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Abstract

This paper introduces AntNet, a new routing al-

gorithm for telecommunication networks. AntNet is

an adaptive, distributed, mobile-agents-based algorithm

which was inspired by recent work on the ant colony

metaphor. We apply AntNet in a datagram network

and compare it with both static and adaptive state-of-

the-art routing algorithms. We ran experiments for

various paradigmatic temporal and spatial tra�c distri-

butions. AntNet showed both very good performances

and robustness under all the experimental conditions

with respect to its competitors.

1 Introduction

We consider the problem of routing in communica-
tions networks. Routing refers to the activity of build-
ing forwarding tables, one for each node in the network,
which tell incoming data which link to use to continue
their travel towards the destination node.

Routing, together with congestion and admission
control algorithms, plays a critical role in communica-
tion networks determining the overall network perfor-
mance in terms of throughput and transmission delays.

In this work we focus on datagram-like networks
with irregular topology, the most remarkable example
of such networks being the Internet, and without con-
gestion or admission control components.

The routing algorithm that we propose in this paper
was inspired by previous works on ant colonies and,
more generally, by the notion of stigmergy, introduced
by Grass�e [7] to describe the indirect communication
taking place among individuals through modi�cations
induced in their environment. Real ants have been
shown to be able to �nd shortest paths using only the
pheromone trail deposited by other ants [1].

Algorithms which take inspiration from ants behav-
ior in �nding shortest paths have recently been suc-
cessfully applied to both combinatorial optimization
1 0 6 0 -
[6, 5] and circuit switched communications network
problems [13]. In ant colony based algorithms a set of
arti�cial ants move on the graph which represents the
instance of the problem: while moving they build solu-
tions and modify the problem representation by adding
collected information. In AntNet, the algorithm we
propose in this paper, each arti�cial ant builds a path
from its source to its destination node. While building
the path, it collects explicit information about the time
length of the path components and implicit information
about the load status of the network. This information
is then back-propagated by another ant moving in the
opposite direction and is used to modify the routing
tables of visited nodes.

We report on the behavior of AntNet as compared
to some e�ective static and adaptive vector-distance
and link-state shortest paths routing algorithms [14].
AntNet shows the best performances and the more sta-
ble behavior for all the paradigmatical temporal and
spatial tra�c distributions considered. Absolute per-
formances are scored according to a scale de�ned by
an ideal algorithm giving an empirical bound. Com-
peting algorithms performed poorly for heavy tra�c
conditions and showed more sensitivity to internal pa-
rameters tuning.

2 Routing Algorithms: an Overview

The goal of every routing algorithm is to direct traf-
�c from sources to destinations maximizing network
performance while minimizing costs. In this way, the
general problem of determining an optimal routing al-
gorithm can be stated as a multiobjective optimization
problem in a non-stationary stochastic environment.
Additional constraints are posed by the underlying net-
work switching and transmission technology.

The performance measures that usually are taken
into account are throughput and average packet delay.
The former quantify the quantity of service that the
network has been able to o�er in a certain amount of
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time, while the latter de�nes the quality of service pro-
duced at the same time.

Routing algorithms can be at �rst broadly classi�ed
as static or adaptive. In static (or oblivious) routers
the path taken by a packet is determined only on the
basis of the source and destination, without regard to
the current network state. This path is usually chosen
as the shortest one according to some cost criterion.
Adaptive routers are, in principle, more attractive, be-
cause they try to adapt the routing policy to the vary-
ing tra�c conditions. As a drawback, they can cause
oscillations in selected paths. This can generate circu-
lar routes, as well as large uctuations in performances,
specially for what concerns average delays [2].

The most widely used routing algorithms (at least
considering only wide-area networks) are shortest paths
algorithms. Shortest path routing has a source-
destination pair perspective: there is no a global cost
function to optimize. Its objective is to determine the
shortest path between two nodes, where the link costs
are computed (statically or adaptively) following some
statistical description of the link states.

The novel method we introduce in this paper in sect.
4, shares the same optimization perspectives as short-
est path algorithms but not their usual implementation
paradigms (depicted in Appendix).

3 The Communication Network Model

We focus our experiments on datagram networks
with irregular topology without mechanisms for con-
gestion and admission control. These mechanisms can
inuence greatly the network performances [4], but, as
a �rst step, we wanted to check the behavior of our al-
gorithm and of its competitors in conditions which min-
imize the number of critical interacting components.

In our model the instance of the communication net-
work is mapped on a directed weighted graph with N

nodes. All the links are viewed as bit pipes charac-
terized by a bandwidth (bits/sec) and a transmission
delay, and are accessed following a statistical multi-
plexing scheme. For this purpose, every node, of type
store-and-forward (i.e., switch element), holds a bu�er
space where the incoming and the outcoming packets
are stored. This bu�er is a shared resource among all
the queues attached to every incoming and outgoing
link of the node. Traveling packets can be data or rout-
ing packets. Packets of the same type have the same
priority, so they are queued and served only on the
basis of a �rst-in-�rst-out policy, with routing packets
having greater priority than data packets.

A packet reads from the routing table the informa-
tion about which link to use to follow its path toward
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its target node. When link resources are available, they
are reserved and the transfer is set up. The time it
takes to a packet to move from one node to a neigh-
boring one depends on its size and on the link transmis-
sion characteristics. If on packet's arrival there is not
enough bu�er space to hold it, the packet is discarded.
No arrival acknowledgment or error noti�cation pack-
ets are generated back to the source.

Situations causing a temporary or steady alteration
of the network topology are not taken into account.

4 AntNet: an Adaptive Agent-based

Routing Algorithm

As emphasized before, the routing problem is a
stochastic distributed multiobjective problem. Infor-
mation propagation delays and the di�culty to model
the network dynamics under arbitrary tra�c patterns,
make the general routing problem intrinsically dis-
tributed. Routing decisions can only be made on the
basis of local and approximate information about the
current and the future network states.

These features make the problem well adapted to be
solved following a multiagent approach like our AntNet
system, composed by two sets of homogeneous mobile
agents (see [15] for an agents taxonomy), called in the
following respectively forward and backward ants.

Agents1 in each set possess the same structure, but
they are di�erently situated in the environment; that
is, they can sense di�erent inputs and they can pro-
duce di�erent, independent outputs. Agents behave
reactively retrieving a pre-compiled set of simple be-
haviors to select the route and to modify the routing
tables, but at the same time they maintain a complete
internal state description.

The AntNet algorithm can be informally described
as follows.

1. At regular intervals, from every network node s, a
mobile agent (that we will call forward ant) Fs!d,
is launched, with a randomly selected destination
node d. The identi�er of every visited node k and
the time elapsed since its launching time to ar-
rive at this k�th node, are pushed onto a memory
stack Ss!d(k) and inserted in a dictionary struc-
ture Ds!d, carried by the agent.

2. Each traveling agent selects the next hop node
using the information stored in the routing ta-
ble. The route is selected, following a random
scheme, proportionally to the goodness (probabil-
ity) of each neighbors node, or, with a tiny proba-
bility (exploration probability), assigning the same

1In the following will use interchangeably the terms Ant and
Agent
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selection probability to each of the neighbor nodes.
If, in the proportional case, the chosen node has
already been visited, a uniformly random selection
among the neighbors is applied.

3. If a cycle is detected, that is, if an ant is forced
to return in an already visited node, the cycle's
nodes are popped from the ant's stack and all the
memory about them destroyed.

4. When the destination node d is reached, the
agent Fs!d generates another agent (backward
ant) Bd!s, transferring to it all its memory.

5. The backward ant makes the same path as that of
its corresponding forward ant, but in the opposite
direction. At each node k along the path it pops
its stack Ss!d(k) to know the next hop node.

6. Arriving in a node k coming from a neighbor node
f , the backward ant updates the following two
data structures maintained by every node:

i) a routing table, organized as in vector-
distance algorithms; in the table, a proba-
bility value Pin which expresses the goodness
of choosing n as next node when the desti-
nation node is i, is stored for each pair (i; n)
with the constraint
X
n2Nk

Pin = 1; i 2 [1; N ]; Nk = fneighbors(k)g;

ii) a list Tripk(�i; �i
2) of estimates of arithmetic

mean values �i and associated variances �i
2

for trip times from itself to all the nodes i in
the network (for agent-sized packets). This
data structure represent a memory of the net-
work state as seen by node k.

These two data structures are updated as follows:

i) the list Tripk is updated with the values
stored in the stack memory Ss!d(k); all
the times elapsed to arrive in every node

k0 2 Sk!d starting from the current node k

are used to update the corresponding sample
means and variances Tripk(�k0 ; �k0

2);
ii) the routing table is changed incrementing the

probability Pdf associated with node f when
the destination is node d and decrementing
the probability Pdn associated with the other
nodes n in the neighborhood for the same
destination.

The update of the routing table happens using the
only available feedback signal, that is, the trip time
experienced by the forward ant. This time gives a
clear indication about the goodness of the followed
route because it is proportional to its physical length
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(hops, bandwidth and delay of the used links, process-
ing speed of the crossed nodes) and to the tra�c con-
gestion. This last aspect is extremely important: for-
ward agents share the same queues as data packets
(backward agents do not, they have priority over data
to faster propagate the accumulated information), so if
they cross a congested area, they will be delayed for a
long time. This has a double e�ect: (i) the trip time
will grow and then back-propagated probability incre-
ments will be small and (ii) at the same time these
increments will be assigned with a bigger delay.

We used the time measure as a reinforcement signal
to provide structural and temporal credit assignment.
The credit assignment problem we have to face with is
the typical one arising in reinforcement learning �eld
[3]: we cannot associate to the realized performance
(trip time) an exact error measure. \Optimal" times
depend on tra�c and/or components failure states, and
they have to be considered from a network wide point of
view. We can only give an \advice" about the goodness
of the observed trip time on the basis of the estimated
mean values for the agent's trip times, stored in the
list Tripk.

In light of these considerations we can detail the
procedure followed to update the routing tables (we
will omit indices when they are not necessary).

If T is the observed trip time and � is its mean value,
as stored in the list Trip, we compute a raw quantity
r0 measuring the goodness of T , with small values of r0

corresponding to satisfactory trip times,

r0 =

8>><
>>:

T

c�
; c � 1 if

T

c�
< 1

1 otherwise:

r0 is an adimensional measure, problem independent,
scoring how good is the elapsed trip time with respect
to what has been on average observed until now. �

plays the role of a unit of measure and c is a scale
factor (we found that setting c to 2 is a reasonable
choice). \Out-of-scale" values are saturated to 1.

A correction strategy is applied to the goodness
measure r0 taking into account how reliable is the cur-
rently observed trip time with respect to the variance
in the so far sampled values, that is, considering how
stable is the trip time mean value. We say that the
observations in the mean are stable if �=� < �; �� 1

In this case, a good trip time (i.e., r0 less than a
threshold value t that we set to 0.5) is decreased by
subtracting a value

S(�; �; a) = e
�a

�

�
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to the value of r0, while a poor trip time is increased
adding the same quantity.

On the other side, if the mean is not stable, the raw
values r0 cannot be completely considered reliable and,
in this case, the quantity

U (�; �; a0) =
e
�a0

�

�

ea
0

;
�

�
2 [�; 1];

with a0 � a, is added to a good r0 value and subtracted
from a poor one. In this case we try to avoid follow-
ing the tra�c uctuations, with the risk of amplifying
them: adding and subtracting the value U helps to
stabilize them.

The above correction strategy, for both cases of �=�
values, can be summarized as:

r0  r0 + sign(t � r0)sign(
�

�
� �)f(�; �) ;

with f being S or U according to the case. The f func-
tions have been chosen as decreasing/increasing expo-
nential because both the function and its �rst deriva-
tive are monotonically decreasing/increasing with in-
creasing values of the �=� ratio. The obtained value
of r0 is �nally reported on a more compressed scale
through a power law, r0  (r0)h (see below for an ex-
planation), and bounded in the interval [0; 1].

These transformations from the raw value T to the
more re�ned value r0 play the role of a local esti-
mation of a tra�c model. More sophisticated and
computationally-demanding models could be learnt to
compute a more e�ective tra�c-dependent correction.

The obtained value r0 is used by the current node k
to de�ne a positive reinforcement, r+, for the node f

the backward ant comes from, and a negative one, r�,
for the other neighboring nodes n:

r+ = (1� r0)(1� Pdf )

r� = � (1� r0)Pdn; n 2 Nk; n 6= f;

where Pdf and Pdn are the last probability values as-
signed to neighbors of node k for destination d. In
this way, the reinforcements are proportional to the ob-
tained goodness measure r0 and to the previous value
of node probabilities.

These probabilities are then increased/decreased by
the reinforcement values as follows (their sum will still
be 1, being r0 2 [0; 1]):

Pdf  Pdf + r+; Pdn  Pdn + r� :

It is now clear that the power law rescaling of the r0

value is equivalent to the de�nition of a learning rate:
the scale compression factor and its degree of non lin-
earity determine the �nale size of the allowed jumps in
the probability values.
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The constants (c, a, a0, �, h, t) used in this section
are not problem-dependent and they simply de�ne an
appropriate scaling system for the computed values.
They have been set to the following values: c = 2; a =
10; a0 = 9; � = 0:25; h= 0:04; t = 0:5:

As a last consideration, notice the critical role played
by the used paradigm for agents communication. In
fact, each agent is enough complex to solve a single
sub-problem but the global routing optimization prob-
lem cannot be solved e�ciently by a single agent. It is
the interaction between the agents that determines the
emergence of a global e�ective behavior from the net-
work performances point of view. The key concept in
the cooperative aspect lies in the way communication
among agents happens. The intrinsically distributed
nature of the problem makes natural and convenient
using a blackboard type of inter-agents communication,
that is, an indirect communication from one agent to
all the others mediated by the environment. The in-
formation locally stored and updated at each network
node de�nes the agent input state. Each agent uses
it to realize the next node transition and, at the same
time, it will modify it, modifying in this way the local
state of the node as seen by future agents. This spe-
ci�c form of indirect communication through the envi-
ronment with no explicit level of agents coordination
is called stigmergy [7, 13, 15]. Active stigmergy occurs
when an agent alters the environment so as to a�ect the
input of another agent, passive stigmergy occurs when
an agent alters the environment in such a way that the
e�ect of the actions of the other agents is no more the
same. In our case we used active stigmergy as a way
of transmitting the information associated with every
\experiment" made by each agent (we could see our
system as a particular instance of an iterated Monte
Carlo simulation).

5 Routing Algorithms Used for Com-

parison

To evaluate the performances of AntNet, we selected
a set of competitors algorithms from the shortest path
class (see Appendix) reecting Internet standards and
state-of-the-art for routing algorithms.

OSPF: is our implementation of the o�cial Internet
routing algorithm [11]. The Internet OSPF has a
lot of features for the full network management.
Here we are only interested in data packet rout-
ing in simpli�ed conditions, therefore, the original
algorithm is reduced to the de�nition of routing
tables by static shortest paths calculation.

BF: is an implementation of the asynchronous dis-
tributed Bellman-Ford algorithm with dynamic
0 (c) 1998 IEEE



link metrics [2]. Vector-distance Bellman-Ford-
like algorithms are today in use mainly for intra-
domain routing, being used in the Routing Infor-
mation Protocol (RIP) [9] supplied with the BSD
version of Unix.

SPF: is the prototype of link-state algorithms with
dynamic metric for link costs evaluations. A simi-
lar algorithm was implemented in the second ver-
sion of ARPANET [10] and in its successive revi-
sions [8]. We implemented it with state-of-the-art
link costs evaluation and ooding algorithms.

SPF 1F: is the same as SPF but with ooding lim-
ited to the �rst neighbors. As far as we know, this
is the �rst time that a similar algorithm is pre-
sented in literature. It has the nice features that
the shortest paths are computed on the basis of
locally updated information and the costs of far
links are all set to the same value.

Daemon: is an ideal algorithm. It de�nes an em-
pirical bound on the achievable performances in
the absence of any a priori assumption on tra�c
statistics. The algorithm posses a \daemon" able
to read in every instant the state of all the queues
in the network and then it can calculate instan-
taneous \real" costs for all the links. With this
information paths are assigned on the basis of a
network wide shortest paths re-calculation for ev-
ery packet hop. Links costs are assigned in the
following way:

Cli = dli+
Sp

bli
+(1��)

SQ(li )

bli
+�

�SQ(li)

bli
; 8i 2 [1; N ]

where dli is the delay for link li, bli is its band-
width, Sp is the size of the data packet doing the
hop, SQ(li) is the length of the queue for link li,
�SQ(li) is the exponential mean of the length of links
queue (it is a correction to the current length of
the link queue on the basis of what observed until
that moment), the weight � is set to 0.4.

Algorithms BF , SPF and SPF 1F use a dynamic
metric for link costs. We tried the following di�erent
metrics documented in literature [12].

1. The link cost is measured by the fraction of time of
non-empty queue with respect to the empty-queue
period, measured over the last time-window.

2. The link cost is set to the sum of the mean packet
delay in the link queue over the last time-window
plus the transmission delay.

3. The mean of the transmission time over the link,
�Tl, and the mean delay in the link's queue, �Dq(l),
are computed over the last time-window. The link
cost is then assigned to [8]: 1� �Tl=( �Dq(l) + �Tl).
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4. The link cost is a weighted combination of a pair
of the above metrics. We experimentally observed
that the best combination was given by a weighted
average between metrics 2 and 3.

6 Experimental Settings

We de�ned a limited set of tunable components and
for each of them our choices are explained:
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Figure 1: NSFNET. Numbers in circles are node identi-

�ers. Each edge in the graph represents a pair of directed

link and the numbers are propagation delays in msec.

Topology and physical properties of the net.

In our experiments we used a real net instance,
NSFNET, the USA backbone. It is composed of
14 nodes and 21 bidirectional links. The topology
and the propagation delays are showed in �g. 1.
The bandwidth is 1.5 Mbit/s for every link, the
assigned link or node fault probability is null, lo-
cal bu�ers have a gigabyte of capacity and links
are accessed through statistical multiplexing.

Tra�c patterns. Two models, static and dynamic,

of temporal tra�c patterns have been used, mod-
eling respectively the case of Constant Bit Rate
(CBR) and of Variable Bit Rate (VBR) [12].

� In the static model all the sessions start at
the beginning of the simulation and they last
until the end. In this way we simulate a situa-
tion of stationarity. The packets inter-arrival
time is of 150 ms and their size distribution
is negative exponential with mean 512 bytes.

� In the dynamic model, sessions are activated
following a negative exponential distribution
for the inter-arrival times. The distribution
mean value is �xed to 15 sec. The total num-
ber of packets per session, their sizes and
00 (c) 1998 IEEE



their inter-arrival time, are negative exponen-
tially distributed, with respectively mean val-
ues of 50, 512 bytes and 10 �sec. In this case
sessions are \bursty" and hence data ows
are highly irregular.

For the geographical distribution of tra�c pat-
terns we considered four signi�cant situations.

� Uniform-deterministic distribution (UD):
there are n � 1 open sessions between any
pair of nodes.

� Uniform-random distribution (UR): there are
n � N2 (N= total number of nodes) open
sessions. Start and end-points are selected
uniformly randomly.
� Uniform-deterministic-hot-spots distribution
(UDHS): two di�erent types of load are con-
currently present. One is the same as in the
UD case, the other is represented by a set H
of end-points nodes, jHj < N , which act like
hot-spots. Each node has n � 1 open sessions
with an end-point node h; h 2 H.
� Uniform-random-hot-spots distribution
(URHS): as for UDHS, two di�erent types
of load are concurrently present. One is the
same as in the UR case, while the other is the
same hot-spots component of UDHS.

Metrics for performances evaluation.

We considered only sessions having equal costs,
bene�ts and priorities, In this perspective the mea-
sures we are interested in are: throughput (deliv-
ered bits/sec) and average packet delay (sec).

Routing algorithms parameters. The generation
interval for AntNet is set to 1 (sec), start and
end-points are sampled uniformly over the net-
work, the exploration probability is set to 0.002,
the agent size is 24 bytes for the forward and
24+Nh bytes, Nh =number of hops, for the back-
ward agent. The ant processing time is 2 ms.
For shortest paths algorithms (see Appendix), the
time interval for information broadcasting and the
time window to average link costs are the same,
and they are set to 8 seconds. For the BF algo-
rithm the routing packet has elaboration time of
4 ms and size of (24 + 12N ) bytes. For the other
algorithms the elaboration time is set to 6 ms and
the size to (18+ 8jNkj) bytes, where Nk is the set
of neighbors of the broadcasting node k.

7 Experimental Results

We report results relative to the four cases of spa-
tial tra�c distribution for each of the two temporal
tra�c patterns, CBR and VBR. For very low and uni-
form tra�cs loads, the six algorithms behave almost in
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the same way and their performances are near to opti-
mal. Increasing tra�c load and/or considering strongly
asymmetric spatial distributions, performances become
appreciably di�erent from a statistical point of view.
We report results only for some representative cases.

The time length of the simulation has been set to
120 seconds. We observed that after this time interval
the behavior of the algorithms is already well charac-
terized. A 100 seconds of \learning" time has been
assigned to the algorithms to learn routing tables in
absence of tra�c. Reported values are averaged over
10 trials.

In tables 1-8, observed mean values (and their stan-
dard deviations, in brackets) for throughput and mean
packet delays are reported. The content of tables 1-4 is
relative to the case of VBR temporal distribution con-
sidered together with the four spatial distribution cases
of sect. 6 (UD, UR, UDHS, URHS). Tables 5-8 follow
the same scheme but are relative to the CBR case as
temporal tra�c distribution. Experimental conditions
are explained in detail in tables captions with the fol-
lowing conventions: NUD =active sessions between all
the node pairs; NUR =randomly selected sessions in
the network, except for hot-spot sessions; NHSN = hot-
spot nodes; NHSS =hot-spot sessions. Graphs
2-11 refer to some of the most meaningful cases con-
sidered in tables. For each of the considered situa-
tions, temporal evolution of the average packet delay is
showed for every algorithm. Throughput plots are not
showed because of space reasons and because through-
put performances present much less striking di�erences
than those for packet delays. From tables it is evident
that BF, the algorithm based on distributed Bellman-
Ford, scores very poorly with respect to the others,
therefore, results about it are not plotted.

Reported results show clearly that AntNet is the
best performing algorithm among the considered ones
(except for the ideal algorithmDaemon). In some cases
its superiority is evident, in others it performs like the

best ones within statistical uctuations. In the CBR
case AntNet shows very low delays compared to the
others, while in the VBR case, the other new algorithm,
SPF 1F, presents comparable or slightly better perfor-
mances. Of course, the Daemon algorithm has always
the best performances, as expected, and comparing its
performances with those of AntNet we can see that in
the half of the cases AntNet performances are almost
the same within statistical uncertainties, con�rming in
this way the excellent behavior of our algorithm ac-
cording to an absolute scale of values.
\Classical" algorithms (OSPF, SPF and BF) per-
formed poorly with respect to AntNet and SPF 1F

(limited to the VBR case) and their behavior showed
0 (c) 1998 IEEE



Table 1: Results for VBR temporal tra�c distribution and Uniform-deterministic spatial tra�c distribution. NUD = 5.

AntNet OSPF SPF SPF 1F Daemon BF

Mean Delay (sec) 0.10 (0.01) 0.78 (0.10) 1.41 (0.12) 0.075 (0.03) 0.036 (0.003) 7.85 (2.5)

Throughput (107 bits/sec) 1.348 (0.005) 1.345 (0.007) 1.330 (0.007) 1.347 (0.004) 1.347 (0.005) 0.590 (0.150)

Table 2: Results for VBR temporal tra�c distribution and Uniform-random spatial tra�c distribution. NUR = 840:

AntNet OSPF SPF SPF 1F Daemon BF

Mean Delay (sec) 0.09 (0.01) 0.17 (0.12) 1.00 (0.52) 0.05 (0.04) 0.033 (0.002) 7.00 (2.51)

Throughput (107 bits/sec) 1.244 (0.003) 1.245 (0.003) 1.201 (0.002) 1.244 (0.002) 1.244 (0.003) 0.434 (0.580)

Table 3: Results for VBR temporal tra�c distribution and Uniform-deterministic-hot-spots spatial tra�c distribution.

NUD = 5;NHSN = 5 and NHSS = 5.

AntNet OSPF SPF SPF 1F Daemon BF

Mean Delay (sec) 0.86 (0.35) 4.80 (2.50) 2.13 (0.35) 1.05 (0.25) 1.05 (0.07) 4.80 (2.03)

Throughput (107 bits/sec) 1.822 (0.008) 1.677 (0.008) 1.784 (0.016) 1.823 (0.002) 1.824 (0.003) 0.870 (0.300)

Table 4: Results for VBR temporal tra�c distribution and Uniform-random-hot-spots spatial tra�c distribution.

NUR = 840; NHSN = 5 and NHSS = 5.

AntNet OSPF SPF SPF 1F Daemon BF

Mean Delay (sec) 0.32 (0.12) 3.01 (1.50) 1.94 (0.54) 0.53 (0.18) 0.11 (0.11) 7.48 (2.22)

Throughput (107 bits/sec) 1.723 (0.001) 1.652 (0.008) 1.680 (0.002) 1.723 (0.002) 1.723 (0.001) 0.671 (0.117)

Table 5: Results for CBR temporal tra�c distribution and Uniform-deterministic spatial tra�c distribution. NUD = 5.

AntNet OSPF SPF SPF 1F Daemon BF

Mean Delay (sec) 0.93 (0.20) 5.85(1.43) 3.58 (0.83) 4.96 (1.25) 0.10 (0.03) 4.27 (1.22)

Throughput (107 bits/sec) 2.392 (0.011) 2.100 (0.002) 2.284 (0.033) 2.201 (0.004) 2.403 (0.010) 1.410 (0.047)

Table 6: Results for CBR temporal tra�c distribution and Uniform-random spatial tra�c distribution. NUR = 840:

AntNet OSPF SPF SPF 1F Daemon BF

Mean Delay (sec) 0.79 (0.18) 4.63 (1.03) 2.01 (0.50) 2.36 (0.67) 0.06 (0.01) 3.90 (1.05)

Throughput (107 bits/sec) 2.219 (0.011) 2.013 (0.011) 2.171 (0.023) 2.141 (0.008) 2.205 (0.007) 1.280 (0.065)

Table 7: Results for CBR temporal tra�c distribution and Uniform-deterministic-hot-spots spatial tra�c distribution.

NUD = 5;NHSN = 5 and NHSS = 5.

AntNet OSPF SPF SPF 1F Daemon BF

Mean Delay (sec) 3.37 (0.60) 12.00 (2.25) 9.60 (1.44) 11.48 (1.52) 3.28 (0.54) 4.19 (1.97)

Throughput (107 bits/sec) 3.134 (0.060) 2.128 (0.044) 2.815 (0.047) 2.480 (0.054) 3.140 (0.058) 1.250 (0.131)

Table 8: Results for CBR temporal tra�c distribution and Uniform-random-hot-spots spatial tra�c distribution.

NUR = 840; NHSN = 5 and NHSS = 5.

AntNet OSPF SPF SPF 1F Daemon BF

Mean Delay (sec) 3.18 (0.75) 10.30 (1.94) 9.42 (0.85) 9.25 (1.00) 2.83 (0.78) 5.09 (1.28)

Throughput (107 bits/sec) 2.986 (0.014) 2.235 (0.009) 2.619 (0.008) 2.350 (0.021) 3.012 (0.008) 1.321 (0.140)
signi�cant uctuations, both in terms of absolute per-
formances and of stability. AntNet resulted in the more
stable performances and behavior, that is, always mov-
ing rapidly toward a good stable delay value after an
initial transitory phase.

8 Discussion and Conclusions
In this paper, we introduced AntNet, a new al-

gorithm for adaptive routing. It is a mobile-agents-
based distributed algorithm using stigmergy as primi-
1060-3425/98 $10.
tive form of communication among agents. Its behavior
with respect to throughput and mean packet delay has
been compared to the behavior of �ve shortest paths
routing algorithms. As a testbed we considered heavy
tra�c conditions for some representative temporal and
spatial tra�c patterns for a real network instance.
AntNet performed always as the best among its com-
petitors or at the same level within the statistical
uctuations. Di�erently from the other algorithms,
00 (c) 1998 IEEE
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Figure 2: AntNet: Average packet delay for CBR temporal

tra�c distribution and Uniform-deterministic spatial tra�c

distribution. NUD = 5.
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Figure 3: OSPF: Average packet delay for CBR temporal

tra�c distribution and Uniform-deterministic spatial tra�c

distribution. NUD = 5.
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Figure 4: SPF: Average packet delay for CBR temporal

tra�c distribution and Uniform-deterministic spatial tra�c

distribution. NUD = 5.
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tra�c distribution. NUD = 5.
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Figure 9: SPF: Average packet delay for VBR temporal

tra�c distribution and Uniform-random-hot-spots spatial

tra�c distribution. NUR=840, NHSN=5, NHSS=5.
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ral tra�c distribution and Uniform-random-hot-spots spa-
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AntNet showed always a robust behavior, being able
to rapidly reach a good stable level in performances.
Its performances are a�ected mainly by the frequency
with which the agents are launched and by their spa-
tial distribution. We ran several experiments to check
the sensitivity of the algorithm to these parameters.
With no tra�c, we observed that the system converges
more quickly to the shortest paths if the launching
rate is increased till a threshold value (of order of a
few millisec for the considered network). Beyond that,
the routing tables oscillate too much or have the ten-
dency to converge too fast, and the overall performance
tends to degradate (in case of no tra�c the ant system
can solve shortest paths instances, although other algo-
rithms, like Bellman-Ford or Dijkstra, can solve them
more e�ciently). A similar behavior has been observed
in presence of a tra�c load. If the launching rate is
too high, the interaction among the ants creates oscil-
lations and degrades the performances. We observed
that for the considered network, varying the launch-
ing rate approximatively in the range between 0.5 and
2.0 sec does not a�ect considerably the performances.
Concerning the spatial distribution of the ants, we note
that selecting the (source, destination) pairs uniformly
over the network makes possible to update uniformly
in time all the routing tables and therefore to balance
at the best the load over all the network. If we create
a bottleneck somewhere in the network the overall per-
formance will su�er because of it, even if other paths
are selected in an apparently very optimized way. An
important point concerns the \reaction time" of the
algorithm: each forward ant makes a single \experi-
ment", and successively the backward ant updates the
probabilistic tables (this is equivalent to an iterated
parallel Monte Carlo system, with the addition of tem-
poral constraints). This means that, from the moment
.00 (c) 1998 IEEE



of the \implicit observation" of a tra�c situation by
the forward ant, to the moment the backward ant will
use this observation, there is a delay. In the consid-
ered cases this delay is of the order of approximately
1 second: this is perfectly compatible with a \high"
rate of varying tra�c. Anyway, also if the update is no
longer consistent with an evolved tra�c situation, the
update will a�ect only the route for a single destina-
tion. This feature makes the system robust to \wrong
estimates", and it is very di�erent from what happens
for example in SPF, where a wrong link cost estimate
alters all the routes crossing the node. As a last note,
it is important to note that the impact of the system
on the network resources is neglectable, both in terms
of bandwidth and computation, and this is also true
for the other considered algorithms.
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Appendix: Shortest Path Routing
In relation to the di�erent content stored in each

node routing table, shortest path algorithms can be
classi�ed as distance-vector or link-state [14]. They
show the following common behavior: each node as-
signs a static or dynamic cost (assigned on the basis
of failure states and of some link-tra�c statistics aver-
aged over a time-window) to each of its outgoing links
and broadcasts them periodically to its neighbor nodes.
These latter use the received information to update
their local routing tables.

Distance-vector algorithms maintain a set of triples
of the form (Destination, Estimated Distance, Next

Hop), de�ned for all the destinations in the network
and for all its neighbor nodes. The information sent
to neighbor is the list of its last estimates of the dis-
tances from itself to all the other nodes in the network.

On receiving this information from a neighbor node j,
the receiving node i updates its table of distance esti-
mates in the entry corresponding to the case of node j
as next hop node. Iterating this procedure, known as
distributed Bellman-Ford [2] and based on the princi-
ples of dynamic programming, the routing tables will
converge to shortest paths tables.

Link-state algorithms maintain in each node a repli-
cated database describing all the topological details
of the network components. Using this database as
input each node calculates its best paths using an
appropriate algorithm for shortest paths calculations.
Each node acts autonomously, assigning costs to its
connected links, periodically ooding the information
1060-3425/98 $10
about them, and computing the shortest paths from
itself to all the destinations on the basis of these local
costs and of the received link costs.
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