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Abstract

This paper introduces AntNet, a novel approach to the adaptive learning of routing

tables in communications networks. AntNet is a distributed, mobile agents based Monte

Carlo system that was inspired by recent work on the ant colony metaphor for solving

optimization problems. AntNet's agents concurrently explore the network and exchange

collected information. The communication among the agents is indirect and asynchronous,

mediated by the network itself. This form of communication is typical of social insects

and is called stigmergy. We compare our algorithm with six state-of-the-art routing algo-

rithms coming from the telecommunications and machine learning �elds. The algorithms'

performance is evaluated over a set of realistic testbeds. We run many experiments over

real and arti�cial IP datagram networks with increasing number of nodes and under sev-

eral paradigmatic spatial and temporal tra�c distributions. Results are very encouraging.

AntNet showed superior performance under all the experimental conditions with respect

to its competitors. We analyze the main characteristics of the algorithm and try to explain

the reasons for its superiority.

1. Introduction

Worldwide demand and supply of communications networks services are growing exponen-

tially. Techniques for network control (i.e., online and o�-line monitoring and management

of the network resources) play a fundamental role in best exploiting the new transmission

and switching technologies to meet user's requests.

Routing is at the core of the whole network control system. Routing, in conjunction

with the admission, ow, and congestion control components, determines the overall network

performance in terms of both quality and quantity of delivered service (Walrand & Varaiya,

1996). Routing refers to the distributed activity of building and using routing tables, one

for each node in the network, which tell incoming data packets which outgoing link to use

to continue their travel towards the destination node.

Routing protocols and policies have to accommodate conicting objectives and con-

straints imposed by technologies and user requirements rapidly evolving under commercial

and scienti�c pressures. Novel routing approaches are required to e�ciently manage dis-

tributed multimedia services, mobile users and networks, heterogeneous inter-networking,

service guarantees, point-to-multipoint communications, etc. (Sandick & Crawley, 1997;

The ATM Forum, 1996).

The adaptive and distributed routing algorithm we propose in this paper is a mobile-

agent-based, online Monte Carlo technique inspired by previous work on arti�cial ant
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colonies and, more generally, by the notion of stigmergy (Grass�e, 1959), that is, the in-

direct communication taking place among individuals through modi�cations induced in

their environment.

Algorithms that take inspiration from real ants' behavior in �nding shortest paths (Goss,

Aron, Deneubourg, & Pasteels, 1989; Beckers, Deneubourg, & Goss, 1992) using as infor-

mation only the trail of a chemical substance (called pheromone) deposited by other ants,

have recently been successfully applied to several discrete optimization problems (Dorigo,

Maniezzo, & Colorni, 1991; Dorigo, 1992; Dorigo, Maniezzo, & Colorni, 1996; Dorigo &

Gambardella, 1997; Schoonderwoerd, Holland, Bruten, & Rothkrantz, 1996; Schoonderwo-

erd, Holland, & Bruten, 1997; Costa & Hertz, 1997). In all these algorithms a set of arti�cial

ants collectively solve the problem under consideration through a cooperative e�ort. This

e�ort is mediated by indirect communication of information on the problem structure the

ants concurrently collect while building solutions by using a stochastic policy. Similarly,

in AntNet, the algorithm we propose in this paper, a set of concurrent distributed agents

collectively solve the adaptive routing problem. Agents adaptively build routing tables and

local models of the network status by using indirect and non-coordinated communication

of information they collect while exploring the network.

To ensure a meaningful validation of our algorithm performance we devised a realistic

simulation environment in terms of network characteristics, communications protocol and

tra�c patterns. We focus on IP (Internet Protocol) datagram networks with irregular

topology and consider three real and arti�cial topologies with an increasing number of

nodes and several paradigmatic temporal and spatial tra�c distributions. We report on

the behavior of AntNet as compared to some e�ective static and adaptive state-of-the-art

routing algorithms (vector-distance and link-state shortest paths algorithms (Steenstrup,

1995), and recently introduced algorithms based on machine learning techniques).

AntNet shows the best performance and the most stable behavior for all the considered

situations. In many experiments its superiority is striking. We discuss the results and the

main properties of our algorithm, as compared with its competitors.

The paper is organized as follows. In Section 2 the de�nition, taxonomy and charac-

teristics of the routing problem are reported. In Section 3 we describe the communication

network model we used. Section 4 describes in detail AntNet, our novel routing algorithm,

while in Section 5 we briey describe the algorithms with which we compared AntNet. In

Section 6, the experimental settings are reported in terms of tra�c, networks and algorithm

parameters. Section 7 reports several experimental results. In Section 8 we discuss these

results and try to explain AntNet's superior performance. Finally, in Section 9, we discuss

related work, and in Section 10, we draw some conclusions and outline directions for future

research.

2. Routing: De�nition and Characteristics

Routing in distributed systems can be characterized as follows. Let G = (V;E) be a directed

weighted graph, where each node in the set V represents a processing/queuing and/or for-

warding unit and each edge is a transmission system. The main task of a routing algorithm

is to direct data ow from source to destination nodes maximizing network performance.
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In the problems we are interested in, the data ow is not statically assigned and it follows

a stochastic pro�le that is very hard to model.

In the speci�c case of communications networks (Steenstrup, 1995; Bertsekas & Gallager,

1992), the routing algorithm has to manage a set of basic functionalities and it tightly

interacts with the congestion and admission control algorithms, with the links' queuing

policy, and with the user-generated tra�c. The core of the routing functions is (i) the

acquisition, organization and distribution of information about user-generated tra�c and

network states, (ii) the use of this information to generate feasible routes maximizing the

performance objectives, and (iii) the forwarding of user tra�c along the selected routes.

The way the above three functionalities are implemented strongly depends on the un-

derlying network switching and transmission technology, and on the features of the other

interacting software layers. Concerning point (iii), two main forwarding paradigms are in

use: circuit and packet-switching (also indicated with the terms connection-oriented and

connection-less). In the circuit-switching approach, a setup phase looks for and reserves the

resources that will be assigned to each incoming session. In this case, all the data packets

belonging to the same session will follow the same path. Routers are required to keep state

information about active sessions. In the packet-switching approach, there is no reservation

phase, no state information is maintained at routers and data packets can follow di�erent

paths. In each intermediate node an autonomous decision is taken concerning the node's

outgoing link that has to be used to forward the data packet toward its destination.

In the work described in this paper, we focus on the packet-switching paradigm, but

the technique developed here can be used also to manage circuit-switching and we expect

to have qualitatively similar results.

2.1 A Broad Taxonomy

A common feature of all the routing algorithms is the presence in every network node of

a data structure, called routing table, holding all the information used by the algorithm to

make the local forwarding decisions. The routing table is both a local database and a local

model of the global network status. The type of information it contains and the way this

information is used and updated strongly depends on the algorithm's characteristics. A

broad classi�cation of routing algorithms is the following:

� centralized versus distributed;

� static versus adaptive.

In centralized algorithms, a main controller is responsible for updating all the node's

routing tables and/or to make every routing decision. Centralized algorithms can be used

only in particular cases and for small networks. In general, the delays necessary to gather

information about the network status and to broadcast the decisions/updates make them

infeasible in practice. Moreover, centralized systems are not fault-tolerant. In this work,

we will consider exclusively distributed routing.

In distributed routing systems, the computation of routes is shared among the network

nodes, which exchange the necessary information. The distributed paradigm is currently

used in the majority of network systems.

In static (or oblivious) routing systems, the path taken by a packet is determined only

on the basis of its source and destination, without regard to the current network state. This
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path is usually chosen as the shortest one according to some cost criterion, and it can be

changed only to account for faulty links or nodes.

Adaptive routers are, in principle, more attractive, because they can adapt the rout-

ing policy to time and spatially varying tra�c conditions. As a drawback, they can cause

oscillations in selected paths. This fact can cause circular paths, as well as large uctu-

ations in measured performance. In addition, adaptive routing can lead more easily to

inconsistent situations, associated with node or link failures or local topological changes.

These stability and inconsistency problems are more evident for connection-less than for

connection-oriented networks (Bertsekas & Gallager, 1992).

Another interesting way of looking at routing algorithms is from an optimization per-

spective. In this case the main paradigms are:

� minimal routing versus non-minimal routing;

� optimal routing versus shortest path routing.

Minimal routers allow packets to choose only minimal cost paths, while non-minimal

algorithms allow choices among all the available paths following some heuristic strategies

(Bolding, Fulgham, & Snyder, 1994).

Optimal routing has a network-wide perspective and its objective is to optimize a func-

tion of all individual link ows (usually this function is a sum of link costs assigned on the

basis of average packet delays) (Bertsekas & Gallager, 1992).

Shortest path routing has a source-destination pair perspective: there is no global cost

function to optimize. Its objective is to determine the shortest path (minimum cost) between

two nodes, where the link costs are computed (statically or adaptively) following some

statistical description of the link states. This strategy is based on individual rather than

group rationality (Wang & Crowcroft, 1992). Considering the di�erent content stored in

each routing table, shortest path algorithms can be further subdivided into two classes

called distance-vector and link-state (Steenstrup, 1995).

Optimal routing is static (it can be seen as the solution of a multicommodity ow prob-

lem) and requires the knowledge of all the tra�c characteristics. Shortest paths algorithms

are more exible, they don't require a priori knowledge about the tra�c patterns and they

are the most widely used routing algorithms.

In appendix A, a more detailed description of the properties of optimal and shortest

path routing algorithms is reported.

In Section 4, we introduce a novel distributed adaptive method, AntNet, that shares the

same optimization perspective as (minimal or non-minimal) shortest path algorithms but

not their usual implementation paradigms (as depicted in appendix A).

2.2 Main Characteristics of the Routing Problem

The main characteristics of the routing problem in communications networks can be sum-

marized in the following way:

� Intrinsically distributed with strong real-time constraints: in fact, the database and

the decision system are completely distributed over all the network nodes, and failures

and status information propagation delays are not negligible with respect to the user's
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tra�c patterns. It is impossible to get complete and up-to-date knowledge of the dis-

tributed state, that remains hidden. At each decision node, the routing algorithm can

only make use of local, up-to-date information, and of non-local, delayed information

coming from the other nodes.

� Stochastic and time-varying: the session arrival and data generation process is, in

the general case, non-stationary and stochastic. Moreover, this stochastic process

interacts recursively with the routing decisions making it infeasible to build a work-

ing model of the whole system (to be used for example in a dynamic programming

framework).

� Multi-objective: several conicting performance measures are usually taken into ac-

count. The most common are throughput (bit/sec) and average packet delay (sec).

The former measures the quantity of service that the network has been able to o�er

in a certain amount of time (amount of correctly delivered bits per time unit), while

the latter de�nes the quality of service produced at the same time. Citing Bertsekas

and Gallager (1992), page 367: \the e�ect of good routing is to increase throughput

for the same value of average delay per packet under high o�ered load conditions and

to decrease average delay per packet under low and moderate o�ered load conditions".

Other performance measures consider the impact of the routing algorithm on the net-

work resources in terms of memory, bandwidth and computation, and the algorithm

simplicity, exibility, etc.

� Multi-constraint: constraints are imposed by the underlying network technology, the

network services provided and the user services requested. In general, users ask for

low-cost, high-quality, reliable, distributedmultimedia services available across hetero-

geneous static and mobile networks. Evaluating technological and commercial factors,

network builders and service providers try to accommodate these requests while max-

imizing some pro�t criteria. Moreover, a high level of fault-tolerance and reliability is

requested in modern high-speed networks, where user sessions can formulate precise

requests for network resources. In this case, once the session has been accepted, the

system should be able to guarantee that the session gets the resources it needs, under

any recoverable fault event.

It is interesting to note that the above characteristics make the problem of routing belong

to the class of reinforcement learning problems with hidden state (Bertsekas & Tsitsiklis,

1996; Kaelbling, Littman, & Moore, 1996; McCallum, 1995). A distributed system of agents,

the components of the routing algorithm in each node, determine a continual and online

learning of the best routing table values with respect to network's performance criteria. An

exact measure of evaluation that scores forwarding decisions is not available, neither online

nor in the form of a training set. Moreover, because of the distributed nature of the problem

and of its constraints, the complete state of the network is hidden to each agent.

3. The Communication Network Model

In this paper, we focus on irregular topology connection-less networks with an IP-like net-

work layer (in the ISO-OSI terminology) and a very simple transport layer. In particular,

we focus on wide-area networks (WAN). In these cases, hierarchical organization schemes
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are adopted.1 Roughly speaking, sub-networks are seen as single host nodes connected to

interface nodes called gateways. Gateways perform fairly sophisticated network layer tasks,

including routing. Groups of gateways, connected by an arbitrary topology, de�ne logical

areas. Inside each area, all the gateways are at the same hierarchical level and \at" routing

is performed among them. Areas communicate only by means of area border gateways. In

this way, the computational complexity of the routing problem, as seen by each gateway, is

much reduced (e.g., in the Internet, OSPF areas typically group 10 to 300 gateways), while

the complexity of the design and management of the routing protocol is much increased.

The instance of our communication network is mapped on a directed weighted graph

with N processing/forwarding nodes. All the links are viewed as bit pipes characterized

by a bandwidth (bit/sec) and a transmission delay (sec), and are accessed following a

statistical multiplexing scheme. For this purpose, every node, of type store-and-forward,

holds a bu�er space where the incoming and the outgoing packets are stored. This bu�er

is a shared resource among all the queues attached to every incoming and outgoing link of

the node. All the traveling packets are subdivided in two classes: data and routing packets.

All the packets in the same class have the same priority, so they are queued and served on

the basis of a �rst-in-�rst-out policy, but routing packets have a greater priority than data

packets. The workload is de�ned in terms of applications whose arrival rate is dictated by

a selected probabilistic model. By application (or session, or connection in the following),

we mean a process sending data packets from an origin node to a destination node. The

number of packets to send, their sizes and the intervals between them are assigned according

to some de�ned stochastic process. We didn't make any distinction among nodes, they act

at the same time as hosts (session end-points) and gateways/routers (forwarding elements).

The adopted workload model incorporates a simple ow control mechanism implemented

by using a �xed production window for the session's packets generation. The window

determines the maximum number of data packets waiting to be sent. Once sent, a packet is

considered to be acknowledged. This means that the transport layer neither manages error

control, nor packet sequencing, nor acknowledgements and retransmissions.2

For each incoming packet, the node's routing component uses the information stored in

the local routing table to assign the outgoing link to be used to forward the packet toward

its target node. When the link resources are available, they are reserved and the transfer

is set up. The time it takes to move a packet from one node to a neighboring one depends

on the packet size and on the link transmission characteristics. If, on a packet's arrival,

there is not enough bu�er space to hold it, the packet is discarded. Otherwise, a service

time is stochastically generated for the newly arrived packet. This time represents the delay

between the packet arrival time and the time when it will be put in the bu�er queue of the

outgoing link the local routing component has selected for it.

Situations causing a temporary or steady alteration of the network topology or of its

physical characteristics are not taken into account (link or node failure, adding or deleting

of network components, etc.).

1. A hierarchical structure is adopted on the Internet, organized in hierarchical Autonomous Systems and

multiple routing areas inside each Autonomous System (Moy, 1998).

2. This choice is the same as in the \Simple Tra�c" model in the MaRS network simulator (Alaettino�glu,

Shankar, Dussa-Zieger, & Matta, 1992). It can be seen as a very basic form of File Transfer Protocol

(FTP).
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We developed a complete network simulator in C++. It is a discrete event simulator

using as its main data structure an event list, which holds the next future events. The

simulation time is a continuous variable and is set by the currently scheduled event. The aim

of the simulator is to closely mirror the essential features of the concurrent and distributed

behavior of a generic communication network without sacri�cing e�ciency and exibility

in code development.

We end this section with some remarks concerning two features of the model.

First, we chose not to implement a \real" transport layer for a proper management

of error, ow, and congestion control. In fact, each additional control component has a

considerable impact on the network performance,3 making very di�cult to evaluate and to

study the properties of each control algorithm without taking in consideration the complex

way it interacts with all the other control components. Therefore, we chose to test the

behavior of our algorithm and of its competitors in conditions such that the number of

interacting components is minimal and the routing component can be evaluated in isolation,

allowing a better understanding of its properties. To study routing in conjunction with error,

ow and congestion control, all these components should be designed at the same time, to

allow a good match among their characteristics to produce a synergetic e�ect.

Second, we chose to work with connection-less and not with connection-oriented net-

works because connection-oriented schemes are mainly used in networks able to deliver

Quality of Service (QoS) (Crawley, Nair, Rajagopalan, & Sandick, 1996).4 In this case,

suitable admission control algorithms have to be introduced, taking into account many

economic and technological factors (Sandick & Crawley, 1997). But, again, as a �rst step

we think that it is more reasonable to try to check the validity of a routing algorithm by

reducing the number of components heavily inuencing the network behavior.

4. AntNet: An Adaptive Agent-based Routing Algorithm

The characteristics of the routing problem (discussed in Section 2.2) make it well suited

to be solved by a mobile multi-agent approach (Stone & Veloso, 1996; Gray, Kotz, Nog,

Rus, & Cybenko, 1997). This processing paradigm is a good match for the distributed and

non-stationary (in topology and tra�c patterns) nature of the problem, presents a high

level of redundancy and fault-tolerance, and can handle multiple objectives and constraints

in a exible way.

AntNet, the routing algorithm we propose in this paper, is a mobile agents system show-

ing some essential features of parallel replicated Monte Carlo systems (Streltsov & Vakili,

1996). AntNet takes inspiration from previous work on arti�cial ant colonies techniques to

solve combinatorial optimization problems (Dorigo et al., 1991; Dorigo, 1992; Dorigo et al.,

1996; Dorigo & Gambardella, 1997) and telephone network routing (Schoonderwoerd et al.,

3. As an example, some authors reported an improvement ranging from 2 to 30% in various performance

measures for real Internet tra�c (Danzig, Liu, & Yan, 1994) by changing from the Reno version to the

Vegas version of the TCP (Peterson & Davie, 1996) (the current Internet Transport Control Protocol),

and other authors even claimed improvements ranging from 40 to 70% (Brakmo, O'Malley, & Peterson,

1994).

4. This is not the case for the current Internet, where the IP bearer service is of \best-e�ort" type, meaning

that it does the best it can do but no guarantees of service quality in terms of delay or bandwidth or

jitter, etc., can be assured.
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1996, 1997). The core ideas of these techniques (for a review see Dorigo, Di Caro, and

Gambardella, 1998) are (i) the use of repeated and concurrent simulations carried out by a

population of arti�cial agents called \ants" to generate new solutions to the problem, (ii)

the use by the agents of stochastic local search to build the solutions in an incremental way,

and (iii) the use of information collected during past simulations to direct future search for

better solutions.

In the arti�cial ant colony approach, following an iterative process, each ant builds a

solution by using two types of information locally accessible: problem-speci�c information

(for example, distance among cities in a traveling salesman problem), and information added

by ants during previous iterations of the algorithm. In fact, while building a solution, each

ant collects information on the problem characteristics and on its own performance, and

uses this information to modify the representation of the problem, as seen locally by the

other ants. The representation of the problem is modi�ed in such a way that information

contained in past good solutions can be exploited to build new better solutions. This form

of indirect communication mediated by the environment is called stigmergy, and is typical

of social insects (Grass�e, 1959).

In AntNet, we retain the core ideas of the arti�cial ant colony paradigm, and we apply

them to solve in an adaptive way the routing problem in datagram networks.

Informally, the AntNet algorithm and its main characteristics can be summarized as

follows.

� At regular intervals, and concurrently with the data tra�c, from each network node

mobile agents are asynchronously launched towards randomly selected destination

nodes.

� Agents act concurrently and independently, and communicate in an indirect way,

through the information they read and write locally to the nodes.

� Each agent searches for a minimum cost path joining its source and destination nodes.

� Each agent moves step-by-step towards its destination node. At each intermediate

node a greedy stochastic policy is applied to choose the next node to move to. The

policy makes use of (i) local agent-generated and maintained information, (ii) local

problem-dependent heuristic information, and (iii) agent-private information.

� While moving, the agents collect information about the time length, the congestion

status and the node identi�ers of the followed path.

� Once they have arrived at the destination, the agents go back to their source nodes

by moving along the same path as before but in the opposite direction.

� During this backward travel, local models of the network status and the local routing

table of each visited node are modi�ed by the agents as a function of the path they

followed and of its goodness.

� Once they have returned to their source node, the agents die.

In the following subsections the above scheme is explained, all its components are ex-

plicated and discussed, and a more detailed description of the algorithm is given.
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4.1 Algorithm Description and Characteristics

AntNet is conveniently described in terms of two sets of homogeneous mobile agents (Stone

& Veloso, 1996), called in the following forward and backward ants. Agents5 in each set

possess the same structure, but they are di�erently situated in the environment; that is,

they can sense di�erent inputs and they can produce di�erent, independent outputs. They

can be broadly classi�ed as deliberative agents, because they behave reactively retrieving a

pre-compiled set of behaviors, and at the same time they maintain a complete internal state

description. Agents communicate in an indirect way, according to the stigmergy paradigm,

through the information they concurrently read and write in two data structures stored in

each network node k (see Figure 1):
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Figure 1: Node structures used by mobile agents in AntNet for the case of a node with

L neighbors and a network with N nodes. The routing table is organized as in

vector-distance algorithms, but the entries are probabilistic values. The structure

containing statistics about the local tra�c plays the role of a local adaptive model

for the tra�c toward each possible destination.

i) A routing table Tk, organized as in vector-distance algorithms (see Appendix A),

but with probabilistic entries. Tk de�nes the probabilistic routing policy currently

adopted at node k: for each possible destination d and for each neighbor node n, Tk
stores a probability value Pnd expressing the goodness (desirability), under the current

network-wide routing policy, of choosing n as next node when the destination node

is d: X
n2Nk

Pnd = 1; d 2 [1; N ]; Nk = fneighbors(k)g:

ii) An arrayMk(�d; �d
2;Wd), of data structures de�ning a simple parametric statistical

model for the tra�c distribution over the network as seen by the local node k. The

model is adaptive and described by sample means and variances computed over the

trip times experienced by the mobile agents, and by a moving observation windowWd

used to store the best value Wbestd of the agents' trip time.

5. In the following, we will use interchangeably the terms ant and agent.
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For each destination d in the network, an estimated mean and variance, �d and �d
2,

give a representation of the expected time to go and of its stability. We used arith-

metic, exponential and windowed strategies to compute the statistics. Changing strat-

egy does not a�ect performance much, but we observed the best results using the

exponential model:6

�d  �d + �(ok!d � �d);

�d
2
 �d

2 + �((ok!d � �d)
2
� �d

2); (1)

where ok!d is the new observed agent's trip time from node k to destination d.7

The moving observation window Wd is used to compute the value Wbestd of the best

agents' trip time towards destination d as observed in the last w samples. After each

new sample, w is incremented modulus jWjmax, and jWjmax is the maximum allowed

size of the observation window. The value Wbestd represents a short-term memory

expressing a moving empirical lower bound of the estimate of the time to go to node

d from the current node.

T and M can be seen as memories local to nodes capturing di�erent aspects of the

network dynamics. The model M maintains absolute distance/time estimates to all the

nodes, while the routing table gives relative probabilistic goodness measures for each link-

destination pair under the current routing policy implemented over all the network.

The AntNet algorithm is described as follows.

1. At regular intervals �t from every network node s, a mobile agent (forward ant) Fs!d

is launched toward a destination node d to discover a feasible, low-cost path to that

node and to investigate the load status of the network. Forward ants share the same

queues as data packets, so that they experience the same tra�c loads. Destinations are

locally selected according to the data tra�c patterns generated by the local workload:

if fsd is a measure (in bits or in number of packets) of the data ow s! d, then the

probability of creating at node s a forward ant with node d as destination is

p
d
=

f
sd

NX
d0=1

f
sd0

: (2)

In this way, ants adapt their exploration activity to the varying data tra�c distribu-

tion.

2. While traveling toward their destination nodes, the agents keep memory of their paths

and of the tra�c conditions found. The identi�er of every visited node k and the time

elapsed since the launching time to arrive at this k-th node are pushed onto a memory

stack Ss!d(k).

6. This is the same model as used by the Jacobson/Karels algorithm to estimate retransmission timeouts

in the Internet TCP(Peterson & Davie, 1996).

7. The factor � weights the number of most recent samples that will really a�ect the average. The weight

of the ti-th sample used to estimate the value of �d after j samplings, with j > i, is: �(1� �)
j�i

. In

this way, for example, if � = 0:1, approximately only the latest 50 observations will really inuence the

estimate, for � = 0:05, the latest 100, and so on. Therefore, the number of e�ective observations is

� 5(1=�).
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3. At each node k, each traveling agent headed towards its destination d selects the node

n to move to choosing among the neighbors it did not already visit, or over all the

neighbors in case all of them had been previously visited. The neighbor n is selected

with a probability (goodness) P 0nd computed as the normalized sum of the probabilistic

entry Pnd of the routing table with a heuristic correction factor ln taking into account

the state (the length) of the n-th link queue of the current node k:

P 0nd =
Pnd + �ln

1 + �(jNkj � 1)
: (3)

The heuristic correction ln is a [0,1] normalized value proportional to the length qn
(in bits waiting to be sent) of the queue of the link connecting the node k with its

neighbor n:

ln = 1�
qn

jNkjX
n0=1

qn0

: (4)

The value of � weights the importance of the heuristic correction with respect to the

probability values stored in the routing table. ln reects the instantaneous state of the

node's queues, and assuming that the queue's consuming process is almost stationary

or slowly varying, ln gives a quantitative measure associated with the queue waiting

time. The routing tables values, on the other hand, are the outcome of a continual

learning process and capture both the current and the past status of the whole network

as seen by the local node. Correcting these values with the values of l allows the

system to be more \reactive", at the same time avoiding following all the network

uctuations. Agent's decisions are taken on the basis of a combination of a long-term

learning process and an instantaneous heuristic prediction.

In all the experiments we ran, we observed that the introduced correction is a very

e�ective mechanism. Depending on the characteristics of the problem, the best value

to assign to the weight � can vary, but if � ranges between 0.2 and 0.5, performance

doesn't change appreciably. For lower values, the e�ect of l is vanishing, while for

higher values the resulting routing tables oscillate and, in both cases, performance

degrades.

4. If a cycle is detected, that is, if an ant is forced to return to an already visited node,

the cycle's nodes are popped from the ant's stack and all the memory about them is

destroyed. If the cycle lasted longer than the lifetime of the ant before entering the

cycle, (that is, if the cycle is greater than half the ant's age) the ant is destroyed. In

fact, in this case the agent wasted a lot of time probably because of a wrong sequence

of decisions and not because of congestion states. Therefore, the agent is carrying an

old and misleading memory of the network state and it is counterproductive to use it

to update the routing tables (see below).

5. When the destination node d is reached, the agent Fs!d generates another agent

(backward ant) Bd!s, transfers to it all of its memory, and dies.
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6. The backward ant takes the same path as that of its corresponding forward ant, but

in the opposite direction.8 At each node k along the path it pops its stack Ss!d(k) to

know the next hop node. Backward ants do not share the same link queues as data

packets; they use higher priority queues, because their task is to quickly propagate to

the routing tables the information accumulated by the forward ants.

7. Arriving at a node k coming from a neighbor node f , the backward ant updates the

two main data structures of the node, the local model of the tra�cMk and the rout-

ing table Tk, for all the entries corresponding to the (forward ant) destination node

d. With some precautions, updates are performed also on the entries corresponding

to every node k0 2 Sk!d; k
0
6= d on the \sub-paths" followed by ant Fs!d after visit-

ing the current node k. In fact, if the elapsed trip time of a sub-path is statistically

\good" (i.e., it is less than �+ I(�; �), where I is an estimate of a con�dence interval

for �), then the time value is used to update the corresponding statistics and the

routing table. On the contrary, trip times of sub-paths not deemed good, in the same

statistical sense as de�ned above, are not used because they don't give a correct idea

of the time to go toward the sub-destination node. In fact, all the forward ant routing

decisions were made only as a function of the destination node. In this perspective,

sub-paths are side e�ects, and they are intrinsically sub-optimal because of the local

variations in the tra�c load (we can't reason with the same perspective as in dynamic

programming, because of the non-stationarity of the problem representation). Obvi-

ously, in case of a good sub-path we can use it: the ant discovered, at zero cost, an

additional good route. In the following two items the way M and T are updated is

described with respect to a generic \destination" node d0 2 Sk!d.

i) Mk is updated with the values stored in the stack memory Ss!d(k). The time

elapsed to arrive (for the forward ant) to the destination node d0 starting from

the current node is used to update the mean and variance estimates, �d0 and �d0
2,

and the best value over the observation window Wd0 . In this way, a parametric

model of the traveling time to destination d0 is maintained. The mean value of

this time and its dispersion can vary strongly, depending on the tra�c conditions:

a poor time (path) under low tra�c load can be a very good one under heavy

tra�c load. The statistical model has to be able to capture this variability

and to follow in a robust way the uctuations of the tra�c. This model plays a

critical role in the routing table updating process (see item (ii) below). Therefore,

we investigated several ways to build e�ective and computationally inexpensive

models, as described in the following Section 4.2.

ii) The routing table Tk is changed by incrementing the probability Pfd0 (i.e., the

probability of choosing neighbor f when destination is d0) and decrementing, by

normalization, the other probabilities Pnd0 . The amount of the variation in the

probabilities depends on a measure of goodness we associate with the trip time

Tk!d0 experienced by the forward ant, and is given below. This time represents

the only available explicit feedback signal to score paths. It gives a clear indica-

tion about the goodness r of the followed route because it is proportional to its

8. This assumption requires that all the links in the network are bi-directional. In modern networks this is

a reasonable assumption.
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length from a physical point of view (number of hops, transmission capacity of the

used links, processing speed of the crossed nodes) and from a tra�c congestion

point of view (the forward ants share the same queues as data packets).

The time measure T , composed by all the sub-paths elapsed times, cannot be

associated with an exact error measure, given that we don't know the \optimal"

trip times, which depend on the whole network load status.9 Therefore, T can

only be used as a reinforcement signal. This gives rise to a credit assignment

problem typical of the reinforcement learning �eld (Bertsekas & Tsitsiklis, 1996;

Kaelbling et al., 1996). We de�ne the reinforcement r � r(T;Mk) to be a

function of the goodness of the observed trip time as estimated on the basis of

the local tra�c model. r is a dimensionless value, r 2 (0; 1], used by the current

node k as a positive reinforcement for the node f the backward ant Bd!s comes

from. r takes into account some average of the so far observed values and of

their dispersion to score the goodness of the trip time T , such that the smaller T

is, the higher r is (the exact de�nition of r is discussed in the next subsection).

The probability Pfd0 is increased by the reinforcement value as follows:

Pfd0  Pfd0 + r(1� Pfd0): (5)

In this way, the probability Pfd0 will be increased by a value proportional to the

reinforcement received and to the previous value of the node probability (that is,

given a same reinforcement, small probability values are increased proportionally

more than big probability values, favoring in this way a quick exploitation of new,

and good, discovered paths).

Probabilities Pnd0 for destination d0 of the other neighboring nodes n implicitly

receive a negative reinforcement by normalization. That is, their values are

reduced so that the sum of probabilities will still be 1:

Pnd0  Pnd0 � rPnd0 ; n 2 Nk; n 6= f: (6)

It is important to remark that every discovered path receives a positive reinforce-

ment in its selection probability, and the reinforcement is (in general) a non-linear

function of the goodness of the path, as estimated using the associated trip time.

In this way, not only the (explicit) assigned value r plays a role, but also the

(implicit) ant's arrival rate. This strategy is based on trusting paths that receive

either high reinforcements, independent of their frequency, or low and frequent

reinforcements. In fact, for any tra�c load condition, a path receives one or more

high reinforcements only if it is much better than previously explored paths. On

the other hand, during a transient phase after a sudden increase in network load

all paths will likely have high traversing times with respect to those learned by

the modelM in the preceding, low congestion, situation. Therefore, in this case

good paths can only be di�erentiated by the frequency of ants' arrivals.

9. When the network is in a congested state, all the trip times will score poorly with respect to the times

observed in low load situations. Nevertheless, a path with a high trip time should be scored as a good

path if its trip time is signi�cantly lower than the other trip times observed in the same congested

situation.
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Assigning always a positive, but low, reinforcement value in the case of paths

with high traversal time allows the implementation of the above mechanism based

on the frequency of the reinforcements, while, at the same time, avoids giving

excessive credit to paths with high traversal time due to their poor quality.

The use of probabilistic entries is very speci�c to AntNet and we observed it

to be e�ective, improving the performance, in some cases, even by 30%-40%.

Routing tables are used in a probabilistic way not only by the ants but also

by the data packets. This has been observed to improve AntNet performance,

which means that the way the routing tables are built in AntNet is well matched

with a probabilistic distribution of the data packets over all the good paths.

Data packets are prevented from choosing links with very low probability by re-

mapping the T 's entries by means of a power function f(p) = p�; � > 1, which

emphasizes high probability values and reduces lower ones (in our experiments

we set � to 1.2).

Figure 2 gives a high-level description of the algorithm in pseudo-code, while Figure

3 illustrates a simple example of the algorithm behavior. A detailed discussion of the

characteristics of the algorithm is postponed to Section 8, after the performance of the

algorithm has been analyzed with respect to a set of competitor algorithms. In this way,

the characteristics of AntNet can be meaningfully evaluated and compared to those of other

state-of-the-art algorithms.

4.2 How to Score the Goodness of the Ant's Trip Time

The reinforcement r is a critical quantity that has to be assigned by considering three main

aspects: (i) paths should receive an increment in their selection probability proportional

to their goodness, (ii) the goodness is a relative measure, which depends on the tra�c

conditions, that can be estimated by means of the modelM, and (iii) it is important not to

follow all the tra�c uctuations. This last aspect is particularly important. Uncontrolled

oscillations in the routing tables are one of the main problems in shortest paths routing

(Wang & Crowcroft, 1992). It is very important to be able to set the best trade-o� between

stability and adaptivity.

We investigated several ways to assign the r values trying to take into account the above

three requirements:

� The simplest way is to set r = constant: independently of the ant's \experiment

outcomes", the discovered paths are all rewarded in the same way. In this simple but

meaningful case, what is at work is the implicit reinforcement mechanism due to the

di�erentiation in the ant arrival rates. Ants traveling along faster paths will arrive

at a higher rate than other ants, hence their paths will receive a higher cumulative

reward.10 The obvious problem of this approach lies in the fact that, although ants

following longer paths arrive delayed, they will nevertheless have the same e�ect on

the routing tables as the ants who followed shorter paths.

10. In this case, the core of the algorithm is based on the capability of \real" ants to discover shortest paths

communicating by means of pheromone trails (Goss et al., 1989; Beckers et al., 1992).
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t := Current time;

tend := Time length of the simulation;

�t := Time interval between ants generation;

foreach (Node) = � Concurrent activity over the network � =
M = Local tra�c model;

T = Node routing table;

while ( t � tend )

in parallel = � Concurrent activity on each node � =
if ( t mod �t = 0)

destination node := SelectDestinationNode(data tra�c distribution);

LaunchForwardAnt(destination node, source node);

end if

foreach (ActiveForwardAnt[source node, current node, destination node])

while (current node 6= destination node)

next hop node := SelectLink(current node, destination node,T ; link queues);

PutAntOnLinkQueue(current node, next hop node);

WaitOnDataLinkQueue(current node, next hop node);

CrossTheLink(current node, next hop node);

PushOnTheStack(next hop node, elapsed time);

current node := next hop node;

end while

LaunchBackwardAnt(destination node, source node, stack data);

Die();

end foreach

foreach (ActiveBackwardAnt[source node, current node, destination node])

while (current node 6= destination node)

next hop node := PopTheStack();

WaitOnHighPriorityLinkQueue(current node, next hop node);

CrossTheLink(current node, next hop node);

UpdateLocalTra�cModel(M, current node, source node, stack data);

reinforcement := GetReinforcement(current node, source node, stack data, M);

UpdateLocalRoutingTable(T , current node, source node, reinforcement);

end while

end foreach

end in parallel

end while

end foreach

Figure 2: AntNet's top-level description in pseudo-code. All the described actions take place

in a completely distributed and concurrent way over the network nodes (while, in

the text, AntNet has been described from an individual ant's perspective). All the

constructs at the same level of indentation inside the context of the statement

in parallel are executed concurrently. The processes of data generation and

forwarding are not described, but they can be thought as acting concurrently

with the ants.
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( 1  4)

2 41 3

Forward Ant (1 4 )

Backward Ant

Figure 3: Example of AntNet behavior. The forward ant, F1!4, moves along the path

1 ! 2 ! 3 ! 4 and, arrived at node 4, launches the backward ant B4!1 that

will travel in the opposite direction. At each node k; k = 3; : : : ; 1, the backward

ant will use the stack contents S1!4(k) to update the values forMk(�4; �4
2;W4),

and, in case of good sub-paths, to update also the values forMk(�i; �i
2;Wi); i =

k+1; : : : ; 3. At the same time the routing table will be updated by incrementing

the goodness Pj4, j = k + 1, of the last node k + 1 the ant B4!1 came from,

for the case of node i = k + 1; : : : ; 4 as destination node, and decrementing the

values of P for the other neighbors (here not shown). The increment will be a

function of the trip time experienced by the forward ant going from node k to

destination node i. As forM, the routing table is always updated for the case of

node 4 as destination, while the other nodes i0 = k + 1; : : : ; 3 on the sub-paths

are taken in consideration as destination nodes only if the trip time associated to

the corresponding sub-path of the forward ant is statistically good.

In the experiments we ran with this strategy, the algorithm showed moderately good

performance. These results suggest that the \implicit" component of the algorithm,

based on the ant arrival rate, plays a very important role. Of course, to compete with

state-of-the-art algorithms, the available information about path costs has to be used.

� More elaborate approaches de�ne r as a function of the ant's trip time T , and of the

parameters of the local statistical modelM. We tested several alternatives, by using

di�erent linear, quadratic and hyperbolic combinations of the T and M values. In

the following we limit the discussion to the functional form that gave the best results,

and that we used in the reported experiments:

r = c1

�
Wbest

T

�
+ c2

�
Isup � Iinf

(Isup � Iinf ) + (T � Iinf )

�
: (7)

In Equation 7, Wbest is the best trip time experienced by the ants traveling toward

the destination d, over the last observation window W. The maximum size of the window

(the maximum number of considered samples before resetting the Wbest value) is assigned

on the basis of the coe�cient � of Equation 1. As we said, � weights the number of

samples e�ectively giving a contribution to the value of the � estimate, de�ning a sort of

moving exponential window. Following the expression for the number of e�ective samples

as reported in footnote 7, we set jWjmax = 5(c=�), with c < 1. In this way, the long-

term exponential mean and the short-term windowing are referring to a comparable set of

observations, with the short-term mean evaluated over a fraction c of the samples used for
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the long-term one. Isup and Iinf are convenient estimates of the limits of an approximate

con�dence interval for �. Iinf is set to Wbest, while Isup = � + z(�=
p
jWj), with z =

1=
p
(1� ) where  gives the selected con�dence level.11 There is some level of arbitrariness

in our computation of the con�dence interval, because we set it in an asymmetric way and

� and � are not arithmetic estimates. Anyway, what we need is a quick, raw estimate of the

mean value and of the dispersion of the values (for example, a local bootstrap procedure

could have been applied to extract a meaningful con�dence interval, but such a choice is

not reasonable from a CPU time-consuming perspective).

The �rst term in Equation 7 simply evaluates the ratio between the current trip time and

the best trip time observed over the current observation window. This term is corrected

by the second one, that evaluates how far the value T is from Iinf in relation to the

extension of the con�dence interval, that is, considering the stability in the latest trip

times. The coe�cients c1 and c2 weight the importance of each term. The �rst term is the

most important one, while the second term plays the role of a correction. In the current

implementation of the algorithm we set c1 = 0:7 and c2 = 0:3. We observed that c2 shouldn't

be too big (0.35 is an upper limit), otherwise performance starts to degrade appreciably.

The behavior of the algorithm is quite stable for c2 values in the range 0.15 to 0.35 but

setting c2 below 0.15 slightly degrades performance. The algorithm is very robust to changes

in , which de�nes the con�dence level: varying the con�dence level in the range from 75%

to 95% changes performance little. The best results have been obtained for values around

75%�80%. We observed that the algorithm is very robust to its internal parameter settings

and we didn't try to \adapt" the set of parameters to the problem instance. All the di�erent

experiments were carried out with the same \reasonable" settings. We could surely improve

the performance by means of a �ner tuning of the parameters, but we didn't because we

were interested in implementing a robust system, considering that the world of networks is

incredibly varied in terms of tra�c, topologies, switch and transmission characteristics, etc.

The value r obtained from Equation 7 is �nally transformed by means of a squash

function s(x):

s(x) =

 
1 + exp

�
a

xjNkj

�!�1
; x 2 (0; 1]; a 2 R+; (8)

r 
s(r)

s(1)
: (9)

Squashing the r values allows the system to be more sensitive in rewarding good (high)

values of r, while having the tendency to saturate the rewards for bad (near to zero) r

values: the scale is compressed for lower values and expanded in the upper part. In such a

way an emphasis is put on good results, while bad results play a minor role.

11. The expression is obtained by using the Tchebyche� inequality that allows the de�nition of a con�dence

interval for a random variable following any distribution (Papoulis, 1991) Usually, for speci�c probability

densities the Tchebyche� bound is too high, but here we can conveniently use it because (i) we want

to avoid to make assumptions on the distribution of � and, (ii) we need only a raw estimate of the

con�dence interval.
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Figure 4: Examples of squash functions with a

variable number of node neighbors.

The coe�cient a=jNkj determines a

parametric dependence of the squashed

reinforcement value on the number

jNkj of neighbors of the reinforced node

k: the greater the number of neighbors,

the higher the reinforcement (see Fig-

ure 4). The reason to do this is that we

want to have a similar, strong, e�ect of

good results on the probabilistic rout-

ing tables, independent of the number

of neighbor nodes.

5. Routing Algorithms Used for Comparison

To evaluate the performance of AntNet, we compared it with state-of-the-art routing algo-

rithms from the telecommunications and machine learning �elds. The following algorithms,

belonging to the various possible combinations of static and adaptive, distance-vector and

link-state classes (see Appendix A), have been implemented and used to run comparisons.

OSPF (static, link state): is our implementation of the current Interior Gateway Pro-

tocol (IGP) of Internet (Moy, 1998). Being interested in studying routing under the

assumptions described in Section 3, the routing protocol we implemented does not

mirror the real OSPF protocol in all its details. It only retains the basic features of

OSPF. Link costs are statically assigned on the basis of their physical characteristics

and routing tables are set as the result of the shortest (minimum time) path com-

putation for a sample data packet of size 512 bytes. It is worth remarking that this

choice penalizes our version of OSPF with respect to the real one. In fact, in the real

Internet link costs are set by network administrators who can use additional heuristic

and on-�eld knowledge they have about tra�c workloads.

SPF (adaptive, link-state): is the prototype of link-state algorithms with dynamic met-

ric for link costs evaluations. A similar algorithm was implemented in the second

version of ARPANET (McQuillan, Richer, & Rosen, 1980) and in its successive revi-

sions (Khanna & Zinky, 1989). Our implementation uses the same ooding algorithm,

while link costs are assigned over a discrete scale of 20 values by using the ARPANET

hop-normalized-delay metric12 (Khanna & Zinky, 1989) and the the statistical win-

dow average method described in (Shankar, Alaettino�glu, Dussa-Zieger, & Matta,

1992a). Link costs are computed as weighted averages between short and long-term

real-valued statistics reecting the delay (e.g., utilization, queueing and/or transmis-

12. The transmitting node monitors the average packet delay d (queuing and transmission) and the average

packet transmission time t over �x observation windows. From these measures, assuming an M/M/1

queueing model (Bertsekas & Gallager, 1992), a link utilization cost measure is calculated as 1 � t=d.
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sion delay, etc.) over �xed time intervals. Obtained values are rescaled and saturated

by a linear function. We tried several additional discrete and real-valued metrics but

the discretized hop-normalized-delay gave the best results in terms of performance

and stability. Using a discretized scale reduces the sensitivity of the algorithm but at

the same time reduces also undesirable oscillations.

BF (adaptive, distance-vector): is an implementation of the asynchronous distributed

Bellman-Ford algorithm with dynamic metrics (Bertsekas & Gallager, 1992; Shankar

et al., 1992a). The algorithm has been implemented following the guidelines of Ap-

pendix A, while link costs are assigned in the same way as described for SPF above.

Vector-distance Bellman-Ford-like algorithms are today in use mainly for intra-domain

routing, because they are used in the Routing Information Protocol (RIP) (Malkin

& Steenstrup, 1995) supplied with the BSD version of Unix. Several enhanced ver-

sions of the basic adaptive Bellman-Ford algorithm can be found in the literature (for

example the Merlin-Segall (Merlin & Segall, 1979) and the Extended Bellman-Ford

(Cheng, Riley, Kumar, & Garcia-Luna-Aceves, 1989) algorithms). They focus mainly

on reducing the information dissemination time in case of link failures. When link

failures are not a major issue, as in this paper, their behavior is in general equivalent

to that of the basic adaptive Bellman-Ford.

Q-R (adaptive, distance-vector): is the Q-Routing algorithm as proposed by Boyan

and Littman (1994). This is an online asynchronous version of the Bellman-Ford

algorithm. Q-R learns online the values Qk(d; n), which are estimates of the time

to reach node d from node k via the neighbor node n. Upon sending a packet P

from k to neighbor node n with destination d, a back packet Pback is immediately

generated from n to k. Pback carries the information about the current time estimate

tn!d = minn02Nn Qn(d; n
0) held at node n about the time to go for destination d, and

the sum tPk!n
of the queuing and transmission time experienced by P since its arrival

at node k. The sum Qnew(d; n) = tn!d + tPk!n
is used to compute the variation

�Qk(d; n) = �(Qnew(d; n)�Qk(d; n)) of the Q-learning-like value Qk(d; n).

PQ-R (adaptive, distance-vector): is the Predictive Q-Routing algorithm (Choi & Ye-

ung, 1996), an extension of Q-Routing. In Q-routing the best link (i.e., the one with

the lowest Qk(d; n)) is deterministically chosen by packets. Therefore, a link that

happens to have a high expected Qk(d; n), for example because of a temporary load

condition, will never be used again until all the other links exiting from the same node

have a worse, that is higher, Qk(d; n). PQ-R learns a model of the rate of variation of

links' queues, called the recovery rate, and uses it to probe those links that, although

not having the lowest Qk(d; n), have a high recovery rate.

Daemon (adaptive, optimal routing): is an approximation of an ideal algorithm. It

de�nes an empirical bound on the achievable performance. It gives some informa-

tion about how much improvement is still possible. In the absence of any a priori

assumption on tra�c statistics, the empirical bound can be de�ned by an algorithm

possessing a \daemon" able to read in every instant the state of all the queues in the

network and then calculating instantaneous \real" costs for all the links and assigning
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paths on the basis of a network-wide shortest paths re-calculation for every packet

hop. Links costs used in shortest paths calculations are the following:

Cl = dl +
Sp

bl
+ (1� �)

SQ(l)

bl
+ �

�SQ(l)

bl
;

where dl is the transmission delay for link l, bl is its bandwidth, Sp is the size (in

bits) of the data packet doing the hop, SQ(l) is the size (in bits) of the queue of link

l, �SQ(l) is the exponential mean of the size of links queue and it is a correction to the

actual size of the link queue on the basis of what observed until that moment. This

correction is weighted by the � value set to 0.4. Of course, given the arbitrariness

we introduced in calculating Cl, it could be possible to de�ne an even better Daemon

algorithm.

6. Experimental Settings

The functioning of a communication network is governed by many components, which may

interact in nonlinear and unpredictable ways. Therefore, the choice of a meaningful testbed

to compare competing algorithms is no easy task.

A limited set of classes of tunable components is de�ned and for each class our choices

are explained.

6.1 Topology and physical properties of the net

Topology can be de�ned on the basis of a real net instance or it can de�ned by hand, to

better analyze the inuence of important topological features (like diameter, connectivity,

etc.).

Nodes are mainly characterized by their bu�ering and processing capacity, whereas links

are characterized by their propagation delay, bandwidth and streams multiplexing scheme.

For both, fault probability distributions should be de�ned.

In our experiments, we used three signi�cant net instances with increasing numbers

of nodes. For all of them we describe the main characteristics and we summarize the

topological properties by means of a triple of numbers (�, �, N) indicating respectively the

mean shortest path distance, in terms of hops, between all pairs of nodes, the variance of

this average, and the total number of nodes. From these three numbers we can get an idea

about the degree of connectivity and balancing of the network. The di�culty of the routing

problem roughly increases with the value of these numbers.

� SimpleNet (1.9, 0.7, 8) is a small network speci�cally designed to study some aspects

of the behavior of the algorithms we compare. Experiments with SimpleNet were

designed to closely study how the di�erent algorithms manage to distribute the load

on the di�erent possible paths. SimpleNet is composed of 8 nodes and 9 bi-directional

links with a bandwidth of 10 Mbit/s and propagation delay of 1 msec. The topology

is shown in Figure 5.

� NSFNET (2.2, 0.8, 14) is the old USA T1 backbone (1987). NSFNET is a WAN

composed of 14 nodes and 21 bi-directional links with a bandwidth of 1.5 Mbit/s. Its
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Figure 5: SimpleNet. Numbers within circles are node identi�ers. Shaded nodes have a

special interpretation in our experiments, described later. Each edge in the graph

represents a pair of directed links. Link bandwidth is 10 Mbit/sec, propagation

delay is 1 msec.

topology is shown in Figure 6. Propagation delays range from 4 to 20 msec. NSFNET

is a well balanced network.

Figure 6: NSFNET. Each edge in the graph represents a pair of directed links. Link band-

width is 1.5 Mbit/sec, propagation delays range from 4 to 20 msec.

� NTTnet (6.5, 3.8, 57) is the major Japanese backbone. NTTnet is the NTT (Nippon

Telephone and Telegraph company) �ber-optic corporate backbone. NTTnet is a

57 nodes, 162 bi-directional links network. Link bandwidth is of 6 Mbit/sec, while

propagation delays range around 1 to 5 msec. The topology is shown in Figure 7.

NTTnet is not a well balanced network.

Figure 7: NTTnet. Each edge in the graph represents a pair of directed links. Link band-

width is 6 Mbit/sec, propagation delays range from 1 to 5 msec.
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All the networks are simulated with zero link-fault and node-fault probabilities, local

node bu�ers of 1 Gbit capacity, and data packets maximum time to live (TTL) set to 15

sec.

6.2 Tra�c patterns

Tra�c is de�ned in terms of open sessions between pairs of di�erent nodes. Tra�c patterns

can show a huge variety of forms, depending on the characteristics of each session and on

their distribution from geographical and temporal points of view.

Each single session is characterized by the number of transmitted packets, and by their

size and inter-arrival time distributions. More generally, priority, costs and requested quality

of service should be used to completely characterize a session.

Sessions over the network can be characterized by their inter-arrival time distribution

and by their geographical distribution. The latter is controlled by the probability assigned

to each node to be selected as a session start or end-point.

We considered three basic patterns for the temporal distribution of the sessions, and

three for their spatial distribution.

Temporal distributions:

� Poisson (P): for each node a Poisson process is de�ned which regulates the arrival of

new sessions, i.e., sessions inter-arrival times are negative exponentially distributed.

� Fixed (F): at the beginning of the simulation, for each node, a �xed number of one-

to-all sessions is set up and left constant for the remainder of the simulation.

� Temporary (TMPHS): a temporary, heavy load, tra�c condition is generated turning

on some nodes that act like hot spots (see below).

Spatial distributions:

� Uniform (U): the assigned temporal characteristics for session arrivals are set identi-

cally for all the network nodes.

� Random (R): in this case, the assigned temporal characteristics for session arrivals are

set in a random way over the network nodes.

� Hot Spots (HS): some nodes behave as hot spots, concentrating a high rate of in-

put/output tra�c. A �xed number of sessions are opened from the hot spots to all

the other nodes.

General tra�c patterns have been obtained combining the above temporal and spatial

characteristics. Therefore, for example, UP tra�c means that, for each node, an identical

Poisson process is regulating the arrival of new sessions, while in the RP case the process is

di�erent for each node, and UP-HS means that a Hot Spots tra�c model is superimposed

to a UP tra�c.

Concerning the shape of the bit stream generated by each session, we consider two basic

types:

� Constant Bit Rate (CBR): the per-session bit rate is maintained �xed. Examples of

applications of CBR streams are the voice signal in a telephone network, which is

converted into a stream of bits with a constant rate of 64 Kbit/sec, and the MPEG1

compression standard, which converts a video signal in a stream of 1.5 Mbit/sec.
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� Generic Variable Bit Rate (GVBR): the per-session generated bit rate is time varying.

The term GVBR is a broad generalization of the VBR term normally used to designate

a bit stream with a variable bit rate but with known average characteristics and

expected/admitted uctuations.13 Here, a GVBR session generates packets whose

sizes and inter-arrival times are variable and follow a negative exponential distribution.

The information about these characteristics is never directly used by the routing

algorithms, like in IP-based networks.

The values we used in the experiments to shape tra�c patterns are \reasonable" values

for session generations and data packet production taking into consideration current network

usage and computing power. The mean of the packet size distribution has been set to 4096

bits in all the experiments. Basic temporal and spatial distributions have been chosen to

be representative of a wide class of possible situations that can be arbitrarily composed to

generate a meaningful subset of real tra�c patterns.

6.3 Metrics for performance evaluation

Depending on the type of services delivered on the network and on their associated costs,

many performance metrics could be de�ned. We focused on standard metrics for per-

formance evaluation, considering only sessions with equal costs, bene�ts and priority and

without the possibility of requests for special services like real-time. In this framework, the

measures we are interested in are: throughput (correctly delivered bits/sec), delay distri-

bution for data packets (sec), and network capacity usage (for data and routing packets),

expressed as the sum of the used link capacities divided by the total available link capacity.

6.4 Routing algorithms parameters

All the algorithms used have a collection of parameters to be set. Common parameters

are routing packet size and elaboration time. Settings for these parameters are shown

in table 1. These parameters have been assigned to values used in previous simulation

AntNet OSPF & SPF BF Q-R & PQ-R

Packet size (byte) 24 + 8Nh 64 + 8jNnj 24 + 12N 12

Packet elaboration time (msec) 3 6 2 3

Table 1: Routing packets characteristics for the implemented algorithms (except for the

Daemon algorithm, which does not generate routing packets). Nh is the incremen-

tal number of hops made by the forward ant, jNnj is the number of neighbors of

node n, and N is the number of network nodes.

works (Alaettino�glu et al., 1992) and/or on the basis of heuristic evaluations taking into

13. The knowledge about the characteristics of the incoming CBR or VBR bit streams is of fundamental

importance in networks able to deliver Quality of Service. It is only on the basis of this knowledge that

the network can accept/refuse the session requests, and, in case of acceptance, allocate/reserve necessary

resources.
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consideration information encoding schemes and currently available computing power (e.g.,

the size for forward ants has been determined as the same size of a BF packet plus 8 bytes for

each hop to store the information about the node address and the elapsed time). Concerning

the other main parameters, speci�c for each algorithm, for the AntNet competitors we used

the best settings we could �nd in the literature and/or we tried to tune the parameters

as much as possible to obtain better results. For OSPF, SPF, and BF, the length of the

time interval between consecutive routing information broadcasts and the length of the time

window to average link costs are the same, and they are set to 0.8 or 3 seconds, depending on

the experiment for SPF and BF, and to 30 seconds for OSPF. Link costs inside each window

are assigned as the weighted sum between the arithmetic average over the window and the

exponential average with decay factor equal to 0.9. The obtained values are discretized

over a linear scale saturated between 1 and 20, with slope set to 20 and maximum admitted

variation equal to 1. For Q-R and PQ-R the transmission of routing information is totally

data-driven. The learning and adaptation rate we used were the same as used by the

algorithm's authors (Boyan & Littman, 1994; Choi & Yeung, 1996).

Concerning AntNet, we observed that the algorithm is very robust to internal parameters

tuning. We did not �nely tune the parameter set, and we used the same set of values for all

the di�erent experiments we ran. Most of the settings we used have been previously given

in the text at the moment the parameter was discussed and they are not reported in this

section. The ant generation interval at each node was set to 0.3 seconds. In Section 7.4

it will be shown the robustness of AntNet with respect to this parameter. Regarding the

parameters of the statistical model, the value of �, weighting the number of the samples

considered in the model (Equation 1), has been set to 0.005, the c factor for the expression

of jWjmax (sect. 4.2) has been put equal to 0.3, and the con�dence level factor z (sect. 4.2)

equal to 1.70, meaning a con�dence level of approximately 0.95.

7. Results

Experiments reported in this section compare AntNet with the competing routing algo-

rithms described in Section 5. We studied the performance of the algorithms for increasing

tra�c load, examining the evolution of the network status toward a saturation condition,

and for temporary saturation conditions.

� Under low load conditions, all algorithms tested have similar performance. In this

case, also considering the huge variability in the possible tra�c patterns, it is very

hard to assess whether an algorithm is signi�cantly better than another or not.

� Under high, near saturation, loads, all the tested algorithms are able to deliver the

o�ered throughput in a quite similar way, that is, in most of the cases all the gener-

ated tra�c is routed without big losses. On the contrary, the study of packet delay

distributions shows remarkable di�erences among the di�erent algorithms. To present

simulation results regarding packet delays we decided either to report the whole em-

pirical distribution or to use the 90-th percentile statistic, which allows one to compare

the algorithms on the basis of the upper value of delay they were able to keep the 90%

of the correctly delivered packets. In fact, packet delays can be spread over a wide

range of values. This is an intrinsic characteristics of data networks: packet delays

can range from very low values for sessions open between adjacent nodes connected by
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fast links, to much higher values in the case of sessions involving nodes very far apart

connected by many slow links. Because of this, very often the empirical distribution

of packet delays cannot be meaningfully parametrized in terms of mean and variance,

and the 90-th percentile statistic, or still better the whole empirical distribution, are

much more meaningful.

� Under saturation there are packet losses and/or packet delays that become too big,

cause all the network operations to slow down. Therefore, saturation has to be only

a temporary situation. If it is not, structural changes to the network characteristics,

like adding new and faster connection lines, rather than improvements of the routing

algorithm, should be in order. For these reasons, we studied the responsiveness of the

algorithms to tra�c loads causing only a temporary saturation.

All reported data are averaged over 10 trials lasting 1000 virtual seconds of simulation

time. One thousand seconds represents a time interval long enough to expire all transients

and to get enough statistical data to evaluate the behavior of the routing algorithm. Before

being fed with data tra�c, the algorithms are given 500 preliminary simulation seconds with

no data tra�c to build initial routing tables. In this way, each algorithm builds the routing

tables according to its own \vision" about minimum cost paths. Results for throughput

are reported as average values without an associated measure of variance. The inter-trial

variability is in fact always very low, a few percent of the average value.

Parameter values for tra�c characteristics are given in the Figure captions with the

following meaning (see also previous section): MSIA is the mean of the sessions inter-arrival

time distribution for the Poisson (P) case, MPIA stands for the mean of the packet inter-

arrival time distribution. In the CBR case, MPIA indicates the �xed packet production

rate. HS is the number of hot-spots nodes and MPIA-HS is the equivalent of MPIA for the

hot-spot sessions. In the following, when not otherwise explicitly stated, the shape of the

session bit streams is assumed to be of GVBR type.

Results for throughput and packet delays for all the considered network topologies are

described in the three following subsections. Results concerning the network resources

utilization are reported in Section 7.4.

7.1 SimpleNet

Experiments with SimpleNet were designed to study how the di�erent algorithms manage

to distribute the load on the di�erent possible paths. In these experiments, all the tra�c,

of F-CBR type, is directed from node 1 to node 6 (see Figure 5), and the tra�c load has

been set to a value higher than the capacity of a single link, so that it cannot be routed

e�ciently on a single path.

Results regarding throughput (Figure 8a) in this case strongly discriminate among the

algorithms. The type of the tra�c workload and the small number of nodes determined

signi�cant di�erences in throughput. AntNet is the only algorithm able to deliver almost

all the generated data tra�c: its throughput after a short transient phase approaches very

closely the level of that delivered by the Daemon algorithm. PQ-R attains a steady value

approximately 15% inferior to that obtained by AntNet. The other algorithms behave very

poorly, stabilizing on values of about 30% inferior to those provided by AntNet. In this
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case, it is rather clear that AntNet is the only algorithm able to exploit at best all the three

available paths (1-8-7-6, 1-3-5-6, 1-2-4-5-6) to distribute the data tra�c without inducing

counterproductive oscillations. The utilization of the routing tables in a probabilistic way

also by data packets in this case plays a fundamental role in achieving higher quality re-

sults. Results for throughput are con�rmed by those for packet delays, reported in the

graph of Figure 8b. The di�erences in the empirical distributions for packet delays reect

approximatively the same proportions as evidenced in the throughput case.
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Figure 8: SimpleNet: Comparison of algorithms for F-CBR tra�c directed from node 1 to node 6

(MPIA = 0.0003 sec). (a) Throughput, and (b) packet delays empirical distribution.

7.2 NSFNET

We carried out a wide range of experiments on NSFNET using UP, RP, UP-HS and TMPHS-

UP tra�c patterns. In all the cases considered, di�erences in throughput are of minor

importance with respect to those shown by packet delays. For each one of the UP, RP

and UP-HS cases we ran �ve distinct groups of ten trial experiments, gradually increasing

the generated workload (in terms of reducing the session inter-arrival time). As explained

above, we studied the behavior of the algorithms when moving the tra�c load towards a

saturation region.

In the UP case, di�erences in throughput (Figure 9a) are small: the best performing

algorithms are BF and SPF, which can attain performance of only about 10% inferior to

those of Daemon and of the same amount better than those of AntNet, Q-R and PQ-R,14

while OSPF behaves slightly better than these last ones. Concerning delays (Figure 9b) the

14. It is worth remarking that in these and in some of the experiments presented in the following, PQ-R's

performance is slightly worse than that of Q-R. This seems to be in contrast with the results presented

by the PQ-R's authors in the article where they introduced PQ-R (Choi & Yeung, 1996). We think that

this behavior is due to the fact that (i) their link recovery rate matches a discrete-time system while

in our simulator time is a continuous variable, and (ii) the experimental and simulation conditions are

rather di�erent (in their article it is not speci�ed the way they produced tra�c patterns and they did

not implement a realistic network simulator).
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situation is rather di�erent, as can be seen by the fact that all the algorithms but AntNet

have been able to produce a slightly higher throughput at the expenses of much worse

results for packet delays. This trend in packet delays was con�rmed by all the experiments

we ran. OSPF, Q-R and PQ-R show really poor results (delays of order 2 or more seconds

are very high values, even if we are considering the 90-th percentile of the distribution),

while BF and SPF behave in a similar way with performance of order 50% worse than those

obtained by AntNet and of order 65% worse than Daemon.
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Figure 9: NSFNET: Comparison of algorithms for increasing load for UP tra�c. The load is

increased reducing the MSIA value from 2.4 to 2 seconds (MPIA = 0.005 sec). (a)

Throughput, and (b) 90-th percentile of the packet delays empirical distribution.

In the RP case (Figure 10a), throughputs generated by AntNet, SPF and BF are very

similar, although AntNet has a slightly better performance. OSPF and PQ-R behave only

slightly worse while Q-R is the worst algorithm. Daemon is able to obtain only slightly

better results than AntNet. Again, looking at packet delays results (Figure 10b) OSPF,

Q-R and PQ-R perform very badly, while SPF shows results a bit better than those of BF

but of order 40% worse than those of AntNet. Daemon is in this case far better, which

indicates that the testbed was very di�cult.

For the case of UP-HS load, throughputs (Figure 11a) for AntNet, SPF, BF, Q-R and

Daemon are very similar, while OSPF and PQ-R clearly show much worse results. Again

(Figure 11b), packet delays results for OSPF, Q-R and PQ-R are much worse than those

of the other algorithms (they are so much worse that they do not �t in the scale chosen

to make clear di�erences among the other algorithms). AntNet is still the best performing

algorithm. In this case, di�erences with SPF are of order 20% and of 40% with respect to

BF. Daemon performs about 50% better than AntNet and scales much better than AntNet,

which, again, indicates the testbed was rather di�cult.

The last graph for NSFNET shows how the algorithms behave in the case of a TMPHS-

UP situation (Figure 12). At time t = 400 four hot spots are turned on and superimposed

to the existing light UP tra�c. The transient is kept on for 120 seconds. In this case, only

one, typical, situation is reported in detail to show the answer curves. Reported values
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Figure 10: NSFNET: Comparison of algorithms for increasing load for RP tra�c. The load is

increased reducing the MSIA value from 2.8 to 2.4 seconds (MPIA = 0.005 sec). (a)

Throughput, and (b) 90-th percentile of the packet delays empirical distribution.
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Figure 11: NSFNET: Comparison of algorithms for increasing load for UP-HS tra�c. The load is

increased reducing the MSIA value from 2.4 to 2.0 seconds (MPIA = 0.3 sec, HS = 4,

MPIA-HS = 0.04 sec). (a) Throughput, and (b) 90-th percentile of the packet delays

empirical distribution.

are the \instantaneous" values for throughput and packet delays computed as the average

over 5 seconds moving windows. All algorithms have a similar very good performance as

far as throughput is concerned, except for OSPF and PQ-R, which lose a few percent of

the packets during the transitory period. The graph of packet delays con�rms previous

results: SPF and BF have a similar behavior, about 20% worse than AntNet and 45%

worse than Daemon. The other three algorithms show a big out-of-scale jump, being not

able to properly dump the sudden load increase.
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Figure 12: NSFNET: Comparison of algorithms for transient saturation conditions with

TMPHS-UP tra�c (MSIA = 3.0 sec, MPIA = 0.3 sec, HS = 4, MPIA-HS =

0.04). (a) Throughput, and (b) packet delays averaged over 5 seconds moving

windows.

7.3 NTTnet

The same set of experiments run on the NSFNET have been repeated on NTTnet. In this

case the results are even sharper than those obtained with NSFNET: AntNet performance

is much better that of all its competitors.

For the UP, RP and UP-HS cases, di�erences in throughput are not signi�cant (Figures

13a, 14a and 15a). All the algorithms, with the OSPF exception, practically behave in

the same way as the Daemon algorithm. Concerning delays (Figures 13b, 14b and 15b),

di�erences between AntNet and each of its competitors are of one order of magnitude.

AntNet keeps delays at low values, very close to those obtained by Daemon, while SPF,

BF, Q-R and PQ-R perform poorly and OSPF completely collapses.

In the UP and RP cases (Figures 13b and 14b) SPF and BF performs similarly, even if SPF

shows slightly better results, and about 50% better than Q-R and PQ-R.

In the UP-HS case, again, SPF and BF show similar results, while Q-R performs compa-

rably but in a much more irregular way and PQ-R can keep delays about 30% lower. OSPF,

which is the worse algorithm in this case, shows an interesting behavior. The increase in the

generated data throughput determines a decrease or a very slow increase in the delivered

throughput while delays decrease (Figure 15a and 15b). In this case the load was too high

for the algorithm and the balance between the two, conicting, objectives, throughput and
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Figure 13: NTTnet: Comparison of algorithms for increasing load for UP tra�c. The load is

increased reducing the MSIA value from 3.1 to 2.7 seconds (MPIA = 0.005 sec). (a)

Throughput, and (b) 90-th percentile of the packet delays empirical distribution.
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Figure 14: NTTnet: Comparison of algorithms for increasing load for RP tra�c. The load is

increased reducing the MSIA value from 3.1 to 2.7 seconds (MPIA = 0.005 sec). (a)

Throughput, and (b) 90-th percentile of the packet delays empirical distribution.

packet delays, showed an inverse dynamics: having a lot of packet losses made it possible

for the surviving packets to obtain lower trip delays.

The TMPHS-UP experiment (Figure 16), concerning sudden load variation, con�rms

the previous results. OSPF is not able to follow properly the variation both for throughput

and delays. All the other algorithms are able to follow the sudden increase in the o�ered

throughput, but only AntNet (and Daemon) show a very regular behavior. Di�erences in

packet delays are striking. AntNet performance is very close to those obtained by Daemon

(the curves are practically superimposed at the scale used in the Figure). Among the other

algorithms, SPF and BF are the best ones, although their response is rather irregular and,

in any case, much worse than AntNet's. OSPF and Q-R are out-of-scale and show a very

delayed recovering curve. PQ-R, after a huge jump, which takes the graph out-of-scale in
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Figure 15: NTTnet: Comparison of algorithms for increasing load for UP-HS tra�c. The load is

increased reducing the MSIA value from 4.1 to 3.7 seconds (MPIA = 0.3 sec, HS = 4,

MPIA-HS = 0.05 sec). (a) Throughput, and (b) 90-th percentile of the packet delays

empirical distribution.

the �rst 40 seconds after hot spots are turned on, shows a trend approaching those of BF

and SPF.
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Figure 16: NTTnet: Comparison of algorithms for transient saturation conditions with

TMPHS-UP tra�c (MSIA = 4.0 sec, MPIA = 0.3 sec, HS = 4, MPIA-HS =

0.05). (a) Throughput, and (b) packet delays averaged over 5 seconds moving

windows.
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7.4 Routing Overhead

Table 2 reports results concerning the overhead generated by routing packets. For each

algorithm the network load generated by the routing packets is reported as the ratio between

the bandwidth occupied by the routing packets and the total available network bandwidth.

Each row in the table refers to a previously discussed experiment (Figs. 8 to 11 and 13

to 15). Routing overhead is computed for the experiment with the heaviest load in the

increasing load series.

AntNet OSPF SPF BF Q-R PQ-R

SimpleNet - F-CBR 0.33 0.01 0.10 0.07 1.49 2.01

NSFNET - UP 2.39 0.15 0.86 1.17 6.96 9.93

NSFNET - RP 2.60 0.15 1.07 1.17 5.26 7.74

NSFNET - UP-HS 1.63 0.15 1.14 1.17 7.66 8.46

NTTnet - UP 2.85 0.14 3.68 1.39 3.72 6.77

NTTnet - RP 4.41 0.14 3.02 1.18 3.36 6.37

NTTnet - UP-HS 3.81 0.14 4.56 1.39 3.09 4.81

Table 2: Routing Overhead: ratio between the bandwidth occupied by the routing packets

and the total available network bandwidth. All data are scaled by a factor of 10�3.

All data are scaled by a factor of 10�3. The data in the table show that the routing

overhead is negligible for all the algorithms with respect to the available bandwidth. Among

the adaptive algorithms, BF shows the lowest overhead, closely followed by SPF. AntNet

generates a slightly bigger consumption of network resources, but this is widely compensated

by the much higher performance it provides. Q-R and PQ-R produce an overhead a bit

higher than that of AntNet. The routing load caused by the di�erent algorithms is a function

of many factors, speci�c of each algorithm. Q-R and PQ-R are data-driven algorithms: if

the number of data packets and/or the length of the followed paths (because of topology

or bad routing) grows, so will the number of generated routing packets. BF, SPF and

OSPF have a more predictable behavior: the generated overhead is mainly function of the

topological properties of the network and of the generation rate of the routing information

packets. AntNet produces a routing overhead depending on the ants generation rate and

on the length of the paths they travel.

The ant tra�c can be roughly characterized as a collection of additional tra�c sources,

one for each network node, producing very small packets (and related acknowledgement

packets) at constant bit rate with destinations matching the o�ered data tra�c. On average

ants will travel over rather \short" paths and their size will grow of only 8 bytes at each hop.

Therefore, each \ant routing tra�c source" represents a very light additional tra�c source

with respect to network resources when the ant launching rate is not excessively high. In

Figure 17, the sensitivity of AntNet with respect to the ant launching rate is reported.

For a sample case of a UP data tra�c model on NSFNET (previously studied in Figure

9) the interval �g between two consecutive ant generations is progressively decreased (�g

is the same for all nodes). �g values are sampled at constant intervals over a logarithmic

scale ranging from about 0.006 to 25 seconds. The lower, dashed, curve interpolates the
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Figure 17: AntNet normalized power vs. routing overhead. Power is de�ned as the ratio

between delivered throughput and packet delay.

generated routing overhead expressed, as before, as the fraction of the available network

bandwidth used by routing packets. The upper, solid, curve plots the data for the obtained

power normalized to its highest value, where the power is de�ned as the ratio between the

delivered throughput and the packet delay. The value used for delivered throughput is the

throughput value at time 1000 averaged over ten trials, while for packet delay we used the

90-th percentile of the empirical distribution.

In the �gure, we can see how an excessively small �g causes an excessive growth of the

routing overhead, with consequent reduction of the algorithm power. Similarly, when �g

is too big, the power slowly diminishes and tends toward a plateau because the number of

ants is not enough to generate and maintain up-to-date statistics of the network status. In

the middle of these two extreme regions a wide range of �g intervals gives raise to similar,

very good power values, while, at the same time, the routing overhead quickly falls down

toward negligible values. This �gure strongly con�rms our previous assertion about the

robustness of AntNet's internal parameter settings.

8. Discussion

In AntNet, the continual on-line construction of the routing tables is the emergent result

of a collective learning process. In fact, each forward-backward agent pair is complex

enough to �nd a good route and to adapt the routing tables for a single source-destination

path, but it cannot solve the global routing optimization problem. It is the interaction

between the agents that determines the emergence of a global e�ective behavior from the

network performance point of view. Ants cooperate in their problem-solving activity by

communicating in an indirect and non-coordinated way. Each agent acts independently.

Good routes are discovered by applying a policy that is a function of the information
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accessed through the network nodes visited, and the information collected about the route

is eventually released on the same nodes. Therefore, the inter-agent communication is

mediated in an explicit and implicit way by the \environment", that is, by the node's data

structures and by the tra�c patterns recursively generated by the data packets' utilization

of the routing tables. This communication paradigm, called stigmergy, matches well the

intrinsically distributed nature of the routing problem. Cooperation among agents goes

on at two levels: (a) by modi�cations of the routing tables, and (b) by modi�cations of

local models that determine the way the ants' performance is evaluated. Modi�cations of

the routing tables directly a�ect the routing decisions of following ants towards the same

destination, as well as the routing of data, which, in turn, inuences the rate of arrival

of other ants towards any destination. It is interesting to remark that the used stigmergy

paradigm makes the AntNet's mobile agents very exible from a software engineering point

of view. In this perspective, once the interface with the node's data structure is de�ned,

the internal policy of the agents can be transparently updated. Also, the agents could be

exploited to carry out multiple concurrent tasks (e.g., collecting information for distributed

network management using an SNMP-like protocol or for Web data-mining tasks).

As shown in the previous section, the results we obtained with the above stigmergetic

model of computation are excellent. In terms of throughput and average delay, AntNet

performs better than both classical and recently proposed routing algorithms on a wide

range of experimental conditions. Although this is very interesting per se, in the following

we try to justify AntNet superior performance by highlighting some of its characteristics

and by comparing them with those of the competing algorithms. We focus on the following

main aspects:

� AntNet can be seen as a particular instance of a parallel Monte Carlo simulation

system with biased exploration. All the other algorithms either do not explore the

net or their exploration is local and tightly connected to the ux of data packets.

� The information AntNet maintains at each node is more complete and organized in a

less critical way than that managed by the other algorithms.

� AntNet does not propagate local estimates to other nodes, while all its competitors

do. This mechanism makes the algorithm more robust to locally wrong estimates.

� AntNet uses probabilistic routing tables, which have the triple positive e�ect of bet-

ter redistributing data tra�c on alternative routes, of providing ants with a built-in

exploration mechanism and of allowing the exploitation of the ants' arrival rate to

assign cumulative reinforcements.

� It was experimentally observed that AntNet is much more robust than its competitors

to the frequency with which routing tables are updated.

� The structure of AntNet allows one to draw some parallels with some well-known

reinforcement learning (RL) algorithms. The characteristics of the routing problem,

that can be seen as a distributed time-varying RL problem (see sect. 2.2), determines

a departure of AntNet from the structure of classical RL algorithms.

These aspects of AntNet are discussed in more detail in the following.
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8.1 AntNet as an on-line Monte Carlo system with biased exploration

The AntNet routing system can be seen as a collection of mobile agents collecting data

about the network status by concurrently performing on-line Monte Carlo simulations (Ru-

bistein, 1981; Streltsov & Vakili, 1996). In Monte Carlo methods, repeated experiments

with stochastic transition components are run to collect data about the statistics of in-

terest. Similarly, in AntNet ants explore the network by performing random experiments

(i.e., building paths from source to destination nodes using a stochastic policy dependent

on the past and current network states), and collect on-line information on the network

status. A built-in variance reduction e�ect is determined (i) by the way ants' destinations

are assigned, biased by the most frequently observed data's destinations, and (ii) by the way

the ants' policy makes use of current and past tra�c information (that is, inspection of the

local queues' status and probabilistic routing tables). In this way, the explored paths match

the most interesting paths from a data tra�c point of view, which results in a very e�cient

variance reduction e�ect in the stochastic sampling of the paths. Di�erently from usual

o�-line Monte Carlo systems, in AntNet the state space sampling is performed on-line, that

is, the sampling of the statistics and the controlling of the non-stationary tra�c process are

performed concurrently.

This way of exploring the network concurrently with data tra�c is very di�erent from

what happens in the other algorithms where, either there is no exploration at all (OSPF,

SPF and BF), or exploration is both tightly coupled to data tra�c and of a local nature

(Q-R and PQ-R). Conveniently, as was shown in Section 7.4, the extra tra�c generated by

exploring ants is negligible for a wide range of values, allowing very good performance.

8.2 Information management at each network node

Key characteristics of routing algorithms are the type of information used to build/update

routing tables and the way this information is propagated. All the algorithms (except the

static OSPF) make use at each node of two main components: a local model M of some

cost measures and a routing table T . SPF and BF use M to estimate smoothed averages

of the local link costs, that is, of the distances to the neighbor nodes. In this case, M is

a local model maintaining estimates of only local components. In Q-R the local model is

�ctitious because the raw transition time is directly used as a value to update T . PQ-R

uses a slightly more sophisticated model with respect to Q-R, storing also a measure of the

link utilization. All these algorithms propagate part of their local information to the other

nodes, which, in turn, make use of it to update their routing tables and to build a global

view of the network. In SPF and BF the content of each T is updated, at regular intervals,

by a \memoryless strategy": the new entries do not depend on the old values, that are

discarded. Therefore, the whole adaptive component of the routing system is represented

by the model M. Otherwise, in Q-R and PQ-R the adaptive content of M is almost

negligible and the adaptive component of the algorithm is represented by the smoothed

average carried out by the Q-learning-like rule. AntNet shows characteristics rather di�erent

from its competitors: its modelM contains a memory-based local perspective of the global

status of the network. The content of M allow the reinforcements to be weighted on the

basis of a rich statistical description of the network dynamics as seen by the local node.

These reinforcements are used to update the routing table, the other adaptive component
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maintained at the node. The T updates are carried out in an asynchronous way and as a

function of their previous values. Moreover, while T is used in a straightforward probabilistic

way by the data packets, traveling ants select the next node by using both T , that is, an

adaptive representation of the past policy, and a model of the current local link queues,

that is, an instantaneous representation of the node status. It is evident that AntNet builds

and uses more information than its competitors: two di�erent memory-based components

and an instantaneous predictor are used and combined at di�erent levels. Moreover, in this

way AntNet robustly redistributes among these completely local components the criticality

of all the estimates and decisions.

8.3 AntNet's robustness to wrong estimates

As remarked above, AntNet, di�erently from its competitors, does not propagate local

estimates to other nodes. Each node routing table is updated independently, by using

local information and the ants' experienced trip time. Moreover, (i) each ant experiment

a�ects only one entry in the routing table of the visited nodes, the one relative to the ant's

destination, and, (ii) the local information is built from the \global" information collected

by traveling ants, implicitly reducing in this way the variance in the estimates. These

characteristics make AntNet particularly robust to wrong estimates. On the contrary, in

all the other algorithms a locally wrong estimate will be propagated to all other nodes and

will be used to compute estimates to many di�erent destinations. How bad this is for the

algorithm performance depends on how long the wrong estimate e�ect lasts. In particular,

this will be a function of the time window over which estimates are computed for SPF and

BF, and of the learning parameters for Q-R and PQ-R.

8.4 AntNet's probabilistic use of routing tables to route data packets

All the tested algorithms but AntNet use deterministic routing tables.15 In these algorithms,

entries in the routing tables contain distance/time estimates to the destinations. These

estimates can provide misleading information if the algorithm is not fast enough to follow

the tra�c uctuations, as can be the case under heavy load conditions. Instead, AntNet

routing tables have probabilistic entries that, although reecting the goodness of a particular

path choice with respect to the others available, do not force the data packets to choose

the perceived best path. This has the positive e�ect of allowing a better balancing of

the tra�c load on di�erent paths, with a resulting better utilization of the resources (as

was shown in particular in the experiments with the SimpleNet). As remarked at the

end of Section 4.1, the intrinsic probabilistic structure of the routing tables and the way

they are updated allow AntNet to exploit the ant's arrival rate as a way to assign implicit

(cumulative) reinforcements to discovered paths. It is not obvious how the same e�ect

could be obtained by using routing tables containing distance/time estimates and using

this estimates in a probabilistic way. In fact, in this case each new trip time sample would

15. Singh, Jaakkola, and Jordan (1994) showed that stochastic policies can yield higher performance than

deterministic policies in the case of an incomplete access to the state information of the environment. In

(Jaakkola, Singh, & Jordan, 1995), the same authors developed a Monte-Carlo-based stochastic policy

evaluation algorithm, con�rming the usefulness of the Monte-Carlo approach, used in AntNet too, to

deal with incomplete information problems.
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modify the statistical estimate that would simply oscillate around its expected value without

inducing an arrival-dependent cumulative e�ect.

Probabilistic routing tables provide some remarkable additional bene�ts: (a) they give to

the ants a built-in exploration method in discovering new, possibly better, paths, and (b)

since ants and data routing are independent in AntNet, the exploration of new routes

can continue while, at the same time, data packets can exploit previously learned, reliable

information. It is interesting to note that the use of probabilistic routing tables whose entries

are learned in an adaptive way by changing on positive feedback and ignoring negative

feedback, is reminiscent of older automata approaches to routing in telecommunications

networks. In these approaches, a learning automaton is usually placed on each network

node. An automaton is de�ned by a set of possible actions and a vector of associated

probabilities, a continuous set of inputs and a learning algorithm to learn input-output

associations. Automata are connected in a feedback con�guration with the environment

(the whole network), and a set of penalty signals from the environment to the actions is

de�ned. Routing choices and modi�cations to the learning strategy are carried out in a

probabilistic way and according to the network conditions (see for example (Nedzelnitsky

& Narendra, 1987; Narendra & Thathachar, 1980)). The main di�erence lies in the fact

that in AntNet the ants are part of the environment itself, and they actively direct the

learning process towards the most interesting regions of the search space. That is, the

whole environment plays a key, active role in learning good state-action pairs.

8.5 AntNet robustness to routing table update frequency

In BF and SPF the broadcast frequency of routing information plays a critical role, particu-

larly so for BF, which has only a local representation of the network status. This frequency

is unfortunately problem dependent, and there is no easy way to make it adaptive, while,

at the same time, avoiding large oscillations. In Q-R and PQ-R, routing tables updating

is data driven: only those Q-values belonging to pairs (i; j) of neighbor nodes visited by

packets are updated. Although this is a reasonable strategy given that the exploration of

new routes could cause undesired delays to data packets, it causes delays in discovering new

good routes, and is a great handicap in a domain where good routes could change all the

time. In OSPF, in which routing tables are not updated, we set static link costs on the

basis of their physical characteristics. This lack of an adaptive metric is the main reason

of the poor performance of OSPF (as remarked in Section 5, we slightly penalized OSPF

with respect to its real implementations, where additional heuristic knowledge about tra�c

patterns is used by network administrators to set link costs). In AntNet, we experimentally

observed the robustness to changes in the ants' generation rate: for a wide range of genera-

tion rates, rather independent of the network size, the algorithm performance is very good

and the routing overhead is negligible (see Section 7.4).

8.6 AntNet and reinforcement learning

The characteristics of the routing problem allow one to interpret it as a distributed, stochas-

tic time-varying RL problem. This fact, as well as the structure of AntNet, make it natural

to draw some parallels between AntNet and classical RL approaches. It is worth remarking

that those RL problems that have been most studied, and for which algorithms have been de-
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veloped, are problems where, unlike routing, assumptions like Markovianity or stationarity

of the process considered are satis�ed. The characteristics of the adaptive routing problem

make it very di�cult and not well suited to be solved with usual RL algorithms. This fact,

as we explain below, determines a departure of AntNet from classical RL algorithms.

A �rst way to relate the structure of AntNet to that of a (general) RL algorithm is

connected to the way the outcomes of the experiments, the trip times Tk!d, are processed.

The transformation from the raw values Tk!d to the more re�ned reinforcements r are

reminiscent of what happens in Actor-Critic systems (Barto, Sutton, & Anderson, 1983):

the raw reinforcement signal is processed by a critic module, which is learning a model (the

node's componentM) of the underlying process, and then is fed to the learning system (the

routing table T ) transformed into an evaluation of the policy followed by the ants. In our

case, the critic is both adaptive, to take into account the variability of the tra�c process,

and rather simple, to meet computational requirements.

Another way of seeing AntNet as a classical RL system is related to its interpretation as

a parallel replicated Monte Carlo (MC) system. As was shown by Singh and Sutton (1996),

a �rst-visit MC (only the �rst visit to a state is used to estimate its value during a trial)

simulation system is equivalent to a batch temporal di�erence (TD) method with replacing

traces and decay parameter �=1. Although AntNet is a �rst-visit MC simulation system,

there are some important di�erences with the type of MC used by Singh and Sutton (and

in other RL works), mainly due to the di�erences in the considered class of problems. In

AntNet, outcomes of experiments are both used to update local models able to capture

the variability of the whole network status (only partially observable) and to generate a

sequence of stochastic policies. On the contrary, in the MC system considered by Singh and

Sutton, outcomes of the experiments are used to compute (reduced) maximum-likelihood

estimates of the expected mean and variance of the states' returns (i.e., the total reward

following a visit of a state) of a Markov chain. In spite of these di�erences, the weak parallel

with TD(�) methods is rather interesting, and allows to highlight an important di�erence

between AntNet and its competitors (and general TD methods): in AntNet, following the

generation of a stochastic transition chain by the forward ant, there is no back-chaining

of the information from one state (i.e., a triple fcurrent node, destination node, next hop

nodeg) to its predecessors. Each state is rewarded only on the basis of the ant's trip time

information strictly relevant to it. This approach is completely di�erent from that followed

by (TD methods) Q-R, PQ-R, BF and, in a di�erent perspective, by SPF. In fact, these

algorithms build the distance estimates at each node by using the predictions made at other

nodes. In particular, Q-R and PQ-R, which propagate the estimation information only one

step back, are precisely distributed versions of the TD(0) class of algorithms. They could be

transformed into generic TD(�), 0 < � � 1, by transmitting backward to all the previously

visited nodes the information collected by the routing packet generated after each data hop.

Of course, this would greatly increase the routing tra�c generated, because it has to be

done after each hop of each data packet, making the approach at least very costly, if feasible

at all.

In general, using temporal di�erences methods in the context of routing presents an impor-

tant problem: the key condition of the method, the self-consistency between the estimates

of successive states16 may not be strictly satis�ed in the general case. This is due to the

16. For instance, the prediction made at node k about the time to-go to the destination node d should be
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fact that (i) the dynamics at each node are related in a highly non-linear way to the dy-

namics of all its neighbors, (ii) the tra�c process evolves concurrently over all the nodes,

and (iii) there is a recursive interaction between the tra�c patterns and the control actions

(that is, the modi�cations of the routing tables). This aspect can explain in part the poor

performance of the pure TD(0) algorithms Q-R and PQ-R.

9. Related Work

Algorithms based on the ant colony metaphor were inspired by the ant colony foraging

behavior (Beckers et al., 1992). These were �rst proposed by Dorigo (1992), Colorni et

al. (1991) and Dorigo et al. (1991, 1996) and were applied to the traveling salesman

problem (TSP). Apart from the natural metaphor, the idea behind that �rst application

was similar to the one presented in this paper: a set of agents that repeatedly run Monte

Carlo experiments whose outcomes are used to change the estimates of some variables used

by subsequent ants to build solutions. In ant-cycle, one of the �rst ant-based algorithms,

a value called \pheromone trail" is associated to each edge of the graph representing the

TSP. Each ant builds a tour by exploiting the pheromone trail information as follows.

When in node i an ant chooses the next node j to move to among those not visited yet

with a probability Pij that is a function of the amount of pheromone trail on the edge

connecting i to j (as well as of a local heuristic function; the interested reader can �nd a

detailed description of ant-cycle elsewhere (Dorigo, 1992; Dorigo et al., 1996)). The value

of the pheromone trails is updated once all ants have built their tours. Each ant adds

to all visited edges a quantity of pheromone trail proportional to the quality of the tour

generated (the shorter the tour, the higher the quantity of pheromone trail added). This

has an e�ect very similar to AntNet's increase of routing tables probabilities, since a higher

pheromone trail on a particular edge will increase its probability of being chosen in the

future. There are obviously many di�erences between ant-cycle and AntNet, mostly due

to the very di�erent types of problems to which they have been applied, a combinatorial

optimization problem versus a distributed, stochastic, time varying, real-time problem.

Though the majority of previous applications of ant colony inspired algorithms con-

cern combinatorial optimization problems, there have been recent applications to routing.

Schoonderwoerd et al. (1996, 1997) were the �rst to consider routing as a possible applica-

tion domain for ant colony algorithms. Their ant-based control (ABC) approach, which is

applied to routing in telephone networks, di�ers from AntNet in many respects. The main

di�erences are a direct consequence of the di�erent network model they considered, which

has the following characteristics (see Figure 18): (i) connection links potentially carry an

in�nite number of full-duplex, �xed bandwidth channels, and (ii) transmission nodes are

crossbar switches with limited connectivity (that is, there is no necessity for queue manage-

ment in the nodes). In such a model, bottlenecks are put on the nodes, and the congestion

degree of a network can be expressed in terms of connections still available at each switch.

As a result, the network is cost-symmetric: the congestion status over available paths is

completely bi-directional. The path n0; n1; n2; : : : ; nk connecting n0 and nk will exhibit the

additively related to the prediction for the same destination from each one of k's neighbors, being each

neighbor one of the ways to go to d.
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same level of congestion in both directions because the congestion depends only on the state

of the nodes in the path. Moreover, dealing with telephone networks, each call occupies

Link  4

N bidirectional channels

Link  1

Link  3
n << N possible connections

Link  2

Figure 18: Network node in the

telecommunications network

model of Schoonderwoerd et

al. (1996).

exactly one physical channel across the path.

Therefore, \calls" are not multiplexed over the

links, but they can be accepted or refused, de-

pending on the possibility of reserving a physical

circuit connecting the caller and the receiver. All

of these modeling assumptions make the prob-

lem of Schoonderwoerd et al. very di�erent from

the cost-asymmetric routing problem for data

networks we presented in this paper. This dif-

ference is reected in many algorithmic di�er-

ences between ABC and AntNet, the most im-

portant of which is that in ABC ants update

pheromone trails after each step, without waiting

for the completion of an experiment as done in

AntNet. This choice, which is reminiscent of the

pheromone trail updating strategy implemented

in ant-density, another of the �rst ant colony based algorithms (Dorigo et al., 1991; Dorigo,

1992; Colorni et al., 1991), makes ABC behavior closer to real ants', and was made possible

by the cost-symmetry assumption made by the authors.

Other di�erences are that ABC does not use local models to score the ants trip times,

nor local heuristic information and ant-private memory to improve the ants decision policies.

Also, it does not recover from cycles and does not use the information contained in all the

ant sub-paths.

Because of the di�erent network model used and of the many implementation details

tightly bound to the network model, it was impossible for us to re-implement and compare

the ABC algorithm with AntNet.

Subramanian, Druschel, and Chen (1997) have proposed an ant-based algorithm for

packet-switched nets. Their algorithm is a straightforward extension of Schoonderwoerd

et al. system by adding so-called uniform ants, an additional exploration mechanism that

should avoid a rapid sub-optimal convergence of the algorithm. A limitation of Subramanian

et al. work is that, although the algorithm they propose is based on the same cost-symmetry

hypothesis as ABC, they apply it to packet-switched networks where this requirement is

very often not met.

10. Conclusions and Future Work

In this paper, we have introduced AntNet, a novel distributed approach to routing in packet-

switched communications networks. We compared AntNet with 6 state-of-the-art routing

algorithms on a variety of realistic testbeds. AntNet showed superior performance and

robustness to internal parameter settings for almost all the experiments. AntNet's most

innovative aspect is the use of stigmergetic communication to coordinate the actions of a

set of agents that cooperate to build adaptive routing tables. Although this is not the

�rst application of stigmergy-related concepts to optimization problems (e.g., Dorigo et al.,
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1991; Dorigo, 1992; Dorigo et al., 1996; Bonabeau, Dorigo, & Th�eraulaz, 1999), the appli-

cation presented here is unique in many respects. First, in AntNet, stigmergy-based control

is coupled to a model-building activity: information collected by ants is used not only to

modify routing tables, but also to build local models of the network status to be used to

better direct the routing table modi�cations. Second, this is the �rst attempt to evaluate

stigmergy-based control on a realistic simulator of communications networks: the used sim-

ulator retains many of the basic components of a real routing system. An interesting step

forward, in the direction of testing the applicability of the idea presented to real networks,

would be to rerun the experiments presented here using a complete Internet simulator.

Third, this is also the �rst attempt to evaluate stigmergy-based control by comparing a

stigmergetic algorithm to state-of-the-art algorithms on a realistic set of benchmark prob-

lems. It is very promising that AntNet turned out to be the best performing in all the

tested conditions.

There are obviously a number of directions in which the current work could be extended,

which are listed below.

1) A �rst, natural, extension of the current work would consider the inclusion in the

simulator of ow and congestion control components (with re-transmissions and error man-

agement). This inclusion will require a paired tuning of the routing and ow-congestion

components, to select the best matching between their dynamics.

2) In AntNet, each forward ant makes a random experiment: it builds a path from a

source node s to a destination node d. The path is built exploiting the information contained

in the probabilistic routing tables and the status of the queues of the visited nodes. While

building the path, the ant collects information on the status of the network. This is done

by sharing link queues with data packets, and by measuring waiting times of queues and

traversal times that will be used as raw reinforcements by backward ants. Since forward

ants share queues with data packets, the time required to run an experiment depends on

the network load, and is approximately the same as the time Ts!d required for a packet to

go from the same source node s to the same destination node d. This delays the moment

the information collected by forward ants can be distributed by backward ants, and makes

it less up-to-date than it could be. A possible improvement in this schema would be to

add a model of link-queue depletion to nodes, and to let forward ants use high priority

queues to reach their destinations without storing crossing times (for a �rst step in this

direction see Di Caro & Dorigo, 1998). Backward ants would then make the same path, in

the opposite direction, as forward ants, but use the queue local models they �nd on their

way to estimate local \virtual" queueing and crossing times. Raw reinforcements, used to

update the routing tables, are then computed using these estimates. Clearly, here there is a

trade-o� between delayed but real information and more recent but estimated information.

It will be interesting to see which scheme works better, although we are con�dent that the

local queue models should allow the backward ants to build estimates accurate enough to

make the improved system more e�ective than the current AntNet, at a cost of a little

increase in computational complexity at the nodes.

3) As we discussed in Section 8, AntNet is missing one of the main components of classical

RL/TD algorithms: there is no back-chaining of information from a state to previous ones,

each node policy is learned by using a complete local perspective. An obvious extension

of our work would therefore be to study versions of AntNet closer to TD(�) algorithms.
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In this case each node should maintain Q-values expressing the estimate of the distance

to each destination via each neighbor. These estimates should be updated by using both

the ant trip time outcome and the estimates coming from successive nodes (closer to the

destination node) that could be also carried by the backward ant.

4) In this paper we applied AntNet to routing in datagram communications networks. It

is reasonable to think that AntNet could be easily adapted to be used for the generation of

real-time car route guidance in Dynamic Tra�c Assignment (DTA) systems (see for example

Yang, 1997). DTA systems exploit currently available and emerging computer, communi-

cation, and vehicle sensing technologies to monitor, manage and control the transportation

system (the attention is now focused mainly on highway systems) and to provide various

levels of information and advice to system users so that they can make timely and informed

travel decisions. Therefore, adaptive routing of vehicle tra�c presents very similar features

to the routing of data packets in communications networks. Moreover, vehicle tra�c control

systems have the interesting property of a very simpli�ed \transport" layer. In fact, many

activities that interfere with routing and that are implemented in the transport layer of

communications networks do not exist, or exist only to a limited extent, in vehicles tra�c

control algorithms. For example, typical transport layer activities like data acknowledge-

ment and retransmission cannot be implemented with real vehicles. Other activities, like

ow control, have strong constraints (e.g., people would not be happy to be forbidden to

leave their o�ces for, say, one hour on the grounds that there are already too many cars on

the streets!). This makes AntNet still more interesting since it can express its full potential

as a routing algorithm.

5) In AntNet, whenever an ant uses a link its desirability (probability) is incremented.

Although this strategy, which �nds its roots in the ant colony biological metaphor that

inspired our work, allowed us to obtain excellent results, it would be interesting to investigate

the use of negative reinforcements, even if it can potentially lead to stability problems, as

observed by people working on older automata systems. As discussed before, AntNet di�ers

from automata systems because of the active role played by the ants. Therefore, the use

of negative reinforcements could show itself to be e�ective, for example, in reducing the

probability of choosing a given link if the ant that used it performed very badly.
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Appendix A. Optimal and Shortest Path Routing

In this appendix, the characteristics of the two most used routing paradigms, optimal and

shortest path routing (introduced in Section 2.1) are summarized:
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A.1 Optimal routing

Optimal routing (Bertsekas & Gallager, 1992) has a network-wide perspective and its ob-

jective is to optimize a function of all individual link ows.

Optimal routing models are also called ow models because they try to optimize the total

mean ow on the network. They can be characterized as multicommodity ow problems,

where the commodities are the tra�c ows between the sources and the destinations, and

the cost to be optimized is a function of the ows, subject to the constraints of ow con-

servation at each node and positive ow on every link. It is worth observing that the ow

conservation constraint can be explicitly stated only if the tra�c arrival rate is known.

The routing policy consists of splitting any source-target tra�c pair at strategic points,

then shifting tra�c gradually among alternative routes. This often results in the use of

multiple paths for a same tra�c ow between an origin-destination pair.

Implicit in optimal routing is the assumption that the main statistical characteristics of the

tra�c are known and not time-varying. Therefore, optimal routing can be used for static

and centralized/decentralized routing. It is evident that this kind of solution su�ers all the

problems of static routers.

A.2 Shortest path routing

Shortest path routing (Wang & Crowcroft, 1992) has a source-destination pair perspective.

As opposed to optimal routing, there is no global cost function to be optimized. Instead,

the route between each node pair is considered by itself and no a priori knowledge about

the tra�c process is required (although of course such knowledge could be fruitfully used).

If costs are assigned in a dynamic way, based on statistical measures of the link congestion

state, a strong feedback e�ect is introduced between the routing policies and the tra�c

patterns. This can lead to undesirable oscillations, as has been theoretically predicted and

observed in practice (Bertsekas & Gallager, 1992; Wang & Crowcroft, 1992). Some very

popular cost metrics take into account queuing and transmission delays, link usage, link

capacity and various combination of these measures. The way costs are updated usually

involves attempting to reduce big variations considering both long-term and short-term

statistics of link congestion states (Khanna & Zinky, 1989; Shankar, Alaettino�glu, Dussa-

Zieger, & Matta, 1992b).

On the other hand, if the costs are static, they will reect both some measure of the

expected/wished tra�c load over the links and their transmission capacity. Of course,

serious loss of e�ciency could arise in case of non-stationary conditions or when the a priori

assumptions about the tra�c patterns are strongly violated in practice.

Considering the di�erent content stored in each routing table, shortest path algorithms can

be further subdivided in two classes called distance-vector and link-state (Steenstrup, 1995;

Shankar et al., 1992b). The common behavior of most shortest path algorithms can be

depicted as follows.

1. Each node assigns a cost to each of its outgoing links. This cost can be static or

dynamic. In the latter case, it is updated in presence of a link failure or on the basis

of some observed link-tra�c statistics averaged over a de�ned time-window.
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2. Periodically and without a required inter-node synchronization, each node sends to all

of its neighbors a packet of information describing its current estimates about some

quantities (link costs, distance from all the other nodes, etc.).

3. Each node, upon receiving the information packet, updates its local routing table and

executes some class-speci�c actions.

4. Routing decisions can be made in a deterministic way, choosing the best path indicated

by the information stored in the routing table, or adopting a more exible strategy

which uses all the information stored in the table to choose some randomized or

alternative path.

In the following, the main features speci�c to each class are described.

A.2.1 Distance-vector

Distance-vector algorithms make use of routing tables consisting of a set of triples of the

form (Destination, Estimated Distance, Next Hop), de�ned for all the destinations in the

network and for all the neighbor nodes of the considered switch.17 In this case, the required

topological information is represented by the list of the reachable nodes identi�ers. The

average per node memory occupation is of order O(Nn), where N is the number of nodes in

the network and n is the average connectivity degree (i.e., the average number of neighbor

nodes considered over all the nodes).

The algorithm works in an iterative, asynchronous and distributed way. The information

that every node sends to its neighbors is the list of its last estimates of the distances from

itself to all the other nodes in the network. After receiving this information from a neighbor

node j, the receiving node i updates its table of distance estimates overwriting the entry

corresponding to node j with the received values.

Routing decisions at node i are made choosing as next hop node the one satisfying the

relationship:

arg min
j2Ni

fdij +Djg

where dij is the assigned cost to the link connecting node i with its neighbor j and Dj is

the estimated shortest distance from node j to the destination.

It can be shown that this process converges in �nite time to the shortest paths with

respect to the used metric if no link cost changes after a given time (Bertsekas & Gallager,

1992).

The above briey described algorithm is known in literature as distributed

Bellman-Ford (Bellman, 1958; Ford & Fulkerson, 1962; Bertsekas & Gallager, 1992) and it

is based on the principles of dynamic programming (Bellman, 1957; Bertsekas, 1995). It

is the prototype and the ancestor of a wider class of distance-vector algorithms (Malkin

& Steenstrup, 1995) developed with the aim of reducing the risk of circular loops and of

accelerating the convergence in case of rapid changes in link costs.

17. In some cases, only the best estimates are kept at nodes. Therefore, the above triples are de�ned for all

the destinations only.
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A.2.2 Link-state

Link-state algorithms make use of routing tables containing much more information than

that used in vector-distance algorithms. In fact, at the core of link-state algorithms there is a

distributed and replicated database. This database is essentially a dynamic map of the whole

network, describing the details of all its components and their current interconnections.

Using this database as input, each node calculates its best paths using an appropriate

algorithm like Dijkstra's (1959) algorithm (a wide variety of alternative e�cient algorithms

are available, as described for example in Cherkassky, Goldberg, & Radzik, 1994). The

memory requirements for each node in this case are O(N2).

In the most common form of link-state algorithm, each node acts autonomously, broad-

casting information about its link costs and states and computing shortest paths from itself

to all the destinations on the basis of its local link costs estimates and of the estimates

received from other nodes. Each routing information packet is broadcast to all the neighbor

nodes that in turn send the packet to their neighbors and so on. A distributed ooding

mechanism (Bertsekas & Gallager, 1992) supervises this information transmission trying to

minimize the number of re-transmissions.

As in the case of vector-distance, the described algorithm is a general template and a

variety of di�erent versions have been implemented to make the algorithm behavior more

robust and e�cient (Moy, 1998).
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