorithm I, line 4).
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Figure 9. (a) Above: The s-toy. It can be
used either as an object to be retrieved or
as a landmark. The overall weight of the
s-toy can easily be changed in the range of
700 to 3000 grams. The s-toy has the
same external ring as the s-bots, so that
swarm-bots can connect to it. Its ring can
change color in the same way as in the s-
bots (red, green, blue, and various
combinations). The central turret (which
can be removed) has two different color
LEDs (green and red). The external
diameter is 20 cm, the height 30 is cm.
The s-toy can also emit sounds that might
be used by s-bots for localization.  (b)
Lower-left: A graphical representation of
the feed-forward two-layer artificial
neural network of the assembly module.
i1, i2, i3, and i4 are the nodes which receive
input from the s-bots sensors. i0 is the
bias term. o1, o2, and o3 are the output
nodes.  (c) Lower-right: The equations
used to compute the network output
values.
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    The network has three outputs o1 ∈ [0,1], o2 ∈ [0,1], and o3 ∈ [0,1]. The output neuron
o1 and o2 set the angular speed of the left and right s-bot’s wheels. The values of the
speed vector (o1, o2) are linearly scaled within the range defined by the s-bot speed
limits. The output neuron o3 is used to control the status of the gripper. In particular, the
gripper is closed (a) if the output neuron o3 > 0.5, (b) if a red object is detected by the
camera, and (c) if the gripper optical light barrier detects an object between the lower and
the upper teeth of the gripper. While closing the teeth, the gripper is slightly moved up
and down several times to facilitate a tight connection. Failures of the grasping proce-
dure can be detected by monitoring the aperture of the grasping device. In case of
failure the gripper is opened again and the assembly procedure restarts from the begin-
ning. If a red object is successfully gripped, then the s-bot sets the colour of its ring to
red and stops.

Experimental Results

We tested the effectiveness of the assembly module algorithm in a task that requires six
s-bots to connect directly, or indirectly via a chain of s-bots, to the s-toy. The experiment
was repeated on three types of terrain: standard flat terrain, moderately rough terrain,
and very rough terrain.

 At the beginning of each trial, the s-bots were placed in arbitrary positions inside a
circle of radius 70 cm around the s-toy. To encourage interactions among the s-bots, we
limited their initial position to a 90 degrees segment of the circle. The same density could
be obtained by putting a swarm of 24 s-bots inside a full circle of the same radius. The s-
bots were positioned in a way that ensured a minimum distance of 20cm between the
centers of any two objects. This allowed all s-bots to turn on the spot with no collision
of their gripper elements. Fig. 10 shows the initial and the final configuration of one of
the trials. Fig. 11a shows a bar-plot of the 34 trials performed. The gray value of each bar
indicates the number of s-bots that could successfully connect within the time frame.
The height of the bar represents the number of elapsed seconds until the last s-bot
connected. In total, an s-bot succeeded in establishing a connection 199 times. In only
five cases an s-bot failed.  In 30 out of 34 trials, all seven objects (i.e., the six s-bots and
the s-toy) were physically connected; on average this took 96.4 seconds.

To the best of our knowledge, this is the first study in which six autonomous robots
manage to successfully connect to an object and/or to each other. Moreover, the proce-
dure was shown to be scalable, as it works for increasing numbers of s-bots (experiments
with up to 16 physical s-bots were run successfully (Groß et al., 2006a)), and robust, as
it can control self-assembling s-bots moving on both flat and rough terrain. Fig. 11b
summarizes the self-assembly results obtained for the three types of terrain that we
considered. Overall, the performance of the algorithm, which was developed for flat
terrain conditions, is not affected by the fact that the s-bots move on a terrain of moder-
ate roughness. In fact, for both the flat and moderately rough terrains, a single s-bot
connected in 100 percent of the cases, while in the case of six s-bots, the connection rate
was 98%. Even when moving on the very rough terrain, a single s-bot connected to the
s-toy in 95% of the cases, while when part of a group of size six, a single s-bot connected
still in 91% of the cases.

Cooperative Transport

Cooperative transport refers to the capability of a group of s-bots to transport a heavy
object from its initial location to a target zone. Our goal was the design and implementa-
tion of control algorithms that allow a group of s-bots to perform a task that requires
them to pull and/or push cooperatively a heavy object – the s-toy, see Fig. 9a – towards
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Figure 10. (a) Above: Six s-bots at the
start of a self-assembly experiment on flat
terrain. (b) Below: Two self-assembled
swarm-bots, each comprised of three s-
bots, connected to the s-toy.
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Figure 11. (a) Above: Self-assembly of
six s-bots with an s-toy (34 repetitions).
(b) Below: Self-assembly on different
types of terrain: percentage of successful
connections (from the left box to the right
box: 160, 204, 40, 120, 40, and 120
observations). The percentage of
connected s-bots is 91% for the most
challenging setup (6 s-bots, very rough
terrain).
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Figure 12. Experimental setup: (a)
Above: s-toy with one s-bot attached
(bottom-left) and light beacon (top-right);
(b) Below: Example of spatial arrange-
ment of two s-bots and the s-toy.
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Table 1. Friction coefficients for terrains
T0 and T1. s-toy s-bot (lateral) s-bot (longitudinal)

Terrain T0 0.46 0.57 0.58
Terrain T1 0.41 1.30 1.80

a target location indicated by a light beacon. Cooperation is required as the s-toy  is too
heavy to be transported efficiently by a single s-bot. In our experimental setup, the s-toy
has a mass of 813 g and is initially put in a fixed location, at a distance of 250 cm from the
light beacon. At the start of the experiment, the s-bots are attached to the s-toy, either
directly or via other s-bots if they are in a swarm-bot formation (see Fig. 12). Their task
is to transport the s-toy as close as possible to the target location within a fixed time
period of 15 seconds. To test the effectiveness of our multi-robot system we tested
groups of 1 to 3 s-bots attached to the s-toy with different spatial arrangements (see
Groß et al., 2006c, for more details).
     In our experiments, we examine the performance of the system on two different types
of terrains (here referred to as T0 and T1, respectively). Both terrains are flat, the friction
coefficients are listed in Table 1. The force necessary to move the s-toy on Terrain T0 is
similar to the force required on Terrain T1. For Terrain T0 the magnitude of friction
between the tracks and the ground is moderate. For Terrain T1 there is so much friction
between the tracks and the ground that if a strong lateral force is applied to the s-bot it
will either topple down or it will be displaced by a sequence of irregular movements.
Terrain T1 is a very difficult test-bed, since a group of s-bots connected to each other
and/or the s-toy might easily get stuck, if they do not coordinate their movements
properly.

The Control Structure

Algorithm II – The transport module
1  repeat
2 α  compute target direction (camera)
3  if  (stagnation)
4  then
5 execute recovery move
6 else
7 if  (risk of stagnation)
8 then
9 hard alignment (α)
10 else
11 soft alignment (α) and forward motion
12  fi
13 fi
14 until timeout reached

Algorithm II describes the transport module which allows a connected s-bot (1) to align
its chassis towards the light beacon indicating the target-zone, and (2) to apply push-
ing/pulling forces in order to move the s-toy towards the target.
     During the transport, the s-bot monitors the magnitude of the torque acting on its
traction system and on the turret. If the torque reading values exceed a certain thresh-
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old, there is stagnation. In this case, a short recovery move is performed to prevent the
hardware from being damaged.
     The transport module uses the camera vision system to detect the direction of the
light source with respect to the s-bot’s heading. [Note: At the time we carried out the first
experiments, the s-bot camera device driver was not yet available. Instead, the proximity
sensors were used (in ambient light mode) to detect the target direction.] By adjusting
the orientation of the chassis with respect to the s-bot’s heading (i.e., the orientation of
the turret) the controller sets the direction of motion. The realignment of the chassis is
supported by the motion of the traction system. We implemented two different types of
realignment referred to as “hard” and “soft” alignment. The hard alignment makes the s-
bot  turn on the spot.  The soft alignment makes the s-bot turn while moving forward
with maximum speed. The hard alignment is executed if there is risk of stagnation.  This
is the case, for instance, if the angular mismatch between the current and the desired
orientation of the chassis exceeds a certain threshold.

Experimental Results

To assess the performance of the physical s-bots on Terrain T0 and T1, in total more than
500 trials have been performed. The performance metric we used is the distance by
which the s-toy approaches the light beacon within the time period of 15 seconds, that
is, the difference between the initial and the final distance between the s-toy and the
light beacon.

The distance an s-bot can cover on Terrain A or B during the time frame of 15 seconds
is about 232 cm. On Terrain T0, an s-bot attached to an s-toy can pull it for about 8 cm by
moving backwards, while a chain of two s-bots can pull the s-toy  for about 210 cm.  Since
a group cannot transport the s-toy faster than a single s-bot can move, two s-bots are
sufficient for reaching almost optimal performance in this case (more than 91% of the
maximum speed of a single s-bot). Fig. 13 plots the distance (in cm) by which the s-toy
approached the light beacon. The white boxes refer to the transport performance of
groups of 1 to 3 s-bots on Terrain T0. In all trials, one s-bot alone was nearly incapable of
moving the s-toy. On the contrary, two and three s-bots have transported the s-toy
during each of the 90 trials for more than 60 cm. The average distance (in cm) the s-toy
was moved by a group of 1, 2, and 3 s-bots is respectively 8.1, 135.9, and 143.0. This is
respectively 3.5%, 58.6%, and 61.6% of the upper bound (i.e., 232 cm). The gray boxes in
Fig. 13 refer to the transport performance of groups of 1 to 3 s-bots on Terrain T1. Due to
the better grip the traction system has on Terrain T1, a single s-bot itself is already
capable of transporting the s-toy. Nevertheless, for the group sizes 2 and 3 the system
performs significantly better on Terrain T0 (Mann-Whitney test, 0.05 significance level)
– even though the magnitude of the force necessary to move the s-toy is slightly bigger
than for Terrain T1 (see Table 1). The average distance (in cm) the s-toy was moved by a
group of 1, 2, and 3 s-bots is respectively 78.5, 117.3, and 107.9. This is respectively
33.9%, 50.6%, and 46.5% of the upper bound.
     As discussed previously, the task can be solved near optimally by two s-bots.  For
Terrain T0, the performance for group size 3 is better, but not significantly better, than the
performance for group size 1 or 2. On the contrary, for Terrain T1, the performance is best
for group size 2 (Mann-Whitney test, 0.05 significance level). Moreover, we recognized
that the spatial arrangement of the s-bots affects the performance of the group (Groß et
al., 2006c). In those arrangements of three s-bots that are symmetric with respect to the
light beacon, the lowest transport distance observed over all trials on terrain T0 (T1) was
still 67% (54%) of the upper bound.
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Figure 13. Transport performance of 1
to 3 physical s-bots on terrain T0 and T1.
Observations per box (from the left to the
right): 42, 75, 90, 120, 105, and 105.

     We also studied the situation in which some robots of a group are able to locate the
transport target, while the others, called blind s-bots, are not (Groß et al., 2006b; Groß
and Dorigo, 2004). To enable a blind s-bot to contribute to the group’s performance, it
used sensors to perceive whether or not it was moving, and to detect the traction forces
acting between its turret and its chassis. For group sizes ranging from 2 to 16, it was
shown, in simulation, that blind s-bots make an essential contribution to the group’s
performance. This capability was validated on the real system, with groups of 2 to 6 s-
bots (see Fig. 14a). The same controllers also proved successful at transporting the s-
toy over various types of rough terrain. Furthermore, the controllers enabled the swarm-
bot to navigate over a terrain with holes in it.
     Finally, we carried out an experiment having the s-bots start separately, from random
positions in the environment. The s-bots had to assemble with the s-toy and with each
other, prior to transportation (see Fig.14b). The s-toy required the cooperative effort of
four s-bots to be moved. The number of swarm-bots involved in the transport, their
global shape or size and their internal structure were not pre-determined, but resulted
from a self-organized process in which the s-bots autonomously grasped each other
and/or the s-toy. Apart from a few cases, in which not all s-bots correctly assembled, the
transport speed was more than half the maximum speed of a single s-bot without any
load (Tuci et al., 2006; Groß et al., 2006c).

CH. 6 SWARM-BOT



127

Figure 14. Transport of the s-toy by (a)
(above) six manually connected s-bots,
four of which are not capable of locating
the target location, (b) (below) six s-bots,
four of which have formed a swarm-bot.
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Exploration and Path Formation

Environment exploration, navigation, and path formation are a prerequisite for the ac-
complishment of a wide range of tasks. In the context of the scenario as shown in Fig. 4,
the robots have to form a path between the object to be transported and the goal
location.  In designing our controllers, we avoid complex navigation strategies, as they
do not naturally scale with respect to the number of robots, and require careful engineer-
ing of the controller in order to deal with the difficulties related to dynamic environments
and multiple robots.
   The approach we have followed in our research is inspired by the path formation
behavior of ants. Ants deposit pheromones on the ground while walking and this gives
raise to paths shared at the colony level. As our s-bots cannot deposit pheromones,
they build visual paths as follows. They start from the target location identified by a
blue s-toy (see Fig. 9a) and randomly explore the space around it. When they reach a
certain distance (given by a parameter) from the blue s-toy they become beacons of the
forming visual path. This means they stop moving and turn on their light. Other s-bots
continue the random search around the beacon and can become beacons themselves
extending in this way the visual path (see Fig. 15a). The direction of growth of the visual
path is therefore random and is not guaranteed to reach the object to be retrieved.
However, visual paths under formation have some probability of dissolving (given by
another parameter of the procedure) and therefore unsuccessful searches (that is, in-
complete visual paths that do not reach the object to be retrieved) can restart until a
complete visual path is constructed.  Once this stochastic procedure finds a visual path
connecting the target location to the object to be retrieved, the visual path can be
exploited by the other s-bots to reach the s-toy and then to retrieve it (see Fig. 15b).
[Note: Video recordings of these experiments can be found at http://www.swarm-bots.org/
chain-formation.html.] The main advantage of this exploration strategy is that it relies on
local information and simple rules and does not require the s-bots to create a map-like
representation of the world (more details can be found in Nouyan et al., 2006; Nouyan
and Dorigo, 2006).

To implement the exploration and path formation strategy we have employed a behav-
ior-based approach. We have shown that by varying parameters of the s-bots controller
it is possible to generate a variety of exploration strategies. Different strategies are
better adapted to specific environments. In particular, we have implemented two strate-
gies. In the first one, we have static visual paths: the s-bots beacons do not move.  In the
second setup, the s-bots that form a visual path move in a coordinated way without
breaking the path. The controllers developed in simulation have been ported success-
fully onto the real s-bots. The time required to build a chain is a function of the complex-
ity of the environment and in particular depends on the presence, or absence, of ob-
stacles.

When given the task of building a robotic system, the main decisions to be taken by the
researchers concern the architecture of the hardware and of the control system. In this
chapter, we have presented the results of the SWARM-BOTS project. The SWARM-
BOTS project fundamentally focused on the evaluation of two particular choices in
robotic system design. For the hardware, we chose to implement a system comprised of
many autonomous robots with a unique ability to attach to (and detach from) one
another so as to form bigger, physically connected structures. To control this system,
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Figure 15.  (a) (Above) Depiction of a
chain of six s-bots (small grey circles)
visually connecting a target location (big
circle on the right) to a prey (big circle on
the left).  The dashed circles represent the
visual range of the s-bots. (b) (Below) A
chain of six s-bots connect the prey
(represented by the top-left s-toy to the
target location (represented by the right
s-toy).
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we chose to use only distributed controllers that could only make use of locally avail-
able information.  These choices were motivated by the desire to make our robotic
system – the swarm-bot – robust and versatile [Note: By saying that a robot is versatile
we mean to say that it is capable of dynamically changing shape and control function-
ality depending on the situation it faces], as well as allowing it to navigate on rough
terrain.
     Our research falls between the domains of collective robotics and self-reconfigurable
robotics. It is loosely bio-inspired, in the sense that many of our choices and techniques
have as inspiration some natural process or biological observation. However, we do not
try to replicate faithfully any natural system: we rather take inspiration from natural
processes and let these principles guide our engineering choices.
     As in collective robotics, we are concerned with the performance of groups of coop-
erating robots. Our work differs from collective robotics, however, in that we are inter-
ested in the study of self-assembling structures and in their exploitation for the solution
of problems for which cooperation through physical connection is a necessity.
     As in self-reconfigurable robotics, we study robotic structures (i.e., swarm-bots) that
can change their shape as a function of the task they are performing. Our work differs
from self-reconfigurable robotics, however, in that the units composing our self-
reconfigurable robot are autonomous units that can perform tasks independently of
each other or in cooperation, as required by the particular task considered.
     Concerning the expected impact of our research work, it is worth noting that the
SWARM-BOTS project aimed at demonstrating that it is possible to build and control a
self-assembling and self-organizing multi-robot system rather than to address any spe-
cific application. However, if we make an imaginative leap into the future, several poten-
tial applications of a mature swarm-bot technology can be conceived. A few examples
are listed below.

• Navigation in highly constrained and unstructured environments. The
swarm-bots can form groups to move in complex environments. The
shapes of these groups can vary on-line to adapt to the constraints
imposed by the environment and to the requirements of the ongoing
task performance.

• Formation of bridges, buttresses, and other civil structures in times of
emergency. Major flood events can easily tear down bridges, and bring-
ing help to the affected population is often a time critical task. Hundreds
of swarm-bots could assemble in order to build emergency structures to
allow the access of the rescue teams.

• Transportation of objects on rough terrain. Traditional vehicles cannot
cope with very rough terrain. Moreover, their size and configuration is
fixed. In contrast swarm-bots could, for example, be capable of self-
organization into moving carpets to transport objects of various sizes
and dimensions in an efficient way.

• Performing inspections and repairs in constrained environments such
as pipelines, nuclear reactors and sewage systems, is another possible
application.

• Swarm-bots could help human teams in search and rescue activities to
help save human lives in dangerous environments (see Fig. 16). As a
proof-of-concept demo, we let nineteen s-bots self-assemble to a prone
child and pull her for a couple of meters. A video-recording of the experi-
ment is available at http://www.swarm-bots.org/pulling_a_child.html.
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     More generally, this type of system can be used for the self-organizing unfolding of
structures without any human intervention, from space stations or satellites to scaf-
folds.

In this chapter we have illustrated the most important features of a novel robotics
concept, called a swarm-bot. A swarm-bot is a self-organizing, self-assembling artifact
composed of a variable number of autonomous units, called s-bots. As illustrated in
Section III, each s-bot is a fully autonomous robot capable of displacement, sensing and
acting based on local information. Moreover, the self-assembling ability of the s-bots
enables a group of them to execute tasks that are beyond the capabilities of the single s-
bot.

Figure 16. A simulated rescue operation
carried out by a group of s-bots.
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    The hardware developed over the course of the SWARM-BOTS project proved ver-
satile and robust to failure. This is attributable to the fact that the system is made up of
many autonomous entities that can self-assemble into a single body and disband any
time the union is no longer required. Previous robotic systems composed of units
capable of reconfiguring themselves are much less versatile. In these other systems the
individual units have little or no mobility, very limited sensing capabilities, and are often
centrally controlled (see Castano et al., 2000; Fukuda and Ueyama, 1994; Brown et al.,
2002; Murata et al., 2002; Yim et al., 2000).
     The s-bots’ controllers developed over the course of the SWARM-BOTS project
allowed the s-bots to perform a wide repertoire of individual and collective behaviors.
We ran experiments in which all the components described in Section IV, coordinated
motion, self-assembly, cooperative transport, and path formation were executed by a
group of up to 12 s-bots in a single integrated experiment (video recordings of these
experiments are available on-line at http://www.swarm-bots.org/scenario_12sbots.html).
These experiments were very successful and make our work the current state-of-the-art
in swarm robotics. The controllers proved robust enough to deal with environmental
changes, and their functionality scaled well when increasing the number of participating
robots.
     The work carried out by the SWARM-BOTS project has revealed yet unexplored
research topics, hypotheses and conjectures which need further investigation.  Thus,
ongoing work is taking place in more or less all the research areas illustrated in Section
IV. We are also pursuing ongoing research on the following topics not mentioned yet,
but that are of particular importance in swarm robotics:

Adaptive task allocation. Task allocation and division of labor are two
areas of research in collective and swarm robotics.  Previous studies have shown
that small groups of robots might perform a collective task at least as well as a
larger group (Schneider-Fontán and Mataric, 1996). However, inherent ineffi-
ciency of large robot groups can be avoided if such large groups are equipped
with an adaptive task allocation mechanism which distributes the resources of
the group based on the nature of the task and the diversity among the individuals
of the group. In our research we are interested in designing an adaptive task
allocation mechanism which allocates a sufficient number of s-bots to each task,
in order to improve the efficiency of the entire group. In particular, we have been
working on a mechanism which adaptively tunes the number of active robots in
a foraging task: that is, searching for objects and retrieving them to a nest loca-
tion (Labella et al., 2004, 2006).

Functional self-assembly. Self-assembly only becomes truly meaningful
in an autonomous robotic system if it is used as a means to achieve a specific
goal.  The term functional self-assembly was coined to describe this goal-driven
self-assembly (Trianni et al., 2004).  More precisely, a group of robots is said to
exhibit functional self-assembly if the robots can choose to self-assemble in
response to the demands of their task and environment. Functional self-assem-
bly is used as an adaptive response mechanism by a group of autonomous
robots when faced with a contingency which prevents the robots from carrying
out their tasks individually. The mechanism of functional self-assembly can be
decomposed into three sub mechanisms, each of which is highly complex in its
own right.  An individual s-bot must (a) decide whether or not the environmental
contingencies require self-assembly, (b) coordinate its movements to connect to
and/or facilitate the connection of other s-bots, and (c) coordinate its movements
once connections are established. Our research work aims at developing a be-
havioral repertoire for a robot so that it can initiate either an individual or a
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