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Abstract-An analogy with the way ant colonies function has 
suggested the definition of a new computational paradigm, which 
we call Ant System. We propose it as a viable new approach to sto- 
chastic combinatorial optimization. The main characteristics of 
this model are positive feedback, distributed computation, and the 
use of a constructive greedy heuristic. Positive feedback accounts 
for rapid discovery of good solutions, distributed computation 
avoids premature convergence, and the greedy heuristic helps 
find acceptable solutions in the early stages of the search process. 
We apply the proposed methodology to the classical Traveling 
Salesman Problem (TSP), and report simulation results. We also 
discuss parameter selection and the early setups of the model, 
and compare it with tabu search and simulated annealing using 
TSP. To demonstrate the robustness of the approach, we show 
how the Ant System (AS) can be applied to other optimization 
problems like the asymmetric traveling salesman, the quadratic 
assignment and the job-shop scheduling. Finally we discuss the 
salient characteristics-global data structure revision, distributed 
communication and probabilistic transitions of the AS. 

I. INTRODUCTION 

N this paper we define a new general-purpose heuristic al- I gorithm which can be used to solve different combinatorial 
optimization problems. The new heuristic has the following 
desirable characteristics: 

It is versatile, in that it can be applied to similar versions 
of the same problem; for example, there is a straight- 
forward extension from the traveling salesman problem 
(TSP) to the asymmetric traveling salesman problem 
(ATSP). 
It is robust. It can be applied with only minimal changes 
to other combinatorial optimization problems such as the 
quadratic assignment problem (QAP) and the job-shop 
scheduling problem (JSP). 
It is a population based approach. This is interesting 
because it allows the exploitation of positive feedback as 
a search mechanism, as explained later in the paper. It also 
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makes the system amenable to parallel implementations 
(though this is not considered in this paper). 

These desirable properties are counterbalanced by the fact that, 
for some applications, the Ant System can be outperformed 
by more specialized algorithms. This is a problem shared by 
other popular approaches like simulated annealing (SA), and 
tabu search (TS), with which we compare the Ant System. 
Nevertheless, we believe that, as is the case with SA and TS, 
our approach is meaningful in view of applications to problems 
which, although very similar to well known and studied basic 
problems, present peculiarities which make the application of 
the standard best-performing algorithm impossible. This is the 
case, for example, with the ATSP. 

In the approach discussed in this paper we distribute the 
search activities over so-called “ants,” that is, agents with 
very simple basic capabilities which, to some extent, mimic 
the behavior of real ants. In fact, research on the behavior of 
real ants has greatly inspired our work (see [lo], [ll], [21]). 
One of the problems studied by ethologists was to understand 
how almost blind animals like ants could manage to establish 
shortest route paths from their colony to feeding sources and 
back. It was found that the medium used to communicate 
information among individuals regarding paths, and used to 
decide where to go, consists of pheromone trails. A moving 
ant lays some pheromone (in varying quantities) on the ground, 
thus marking the path by a trail of this substance. While an 
isolated ant moves essentially at random, an ant encountering 
a previously laid trail can detect it and decide with high 
probability to follow it, thus reinforcing the trail with its own 
pheromone. The collective behavior that emerges is a form of 
autocatalytic behavior’ where the more the ants following a 
trail, the more attractive that trail becomes for being followed. 
The process is thus characterized by a positive feedback 
loop, where the probability with which an ant chooses a path 
increases with the number of ants that previously chose the 
same path. 

Consider for example the experimental setting shown in 
Fig. 1. There is a path along which ants are walking (for 
example from food source A to the nest E ,  and vice versa, 
see Fig. l(a)). Suddenly an obstacle appears and the path 
is cut off. So at position B the ants walking from A to E 
(or at position D those walking in the opposite direction) 
have to decide whether to turn right or left (Fig. l(b)). The 
choice is influenced by the intensity of the pheromone trails 
left by preceding ants. A higher level of pheromone on the 

‘An autocatalytic [12], i.e. positive feedback, process is a process that 
reinforces itself, in a way that causes very rapid convergence and, if no 
limitation mechanism exists, leads to explosion. 
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(a) (b) (c) 
Fig. 1. An example with real ants. (a) Ants follow a path between points 
A and E. (b) An obstacle is interposed; ants can choose to go around it 
following one of the two different paths with equal probability. (c) On the 
shorter path more pheromone is laid down. 

right path gives an ant a stronger stimulus and thus a higher 
probability to turn right. The first ant reaching point B (or 
D )  has the same probability to turn right or left (as there was 
no previous pheromone on the two alternative paths). Because 
path B C D  is shorter than B H D ,  the first ant following it 
will reach D before the first ant following path B H D  (Fig. 
l(c)). The result is that an ant returning from E to D will 
find a stronger trail on path D C B ,  caused by the half of all 
the ants that by chance decided to approach the obstacle via 
D C B A  and by the already arrived ones coming via BCD:  
they will therefore prefer (in probability) path D C B  to path 
D H B .  As a consequence, the number of ants following path 
BCD per unit of time will be higher than the number of ants 
following E H D .  This causes the quantity of pheromone on 
the shorter path to grow faster than on the longer one, and 
therefore the probability with which any single ant chooses 
the path to follow is quickly biased toward the shorter one. 
The final result is that very quickly all ants will choose the 
shorter path. 

The algorithms that we are going to define in the next 
sections are models derived from the study of real ant colonies. 
Therefore we call our system Ant System (AS) and the algo- 
rithms we introduce ant algorithms. As we are not interested 
in simulation of ant colonies, but in the use of artificial ant 
colonies as an optimization tool, our system will have some 
major differences with a real (natural) one: 

e artificial ants will have some memory, 
0 they will not be completely blind, 
0 they will live in an environment where time is discrete. 
Nevertheless, we believe that the ant colony metaphor can 

be useful to explain our model. Consider the graph of Fig. 2(a), 
which is a possible AS interpretation of the situation of Fig. 
l(b). To fix the ideas, suppose that the distances between D 
and H ,  between B and H ,  and between B and D-via C-are 
equal to 1, and let C be positioned half the way between D and 
B (see Fig. 2(a)). Now let us consider what happens at regular 
discretized intervals of time: t = 0 , 1 , 2 ,  
new ants come to B from A ,  and 30 to D from E at each time 
unit, that each ant walks at a speed of 1 per time unit, and that 
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A 
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Fig. 2. An example with artificial ants. (a) The initial graph with distances. 
@) At time t = 0 there is no trail on the graph edges; therefore ants choose 
whether to turn right or left with equal probability. (c) At time t = 1 trail 
is stronger on shorter edges, which are therefore, in the average, preferred 
by ants. 

while walking an ant lays down at time t a pheromone trail of 
intensity 1, which, to make the example simpler, evaporates 
completely and instantaneously in the middle of the successive 
time interval (t + 1, t + 2). 

At t = 0 there is no trail yet, but 30 ants are in B and 
30 in D. Their choice about which way to go is completely 
random. Therefore, on the average 15 ants from each node 
will go toward H and 15 toward C (Fig. 2(b)). 

At t = 1 the 30 new ants that come to B from A find a trail 
of intensity 15 on the path that leads to H ,  laid by the 15 ants 
that went that way from E, and a trail of intensity 30 on the 
path to C, obtained as the sum of the trail laid by the 15 ants 
that went that way from B and by the 15 ants that reached B 
coming from D via C (Fig. 2(c)). The probability of choosing 
a path is therefore biased, so that the expected number of ants 
going toward C will be the double of those going toward H :  
20 versus 10 respectively. The same is true for the new 30 
ants in D which came from E. 

This process continues until all of the ants will eventually 
choose the shortest path. 

The idea is that if at a given point an ant has to choose 
among different paths, those which were heavily chosen by 
preceding ants (that is, those with a high trail level) are 
chosen with higher probability. Furthermore high trail levels 
are synonymous with short paths. 

The paper is organized as follows. Section I1 contains the 
description of the AS as it is currently implemented and the 
definition of the application problem: as the algorithm structure 
partially reflects the problem structure, we introduce them 
together. Section I11 describes three slightly different ways 
to apply the proposed algorithm. Sections IV and V report 
on experiments. In Section VI we compare the AS with other 
heuristics, and in Section VI1 we substantiate the versatility 
and robustness of the AS by showing how it can be applied 
to other optimization problems. In Section VI11 we informally 
discuss why and how the AS paradigm functions. Conclusions 
are in Section IX. 

11. THE ANT SYSTEM 

In this section we introduce the AS. We decided to use the 
well-known traveling salesman problem [26] as benchmark, in 
order to make the comparison with other heuristic approaches 
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easier [2O]. Although the model definition is influenced by the 
problem structure, we will show in Section VI1 that the same 
approach can be used to solve other optimization problems. 

Given a set of n towns, the TSP can be stated as the problem 
of finding a minimal length closed tour that visits each town 
once. We call d,, the length of the path between towns i and 
j ;  in the case of Euclidean TSP, di, is the Euclidean distance 
between i and j (i.e., d,, = [(z, - 2,)' + (y, - TJ,)']~/'). An 
instance of the TSP is given by a graph ( N ,  E ) ,  where N is 
the set of towns and E is the set of edges between towns (a 
fully connected graph in the Euclidean TSP). 

Let b,(t) (i = 1, . . . , n) be the number of ants in town i at 
time t and let m = b,(t) be the total number of ants. 
Each ant is a simple agent with the following characteristics: 

it chooses the town to go to with a probability that is a 
function of the town distance and of the amount of trail 
present on the connecting edge; 
to force the ant to make legal tours, transitions to already 
visited towns are disallowed until a tour is completed (this 
is controlled by a tabu list); 
when it completes a tour, it lays a substance called trail 
on each edge ( i , j )  visited. 

Let r,, ( t )  be the intensity of trail on edge (i, j )  at time t. Each 
ant at time t chooses the next town, where it will be at time 
t + 1. Therefore, if we call an iteration of the AS algorithm the 
m moves carried out by the m ants in the interval ( t ,  t + l), 
then every n iterations of the algorithm (which we call a cycle) 
each ant has completed a tour. At this point the trail intensity 
is updated according to the following formula 

(1) 

where p is a coefficient such that (1 - p )  represents the 
evaporation of trail between time t and t + n, 

Tz, (t + n) = p . T,, (t)  + AT,, 

m 

k=l 

where AT$ is the quantity per unit of length of trail substance 
(pheromone in real ants) laid on edge ( i , j )  by the kth ant 
between time t and t + n; it is given by 

E if kth ant uses edge ( i , j )  in its 
tour (between time t and t + n) 

( 3 )  = 
8 ,  

l o  otherwise 

where Q is a constant and Lk is the tour length of the kth ant. 
The coefficient p must be set to a value < 1 to avoid unlim- 

ited accumulation of trail (see note 1). In our experiments, we 
set the intensity of trail at time O , r i j ( O ) ,  to a small positive 
constant c.  

In order to satisfy the constraint that an ant visits all the 
n different towns, we associate with each ant a data structure 
called the tabu lis$, that saves the towns already visited up to 

'Even though the name chosen recalls tabu search, proposed in [17], [18], 
there are substantial differences between our approach and tabu search algo- 
rithms. We mention here: (i) the absence in the AS of any aspiration function, 
(ii) the difference of the elements recorded in the tabu list, permutations in 
the case of tabu search, nodes in the AS (our algorithms are constructive 
heuristics, which is not the case of tabu search). 

time t and forbids the ant to visit them again before n iterations 
(a tour) have been completed. When a tour is completed, the 
tabu list is used to compute the ant's current solution (i.e., the 
distance of the path followed by the ant). The tabu list is then 
emptied and the ant is free again to choose. We define tabuk 
the dynamically growing vector which contains the tabu list 
of the kth ant, tabUk the set obtained from the elements of 
tabuk, and tabuk(s) the sth element of the list (i.e., the sth 
town visited by the kth ant in the current tour). 

We call visibility q;j the quantity l /di j .  This quantity is 
not modified during the run of the AS, as opposed to the 
trail which instead changes according to the previous formula 
(1). 

We define the transition probability from town i to town j 
for the kth ant as 

where allowedk = {N-tabuk} and where a and p are pa- 
rameters that control the relative importance of trail versus 
visibility. Therefore the transition probability is a trade-off 
between visibility (which says that close towns should be 
chosen with high probability, thus implementing a greedy 
constructive heuristic) and trail intensity at time t (that says 
that if on edge (i,j) there has been a lot of traffic then it is 
highly desirable, thus implementing the autocatalytic process). 

111. THE ALGORITHMS 

Given the definitions of the preceding section, the so- 
called ant-cycle algorithm is simply stated as follows. At time 
zero an initialization phase takes place during which ants are 
positioned on different towns and initial values rz, (0) for trail 
intensity are set on edges. The first element of each ant's tabu 
list is set to be equal to its starting town. Thereafter every ant 
moves from town i to town j choosing the town to move to 
with a probability that is a function (with parameters a and 
p, see formula (4)) of two desirability measures. The first, the 
trail T,, ( t ) ,  gives information about how many ants in the past 
have chosen that same edge (i, j ) ;  the second, the visibility q,,, 
says that the closer a town the more desirable it is. Obviously, 
setting a = 0, the trail level is no longer considered, and 
a stochastic greedy algorithm with multiple starting points is 
obtained. 

After n iterations all ants have completed a tour, and their 
tabu lists will be full; at this point for each ant k the value 
of Lk is computed and the values Ar; are updated according 
to formula (3) .  Also, the shortest path found by the ants (i.e., 
mink Lk, k = 1, . . . , m) is saved and all the tabu lists are 
emptied. This process is iterated until the tour counter reaches 
the maximum (user-defined) number of cycles NCMAX, or all 
ants make the same tour. We call this last case stagnation 
behavior because it denotes a situation in which the algorithm 
stops searching for alternative solutions. We investigate this 
situation in Section IV. 
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Formally the ant-cycle algorithm is: 
1. Initialize: 

Set t := 0 
Set NC := 0 
For every edge (i,j) set an initial value ri3(t) = c for 
trail intensity and ArZ3 = 0 
Place the m ants on the n nodes 

{t is the time counter} 
{NC is the cycles counter} 

2. Set s := 1 { s is the tabu list index} 
For k := 1 to m do 

Place the starting town of the kth ant in tabuk(s) 

3. Repeat until tabu list is full 
{this step will be repeated 
(n  - 1) times} 

Set s := s + 1 
For k := 1 to m do 

Choose the town j to move to, with probability 
P:j ( t )  given by Eq. (4) 

{at time t the kth ant is on town 
i = tabuk(s - 1)) 

Move the kth ant to the town j 
Insert town j in tabuk(s) 

4. For k := 1 to m do 
Move the kth ant from tabuk(n) to tabuk(1) 
Compute the length LI, of the tour described by 
the kth ant 
Update the shortest tour found 
For every edge ( i , j )  
For k : =  1 to m do 

E 
0 otherwise 

if (i,j) E tour described by tabuk 

5. For every edge ( 2 ,  j )  compute rZ3 (t + n) 
according to equation rZj(t + n) = p . r,,(t) + Arz3 

Set t : = t + n  
Set NC := NC + 1 
For every edge (i, j )  set ArZj := 0 

then 
6. If (NC < NCMAX) and (not stagnation behavior) 

Empty all tabu lists 
Goto step 2 

Print shortest tour 
else 

stop 
The complexity of the ant-cycle algorithm i s  O(NC.n2 .rn) 

if we stop the algorithm after NC cycles. In fact step 1 is 
O(n2 + m), step 2 is O(rn), step 3 i s  O(n2 . m), step 4 is 
O(n2 .m),  step 5 is O(n2) ,  step 6 is O(n.rn).  Since we have 
experimentally found a linear relation between the number of 
towns and the best number of ants (see Section V-A), the 
complexity of the algorithm is O(NC . n3). 

We also experimented with two other algorithms of the AS, 
which we called ant-density and ant-quantity algorithms [6], 
[12]. They differ in the way the trail is updated. In these two 

models each ant lays its trail at each step, without waiting for 
the end of the tour. In the ant-density model a quantity Q of 
trail is left on edge ( i , j )  every time an ant goes from i to j ;  
in the ant-quantity model an ant going from i to j leaves a 
quantity Q/d,,  of trail on edge (i,j) every time it goes from 
i to j .  Therefore, in the ant-density model we have 

Q 

0 otherwise 

if the kth ant goes from i and j 
between time t to t + 1 (5) 

if the kth ant goes from i to j 
between time t and t + 1 

{ AI-; = 

and in the ant-quantity model we have 

(6)  
0 otherwise. 

From these definitions it is clear that the increase in trail 
on edge (i,j) when an ant goes from z to j is independent of 
dZ, in the ant-density model, while it is inversely proportional 
to d,, in the ant-quantity model (i.e., shorter edges are made 
more desirable by ants in the ant-quantity model). 

IV. EXPERIMENTAL STUDY 1: 
PARAMETER SE'ITING AND BASIC PROPERTIES 

We implemented the three algorithms (ant-cycle, ant-density 
and ant-quantity) of the AS and investigated their relative 
strengths and weaknesses by experimentation. Since we have 
not yet developed a mathematical analysis of the models, 
which would yield the optimal parameter setting in each 
situation, we ran simulations to collect statistical data for this 
purpose. 

The parameters considered here are those that affect directly 
or indirectly the computation of the probability in formula (4): 

a: the relative importance of the trail, a! 2 0; 
0 ,B: the relative importance of the visibility, /3 2 0; 

p: trail persistence, 0 5 p < 1 (1 - p can be interpreted 

* Q: a constant related to the quantity of trail laid by ants 
as trail evaporation); 

(see formulas (3), (3, and (6)). 
The number m of ants has always been set equal to the 

number n of cities (see Section V-A for the explanation). We 
tested several values for each parameter while all the others 
were held constant (over ten simulations for each setting in 
order to achieve some statistical information about the average 
evolution). The default value of the parameters was a! = 1, 
p = 1, p = 0.5, Q = 100. In each experiment only one of 
the values was changed, except for a and ,B, which have been 
tested over different sets of values, as discussed at the end 
of this section. The values tested were: a: E {0,0.5,1,2,5}, 
,O E {0,1,2,5}, p E (0.3,0.5,0.7,0.9,0.999} and Q E 
{I, 100, lOOOO}. Preliminary results, obtained on small-scale 
problems, have been presented in [ 6 ] ,  [7], and [12], [13]; 
all the tests reported in this section are based, where not 
otherwise stated, on the Oliver30 problem, a 30-cities problem 
described in [3413. All the tests have been carried out for 
N C M A ~  = 5000 cycles and were averaged over ten trials. 

31n [34] genetic algorithms were applied to solve the Oliver30 problem; 
they could find a tour of length 424.635. The same result was often obtained 
by ant-cycle, which also found a tour of length 423.741. 
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ant-density 

ant-quantity 

ant-cycle 

TABLE I 
COMPARISON AMONG ANT-QUANTITY, ANT-DENSITY, 

AND ANT-CYCLE. AVERAGES OVER 10 TRIALS 

Best parameter set Average result Best result 

a=l, p=5, pO.99 426.740 424.635 

a=l, p=5, p0.99 427.315 426.255 

a=l, p=5, p 0 . 5  424.250 423.741 

To compare the three models we first experimentally de- 
termined the parameters best values for each algorithm, and 
then we ran each algorithm ten times using the best parameters 
set. Results are shown in Table I. Parameter Q is not shown 
because its influence was found to be negligible. 

Both the ant-density and the ant-quantity models have given 
worse results than those obtained with ant-cycle. The reason is 
to be found in the kind of feedback information which is used 
to direct the search process. Ant-cycle uses global information, 
that is, its ants lay an amount of trail which is proportional to 
how good the solution produced was. In fact, ants producing 
shorter paths contribute a higher amount of trail than ants 
whose tour was poor. On the other side, both ant-quantity and 
ant-density use local information. Their search is not directed 
by any measure of the final result achieved. Therefore, it is not 
surprising that they gave worse performance results (details 
can be found in [6]). 

The optimal value p = 0.5 in ant-cycle can be explained by 
the fact that the algorithm, after using the greedy heuristic 
to guide search in the early stages of computation, starts 
exploiting the global information contained in the values rt3 
of trail. Ant-cycle needs therefore to have the possibility to 
forget part of the experience gained in the past in order to 
better exploit new incoming global information. 

Given that we found ant-cycle to be superior to the other 
two algorithms, we decided to deepen our understanding of 
ant-cycle alone. Figs. 3-5 present traces of a typical run of 
the ant-cycle algorithm applied to the Oliver30 problem. In 
particular, Fig. 3 shows the length of the best found tour 
at each cycle, and Fig. 4 the standard deviation of the tour 
lengths of the population at each cycle of the same run. Note 
how in the early cycles the AS identifies good tours which 
are subsequently refined in the rest of the run. Since the 
standard deviation of the population’s tour lengths never drops 
to zero, we are assured that the algorithm actively searches 
solutions which differ from the best-so-far found, which gives 
it the possibility of finding better ones. The search for better 
solutions is carried on in selected regions of the search space 
determined by the trail resulting from preceding cycles. This 
can be observed in Fig. 5, in which the vertical axis shows 
the average node branching of the problem’s graph. Although 
the graph is initially fully connected, those arcs whose trail 
level falls below a (very small) value E ,  which makes their 
probability of being chosen by ants negligible, are removed. 
The node branching of node i is therefore given by the number 
of edges which exit from node i and which have a trail 
level higher than E .  Note how at the beginning of the run 
an ant could go from any node to any other (except for tabu 
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Fig. 3. Evolution of best tour length (Oliver30). Typical run. 
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(Oliver30). Typical run. 
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Fig. 5. 
(Oliver30). Typical run. 

Evolution of the average node branching of the problem’s graph 

list constraints), while at the end the possible choices are 
significantly reduced. 

The same process can be observed in the graphs of Fig. 6, 
where the AS was applied to a very simple 10-cities problem 
(CCAO, from [20]), and which depict the effect of ant search 
on the trail distribution. In the figure the length of the edges is 
proportional to the distances between the towns; the thickness 
of the edges is proportional to their trail level. Initially (Fig. 
6(a)) trail is uniformly distributed on every edge, and search 
is only directed by visibilities. Later on in the search process 
(Fig. 6(b)) trail has been deposited on the edges composing 
good tours, and is evaporated completely from edges which 
belonged to bad tours. The edges of the worst tours actually 
resulted to be deleted from the problem graph, thus causing a 
reduction of the search space. 

Besides the tour length, we also investigated the stagnation 
behnvior, i.e. the situation in which all the ants make the same 
tour. This indicates that the system has ceased to explore new 
possibilities and no better tour will arise. With some parameter 
settings we observed that, after several cycles, all the ants 
followed the same tour despite the stochastic nature of the 
algorithms because of a much higher trail level on the edges 
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(a) CD) 
Fig. 6.  Evolution of trail distribution for the CCAO problem. (a) Trail 
distribution at the beginning of search. (b) Trail distribution after 100 cycles. 
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- -  Fig. 8. Ant-cycle behavior for different combinations of C Y - ~  parameters. 
*-The algorithm finds the best known solution without entering the stagna- 
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0 500 1000 1500 2000 2500 3000 the stagnation behavior. @-The algorithm doesn’t find good solutions and 

.- 2 , ..... 0 -  
..... . ................................... ........... _.. 

enters the stagnation behavior. 
Fig. 7. 
(Oliver30). Typical run obtained setting cy = 5 and p = 2. 

Average node branching of a rnn going to stagnation behavior 

comprising that tour than on all the others. This high trail level 
made the probability that an ant chooses an edge not belonging 
to the tour very low. For an example, see the Oliver30 problem, 
whose evolution of average branching is presented in Fig. 7. In 
fact, after 2500 cycles circa, the number of arcs exiting from 
each node sticks to the value of 2, which-given the symmetry 
of the problem-means that ants are always following the 
same cycle. 

This led us to also investigate the behavior of the ant-cycle 
algorithm for different combination of parameters a and p 
(in this experiment we set N C M A ~  = 2500). The results 
are summarized in Fig. 8, which was obtained running the 
algorithm ten times for each couple of parameters, averaging 
the results and ascribing each averaged result to one of the 
three following different classes. 

0 Bad solutions and stagnation: For high values of a the 

without finding very good solutions. This situation is 

* Bad solutions and no stagnation: If enough importance 
was not given to the trail (i.e., Q was set to a low value) 

algorithm enters the stagnation behavior very quickly 20 

Fig. 9. The best tour obtained with 342 cycles of the ant-cycle algorithm 
for the Oliver30 problem (CY = 1, p = 5 ,  p = 0.5, Q = loo) ,  real length 
=423.741, integer length =420. 

represented by the symbol 0 in Fig. 8; 

then the algorithm did not find very good solutions. This 
situation is represented by the symbol 00. 

0 Good solutions: Very good solutions are found for a and p 
values in the central area (where the symbol used is 0) .  In 
this case we found that different parameter combinations 
( i . e . , ( Q = l , p = l ) , ( a ! = l , P = 2 ) , ( a : = l , p = 5 } ,  
(a  = 0.5, p = 5)) resulted in the same performance level: 
the same result (the shortest tour known on the Oliver30 
problem) was obtained in approximately the same number 

values of a! make the algorithm very similar to a stochastic 
multigreedy algorithm. 

In Fig. 9 we present the best tour4 we found using the 
experimentally determined optimal set of parameters values 
for the ant-cycle algorithm, a! = 1, /3 = 5, p = 0.5, Q = 100. 
This tour is of length 423.741 and presents two inversions, 
2-1 and 25-24, with respect to the best tour published in [34]. 

The major strengths of the ant-cycle algorithm can be 
summarized as: 

0 Within the range of parameter optimality the algorithm al- 
ways finds very good solutions for all the tested problems 

of cycles. 
The results obtained in this experiment are consistent with 

our understanding of the algoritha: a high value for a means 
that is very important and therefore ants tend to choose 4 T h ~ s  result is not competitive with results obtamed by special-purpose 
edges chosen by other ants in the past. On the other hand, low algorithms [2] 



DORIGO et al.: ANT SYSTEM: OPTIMIZATION BY A COLONY OF COOPERATING AGENTS 35 

Best tour length 

400 t Cycles 
10 

0-0 1 I ri 0 

O- T g T-T 0 -0 T 
300 ! I I I 

8 
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Fig. 11. An optimal solution for the 4 x 4 grid problem. 

Fig. 10. 
new optimal value (423.741) after NC = 342 cycles. 

The algorithm finds good values for Oliver30 very quickly and the 

(Oliver30 and other problems which will be presented 
later). 
The algorithm quickly finds good solutions (see Fig. 10; 
for a comparison with other heuristics, see Section VI); 
nevertheless it doesn’t exhibit stagnation behavior, i.e. the 
ants continue to search for new possibly better tours. 
With increasing dimensions the sensitivity of the param- 
eter values to the problem dimension has been found to 
be very low. 

We partially tested the ant-cycle algorithm on the EilonSO 
and Eilon75 problems [ 141 with a limited number of runs and 
with a number of cycles bounded by N C M A ~  = 3000. Under 
these restrictions we never got the best-known result, but a 
quick convergence to satisfactory solutions was maintained 
for both the problems. 

V. EXPERIMENTAL STUDY 2: 
EXTENSIONS AND ADVANCED PROPERTIES 

In this section we discuss experiments which have deepened 
our understanding of the ant-cycle algorithm. We study how 
synergy affects the algorithm performance (Section V-A). 
We compare the performance of ant-cycle when all the ants 
are initially positioned on a unique starting point with the 
performance obtained when each ant starts from a different 
town (Section V-B). Finally, we study the effects of an elitist 
strategy which increases the importance of the ant that found 
the best tour (Section V-C), and the change in performance of 
the AS when the problem dimension increases (Section V-D). 

A. Synergistic Effects 

We ran a set of experiments to assess both the impact of 
the number m of ants, and the importance of communication 
through trail, on the efficiency of the solution process. In this 
case, the test problem involved finding a tour in a 4 x 4 grid 
of evenly spaced points: this is a problem with a priori known 
optimal solution (160 if each edge has length 10, see Fig. 11). 

The result was that there is a synergistic effect in using 
many ants and using the trail communication system; that is, a 

1.0 t 1‘0 + 

(a) (b) 

Fig. 12. 
mance. In (a) a = 0, in (b) cy = 1. 

Synergy: Communication among ants (a  > 0) improves perfor- 

in which the synergistic effects reach a maximum. The results 
are shown in Figs. 12 and 13. 

In Fig. 12 we compare a situation in which ants do not com- 
municate ( a  = 0), with a situation in which they communicate 
(a  = 1). Results show that communication is indeed exploited 
by the algorithm. In Fig. 13 we report an experiment in which 
the 4 x 4 grid problem was solved with m E {4,8,16,32,64}. 
The abscissa shows the total number of ants used in each set of 
runs, the ordinate shows the so-called one-ant cycles, that is, 
the number of cycles required to reach the optimum, multiplied 
by the number of ants used (in order to evaluate the efficiency 
per ant, and have comparable data). The algorithm has always 
been able to identify the optimum with any number m 2 4 of 
ants. Tests run on a set of T x T grid problems (T  = 4,5,6,7,8)  
have substantiated our hypothesis that the optimal number of 
ants is close to the number of cities (m M n); this property 
was used in the assessment of the computational complexity 
(Section 111). 

A second set of tests has been carried out with 16 cities 
randomly distributed (16 cities random graph). Again we found 
that the optimal performance was reached with 8-16 ants, a 
number comparable with the dimension of the problem to be 
solved. 

B. Initialization 

This experiment was run in order to study whether the initial 
ant distribution influences the AS performance. We tested 
whether there is any difference between the case in which 
all ants at time t = 0 are in the same city and the case 
in which they are uniformly distributed5. We used ant-cycle 

run with n ants is more search-effective with communication 
among ants than with no communication. In case of commu- 

We say ants are uniformly distributed if there is, at time t = 0, the same 
inteeer number of ants on every town (this forces m to be a multiple of n).  

nicating ants, there is an “optimality point” given by m M n Uniform distribution was the default starting configuration in the experiments 
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Best Average number of Time requlred to 
(dmenslon) solution cycles to find the find the optimum* 

optimum (seconds) 

16 160 5.6 8 
25 254.1 13.6 75 
36 360 60 1020 
49 494.1 320 13440 
64 640 970 97000 
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Fig. 13. Number of one-ant cycles required to reach optimum as a function 
of the total number of ants for the 4 x 4 grid problem. Results are averaged 
over five runs. 

applied to the 16 cities random graph, to the 4 x 4 grid, and 
to the Oliver30 problem. In all three cases, distributing ants 
resulted in better performance. 

We also tested whether an initial random distribution of the 
ants over the cities performed better than a uniform one; results 
show that there is no significant difference between the two 
choices, even though the random distribution obtained slightly 
better results. 

C. Elitist Strategy 

We use the term “elitist strategy” (because in some way it 
resembles the elitist strategy used in genetic algorithms [19]) 
for the modified algorithm in which at every cycle the trail laid 
on the edges belonging to the best-so-far tour is reinforced 
more than in the standard version. We added to the trail of 
each arc of the best tour a quantity e . Q/L*, where e is the 
number of elitist ants6 and L* is the length of the best found 
tour. The idea is that the trail of the best tour, so reinforced, 
will direct the search of all the other ants in probability toward 
a solution composed by some edges of the best tour itself. 

The test were carried out again on the Oliver30 problem (the 
run was stopped after N C M A ~  = 2500 cycles) and results 
indicated that there is an optimal range for the number of 
elitist ants: below it, increasing their number results in better 
tours discovered andlor in the best tour being discovered 
earlier; above it, the elitist ants force the exploration around 
suboptimal tours in the early phases of the search, so that a 
decrease in performance results. Fig. 14 shows the outcome of 
a test on the Oliver30 problem where this behavior is evident. 

D. Increasing the Problem Dimensions 
The algorithm complexity presented in Section 111, O(NC. 

presented in the previous sections. 
61n our case the effect of an ant is to in crement the value of the trail on 

edges belonging to its tour; therefore in our case the equivalent of “saving” 
an individual is to reinforce its contribution. 

2500 
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0 

Local optima: 

425.82 

423.91 

423.74 

0 1 2 4 8 12 16 20 30 
Number e of elitist ants 

Fig. 14. 
number of elitist ants used (Oliver30). Results are averaged over five runs. 

Number of cycles required to reach a local optimum related to the 

n3), says nothing about the actual time required to reach the 
optimum. The experiment presented in this section is devoted 
to investigating the efficiency of the algorithm for increasing 
problem dimensions. Results are reported in Table I1 for the 
case of similar problems with increasing dimensions (T x T 

grids with the edge length set to 10, as in Fig. 11). It is 
interesting to note that, up to problems with 64 cities, the 
algorithm always found the optimal solution. 

VI. COMPARISON WITH OTHER HEURISTICS 
In this section we compare the efficacy of our algorithm to 

that of other heuristics, both tailored and general-purpose. 

A. Comparison with TSP-Tailored Heuristics 

In this section we compare ant-cycle with the heuristics 
contained in the package “Travel” [4]. This package represents 
the distances between the cities as an integer matrix and so we 
implemented an analogous representation in our system7. The 
results of the comparisons on Oliver30 are shown in Table 111, 
where the first column is the length of the best tour identified 
by each heuristic, and the second column is the improvement 
on the solution as obtained by the 2-opt heuristic (the 2-opt 
heuristic is an exhaustive exploration of all the permutations 
obtainable by exchanging 2 cities). Comparisons have been 
carried out also with the Lin-Kemighan [27] improvement of 

71n this case distances between towns are integer numbers and are computed 
according to the standard code proposed in [3 11. 



DONG0 et al.: ANT SYSTEM OPTIMIZATION BY A COLONY OF COOPERATING AGENTS 31 

As 
TS 
SA 

TABLE In 
F’ERFORMANCE OF THE ant-cycle ALGORITHM COMPARED 

WITH OTHER APPROACHES. RESULTS ARE AVERAGED OVER 
TEN RUNS, AND ROUNDED TO THE NEAREST INTEGER.8 

Best Average Std.dev. 

420 420.4 1.3 

420 420.6 1.5 

422 459.8 25.1 

Far Insert 
Near Insert 

Sweep 
Random 

TABLE IV 
PERFORMANCE OF AS COMPARED TO TS AND SA ON THE OLIVER30 PROBLEM. 

RESULTS ARE AVERAGED OVER TEN RUNS USING INTEGER DISTANCES 

the first-column solutions, which has been able to reduce the 
length of any tour to 420 (or 421, depending on the starting 
solution provided by the basic algorithms). 

Note how ant-cycle consistently outperformed 2-opt, while 
its efficacy-i.e., the effectiveness it has in finding very good 
solutions--can be compared with that of Lin-Kernighan. On 
the other hand, our algorithm requires a much longer compu- 
tational time than any other tested special-purpose heuristic. 

As a general comment of all the tests, we would like to 
point out that, given a good parameter setting (for instance 
a! = 1, ,B = 5 ,  p = 0.5, Q = 100, e = 8), our algorithm 
consistently found the best known solution for the Oliver30 
problem, and converged quickly toward satisfactory solutions. 
It always identified for Oliver30 the best-known solution of 
length 423.741 in less than 400 cycles, and it took only =lo0 
cycles to reach values under 430. The algorithm never fell 
into the stagnation behavior. In fact, the average branching 
was always greater than 2, and the average length of tours 
was never equal to the best tour found but remained somewhat 
above it. This indicates that the ants followed different tours. 

B. Comparison with General-purpose Heuristics 

We also compare ant-cycle with other general-purpose 
heuristics. This comparison is more fair to the AS, which in 
fact is a general-purpose heuristic, and not a specialized algo- 
rithm for the TSP. To run the comparisons, we implemented 
a Simulated Annealing (SA) [l], and a Tabu Search (TS) 
[17], [18]; we let each of them run 10 times on the Oliver30 
data. SA used the annealing function T(t + 1) = a!T(t), with 
a = 0.99; TS was implemented with tabu list length varying 
in the interval [20, 501. TS and SA, and the AS as well, were 
allowed to run for 1 hour on a IBM-compatible PC with 80386 
Intel processor. The results are presented in Table IV. 

Results show that the AS for this problem was as effective as 
TS and better than SA, when running under the same hardware 
and time constraints. 

VII. GENERALITY OF THE APPROACH 
As we said in Section I, the AS is both versatile and robust. 

Versatility is exemplified by the ease with which AS can 
be applied to the asymmetric TSP (ATSP), a particular kind 
of TSP (Section VII-A). Robustness is exemplified by the 
possibility of using the same algorithm, although appropriately 
adapted, to solve other combinatorial optimization problems 
like the quadratic assignment problem (QAP), and the job-shop 
scheduling problem (JSP) (Section VII-B). 

A. Versatility: The ATSP 

The asymmetric traveling salesman problem is a TSP in 
which the distance between two nodes is not symmetric (i.e., 
in general d,, # &). The ATSP is more difficult than the 
TSP; in fact, while symmetric TSP can be solved optimally 
even on graphs with several thousand nodes, ATSP instances, 
and particularly ATSP instances where the distance matrix 
is almost symmetric, can be solved to the optimum only on 
graphs with a few dozen nodes [16], [26]. 

The application of the AS to the ATSP is straightforward, 
as no modifications of the basic algorithm are necessary. The 
computational complexity of a cycle of the algorithm remains 
the same as in the TSP application, as the only differences 
are in the distance and trail matrices which are no longer 
symmetric. We chose as test problem the RY48P problem [16], 
a difficult problem instance with a distance distribution that is 
hard to solve even with tailored heuristics and branch and 
bound procedures. We ran AS 5 times on it, each time for 
4000 cycles. The average length of the best found tour was 
14899, that is 3.3% longer than the optimal one. The average 
number of cycles to find this result was 1517. 

B. Robustness: QAP and JSP 

Let’s now consider the robustness of the AS approach. Many 
combinatorial problems can be solved by the AS. To apply the 
autocatalytic algorithm to a combinatorial problem requires 
defining: 

1) an appropriate graph representation with search by many 

2) the autocatalytic (i.e. positive) feedback process; 
3) the heuristic that allows a constructive definition of the 

solutions (which we also call “greedy force”); 
4) the constraint satisfaction method (that is, the tabu list). 
This has been done for two well-known combinatorial op- 

timization problems-Quadratic Assignment (QAP) and Job- 
Shop Scheduling (JSP)--each time obtaining an adapted ver- 
sion of the AS that could effectively handle the relative 
problem. The most difficult (and ad hoc) tasks to face when 
applying the AS are to find an appropriate graph representation 
for the problem to be solved and a greedy force as heuristic. 

A QAP of order n is the 
problem that arises when trying to assign n facilities to n 

simple agents for the problem; 

Quadratic Assignment Problem: 

8The name “basic” means the basic heuristic, with no improvement. locations. 
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Formally the problem is usually defined using two n x n 
(symmetric) matrices 
D = { d Z 3 } ,  where d,, is the distance between location i and 

location j ;  
F = { f h k } ,  where f h k  is the flow (of information, products 

or some other quantity) between facility h and 
facility k .  

A permutation 7r is interpreted as an assignment of facility 
h = ~ ( i )  to location i, for each i = 1,. . . ,n. The problem 
is then to identify a permutation T of both row and column 
indexes of the matrix F that minimizes the total cost: 

n 

To apply AS to QAP we used the same algorithm as in the 
case of the TSP, after having studied an approximation of the 
QAP objective function that allows a problem representation 
on the basis of a single matrix which is used by the heuristic. 
The QAP objective function was expressed by a combination 
of the “potential vectors” of distance and flow matrices. The 
potential vectors, 2) and 3, are the row sums of each of the 
two matrices. Consider the following example 

50 30 0 50 
110 20 50 01 L 8 0 l  

From the two potential vectors, a third matrix S is obtained, 
where each element is computed as Szh = d, . fh, d, and fh 
being elements of the potential vectors. 

~ 

720 660 780 480 
1200 1100 1300 800 
1440 1320 1560 960 ’ 

1680 1540 1820 1120 

The ants choose the node to move to using the inverse of 
the values of S as visibility data, qzh = l /szhr  thus interpreting 
each element S z h  as the heuristic value of the choice of 
assigning to location i the facility h. To show how the heuristic 
works to build a solution we assume, for simplicity, that the 
ants act in a deterministic way (and not probabilistically, as 
it happens in the algorithm), and we don’t consider the effect 
of the trail (i.e., we set all trails 7 t h  = 1). In constructing 
the solution we consider the columns of matrix S one by one, 
starting from that corresponding to the activity with greatest 
flow potential, and we assign this activity to the location with 
least distance potential, according to the “min-max” rule. In 
our example first activity 3 will be assigned to location 1 
because the element a13 is the smallest of its column: we then 
pair activity 1 to location 2 (the coupling activity 1-location 
1 is inhibited because location 1 already has an assigned 
activity); continuing in the same way one obtains the couplings 
2-3, and 4 4 .  

s =  [ 

TABLE V 

AVERAGED OVER FIVE RUNS. BEST KNOWN RESULTS ARE IN BOLD 
COMPARISON OF THE AS WITH OTHER HEURISTIC APPROACHES RESULTS ARE 

Best known 
Ant System (AS) 
AS with non deterministic 
hill climbing 

Tabu Search 
Genetic Algorithm 
Evolution Strategy 
Sampling & Clustering 

sirnulared h e a l i n g  

Nugent 

-2% 
1150 
1150 

1150 
1150 
1160 
1168 
1150 

We compared AS, and a version of the AS to which 
was added a non deterministic hill climbing procedure, with 
many other well know heuristics (see [28] for more details). 
Experiments were run on IBM-compatible PC’s with a 80286 
Intel processor, and were stopped after one hour time. The 
test problems used are those known as Nugent problems [29], 
Elshafei [15], and Krarup 1251. As can be seen in Table V, 
the performance of AS was always very good [5].  Ant System 
always found a result within 5% of the best known, while AS 
with local optimization always found, except for the Nugent 30 
problem, the best known solution. This application is described 
in details in [28]. 

The JSP can be described 
as in the following. A set of M machines and a set of J jobs 
are given. The j th  job (j  = 1,. . . , J )  consists of an ordered 
sequence (chain) of operations from a set 0 = {. . . o J m . .  .}. 
Each operation oJm E 0 belongs to job j and has to be 
processed on machine m for d j m  consecutive time instants. 
N = 101 is the total number of operations. The problem is to 
assign the operations to time intervals in such a way that no 
two jobs are processed at the same time on the same machine 
and the maximum of the completion times of all operations 
is minimized [22]. 

To apply the AS to JSP we chose the following represen- 
tation. A JSP with M machines, J jobs and operation set 
0 is represented as a directed weighted graph Q = (0’ ,A)  
where 0’ = 0 U {oo}, and A is the set of arcs that connect 
00 with the first operation of each job and that completely 
connect the nodes of 0 except for the nodes belonging to a 
same job. Nodes belonging to a same job are connected in 
sequence (that is, a node is only connected to its immediate 
successor, see Fig. 15). Note that graph Q is not the graph 
with cliques representing machines that is usually utilized to 
represent the JSP. Node 00 is necessary in order to specify 
which job will be scheduled first, in case several jobs have 
their first operation on the same machine. We have therefore 
N + 1 nodes and 7 + IJI arcs, where all the nodes are 
painvise connected except 00, which is connected only to the 
first operation of each job. Each arc is weighted by a pair of 
numbers, {?-kL,Vkl}. The first, T ~ L ,  is the trail level, while the 
second is the visibility v k l ,  and is computed according to a 
desirability measure derived from a greedy problem specific 
heuristic like the Longest Processing Time or the Shortest 
Completion Time. The order in which the nodes are visited by 
each ant specifies the proposed solution. For instance, consider 

Job-Shop Scheduling Problem: 

N(N-1) 
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Fig. 15. 
arrows (in bold) are intended to represent a pair of directed arcs. 

AS graph for a 3 jobs and 2 machines JSP. Connections with no Fig. 16. 
problem. 

The steady-state transition matrix for a randomly generated lo-town 

a 3 x 2 problem (3 jobs, 2 machines): it would be represented 
in our system by the graph presented in Fig. 15. We suppose 
the first machine processes operations 1, 3, 5, and the second 
one the others. 

All ants are initially in 00; later on they have to identify 
at each step a feasible permutation of the remaining nodes. 
To cope with this problem, transition probabilities have to be 
slightly modified with respect to those computed according to 
formula (4): in order to have a feasible permutation it is in 
fact necessary to define the set of allowed nodes in any step 
not only through the tabu list, but also in a problem-dependent 
way. For each ant k ,  let Gk be the set of all the nodes still to 
be visited and SI, the set of the nodes allowed at the next step. 
Initially Gk = {1,2,3,4,5,6} and sk = {1,2,3}. Transition 
probabilities are computed on the basis of formula (4), where 
the set of allowed nodes is equal to s k .  When a node is 
chosen, it is appended to the tabu list and deleted from Gk 
and from S k ;  if the chosen node is not the last in its job then 
its immediate successor in the job chain is added to S k .  This 
procedure ensures the possibility to always produce a feasible 
solution, possibly the optimal one. The process is iterated until 
Gk = @. At the end, the order of the nodes in the permutation 
given by the tabu list specifies the solution proposed by ant 
k .  The trails can thus be computed in the usual way and they 
are laid down as specified by the ant cycle algorithm. 

For example, suppose that an ant yielded the solution 
7r = (0,1,4,2,5,3,6);  this would direct the order of the 
operations imposing the precedences { ( 1,5), ( 1,3),  (5,3)} and 
{(4,2), (4,6), (2,6)}, respectively. 

This approach has been implemented and successfully ap- 
plied to JSP instances of dimension 10 x 10 and 10 x 15 (10 
jobs, 15 machines). For each of these problems we always 
obtained a solution within 10% of the optimum [8], which can 
be considered a promising result. 

VIII. DISCUSSION OF SOME AS CHARACTERISTICS 

A major issue in defining any distributed system is the 
definition of the communication protocol. In the AS a set of 
ants communicate by modifications of a global data structure: 
after each tour the trail left on each ant’s tour will change 
the probability with which the same decision will be taken 
in the future. A heuristic also guides ants in the early stages 

of the computational process, when experience has not yet 
accumulated into the problem structure. This heuristic auto- 
matically loses importance (remember the coefficient p related 
to evaporation) as the experience gained by ants, and saved in 
the problem representation, increases. 

One way to explain the behavior of AS on the TSP problem 
is the following. Consider the transition matrix pk(t) of ant 
k :  every element p f j  ( t )  is the transition probability from town 
i to town j at time t as defined by (4). At time t = 0 each 
pt3 (0) is proportional to v z j ,  i.e., closer towns are chosen with 
higher probability. As the process evolves, p k ( t )  changes its 
elements according to (1) and (4). The process can therefore 
be seen as a space deformation, in which path cost is reduced 
between towns which are connected by edges with a high 
amount of traffic, and, conversely, path cost is incremented 
between towns connected by edges with low traffic levels. 
From simulations we observed that the matrix p k ( t ) ,  at least 
in the range of optimality for our parameters, converges to 
a state’ that is very close to stationary (i.e., variations in the 
transition matrix p k ( t )  are very small). When this state is 
reached the behavior of the ants is dependent on the kind 
of transition matrix obtained. We observed two situations: in 
the most rare one, occurring (as we saw in Section IV) for 
particular parameter settings, only two transition probabilities 
are significantly higher than zero in every row and therefore all 
the ants choose the same edge at each step and no new tour is 
searched. In the most common situations instead, most of the 
rows have only a few transition probabilities with a significant 
value. In these cases search never stops, even if the number 
of significant transitions is highly reduced, with respect to the 
initial situation. Consider for example Fig. 16, obtained as the 
steady-state transition matrix for a randomly generated 10- 
town problem: the area of each circle is proportional to the 
corresponding value of the transition probability. An ant in 
town 1 has a very high probability to go either to town 5 
(near 50%) or to town 2 (near 35%), and a low probability 
of choosing any other edge. A similar analysis holds for ants 
in any other town; from towns 9 and 0, for example, any 
destination is equally probable. 

9The stochastic process that rules the evolution of the matrix p k ( t )  is a 
Markov process with infinitc memory. 
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Another way to interpret how the algorithm works is to 
imagine having some kind of probabilistic superimposition of 
effects: each ant, if isolated (that is, if Q = 0), would move 
with a local, greedy rule. This greedy rule guarantees only 
locally optimal moves and will practically always lead to bad 
final results. The reason the rule doesn’t work is that greedy 
local improvements lead to very bad final steps (an ant is 
constrained to make a closed tour and therefore choices for 
the final steps are constrained by early steps). So the tour 
followed by an ant ruled by a greedy policy is composed of 
some (initial) parts that are very good and some (final) parts 
that are not. If we now consider the effect of the simultaneous 
presence of many ants, then each one contributes to the trail 
distribution. Good parts of paths will be followed by many 
ants and therefore they receive a great amount of trail. On the 
contrary, bad parts of paths are chosen by ants only when they 
are obliged by constraint satisfaction (remember the tabu list); 
these edges will therefore receive trail from only a few ants. 

IX. CONCLUSION 
This paper introduces a new search methodology based on 

a distributed autocatalytic process and its application to the 
solution of a classical optimization problem. The general idea 
underlying the Ant System paradigm is that of a population 
of agents each guided by an autocatalytic process directed by 
a greedy force. Were an agent alone, the autocatalytic process 
and the greedy force would tend to make the agent converge to 
a suboptimal tour with exponential speed. When agents interact 
it appears that the greedy force can give the right suggestions 
to the autocatalytic process and facilitate quick convergence 
to very good, often optimal, solutions without getting stuck in 
local optima. We have speculated that this behavior could be 
due to the fact that information gained by agents during the 
search1 process is used to modify the problem representation 
and in this way to reduce the region of the space considered 
by the search process. Even if no tour is completely excluded, 
bad tours become highly improbable, and the agents search 
only in the neighborhood of good solutions. 

The main contributions of this paper are the following. 
i) 

ii) 

We employ positive feedback as a search and opti- 
mization tool. The idea is that if at a given point an 
agent (ant) has to choose between different options and 
the one actually chosen results to be good, then in the 
future that choice will appear more desirable than it 
was before”. 
We show how synergy can arise and be useful in 
distributed systems. In the AS the effectiveness of the 
search carried out by a given number of cooperative 
ants is greater than that of the search carried out by the 
same number of ants, each one acting independently 
from the others. 

iii) We show how to apply the AS to different combinatorial 
optimization problems. After introducing the AS by an 

“Reinforcement of this nature is used by the reproduction-selection mecha- 
nism in evolutionary algorithms [23], [30], [33]. The main difference is that in 
evolutionary algorithms it is applied to favor (or disfavor) complete solutions, 
while in AS it is used to build solutions. 

application to the TSP, we show how to apply it to the 
ATSP, the QAP, and the JSP. 

We believe our approach to be a very promising one because 
of its generality (it can be applied to many different problenis, 
see Section VH), and because of its effectiveness in finding 
very good solutions to difficult problems. 

Related work can be classified in the following major areas: 
* studies of social animal behavior; 
* research in “natural heuristic algorithms”; 

stochastic optimization. 
As already pointed out the research on behavior of social 

animals is to be considered as a source of inspiration and 
as a useful metaphor to explain our ideas. We believe that, 
especially if we are interested in designing inherently parallel 
algorithms, observation of natural systems can be an invaluable 
source of inspiration. Neural networks [32], genetic algorithms 
[23], evolution strategies [30, 331, immune networks [3], sim- 
ulated annealing [24] are only some examples of models with 
a “natural flavor”. The main characteristics, which are at least 
partially shared by members of this class of algorithms, are 
the use of a natural metaphor, inherent parallelism, stochastic 
nature, adaptivity, and the use of positive feedback. Our 
algorithm can be considered as a new member of this class. All 
this work in “natural optimization” [ 12, 91 fits within the more 
general research area of stochastic optimization, in which the 
quest for optimality is traded for computational efficiency. 
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