
M[croprocessing and Microprogramming 34 (1992) 147-152 147
Nortll-Holland

USING T R A N S P U T E R S T O IN CRE A SE SPEED AND F L E X I B I L I T Y O F
G E N E T I C S - B A S E D M A C H I N E L E A R N I N G S Y S T E M S

Marco Dorlgo
~ Politecaico di Milano- Dipardn~ato th Eletmmica

Piazza Lner~'do da Vinci 32 - 20133 Miinno - Italy
E-mail; dorigo@ipmel2,elet.pdiimi.it

Tel. +39-2-2399-3622
Fax. +39-2-2399-3411

ABSTRACT

We implemented a distributed environment for machine learning expetmentufion on a transputer network. The
system can be used by a researcher to build modular and efficient learning systems. The algorithms composing
the basic sffuctum of the implementation arc the genetic algorithm, the bucket brigade algorithm and the inferen-
tial engine. We present a parallel version of these algorithms and call it low-level parallelism. Compared to the
standard sequential version of the same algorithms, low-levul parallelism gives us an incteare in perfermance. To
provide the learning system designer with a higher level of flexibility than cln~ntly avail,;ble with standard sys-
tems, we also implemented high-level parallelism: subsets of file transpeter network can be allocated m different
learning systems. In this way a complex learning problem can be decomposed in many simpler problems, each
ene mapped on a single (possibly low-level parallel) learning system.

K~YWORDS Parallel genetic aigoxithms Implementation on transputcts Genedes-based machine learning

i. INTRODUCTION

A major goal of artificial intelligence research is to give
computers learning capabilities. A first step to solve this
very difficult goal could be to implement systems with
adaptive capabilities, i.e. systems that change their be-
havinur according to the environmental situation in which
they operate. The problems raised by the design of such
systems are faced by researchers in machine learning.
Genetics-based machine learning is a recent approach to
machine learning problems, and the comprehension of this
model is, as it happens with neural networks, largely de-
pendent on simulations, The present understanding indi-
cates that even the solution of simple learning problems re-
quires the use of large sets of rules, and suggests that real
world application will be possible only exploiting the
power of parallel computers.
We have therefore developed a parallel distributed system
that can be used as a tool to build genodcs-based machine
learning - GBML- systems, A parallel implementation of a
GBML system on the Connection Machine has been pro-
posed by Robertson [1]. That work demonstrates the
power of such a solution, but still retains, we think, a basic
limitation: as the Connection Machine is u SIMD archhec-
turn the resulting implementation is only a more powerful
hut still classic GBML system. To implernent our system
we have used a transptuer net that, because of its MIMD ar-
chitnemre, permits the presence of many simultaneously ac-
tive control flows operating on different data sets, This ar-
chitecterai organization allowed us to distinguish between
low- and high-level sofiwam forms of parallelism in a way
that direcdy maps on the hardware architecture.

2. G E N E T I C S - B A S E D MACHINE L E A RN IN G
SYSTEMS

GBML systems are a class of adaptive systems that have

recently raised the interest o f the ar "~-iciaI intelligeace .=~a-
msnity. They a~ composed of:
• A performance system, which contains the s~ztem

knowledge-base, expressed as a set of preductinn rides,
and the inferential ¢ngln¢ Ihat allows many rules to fire
concunendy.

• A ride discovery system that search for new nd¢~ when-
ever changes in the environment require the system to
adapt.

• A rule evaluation system, whose task is to rate rules re:-
cording to their usefulness.

The system as a whole is interacting with the environment:
it senses environmental changes through incoming rues*
3ages, acts on it through actions and rneeives rewa~l$ or
punishments as feedback for performed antions. We give
new a brief deseripdne of the tlu~e systen~.

Fig. l - A ~ypical GBML system

148 M. Dorigo

2.1 The pefformaaon system

The ma/n blocks composing the performance system arc
(see Fig.2):

• a set of rules, called classifiers, with a condiction-~ac-
finn format

• a message list of dimension k+e, used to collect mes-
sages sent from classifiers and from the environment to
other classifiers, where k is the number of positions for
internal messages, i.e. messages sent by classifiers, and
e is the nuniber of positions for environmental mes-
sages, i.e. messages coming from external environment

• an input and an output interface w~th the environment
(detectors and effectors) to receive/send messages
from/to the envir4mment

• a pattern-matching and a conflict-resolmion subsystem
that identify which rules are active in each cycle and
which of them will ltre

The pefftrrmar~e system algorithm is:

0 • Initialize the system (create a random set of rules).
1 • Read environmental messages and append them to the

message list.
2 . S e t t o s t a m s a c t i v e e a c h c l a s s i f i e r w h i c h h a s b o t h c o n -

dirions matched by messages on the message list and
then clear the message bst.

3 • If number of active roles _< k (with k dimension of the
message lis0.

then append tbeir messages to the message list;
eT~se call the conflict resolution module, which takes

as input the m competing rules and returns the k
rules that have the sight to post their message;
then append the messages of the k winning rules
to the message list.

4 . Se t t he s tamso fa l l c la s s i f i e r s tono t -ac t i ve .
5 - Repeat from step 1.

Fig.2 - The per formance system

The conflict resolution module requires, to work properly,
some knowledge about the usefulness of competing rules;
only using tiffs into,-'marion it can decide which rules to fire
- and which ac,,ion to choose in case of proposed inconsis-
tent actions (e.g. "go right" and "go left"). It is the neces-
shy of this information that justifies the introduction of the
apportionment of credit algorithm, whose task is to rate
rules according to their perceived usefulness.

2.2 The rule evalttat/on system

The main task of the role evaluation algorithm is ~, classify
rules by their usefulness. The most known and used algo-
rithm is the Bucket Brigade algorithm. In words, it works
as follows: a time yawing ~ value called strength is asso-
ciated to every classifier C. At time zero each classifier has
the same strength. W h e n an external classifier causes an ac-

tion on the environment a payoff is generated whose value
is dependent on how good the performed action was with
respect to the system goal. This reward is then transmitted
backward to internal classifiers that caused the external
classifier to fire. The backward transmission mechanism
causes the classifiers strength to change in time and to re-
flect their importance for the system performance (with re-
spect to the system goal).
Because of space constraints the bucket brigade algorithm
will be presented only in the puraIle] version.

2.3 The Genetic Algorithm

Genetic algorithms are a class of stochastic algorithms
which has been successfully used both as an optimization
dcv~.ce and as a rule-discovery mechanism [2], [3]. They
work modifying a population - set - of solutions (in GBML
a solution is a classifier) to a given problem. Solutions are
properly codified and a function, called fitness function, is
defined to relate solutions to performance (the value rc-
temed by this function is a measure of the solution quality).
In genetics-based machine learning the fimess of a classifier
is given by its esefulness as measured by the apportion-.
ment of credit algorithm.
As it uses classifiers strength as a measure~ of fitness, the
genetic algorithm can ~ usefully applied to the ~et of clas-
sifters only when the bucket brigade algorithm has reached
steady-state, i.e. when a rule strength accurately reflects its
usefulness. Therefore, it is applied very seldom, usually
every 1000+10000 bucket brigade steps. In the following
we report the steps of a single GA call.

0 • TakethesetofclassifiersasinitialpopalationP.
1.1 • Rank individuals of P in decreasing fitness order us-

ing the strength associated to every classifier as a
measure of fitness.

1.2 • Choose 2k individuals to be replaced among low
ranked - useless - ones.

1.3 • Choose 2k individuals to be replicated among high
ranked - useful - ones.

2.1 • Mate the individuals selected at step 1.3, so to get k
pairs of useful rules.

2.2 • Apply the cmssoves operator to each of the k pairs.
2.3 • Apply the mutation operator to each of the 2k indi-

viduals resulting from step 2.2.
3 • Replace with the new generated 2k individuals the

2k useless individuals chosen at step 1.2.

3. HOW TO APPLY PARALLELISM?

Let's now underline the characteristics of GBML systems
that make their parallelization easy. We said that the activa-
tion of rules is, at each cycle, based on the set of massages
composing the message list. It is then a common situation
to have many classifiers simultaneously activated: thesefom
there is intrinsic concurrency among the rules. This
(strong) possibility of parallel activation has the effect to re-
quire a large computing power for the matching and com-
petition steps; nonetheless it is clear that these computations
ca,I be distributed to a group of processing units, working
in parallel. Each processor can take care of matching the
:lemonts of the message list with a restricted subset of
t iassifiers.

To be more explicit, let us reconsider the performance al-
gorithm. We can think of it as being executed by four dis-
tinct processes (see Fig.3), each one taking cure of different
operations:

Using transputers for genetics-based machin3 learning systems 149

• DTprocess (DeTector process): input interface, con-
vetting changes in the environmental slate into mes-
sages to be appended to the message llst (ML).

• EFprocess (EFfector process): output interface, con-
veifing classifier messages into environmental actions.
MLprouesa (MessageList process): central manager
for operations regarding the message fist; tasks of this
process are;

- to append to ML messages coming from DTprocess
or to send to EFprocess messages to interpreted as
actions;

- to send ML to CFprocess;
- to choose which rules should be roplicared or dis-

carded;
- to apply cnossover, mutation or other genetic opera-

tors.
• CFprocess (Class i f iers process): classifier-popula-

tion manager:, this process matches each r,~ssage in ML
with the condition part of the various cla-~sifiers; it also
updates the su'ength of each role disu'ihodng payments
and rewards.

Fig.3 - Concurrent processes in a standard GBML system

If we consider the activities of matching and message-
production, we see that they can be executed oo each classi-
fier independently. So, it is natural to split CFproouss
into an array of sub-prouesses C F p r o e e s s . 1 .
CFproces s .2 CFproces s .n , each one taking care
of a fraction (l /n) of the classifier set (CF). The higher
goes n, the more intensive is the concurrency. When n is
equal to the cardinality of CF. each CI, process.i manages
a single classifier: this is the typical Connection Machine
version of a concurrent GBML system. In our transputer-
hesed implementation we allocated about 100-500 rules to
each processor [4]. The set of CFprocesaes can be orga-
nized in a hierarchical smtetum such as, for example, a Izee
(see Fig.4) or a toroidal grid. The chosen structure deeply
influences the dis~butiou of compatstiooal loads [5].
Similur remarks hold for the parallelization of the genetic
algorithms. We saw in a preceding section how the genetic
algorithm works when used in the GBML context. About
that algorithm we semark the following aspects:
Step 1 (ranking individuals of P by their fitness [Step 1.1]
and choosing which individuals are to he repinecd [Step
1.2] and which an: to he replicated [Step 1.3]) may he seen
as a competition, which can be therefore distributed over
the processor network by a "hie~a'uhical gathering and
broadcasting" mechanism similar to the one we used for
propagating ML to the array of CFpro~ss .£s .

Step 2.1 (mating rules for crossover) is bard to parallelize,
as it requires a central managen~n¢ unit. Formax~ly, the
number of pairs involved is usually small and ecmctaa¢ncy
seems to be unnecessary. Step 2.2 (applying erossovc,r op-
erator) can be paragelized, even if many ~ r i o n s
am X~luired.
Step 2.3 (applying mutation operator) and Step .~
(replacement of new generated individuals) are typical ex-
amples of local data processing, e:cffcmely snited to center-
rent distribution.

FLg.4 - The parallel version of a CB llfL ~ . ~ , n

4. THE EXPRESS COMMUNICATION SYSTEM

To implement our system we have used Express [6], a soft-
ware tool written in 3L parallel C [7] and running on trans-
peters, that offers facilities rela~ed to data exchange, pro-
cesses allocation, load balancing, etc.
The typical madfwrite functions have in the Express com.
menieadon systen~ the following form:
ex read(address_of raceiving_buffer,mes sage_size, idan-
tifier_of source, p'ncessor, message_rag)
exwrite(address_of buffer_to_seed, message_siz=, iden-
tifier_of destin ation_prouessor, message_tag)
The message_tag Field associates a ouracrinal tag to each

communication, char~te r i s~ for each transmitted package
of data, both for simple (integer. float, double) or ~-oc-
o n ~ (arrays, sm]cturas) dam. This way it is possible to
think of a cooanunicatioo between two processes as of a
simple pair of slarenmnts: a call to e x w e i t e (A ~ o l) on
the sender , and a c o r r e s p o n d i n g ca l l to
exread(A_protocol) on the receivex.

5. LOW-LE~=L pAP.~t J.Ft rIATION

On the basis of what we said in previous sections, sup-
ported by a performance analysis on different models of
paralielized GBML systems [5], wc decided m implcn~nt
our system as a cenunily-drivon, distributed algorithm. In
this way we see the whole system as distributed over a r~t
composed of one leader (MLprucess) a ~ an an'ay of slaves
(CFptocess.i). To optimize the CPU usage, we allocated
on the node hosting MLprouess also one of the elements of
the CFprocess.i army. This way, while waiting for its net

150 M Dorigo

of "slaves" to give their answers, the MLpeoanss node can
pl-~ess itself a par: of the clessifi~rs population. The paral-
lel G B N L system is tben composed of two different pro-
grams, Root and .Met, interfaced with a third program
Has : , implementing enviromnent and I/O processes
(DTprocess and EFprocess). Consider the case in which
we have m+l processors: then the Rc~t program is down-
Ioad~l to one processor while the Hot program is allocated
m each of the remaining m nodes. Each node, be it running
a R ~ or a Net program, takes cam of a fraction of the
global classifiers population. The set o f "slave" processes
may be organized in an arbitrat 7 fashion, regardless of the
u n ~ , y i n g hardware architecture. Of course, the greater the
correspondence between the software hierarchy and the
mmsputer physleal sumcmre, the mote efficient the commu-
dicasion system will L-n. An example: with an underlying
pipeline of 9 transpumrs (Fig.5.1), our system allows the
distribution of a learning system both on a binary tree hier-
archy (Fig.5.2), and on a double-branch structure
(Fig.53). But the former results in longer, non-hardware
paths for broadcasting data from the RO0~ tO each Her
program and backward. These paths have a strong influ-
ence upon the execution time, as the parallelized learning
system works by di~-'ffibuting data over the processors net
and by gathering results from it, along the same paths. In
fact, all the dam s m m u ~ s are distributed through the net in
a hierarchical way, each node communicating only with
nodes of immediately higher und/or lower level (if any).
This means, for example (see Fig.5A), that node Y will re-
ceive data from node X (when broadcasting from the R ~ t
node) and node Z (when gathering dam towards the R~¢*`
node). And, obviously, node Y will send data towards
node Z (when broadcasting) and towards node X (when
gathering).
The basic cycle oftbe H~z~ program is:
0 * Cmnerate an initi,d envhonmentat state.
1 * Code the environmental messages into proper mes-

sages (DTprotocol).
2 - Send these messages to the leader process, i.e. the

node: exwritn(DTprotoeol).
3 • Receive from the ~ node the answer, directed to

the e ffactors, by TEprotocel (To Effoctor protocol):
exread(TEprotocol).

4 o Decode the messages into environmental actions.
5 - Competition step: decide which action is to he per-

formed on the environment, choosing among (feasible)
suggested actions.

6 * Perform the selected action and receive the reward (or
punishment).

7 * Send to the Root node *,he environmental reward
throogh FEpmtocol (From Effector protocol):

exw~te(FEprotocol).
8 ° If EndTest = True then Stop else Gore Step 1.

Th* basic cycle of the ~oo't progr, un is:
O - Generate an initial population. Set time t---O.
] - Receive im environmental message from the Host

n o d e : exread(DTprotoeol).
and put it into a Message List street am (MLprotocol).

2 • D i s t f i b ~ MLpeotocol towards the neighbouring Het
nodes (if any): exwrlte(MLprotocol).

3 • Operate the matching phase.
4 • Set up an internal competition among bidding classi-

fiers, resulting in a list of winning ruins (WMprotocol:
Winning Messages protocol); other lists of bidding
classifiers may come from connected Net nodes by

calls to: exread(WMpru~ocol),
and am then set into competition with the local list; the
result of this merging operation is a final llst of classl-
fiers that will append their messages on the new rues+
sage Iist to be used in cycle t+l.

5 • Choose which messages am directed to the effcctors,
build a structure TEprotocul out of them, and send it to
the Hc~st node: exwrite(TEprotocol).

6 • Receive a reward or a punishment from the environ-
ment, via a communication with the Ho~ node.

exread(FEprotoeol)
and put this data into the MLprotocol.

7 • Receive an environmental message from the Host
node: exrnad(DTprotoeol)

and add it to the Message List structure (MLprntocol).
8 • Dismbute MLprotocol towards the neighbouring Her

nodes (if any): exwrite(MLprotocol).
9 • Update the values of strength of the classifiers allo-

cated to this node, using the data contained into the
MLprotocul structure.

l0 • If EndTest = True then Stop else t=t+l and Goto Step
3.

The basic cycle of the Net program is:
0 • Generate an initial population. Set time t = 0.
I • Receive the Message List structure, either directly from

the Root node, or from an upper level l~'et node:
exread(MLprotocol).

2 • Distribute MLprotocol towards the neighbouting Hat
nodes (if any) of a lower level:

exwrite(MLprotocol).
3 - Operate the matching phase.
4 - Internal competition among bidding classifiers, result-

lag in a list of winning rules (WMprotocul: Winning
Messages protocol); other lists of bidding classifiers
may come from connected Hat nodes of a lower level:

exread(WMprotocol)
and am set into competition with the local list; the re-
sult of this merging operation is a list of classifiers sent
either directly to the P~oo* ̀node, or to upper level Net
nodes: exwrite(WMprotocol).

5 - Receive the Message List stratum, either directly from
the R ~ node, or from an upper level Her node:

exread(MLprotocol).
6 ° Distribute MLprotoeol towards the neighbouring

Ne~ nodes (if any) of a lower level:
exwrite(MLprotocol).

7 • Update the values of slxength of the classifiers allo-
cated to this node, using the data contained into the
MLprotocol structure.

8 • If EndTest = True then Stop else t=t+l and Goto Step
3.

The parallel genetic algorithm, nut reported hem because of
space coaslraints (see [4]), is organized in the same way.
We insert it into the basic cycle after the EndTest step (step
10 in Roar and step 8 in Net), i.e. before beginning any
change in the population fitness. The genetic algorithm is
distributed on m+l processes, as in the performance algo-
rithm case. We therefore built the implementation of the
parallel GA by means of two programs, a "leader" and a
"slave", which have been inserted inside Root and Net.
Also in this case, we organized the Hat "slaves" hierarchi-
cally, obtaining a "flow" of GAprotocol data structures
similar to the one we used for WMprotocol in t h e basic
cycle: that is, we broadcast and gather data from the Root
node to the Hat nodes and back.

Using ~ansputers for genetics-based machine learning systems 15~

Fig ~ . l - Pipeline of transputers: hardware structure

Net
Ho=t

Net

Not Net

Fig J 2 - A parallel learning system with binary-tree
Mruc~re

6. HIGH-LEVEL P A I ~ I].'~I.17ATION

Wv have shown how to paralleliz¢ a single GBML system,
in order to obtain computing speed improven~ms. W h ~
we did was only to build a parallel version of the GBML
system, with no significant d.iffcranc¢ with the s~q~-ntial
rnod¢l, except for average ex~utin=t times.
This approach shows its weakness when a GBML sys~'m
is applied to malli-gnal problems - as onl~ki ly seems to be
the case in most of real problems. To solve m o l t i ~ v e
tasks is hard because they don't have explicit mechanisms
to handle different sets of roles (where each set is dedleated
to the solution of a diffamnt goal). For these m ~ , a lOw-
level parallelized GBML system, though fastm" and capobI¢
of managing larger sets of rules, seems still unable to be of
practical use. Moreover, ~tiabili ty problems arise in a low-
level parallelized system: distributing a GBML system on
larger processor networks makes the communication load
grow fast, obtaining less and less in computing spe~d.
Adding processors to the existing aetwork is themfmo
and less effective, tending to an asymptodcal limit.
A heuer way to deal with complex problems could be to
code them as a set of easier subproblems, each one go I~
solved by a smallex GBML system.
Thereforc, we have partitioned the processor network into
subsets, each haviog its own size and topology. Every sub-
set is allocated a single GBML system, distributed by a
low-level parallelizalion, whenever the numhet of nodes
used by each single s y s ~ n is greater than one (see Fig.6).

Ho=t

ROOt Net Net Net Net

Fig3.3 - A parallel learning system with double.branch
Mrllct~e

H ~ t

, cs l l

• cs i l

• cs~ 1
Fig.6 - Example o f I~h-level concurrency among three

parallel cooperating learning ~ystaas

i .oaoo-t,og
gathering [

Fig.5.4 - Broadcasting and gathering data in the parallel
system

Each of these systems learns to solve a specific subgoal.
depending on the inputs it receives: each learning system
perceives the external environment by its own detectors
while the output interface is obviously common to all
GBML systems, thus requiring some type of interaction
among systems proposing actions.
We give an example of the kind of flexibility provided by
high-It':at parallelism in designing a learning system [8].
Consider t~¢ following learning task: a simple autnoorroas
robot has :o learn to trace a light source and at the same
time should learn to avoid heat sonz~s; we can give
f'u's t task to the learning system LS I and the sconnd ~.~k to
the learning system LS2- Mtneover, as these tasks axe
simple coml~sents of a mote complex cooe0dnafion task (to
avoid dangerous objects while tracing the light source), we
can use a third learning system LS 3 that hes as its goal the
coordination of these activities (i.e. how to behave in con-

152 iV/. Dorigo

fficting situations, e.g. when the light source goes too near
to a heat source for the system to continue to follow it
wifl~om being injured).
We me now reedy to pre~nt the algorithm for concurrent
GBML systems, noting that the flow of data among differ-
ent learning systems is reswicted to communications among
.:~za~ nodes and the H ~ t node: each GBML system can
be dis~'ibutod over a transputer subnet, with a low-invel
lY~ralle ;lizafion as described in the pzgvious section; but from
the point of view of ~ high level paralinlization, a learning
system - LS - will operate in the same way, be its]goot
trade p,'ocessing data tm its own, or with a subeet of under-
lying Ne~: slaves. The resulting system then works as fol-
lows:
1 - each LSi receives from the environment its own input

messages: ex t end (DTprotoeol_i).
2 - by processing them each LS i deduces an action m be

performed in the environment (usually a different one
for each LSi).

2 + proposed actions, with their associated bids, are com-
muincated to the Effost node:

exwr l t e (TEprotocol i).
4 - h ~ ~ S ~ node takes care of infmming the coordinator

(I S 3 in the example) about the data received at step 3;
this is done by sending a new type of protocol to the
LS implementing the cooulinator:

exwri te (DTprotocol_Coordinator).
5 - the coordinator decides a resulting action, which is

communicated to the Ho~: node by sending protocols
of data from the g o a t node of the coordinating LS
(LS3) to the ~ - t node itself which receives them by
acall m: exread (TEprotoeol_Coordinator).

6 • the action is performed by means of the output inter-
face and rewards me given to the Roo~ nodes:

exwfite (FEprotoeol_Coordinator)
exwd te (FEprotocol_i).

7 * If End'rest = True then Stop else t--t+l and Gem Step
I .

Building a coocuri~nt network of (ff necessary parallelized)
LSs requires then only three type of modules: Hos~:
(E, nvironmen~ Input/Output interfaces, simulators and con-
nections between coordinator and workers), R o o t
(M L p r o e e s s / G A p r o e e s s) , and Ne* (C F p r o c e s s . i) .
These units can be arbitrarily connected to obtain the de-
sired network.

7. CONCLUSIONS

In this paper we have presented a parallel architecture im-
plementing a general purpose genetics-based machine
learning system. By low-level parallelism we have en-
hanced the computat2,mal speed, by high-level parallelism
the system overall flexibility.
We am using it with the following results:
• the time required to design a GBML system has dropped

dramatically;
• the computarional power of each module can be defined

by the machine learning researcher according to the task
complexity.

REFERENCES

[1] Robertson,G.G., "Parallel Implementation of Generie
Algorithms in a Classifier System", Proceedings of the
Second International Conference on Genetic Algo-
rithms, July 28-31 1987. Lawrence Erlbaum.

[2] Hollaed,LH., "Adaptation in natural and artificial sys-
tems", Ann Arbor: The University of Michigan Press,
1975.

[3] Goldberg,D.E. "Genetic Algorithms in Search, Opti-
mization & Machine Learning",Addison-Wesley,1989.

[4] Dorigo,M., Sirtori,E., "A Parallel Distributed Environ-
ment for Genetics-based Machine Learning", Technical
Report No. 91-015, Politecnico di Milano, Italy.

[.5] Camilli ,A., Di Meglio,R., "Classlfie, rs systems in
massively parallel architectures", Master thesis,
University of Pisa - Italy, 1990.

[61 Express 3.0 User's Guide, ParaSoft Corporation,
2500 Foothill Blvd., Pasadena, CA 91107, 1990.

[7] 3L Parallel C User's Guide, 3L Ltd, 1988.
[8] Dorigo,M., Schnepf,U. "Organisation of Robot

Behaviour Through Genetic Learning Processes", to
appear m the proceedings of the Fifth IEEE
Intemedonal Conferenca on Advanced Robotics - June
20-22, 1991 - Pisa - Italy.

