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Swarm robotics is the study of how to design groups of robots that operate without relying on any external
infrastructure or on any form of centralized control. In a robot swarm, the collective behavior of the robots results
from local interactions between the robots and between the robots and the environment in which they act. The design
of robot swarms is guided by swarm intelligence principles. These principles promote the realization of systems that
are fault tolerant, scalable and flexible. Swarm robotics appears to be a promising approach when different activities
must be performed concurrently, when high redundancy and the lack of a single point of failure are desired, and when
it is technically infeasible to set up the infrastructure required to control the robots in a centralized way. Examples of
tasks that could be profitably tackled using swarm robotics are demining, search and rescue, planetary or underwater
exploration, and surveillance.

Origins

Swarm robotics has its origins in swarm intelligence and, in fact, could be defined as "embodied swarm intelligence".
Initially, the main focus of swarm robotics research was to study and validate biological research (Beni, 2005). Early
collaboration between roboticists and biologists helped bootstrap swarm robotics research, which has since become a
research field in its own right. In recent years, the focus of swarm robotics has been shifting: from a bio-inspired field
of robotics, swarm robotics is increasingly becoming an engineering field whose focus is on the development of tools
and methods to solve real problems (Brambilla et al., 2013).

Characteristics of swarm robotics

A robot swarm is a self-organizing multi-robot system characterized by high redundancy. Robots’ sensing and
communication capabilities are local and robots do not have access to global information. The collective behavior of
the robot swarm emerges from the interactions of each individual robot with its peers and with the environment.
Typically, a robot swarm is composed of homogeneous robots, although some examples of heterogeneous robot
swarms do exist (Dorigo et al., 2013).

Desirable properties of swarm robotics systems

The aforementioned characteristics of swarm robotics are deemed to promote the realization of systems that are fault
tolerant, scalable and flexible.

Swarm robotics promotes the development of systems that are able to cope well with the failure of one or more of
their constituent robots: the loss of individual robots does not imply the failure of the whole swarm. Fault tolerance is
enabled by the high redundancy of the swarm: the swarm does not rely on any centralized control entity, leaders, or
any individual robot playing a predefined role.

Swarm robotics also enables the development of systems that are able to cope well with changes in their group size:
ideally, the introduction or removal of individuals does not cause a drastic change in the performance of the swarm.
Scalability is enabled by local sensing and communication: provided that the introduction and removal of robots does
not dramatically modify the density of the swarm, each individual robot will keep interacting with approximately the



same number of peers, those that are in its sensing and communication range.

Finally, swarm robotics promotes the development of systems that are able to deal with a broad spectrum of
environments and operating conditions. Flexibility is enabled by the distributed and self-organized nature of a robot
swarm: in a swarm, robots dynamically allocate themselves to different tasks to match the requirements of the
specific environment and operating conditions; moreover, robots operate on the basis of local sensing and
communication and do not rely on pre-existing infrastructure or on any form of global information.

Potential applications of swarm robotics

The properties of swarm robotics systems make them appealing in several potential application domains.

The use of robots for tackling dangerous tasks is clearly appealing as it eliminates or reduces risks for humans. The
dangerous nature of these tasks implies a high risk of losing robots. Therefore, a fault-tolerant approach is required,
making dangerous tasks an ideal application domain for robot swarms. Example of dangerous tasks that could be
tackled using robot swarms are demining, search and rescue, and cleaning up toxic spills.

Potential applications for robot swarms are those in which it is difficult or even impossible to estimate in advance the
resources needed to accomplish the task. For instance, allocating resources to manage an oil leak can be very hard
because it is often difficult to estimate the oil output and to foresee its temporal evolution. In these cases, a solution is
needed that is scalable and flexible. A robot swarm could be an appealing solution: robots can be added or removed in
time to provide the appropriate amount of resources and meet the requirements of the specific task. Example of tasks
that might require an a priori unknown amount of resources are search and rescue, tracking, and cleaning.

Another potential application domain for swarm robotics are tasks that have to be accomplished in large or
unstructured environments, in which there is no available infrastructure that can be used to control the robots—e.g.,
no available communication network or global localization system. Robot swarms could be employed for such
applications because they are able to act autonomously without the need of any infrastructure or any form of external
coordination. Examples of tasks in unstructured and large environments are underwater or extraterrestrial planetary
exploration, surveillance, demining, and search and rescue.

Some environments might change rapidly over time. For instance, in a post earthquake situation, buildings might
collapse—thereby changing the layout of the environment and creating new hazards. In these cases, it is necessary to
adopt solutions that are flexible and can react quickly to events. Swarm robotics could be used to develop flexible
systems that can rapidly adapt to new operating conditions. Example of tasks in environments that change over time
are patrolling, disaster recovery, and search and rescue.

Scientific implications of swarm robotics

Beside being relevant to engineering applications, swarm robotics is also a valuable scientific tool. Indeed, several
models of natural swarm intelligence systems have been refined and validated using robot swarms. For example,
Garnier et al. (2005) validated the model of a collective decision-making behavior in cockroaches using robot swarms.

Swarm robotics has also been used to investigate, via controlled experiments, the conditions under which some
complex social behaviors might result out of an evolutionary process. For example, robot swarms have been used to
study the evolution of communication (Mitri et al., 2009) and collective decision making (Halloy et al., 2007).

Current research

In this section, we follow the taxonomy presented in Brambilla et al. (2013).

Design



The design of a robot swarm is a difficult endeavor: requirements are usually expressed at the collective level, but the
designer needs to define hardware and behavior at the level of individual robots. The resulting robots should interact
in such a way that the global behaviour of the swarm meets the desired requirements. Approaches to the design
problem in swarm robotics can be divided into two categories: manual design and automatic design.

In manual design, the designer follows a trial-and-error process in which the behaviors of the individual robot are
developed, tested and improved until the desired collective behavior is obtained. The software architecture that is
most commonly adopted in swarm robotics is the probabilistic finite state machine. Probabilistic finite state
machines have been used to obtain several collective behaviors, including aggregation (Soysal and Sahin, 2005),
chain formation (Nouyan et al., 2009), and task allocation (Liu and Winfield, 2010). Another common approach is
based on virtual physics. In this approach, robots and environment interact through virtual forces. This approach is
particularly suited for spatially organizing collective behaviors, such as pattern formation (Spears et al. 2004) and
collective motion (Ferrante et al., 2012). Currently, the main limit of manual design is that it is completely reliant on
the ingenuity and expertise of the human designer: designing a robot swarm is more of an art than a science. A
systematic and general way to design robot swarms is still missing, even though a few preliminary proposals have
been made (Hamann and Worn, 2008; Berman et al., 2011; Brambilla et al., 2012).

In swarm robotics, automatic design has been mostly performed using the evolutionary robotics approach (Nolfi and
Floreano, 2004). Typically, individual robots are controlled by a neural network whose parameters are obtained via
artificial evolution (Trianni and Nolfi, 2011). Evolutionary robotics has been used to develop several collective
behaviors including collective transport (Groß and Dorigo, 2008) and development of communication networks
(Huaert et al., 2008). One of the main limits of evolutionary robotics is that defining an effective evolutionary setting
is often difficult and labor intensive.

Analysis

The analysis of a robot swarm usually relies on models. A model of a robot swarm can be realized at two levels: the
microscopic level, that is modeling the behaviors of the individual robots; or the macroscopic level, that is modeling
the collective behavior of the swarm.

Modeling the microscopic level involves forming a detailed representation of each individual robot in the swarm.
Unfortunately, microscopic modeling is problematic due to the large number of robots involved. Often, microscopic
modeling relies on computer-based simulations (Kramer and Scheutz, 2007; Pinciroli et al., 2012).

Macroscopic models avoid the complexity and scalability issues of having to model each individual robot by
considering only the collective behavior of the swarm. One of the most common macroscopic modeling approaches is
the use of rate or differential equations (Martinoli et al., 2004; Lerman et al., 2005). Rate equations describe the time
evolution of the ratio of robots in a particular state, that is, of robots that are performing a specific action or are in a
specific area of the environment. Rate equations have been used to model many collective behaviors, including object
clustering (Martinoli et al., 1999) and adaptive foraging (Liu and Winfield, 2010). Another common approach is the
use of Markov chains, which allow researchers to formally verify properties of a robot swarm (Dixon et al., 2012;
Konur et al., 2012; Massink et al., 2013). Control theory has also been used to analyze whether a robot swarm
eventually converges to a desired macroscopic state (Liu and Passino, 2004; Hsieh et al., 2008).

A hybrid way of modeling robot swarms is based on Fokker-Plank and Langevin equations (Hamann and Worn,
2008; Berman et al., 2009; Prorok et al., 2011). Using these equations, one can model both the behavior of the
individual robot, in the form of a deterministic component of the model; and the collective behavior of the swarm, in
the form of a stochastic component of the model.

Collective behaviors

A large part of the research effort in swarm robotics is directed towards the study of collective behaviors. Collective
behaviors can be categorized into five main groups: spatially organizing behaviors, navigation behaviors, decision-



making behaviors, human interaction behaviors, and other behaviors.

Spatially-organizing behaviors focus on how to organize and distribute robots and objects in space. Examples of such
behaviors are aggregation (Soysal and Ṣahin, 2005), pattern formation (Spears et al. 2004), chain formation (Nouyan
et al. 2009), self-assembly (O'Grady et al., 2010), and object clustering/assembling (Werfel et al., 2011).

Navigation behaviors focus on how to coordinate the movement of a robot swarm. Examples of such behaviors are
collective exploration (Ducatelle et al., 2014), collective motion (Turgut et al., 2008), and collective transport
(Baldassarre et al., 2006).

Collective decision-making behaviors focus on how robots influence each other in making decisions. In particular,
collective decision-making can be used to achieve consensus on a single alternative (Garnier et al., 2005; Campo et al.
2011) or allocation to different alternatives (Pini et al., 2011).

Human-swarm interaction behaviors focus on how a human operator can control a swarm and receive feedback
information from it. For example, robots can distributedly recognize the gestures of a human operator (Giusti et al.,
2012) or form groups based on visual and vocal inputs (Pourmehr et al., 2013).

Other behaviors that do not fall in the previously mentioned categories are collective fault detection (Christensen et
al. 2009) and group size regulation (Pinciroli et al, 2013).

Open issues

Despite its potential to promote robustness, scalability and flexibility, swarm robotics has yet to be adopted for
solving real-world problems. Various limiting factors are preventing the real-world uptake of swarm robotics systems.
Further research is needed on robotic hardware to overcome hardware shortcomings that limit the functionality of
current robotic systems, while further research on behavioural control is needed to discover effective ways to let a
human operator interact with a robot swarm. More effort is required to provide compelling case-studies—in
particular to demonstrate swarm robotics in outdoor applications (e.g., waste removal), but also to develop business
cases and business models that show how and where swarm robotics can be more effective than other approaches.
Finally, an engineering methodology is still lacking for swarm robotics systems, which would include the definition of
standard metrics, performance assessment testbeds and formal analysis techniques to verify and guarantee the
properties of swarm robotics systems.
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Swarm Intelligence (http://www.springer.com/11721) : The main journal in the field.
ANTS - International Conference on Swarm Intelligence (http://iridia.ulb.ac.be/~ants) : This series of
conferences, held for the first time in 1998, is the oldest in the swarm intelligence field.
IEEE Swarm Intelligence Symposium (http://www.computelligence.org/sis/2006/past.php) : Another series of
conferences dedicated to swarm intelligence, started in 2003.
Swarm-bots (http://www.swarm-bots.org/) : research project 2001-2005
ARGoS (http://iridia.ulb.ac.be/argos/) : A multi-robot, multi-engine simulator for heterogeneous swarm robotics
Swarms (http://www.swarms.org/) : research project 2003-2007
i-Swarm project (http://www.i-swarm.org/) : research project 2005-2008
Swarmanoid (http://www.swarmanoid.org/) : research project 2006-2010
Symbrion (http://symbrion.org/tiki-index.php) : research project 2008-2013
E-SWARM (http://www.e-swarm.org/) : research project 2010-2015
Kilobots (http://www.eecs.harvard.edu/ssr/projects/progSA/kilobot.html) : a low-cost robot for swarm robotics
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