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Abstract. The ant algorithms research field builds on the idea that the
study of the behavior of ant colonies or other social insects is interesting
for computer scientists, because it provides models of distributed orga-
nization that can be used as a source of inspiration for the design of op-
timization and distributed control algorithms. In this paper we overview
this growing research field, giving particular attention to ant colony op-
timization, the currently most successful example of ant algorithms, as
well as to some other promising directions such as ant algorithms inspired
by labor division and brood sorting.

1 Introduction

Models based on self-organization have recently been introduced by ethologists
to study collective behavior in social insects [2,3,5,14]. While the main motivation
for the development of these models was to understand how complex behavior at
the colony level emerges out of interactions among individual insects, computer
scientists have recently started to exploit these models as an inspiration for the
design of useful optimization and distributed control algorithms. For example, a
model of cooperative foraging in ants has been transformed into a set of optimiza-
tion algorithms, now known as ant colony optimization (ACO) [22,24], capable
of tackling very hard computational problems, such as the traveling salesman
[28,20,29,26,60], the quadratic assignment problem [47,46,35,61], the sequential
ordering problem [33], the shortest common supersequence problem [49], various
scheduling problems [57,12,48], and many others (see Table 1). More recently,
ACO has also been successfully applied to distributed control problems such as
adaptive routing in communications networks [54,17]. Another model, initially
introduced to explain brood sorting in ants, was used by computer scientists to
devise a distributed algorithm for data clustering [43,39]. And a model of flex-
ible task allocation in wasps has become a distributed algorithm for dynamic
scheduling or resource allocation in a factory or a computer network [9]. This
line of research, termed ant algorithms [21,23,27] or swarm intelligence [2,4] has
also met the interest of roboticists for the design of distributed algorithms for
the control of swarms of robots.
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In the following we will overview the main results obtained in the field of
ant algorithms. In Section 2 we introduce the ACO metaheuristic, currently the
most successful example of ant algorithms, using the classical traveling salesman
problem as an example, and we overview the results obtained on a number of
problems. In Section 3 we briefly present other types of ant algorithms that,
although still in the phase of exploratory research, look promising and maybe
one day will be as successful as ACO has shown to be.

2 From Real Ants to Ant Colony Optimization

An important insight of early research on ants’ behavior was that in many ant
species the visual perceptive faculty is very rudimentarily developed (there are
even ant species which are completely blind) and that most communication
among individuals, or between individuals and their environment, is based on
the use of chemicals, called pheromones, produced by the ants. Particularly im-
portant for the social life of some ant species is the trail pheromone, a pheromone
that individuals deposit while walking in search for food. By sensing pheromone
trails, foragers can follow the path to food discovered by other ants. This col-
lective pheromone-laying/pheromone-following behavior whereby an ant is in-
fluenced by a chemical trail left by other ants was the inspiring source of ant
colony optimization, as explained in the following by means of the double bridge
experiment.

2.1 The Double Bridge Experiment

The double bridge experiment [36] is an important experiment in the field of
ant algorithms. In fact, it gave the initial inspiration [20,28] to all the research
work that led to the definition of the ACO metaheuristic. In the double bridge
experiment, see Figure 1, an ant nest is connected to a food source via two paths
of different length. At start time all ants are in the nest and they are left free
to move. The experimental apparatus is built in such a way that the only way
for the ants to reach the food is by using one of the two bridge branches. In
the initial phase the ants move randomly and they choose between the shorter
and the longer branch with equal probability. While walking ants deposit on
the ground a pheromone trail; when choosing their way, ants choose with higher
probability those directions marked by a stronger pheromone concentration. As
those ants choosing the shorter branch will also be the first to find the food
and to go back to the nest, the pheromone trail on the shorter branch will grow
faster, increasing this way the probability that it will be used by forthcoming
ants. This auto-catalytic (positive feedback) process is at the heart of the auto-
organizing behavior that very quickly leads all the ants to choose the shortest
branch. A similar mechanism can be used by opportunely defined artificial ants
to find minimum cost paths on graphs, as explained in the following.
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Nest Food

Fig. 1. Experimental setup for the double bridge experiment. Modified from [14,36].

2.2 Artificial Ants for the Traveling Salesman Problem

To illustrate how artificial ants can solve optimization problems, we consider
an easy-to-formulate but hard-to-solve combinatorial problem: the well-known
traveling salesman problem (TSP), a problem known to be NP-hard.
Consider a set of cities and a set of weighted edges (the edges represent direct

connections between pairs of cities and the weights may represent, for example,
the distance between the connected cities) such that the induced graph is con-
nected. The TSP is easily described as follows: find the shortest tour that visits
each city in the set once and only once. The (constructive and stochastic) algo-
rithm followed by the artificial ants exploits virtual pheromone concentrations
associated to the edges connecting pairs of cities: artificial ants build tours, se-
lecting which next city to hop to among a list of non-visited cities depending on
city distance and on pheromone concentration. The shorter tours are reinforced
by increasing the pheromone concentrations. Then evaporation, which consists
in decreasing the pheromone values, is applied to all edges. After a number of
iterations, very good solutions are discovered. In addition to finding a very good
solution, the algorithm maintains a pool of alternative portions of solutions: this
feature may become particularly interesting when the problem is dynamically
changing (as most real-world problems are), since the algorithm can focus the
search toward this pool of alternative portions of solutions.
The traveling salesman problem obviously lends itself to an ant-based de-

scription. But many other optimization problems can be solved with the same
approach, because they can be formulated as minimum cost path problems on
graphs: the ant-based approach has been shown to be extremely efficient on
structured (real-world) instances of the quadratic assignment problem, on the
sequential ordering problem, the vehicle routing problem, the shortest common
supersequence problem, and many others (see Table 1).

2.3 The Ant Colony Optimization Metaheuristic

Although the algorithms developed for the above-mentioned applications differ in
many details among themselves, still their artificial ants share the basic behavior
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procedure ACO metaheuristic
ScheduleActivities {possibly in parallel}
ManageAntsActivity()
EvaporatePheromone()
DaemonActions() {Optional}

end ScheduleActivities
end ACO metaheuristic

Fig. 2. The ACO metaheuristic in pseudo-code. Comments are enclosed in
braces. The ScheduleActivities construct may be executed sequentially, as
typically happens in combinatorial optimization problems, or in parallel, as
done for example in routing applications. The procedure DaemonActions() is
optional and refers to centralized actions executed by a daemon possessing global
knowledge.

and cooperation mechanisms as the TSP artificial ants explained above (see
also [20,28,29]). This fact was recently captured in the definition of a common
framework, called ACO metaheuristic [22,24]. Informally, the ACO metaheuristic
(see also Figure 2) can be defined as follows (the reader interested in a more
formal definition should refer to [22]).
A colony of (artificial) ants concurrently and asynchronously build solutions

to a given discrete optimization problem by moving on the problem’s graph rep-
resentation, where each feasible path encodes a solution of the problem. They
move by applying a stochastic local decision rule that exploits pheromone trail
values. By moving, ants incrementally build solutions to the optimization prob-
lem. Once an ant has built a solution, or while the solution is being built, the
ant evaluates the (partial) solution and deposits pheromone on the graph com-
ponents it used. This pheromone information directs the search of the ants in
the future.
Besides ants’ activity, an ACO algorithm includes two additional procedures:

pheromone trail evaporation and daemon actions (the last component being op-
tional). Pheromone evaporation is the process by means of which the pheromone
trail intensity on the components decreases over time. From a practical point of
view, pheromone evaporation is needed to avoid a too rapid convergence of the
algorithm towards a sub-optimal region. It implements a useful form of forget-
ting, favoring the exploration of new areas of the search space. Daemon actions
can be used to implement centralized actions which cannot be performed by sin-
gle ants. Examples are the activation of a local optimization procedure, or the
collection of global information that can be used to decide whether it is useful or
not to deposit additional pheromone to bias the search process from a non-local
perspective. As a practical example, the daemon can choose to deposit extra
pheromone on the components used by the ant that built the best solution.
It is interesting to note that the ACO approach has a feature which makes

it particularly appealing: it is explicitly formulated in terms of computational
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Table 1. Some of the current applications of ACO algorithms. Applications are listed by class of problems and
in chronological order.

Problem name Authors Algorithm name Year Main references

Traveling salesman Dorigo, Maniezzo & Colorni AS 1991 [20,28,29]
Gambardella & Dorigo Ant-Q 1995 [30]
Dorigo & Gambardella ACS & ACS-3-opt 1996 [25,26,31]
Stützle & Hoos MMAS 1997 [60,58,61]
Bullnheimer, Hartl & Strauss ASrank 1997 [8]

Quadratic assignment Maniezzo, Colorni & Dorigo AS-QAP 1994 [47]
Gambardella, Taillard & Dorigo HAS-QAPa 1997 [35]
Stützle & Hoos MMAS-QAP 1997 [56,61]
Maniezzo ANTS-QAP 1998 [44]
Maniezzo & Colorni AS-QAPb 1999 [46]

Scheduling problems Colorni, Dorigo & Maniezzo AS-JSP 1994 [10]
Stützle AS-FSP 1997 [57]
Bauer et al. ACS-SMTTP 1999 [1]
den Besten, Stützle & Dorigo ACS-SMTWTP 1999 [12]
Merkle, Middendorf & Schmeck ACO-RCPS 2000 [48]

Vehicle routing Bullnheimer, Hartl & Strauss AS-VRP 1997 [6,7]
Gambardella, Taillard & Agazzi HAS-VRP 1999 [34]

Connection-oriented Schoonderwoerd et al. ABC 1996 [54,53]
network routing Di Caro & Dorigo AntNet-FS 1998 [18]

Connection-less Di Caro & Dorigo AntNet & AntNet-FA 1997 [16,17,19]
network routing

Sequential ordering Gambardella & Dorigo HAS-SOP 1997 [32,33]

Graph coloring Costa & Hertz ANTCOL 1997 [11]

Shortest common Michel & Middendorf AS-SCS 1998 [49,50]
supersequence

Frequency assignment Maniezzo & Carbonaro ANTS-FAP 1998 [45]

Generalized assignment Ramalhinho Lourenço & Serra MMAS-GAP 1998 [52]

Multiple knapsack Leguizamón & Michalewicz AS-MKP 1999 [41]

Optical networks routing Navarro Varela & Sinclair ACO-VWP 1999 [51]

Redundancy allocation Liang & Smith ACO-RAP 1999 [42]

Constraint satisfaction Solnon Ant-P-solver 2000 [55]

a HAS-QAP is an ant algorithm which does not follow all the aspects of the ACO metaheuristic.
b This is a variant of the original AS-QAP.

agents. While it may in principle be possible to get rid of the agents to focus
on the core optimizing mechanism (reinforcement and evaporation), the agent-
based formulation may prove to be a useful aid for designing problem-solving
systems. Routing in communications networks is a very good example of this
aspect. Routing is the mechanism that directs messages in a communications
network from their source nodes to their destination nodes through a sequence
of intermediate nodes or switching stations. Each switching station has a routing
table that tells messages or portions of messages called packets where to go given
their destinations. Because of the highly dynamic nature of communications
networks due to the time-varying stochastic changes in network load, as well as to
unpredictable failures of network components, areas of the network may become
congested and new routes have to be discovered dynamically. In the ant-based
approach [17,54] ant-like agents reinforce routing table entries depending on
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their experience in the network: for example, if an agent has been delayed a long
time because it went through a highly congested area of the network, it will only
weakly, or not at all, reinforce routing table entries that send packets to that area
of the network. A forgetting (or evaporation) mechanism is also applied regularly
to refresh the system (to avoid obsolete solutions being maintained). AntNet [17],
an ACO algorithm designed for routing in packet-switched networks, was shown
to outperform (in realistically simulated conditions) all routing algorithms in
widespread use, especially, but not only, in strongly variable traffic conditions.
Implicitly maintaining a pool of alternative partial routes is the way the system
copes with changing conditions and allows it to be flexible and robust.

3 Other Applications Inspired by Social Insects

As we said, ant colony optimization algorithms are only one, although the most
successful, example of ant algorithms. Wagner et al. have proposed two algo-
rithms also inspired by the foraging behavior of ant colonies for the exploration
of a graph. Other researchers have taken inspiration from other social insect
behaviors, such as division of labor, brood sorting and cemetery organization,
to propose new types of distributed, multi-agent algorithms, as explained in the
following.

3.1 Foraging and Graph Exploration

Taking inspiration from the pheromone-laying/pheromone-following behavior of
ant colonies, Wagner et al. [62,63] have proposed two algorithms for exploring a
graph called respectively Edge Ant Walk [62] and Vertex Ant Walk [63] in which
one or more artificial ants walk along the edges of the graph, lay a pheromone
trail on the visited edges (respectively nodes) and use the pheromone trails
deposited by previous ants to direct their exploration. Although the general idea
behind the algorithm is similar to the one that inspired ant colony optimization,
their goal and implementation are very different. In the work of Wagner et al.,
pheromone trail is used as a kind of distributed memory that directs the ants
towards unexplored areas of the search space. In fact, their goal is to cover the
graph, that is to visit all the nodes, without knowing the graph topology. They
were able to prove a number of theoretical results, for example concerning the
time complexity for covering a generic graph. Also, they recently extended their
algorithms [64] so that they can be applied to dynamically changing graphs. A
possible and promising application of this work is to Internet search, where the
problem is to track down the hundreds of thousands of pages added every day
[40] (as well as the ones that disappear).

3.2 Division of Labor and Dynamic Task Allocation in Robots

Division of labor is an important and widespread feature of colonial life in many
species of social insects. In ant colonies, for example, workers and soldier ants are
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typically concerned with nest maintenance and nest defense, respectively. Still,
individuals of one class can, if necessary, perform activities typical of the other
class. This self-organizing, adaptive aspect of labor division can be explained
by a simple behavioral threshold model: although each ant is equipped with a
complete set of behavioral responses, different ants have different threshold for
different behaviors. For example, a soldier generally has a low threshold for de-
fense related activities and a high threshold for nest maintenance duties, while
for workers it is just the opposite. An high demand of workers, due for example
to the sudden need for extra brood care, can lead to the involvement of soldiers
in this, for them atypical, activity. Interestingly, ants in a same class have simi-
lar, but not identical, threshold levels for the same activity. This differentiation
determines a continuum in the space of behavioral responses so that the ant
colony as a whole can adapt to continuously changing environmental conditions.
Krieger and Billeter [38] used the threshold model of ants to define a distributed
labor division system for a group of robots that have the goal of collecting items
dispersed in an arena. Their experiments have shown that robots governed by
threshold-based behavior activation can accomplish the task, and that the sys-
tem as a whole presents inherent fault-tolerance and graceful degradation of
performance: the faulty behavior of one or more robots causes the automatic
adaptation in the behavior of the other robots with only minor decreases in
overall performance. Most important, this result was accomplished without de-
signing any explicit mechanism of communication among robots, and without
the faulty situations being explicitly included in the robots control programs.
Although the experiments were run with small toy robots in university lab ex-
perimental conditions, it seems clear that the approach has great potentialities
for the control of fleets of industrial robots in unstructured environments.

3.3 Brood Sorting, Cemetery Organization, and Data Clustering

Another typical activity that can be observed in ant colonies is clustering of
objects. For example, ants cluster corpses of dead ants into cemeteries, or food
items into the nest. The clustering activity is performed in a completely dis-
tributed way, that is, without any central control mechanism. The way ants
accomplish this can be explained by a simple model, similar to the one used
for labor division. In the model, ants are endowed with “pick up” and “drop”
behaviors and these behaviors are activated with probabilities that are function
of both a threshold and of environmental conditions [15]. The environmental
condition is in this case given by the density of items in the neighborhood of the
ants location. While moving around, an ant carrying an item has a high proba-
bility to drop it in zones where a high density of the same item is found, but a
low probability to drop it in zones where there is a low density. On the contrary,
when an unloaded ant meets an item, it will pick it up with high probability if
the zone in which it is located has a low density of that same item, with low
probability otherwise. If more kinds of items are present and ants use different
thresholds for different items, these are sorted into different clusters. This simple
mechanism has been put to work for data visualization and clustering. Kuntz
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et al. [39], building on an algorithm first proposed by Lumer and Faieta [43],
consider the following problem. Given a set of n-dimensional data represented
as points in a n-dimensional space, and a metric d which measures the distance
between pairs of data items, project the points on a plane so that points in the
plane belong to a same cluster if and only if the corresponding data items are
similar in the n-dimensional space under the metric d. To let artificial ants solve
this problem, the initial projection of data items on the plane is done randomly.
Then artificial ants move randomly on the plane and pick up or drop projected
data items using rules equivalent to those of the threshold model explained
above. The results obtained are qualitatively comparable to those obtained by
more classic techniques such as spectral decomposition or stress minimization,
but at a much lower computational cost. Moreover, the technique can be easily
extended to other difficult problems such as multidimensional scaling (i.e., the
problem of transforming a squared matrix of distances among pairs of points
into the coordinate of the original points), or data sorting.

4 Conclusions

The researchers’ interest in ant algorithms has recently greatly increased, due
to both the charm of the ant colony metaphor and the excitement caused by
some very promising results obtained in practical applications. Although the ap-
proach is very promising, a more systematic comparison with other heuristics is
required. We also need to better understand why ant algorithms work so well
on certain types of problems, and to clearly identify the problem characteristics
which make a problem susceptible of being successfully tackled by an ant algo-
rithm. Finally, results on the theoretical properties of these algorithms are most
of the times missing. A notable exception concerns some important instances
of ACO algorithms, for which convergence to the optimal solution has recently
been proved [37,59].
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61. T. Stützle and H. H. Hoos. MAX–MIN Ant System. Future Generation Com-
puter Systems, 16(8):889–914, 2000.

62. I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Smell as a computational
resource – a lesson we can learn from the ant. In Proceedings of the Fourth Israeli
Symposium on Theory of Computing and Systems (ISTCS-99), pages 219–230,
1996.

63. I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Efficient graph search by a
smell-oriented vertex process. Annals of Mathematics and Artificial Intelligence,
24:211–223, 1998.

64. I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. ANTS: Agents, networks,
trees and subgraphs. Future Generation Computer Systems, 16(8):915–926, 2000.


	Introduction
	From Real Ants to Ant Colony Optimization
	The Double Bridge Experiment
	Artificial Ants for the Traveling Salesman Problem
	The Ant Colony Optimization Metaheuristic

	Other Applications Inspired by Social Insects
	Foraging and Graph Exploration
	Division of Labor and Dynamic Task Allocation in Robots
	Brood Sorting, Cemetery Organization, and Data Clustering

	Conclusions

