
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 3, JUNE 1996 365

Behavior Analysis and Training-
A Methodology for Behavior Engineering

Marco Colombetti, Marco Dorigo, Member, IEEE, and Giuseppe Borghi, Student Member, IEEE

Abstract- We propose Behavior Engineering as a new tech-
nological area whose aim is to provide methodologies and tools
for developing autonomous robots. Building robots is a very
complex engineering enterprise that requires the exact defi-
nition and scheduling of the activities which a designer, or
a team of designers, should follow. Behavior Engineering is,
within the autonomous robotics realm, the equivalent of more
established disciplines like Software Engineering and Knowledge
Engineering. In this article we first give a detailed presentation
of a Behavior Engineering methodology, which we call Behavior
Analysis and Training (BAT), where we stress the role of learning
and training. Then we illustrate the application of the BAT
methodology to three cases involving different robots: two mobile
robots and a manipulator. Results show the feasibility of the
proposed approach.

I. INTRODUCTION
HIS paper is concerned with problems related to the T development of autonomous robots. A major obstacle

in the realization of an autonomous robot is programming
its control system so that the robot carries out its task in a
reasonably flexible and adaptive way. In fact, the real world
is so complex and unpredictable that directly programming
a robot’s controller soon becomes an almost impossible job.
Recently, machine learning techniques have emerged as an
interesting attempt to overcome this difficulty; however, it is
not at all clear how machine learning should be integrated with
more traditional design methodologies.

The main purpose of this paper is to analyze machine
learning as part of an integrated methodology for designing
and developing autonomous robots. We regard our work as a
contribution to a new technological discipline, that we call
Behavior Engineering, whose main concern is to establish
methodologies, models and tools for shaping the behavior of
robots. The name ‘Behavior Engineering’ is reminiscent of
similar terms, like ‘Software Engineering’ and ‘Knowledge
Engineering,’ the use of which is by now well established. By
introducing a new term, we want to stress the specificity of the
problems involved in the development of autonomous robots,

Manuscript received July 10, 1994; revised May 27, 1995. This work
was supported in part by a MURST “60%” grant for the years 1992-1994
to M. Colombetti, and by an Individual CEC Human Capital and Mobility
Programme Fellowship to M. Dorigo for the years 1994-1996.

M. Colombetti and G. Borghi are with the Progetto di
Intelligenza Artificiale e Robotica, Dipartimento di Elettronica
e Informazione, Politecnico di Milano, 20133 Milano, Italy (e-
mails: colombet@elet.polimi.it; www.elet.polimi.it/people/colombet/;
borghi@elet.polimi.it, www.elet.polimi.it/people/borghi/).

M. Dorigo is with INDIA, Universitk Libre de Bruxelles,
1050 Bmxelles, Belgium (e-mail: mdorigo@ulb.ac.be; URL: http://iidia.ulb.
ac.be/dorigo/dorigo.html).

Publisher Item Identifier S 1083-4419(96)03236-0.

and the strict relationships holding between the development of
artificial agents and the natural sciences’ study of the behavior
of organisms. Indeed, the relevance of the notion of behavior in
robotics has already been explicitly recognized, in particular by
Brooks [4], Arkin [l], Maes [20], Maes and Brooks [21], and
Saffiotti, Konolige and Ruspini [24]. However, we believe that
the links between robotics and behavioral sciences have not yet
been fully appreciated. There is no doubt that the mechanisms
of learning, and the complex balance between what is learned
and what is genetically determined, are the main concern of
behavioral sciences. In our opinion, a similar situation arises
in autonomous robotics, where a major problem is in deciding
what should be explicitly designed and what should be left
for the robot to learn from experience. Besides the intrinsic
interest of machine learning mechanisms, we believe that the
whole issue is likely to become of primary importance for
practical applications.

So far, learning agents have mainly been studied in sim-
ulation. But simulated worlds cannot be as complex and
unpredictable as the real world, for the simple reason that
a simulated environment implements a model of a physical
environment. Some researchers have therefore begun to exper-
iment on the application of learning mechanisms to physical
robots. Just to name a few, Mahadevan and Connell [22] have
proposed a subsumption architecture in which basic behaviors
are learned by a reinforcement learning technique; Beer and
Gallagher [2] train a six-legged robot to walk by a genetic
algorithm which evolves neural-net based controllers; Dorigo
[9], and Dorigo and Colombetti [111 apply a learning classifier
system to the control of a small autonomous robot. However,
from scientific experiments to engineering practice there is a
huge gap. Helping to fill this gap is the main objective of this
article.

Engineering is based on models, tools, and methodologies.
As regards models, today there is a wide repertoire of well-
understood methods that can be applied to robot learning,
and many software tools are available to develop learning
systems. In particular, our past work has concentrated on
Learning Classifier Systems (LCS’s) [3]; as a tool, we have
used various versions of ALECSYS, a parallel implementation
of a LCS running on a network of transputers [SI, [9], [14],
[15]. In contrast, very little is known about the methodological
issues involved in the effective use of learning as a component
of practical robot development. In this paper, we concentrate
on such issues. In Section 11, we propose a methodology for
Behavior Engineering, that we call BAT (Behavior Analysis
and Training), based on the experience acquired in our past

1083-4419/96$05.00 0 1996 IEEE

http://iidia.ulb

366 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B’ CYBERNETICS, VOL 26, NO 3, JUNE 1996

research. Section I11 is devoted to an analysis of the training
that plays a fundamental role in our methodology. Sections
IV, V, and VI support the methodology with the description
of three practical cases. Finally, Section VI1 presents our
conclusions and suggests directions for future work.

11. THE BAT METHODOLOGY

The goal of any engineering methodology is to help engi-
neers to design high quality products-where, of course, the
term ‘quality’ must be understood in a very broad sense. To
this purpose, a methodology must at least tell us:

what are the relevant aspects of quality for the product
being designed;
how to specify the product to be designed;
what design choices should be made, in what sequence,

and on what grounds;
* how to assess the quality of the final product.

In this section, we shall discuss all these facets. To keep the
treatment within reasonable limits, we assume that the problem
faced by the engineer is to develop an autonomous robot in
a situation in which:

The robot shell (i.e., the robot’s “anatomy”) is essentially
predefined’. For example, one may be constrained to
use a specific commercial manipulator or mobile robot
platform.
The initial environment is predefined. For example, the
robot may be meant to operate on the lunar surface, or at
the bottom of a lake, or in a parking lot.
The robot’s controller will include a leamed component,
and the learning system has already been chosen.

In addition we assume that the main stages in the develop-

To describe the robot shell and the initial environment,
and to define the robot’s target behavior, that is, the
desired pattern of interaction between the robot and its
environment. For example, we may want the robot to
collect mineral samples from the lunar surface.
To analyze the target behavior and decompose it into a
structured collection of simple behaviors.

0 To provide a complete specijication of the various com-
ponents of the complete robot. In particular, one has to
specify:

ment of a robotic application are:

The sensors and actuators interfacing the robot with
its environment, possibly together with some artificial
extension of the environment, to make perception and
action possible. For example, we may decide to place
bar-code signs in specific locations of a parlung lot, to
help the robot monitor its position.
The controller architecture, that is, the overall structure
of the robot’s control program.
A training strategy, that is, a systematic procedure for
training the robot to perform the target behavior.

‘In our terminology, a robot i s made up of a shell, a sensorimotor mterface,
and a controller. The “anatomy” of the robot is the structure of its shell.

I Behavior Analysis I
t

+ I Specification

Design, Implementation
and Verification of the

Nascent Robot

+
1 Training I

Behavior Assessment

Fig. 1. The sequence of stages in the’BAT methodology

To design, implement and verify the nascent robot, that
is, the robot prior to training.
To cany out training until the target behavior i s learned.
To assess both the learning process and the final behavior
produced by the robot, the latter with respect to the
specified target behavior.

These stages can be arranged in a logical sequence, reminiscent
of the well-known waterfall model of Software Engineering
(probably first introduced by Royce [23]); the sequence is
shown in Fig. 1. In the following, we separately analyze the
six stages.

A. Application Description and Behavior Requirements

As behavior is the interaction of the robot’s body with its
physical environment, a specification of the target behavior
presupposes a clear description of both such entities. In this
paper we shall consider different types of robots, namely
moving platforms (equipped with either wheels or tracks) and
a two-link manipulator. The environments will be laboratory
rooms containing different kmds of objects.

In fact, neither the robot nor the environment can be thor-
oughly described before we complete the Specification stage
(see Fig. 1). The reason is that the sensorimotor apparatus of
the robot can be fully designed only after the robot’s behavior
has been analyzed in detail; furthermore, the use of certain
types of sensors or actuators may require us to modify the
environment to achieve a satisfactory coupling between the
robot and the environment. Therefore, in this initial phase
we can only describe the robot shell (with incomplete or no
sensorimotor apparatus) and the initial environment (prior to
possible modification).

The requirements on the target behavior are usually infor-
mally stated in natural language. For example, we may want
our robot to inspect an area, collecting objects of a given type.

COLOMBETTI et al.: BEHAVIOR ANALYSIS AND TRAINING

Description of Initial Environment
Requirements on Target Behavior

361

An informal description of the target behavior may well be
clear and unambiguous, but is not sufficient as a basis for a
later quantitative assessment of the robot’s actual behavior.
Therefore, a complete specification of the target behavior
should include a formal, quantitative component. Continuing
our previous example, we may specify that the robot has to
collect at least K . D objects per time unit (where K is a
constant and D is the average number of objects existing in
the environment per surface unit), returning to its station at
most N times per time unit.

In Fig. 2 we show the products of the first stage of our
methodology.

B. Behavior Analysis

As a support for the subsequent Design stage, the target
behavior must be analyzed in detail. In fact, the analysis
of behavior is one of the key aspects of our methodology.
Our approach involves decomposing the target behavior into
simpler ones, in such a way that the target behavior results
from the execution of the simpler behaviors and from their
interactions. In turn, component behaviors can be further
decomposed into even simpler ones, and so on.

Consider again the object-collecting task introduced in the
previous subsection. To accomplish such a task, the robot will
have to explore the given area, identify and locate the relevant
objects, reach for them, grasp them and put them in a container
onboard. Moreover, the robot will have to avoid obstacles
during all of its activity and to go back to its station when
the container is full or the batteries need recharging. Thus the
overall behavior (e.g., collecting objects) is decomposed into
lower level components (e.g., exploring, identifying objects,
locating objects, etc.).

There is no general rule about how to carve simple behaviors
out of more complex ones. For example, that “exploring” is a
single, basic behavior can only be established on the basis of
general knowledge about robot engineering and past design
experience. However, once the basic behaviors have been
singled out, their interactions can, and must, be completely
defined. For example, we must specify that “going back to
recharging station” will have to inhibit “exploring” and “iden-
tifying objects,” but should not inhibit “avoiding obstacles.”
The product of such an analysis is what we call structured
behavior.

What types of interactions among behaviors should one take
into account? Again, there is no general answer, because this
issue is strictly connected to the kind of controller architecture
one is going to design. In a previous paper [ll], we have
singled out the following types of interaction:

Description of Robot Shell
Description of Initial Environment

Requirements on Targef Behavior

I Behavior Analysis I
Structured Behavior

Fig. 3. Input and output of Behavior Analysis.

Independent sum: two or more independent behaviors are
performed at the same time; for example, a robot may
explore while trying to locate objects. The independent
sum of behavior a and behavior /3 is written as

I P.
Combination: two or more homogeneous behaviors (i.e.,
behaviors involving the same actuators) are combined into
a resulting behavior; for example, a robot may have to
avoid an obstacle while attempting to reach for an object.
The combination of a and /3 is written as

a+@.

Suppression: a behavior inhibits a competing one; for
example, the robot may give up looking for objects in
order to reach its recharging station as soon as possible.
If a suppresses P, we write

a -
0‘

Sequence: a behavioral pattern is built as a sequence of
simpler behaviors; for example, an object is reached for
only after having located it. The sequence of a and p is
written

moreover, if a sequence o is repeated forever, we write

o* .

As we shall see, a clear description of the interactions between
simple behaviors is essential for the following Specification
stage.

The input and the output of the Behavior Analysis stage are
shown in Fig. 3.

C. Specification

As we have already said, we assume both the robot shell
and the initial environment to be given. In general, however,
the sensorimotor interface of the robot has to be redesigned for
each specific behavior. For example, we may find out that ob-
jects in the environment can be roughly located through a sonar
belt, and identified through a “chromatic analyzer,” that is, a
virtual sensor classifying objects on the basis of their color.

368 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B CYBERNETICS, VOL 26, NO 3, JUNE 1996

In turn, the chromatic analyzer can be physically realized
through a rotating color camera and an appropriate software
interface. Analogously, requirements on motor control lead
to decisions on the kind of output that the robot controller
will have to send to the actuators. For example, suppose we
need to control a platform moving on two tracks, connected to
two independent motors. Assuming that the controller sends a
message to each motor at every control cycle, we may decide
that the controller’s output can be one of the following: move
forward, do not move, move backward.

Given the state of the art in robotics, robots are often unable
to deal directly with the initial environment. For example,
it may be necessary to modify the objects with which the
robot has to interact, so that they can be detected, identified
and located. It is part of the Specification stage to find out
what must be added to the environment to make the target
behavior possible. The environment thus equipped will be
called Extended Environment.

Another task of the Specification stage is to establish the
controller architecture. In our work, we have experimented
with various kinds of architecture, implemented via ALECSYS
(see Section 111-A). In a previous paper [ll], we contend
that the architecture of the controller should parallel the
organization of the structured behavior, as established by
Behavior Analysis. This result is obtained by allocating a
behavioral module (BM) to each simple behavior, interactions
among behaviors are then dealt with in various ways, that we
now briefly describe.

We classify architectures in the following way:
Monolithic architectures. These are built by only one
behavioral module, directly connected to the robot’s sen-
sorimotor interface (see Fig. 4).
Distributed architectures. These include all architectures
built by more than one behavioral module. In this case
we distinguish between two subclasses:

Flat architectures, built by a number of behavioral
modules, all directly connected to the robot’s senso-
rimotor interface. In turn, different behavioral modules
may have: independent outputs, i.e., they send their
motor messages to different actuators (Fig. 5(a)); or
zntegrated outputs, i.e., their motor messages are inte-
grated in an appropnate way, and then sent to the same
actuator (Fig. 5(b)): for example, the integration can be
the vector sum of two movements.

Hierarchical architectures, built by a hierarchy of lev-
els, where the modules at level 1 are connected to the
sensorimotor interface, and modules at level N > 1 are
connected to at least one module of level N - 1, and
to no module of level higher than N - 1 (see Fig. 6).

In fact, there is a natural correspondence between architectures
and types of behavior interaction. Referring to the classifica-
tion of interactions proposed in the previous subsection, we
have the following correspondence:

Independent sum: flat architecture with independent out-
puts.
Combination: flat architecture with integrated outputs, or
hierarchical architecture.

E environment

Fig. 4. The monolithic architecture.

I 1

t
I I env ironm ent env ironm ent I

(a) ’ (b)

Fig. 5. Flat archtechres.

I env ironm ent I
Fig. 6. h example of hierarchical architecture.

Suppression: switch architecture (i.e., a kind of hierarchi-
cal architecture in which higher-level modules are only
responsible for enabling lower-level modules).
Sequence: hierarchical architecture.

Returning to our running example, the simple behaviors
exploring, avoiding obstacles, locating objects, reaching for
objects, going to the recharging station, etc., can be allocated to
corresponding behavioral modules. As regards the interactions
among different behaviors: exploring and locating objects will
have independent outputs; exploring and avoiding obstacles
will have integrated outputs; exploring and going to the
recharging station will be connected through a switch; and
so on.

Finally, there is one more goal for the Specification stage.
As we have already suggested, the BAT Methodology assumes
that behaviors are allocated to behavioral modules by design,
but the function of each module is developed by machine
learning techniques. From now on we assume that a reinforce-
ment learning system will be used. We still have to make a
decision on the training strategy, including:

the reinforcement program, that is the information that
will be provided to the learning system to make the robot
converge to the target behavior; and:
the shaping policy, that is whether the structured behavior
should be learned in a one-shot learning, or by a sequence
of learning sessions, and in this last case in which order
the various behaviors and their interactions will have to
be learned.

Such decisions are critical, because training is strongly re-
sponsible for the final performance of the robot. Section I11 is
devoted to a more detailed analysis of this fundamental issue.

COLOMBETTI et al.: BEHAVIOR ANALYSIS AND TRAINING 369

Structured Behavior

t
Specification

t

Fig. 7. Input and output of the Specification stage

Extended Environment
Controller Architecture

Design, lmplementatlon
and Verltlcatlon of the

Nascent Robot +
Nascent Robot

Fig. 8. Input and output of Design, Implementation and Verification of the
Nascent Robot.

Fig. 7 shows the input and the outputs of the Specification
stage.

D. Design, Implementation and VeriJcation
of the Nascent Robot

At this point we have sufficient information to design,
implement and verify the nascent robot, that is, the robot
endowed with all its hardware and software components, but
prior to training. We have no special remarks on this stage.
Designers should exploit known methodologies for hardware
and software engineering. The input and output of this stage
are shown in Fig. 8.

E. Training

Given that the training strategy has already been established,
the current stage is only responsible for the implementation of
such a strategy. The main problem of training is that it can be
an extremely expensive task: even the most efficient learning
systems converge slowly, and therefore training may require
numerous lengthy sessions.

In many cases of practical interest, it is possible to speed
up training through the use of simulators. Training a simulated
robot is obviously faster than training a real one, and involves
only a fraction of the effort. In general, this is not sufficient,
because in simulated environments much of the richness
and unpredictability of the real world is lost. A reasonable
compromise involves using a simulator to develop a first
approximation of the final controller, that can be refined
through direct training of the real robot. Another advantage
of simulation is that it allows one to carry on training in
environments that are more manageable than the real one in

Nssaenr fbbot Training Strategy 00 +
I

t
Training I

Fig. 9. Input and output of the Training stage.

Robot

c
Behavior Assessment

+
Assessment
of Learning

Fig. 10. Input and outputs of Behavior Assessment.

some important respect; we have exploited this aspect in the
case presented in Section V.

As shown in Fig. 9, the output of the Training stage is the
final robot, whose behavior must now be assessed.

F. Behavior Assessment

Before introducing an assessment procedure, we need to
clarify our notion of the quality of behavior. In general, the
quality of a product is made up of different components.

We say that the robot’s actual behavior is correct if it con-
forms to the target behavior, in the environmental conditions
that have been assumed in the specification. For example, if the
target behavior includes reaching location P in environmental
conditions C, the robot’s behavior will be correct if the robot
actually reaches P when conditions C hold.

The robot’s behavior is said to be robust, if it conforms
to the target even when the structure or the dynamics of the
environment change with respect to what has been assumed
in the requirements (without any change to its controller). For
example, the robot may still be able to reach location P even
if the environment contains obstacles that were not considered
in the original description of the target behavior.

Related to robustness is the concept of adaptiveness, which
is understood as the robot’s ability to modify its controller so
that its behavior adapts in real time to changes in the structure
or the dynamics of the environment. In general, this kind of
adaptiveness can be guaranteed by learning mechanisms.

As with all artifacts, it is desirable to realize a system with
a high degree of modularity. Modularity should be achieved
at different levels:

At the robot level: this means that the nascent robot
should be a modular system. This aspect of modularity
affects the design of the nascent robot, and will not be
discussed here.

.

376 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B CYBERNETICS, VOL 26, NO 3, JUNE 1996

Description of Inftial Environment

rn Behavior Analysis

7 Specification F-l Behavior Assessment

I I I + I

Robot Training
Strategy

4 .
Design, Implementation
and Verification of the Training

Nascent Robot

Fig. 11 A global sketch of the BAT methodology

At the behavior level: this means that the controller
should realize the target behavior in a modular way. This
aspect of modularity can be enforced by good behavior
analysis, and by adopting the controller architecture that
best fits the structured behavior.
At the training level: this means that the training strategy
should be independent of low-level details about the
robot’s architecture. This aspect will be discussed in
Section 111.

In general, the performance of the robot can and should be
evaluated in quantitative terms. We distinguish two types of
performance indexes:

Local performance indexes (or learning indexes), that
measure the effectiveness of the learning process (that
is, the correspondence between what is taught and what
is learned). These indexes allow for the assessment of the
learning process.
Global performance indexes, that measure the conespon-
dence of the robot’s behaviors with the target behavior
(as defined by the corresponding requrrements). These
indexes allow for the assessment of the robot’s global
behavior.

In this paper the local performance index is defined as

where t is the number of robot moves from the beginning of the
experiment and R(t) is the number of moves that have been
positively reinforced from the beginning of the experiment.

The global performance index was computed as

where A(&) is the number of achievements from the beginning
of the experiment (i.e., the number of times the agent has
reached the goal). Typically, this measure is used when A(t)
is not fixed in advance, as in the experiments of Section IV.
When the number of achievements is predefined, as in the
experiments of Section V, G is computed as the total number
of moves necessary to obtain them.

Fig. 10 shows the input to and output from the present stage.
To conclude this section, Fig. 11 summarizes all the stages

previously described. The two bidirectional arrows connect the
outputs of the Assessment stage with the documents against
which the robot’s behavior has to be evaluated.

111. ABOUT LEARNING AND TRAINING

A. 71ze Role of the Trainer

In the BAT methodology, training plays a fundamental
role. It involves four components: the robot to be trained,
its environment, a learning system, and a trainer. Kinds of
learning systems that have proved to be particularly fit for
robot training are the ones based on reinforcement learning.
In reinforcement learning, all or some of the actions performed
by the robot receive a positive or negative reinforcement from
the trainer. Positive reinforcements. or rewards, indicate that
the action performed is correct, given the predefined target
behavior and the current environmental situation. Negative
rewards, or punishments, indicate that the action perfosmed is

COLOMBETTI el al.: BEHAVIOR ANALYSIS AND TRAINING 371

considered incorrect. The information contained in reinforce-
ments is exploited by the learning system to converge toward
a robot controller that implements the target behavior in the
given environment.

A first classification of reinforcement learning systems
distinguishes between immediate reinforcement learning and
delayed reinforcement learning. In the former, reinforcements
are provided by the trainer for each single action perfomed by
the robot. In the latter, delayed reinforcements refer to a whole
sequence of actions, that in principle can be arbitrarily long.
As an example, let us assume that a robot is being trained
to reach object A. In immediate reinforcement, the trainer
will have to reinforce the robot at each elementary movement;
typically, the robot will be rewarded if it gets closer to A,
and punished otherwise. In delayed reinforcement, the robot
is rewarded if and only if it reaches A; such a reward has to be
considered as a positive evaluation of the movements that led
it to reach A. Both Learning Classifier Systems2 (LCS’s) [3],
the model we used to implement our learning system, and Q-
learning [25] are typical examples of reinforcement learning
systems3. Both methods can be given immediate or delayed
reinforcements, the main difference being the time they require
to converge on good action policies, usually shorter with
immediate reinforcement, and the quantity of information the
trainer needs to evaluate the robot moves, often greater for
immediate reinforcements.

There are deep differences between immediate reinforce-
ment and delayed reinforcement that should be thoroughly
appreciated. Delayed reinforcement learning has a great con-
ceptual advantage that can be illustrated through the previous
example. If the robot has to be rewarded only when it
reaches object A, it is sufficient to endow the robot with
a specific sensor to detect that A has been reached. On the
contrary, immediate reinforcement involves an evaluation of
the distance between the robot and A, to be repeated after
each movement, which may be difficult in many practical
applications.

On the other side, delayed reinforcement learning has the
drawback of being more complex and converging much more
slowly than immediate reinforcement; in fact, it converges so
slowly that it is completely useless in most practical cases.
A good solution to this problem might be to exploit both
mechanisms, in order to get the best out of each. Even if
a few steps in this direction have already been made [5], [26],
no final solution has been proposed yet. Throughout this paper
we shall assume that training is achieved through immediate
reinforcement learning (henceforward simply called learning).

Given that a sufficiently efficient learning system is avail-
able, the main problem of training is to teach the right
thing-that is, to make the robot converge precisely to the
desired behavior. This means that the most critical component
is the trainer.

Often, the target behavior cannot be taught directly. Con-
sider again the behavior of reaching object A. In fact the trainer

2See the brief description of ALECSYS in the next subsection, or [9], [lo]

3The similarities existing between the LCS and &-learning have been
for more details.

recently discussed in Dorigo and Bersini [lo].

Fig. 12. Why moving in the right direction may not be enough.

cannot just reward the action of reaching A: rather, it has to
reward the robot when it gets closer to A. But this means that
the robot is being taught to approach A, not to reach it. This
is a consequence of a limitation of any immediate learning
strategy.

Moreover, the robot might be able to identify the direction
in which A is located, without knowing A’s distance. In this
case, the robot cannot even learn to approach A: at most, it
can learn to move in A’s direction. This is a consequence of
a sensory limitation.

Suppose now that the robot has learned to move in A’s
direction. Doing so does not logically imply that the robot will
eventually reach A. In fact, A might just move too fast to be
ever caught by the robot! The point is that the learned behavior
(moving in A’s direction) converges to the target behavior
(reaching A) only if the environment satisfies a number of
constraints (e.g., A’s average velocity could be known to be
lower than the robot’s one).

This simple example shows that:
Some target behaviors cannot be directly taught through
immediate reinforcement learning. Instead of teaching a
target behavior a, the trainer has to teach a behavior p,
such that doing ,L? achieves a if the environment satisfies
a number of constraints.
What can be directly taught depends on general limi-
tations of both the immediate training strategy and the
robot’s sensory apparatus.

As a consequence, assessing the effectiveness of learning and
assessing the correspondence of the robot’s final behavior with
the target behavior are two different things. A robot may have
a local performance index of loo%, and completely fail to
carry out the target behavior (for example, the robot may have
learnt to move in A’s direction, but still be unable to reach
A-see Fig. 12).

Another problem related to the trainer is that rewarding
or punishing an action presupposes the ability to perceive
its effects. In principle, the trainer could be a human being,
observing the robot’s behavior and providing reinforcements
according to his or her understanding of the target behavior.
In practice, such a solution is seldom viable because human
beings tend to be rather inaccurate in their evaluations, and
too slow with respect to the robot’s perception-action cycle.
Therefore, a trainer is generally a computer program, designed
to give reinforcements according to the robot’s actions. As
we shall discuss in Section IV-C, this may require additional

COLOMBETTI et al.: BEHAVIOR ANALYSIS AND TRAINING 373

winning is proportional to the amount of strength offered.
Winning rules acquire the right to send their messages
to actuators or to other rules at the next time step. The
rules that win the auction pay their bids to those rules
which posted at the preceding time step the messages by
which they were activated, or to the external environment
if the message was sent by sensors. Rules which post
a message (i.e., win the auction) and whose message
causes an action, receive reinforcement by the trainer.
Reinforcement can be either positive, i.e., rewards, or
negative, i.e., punishments. Rules which post a message
and whose message matches a winning rule at the next
time step, receive the amount of strength paid by the
matching rule. In this way reinforcement flows backward
from the trainer to the external environment in the form
of rule strengths. In addition rules lose a small amount
of their strength at each cycle (this is the so-called life
tax), so rules that never participate in the auction and that
never win the auctions will slowly decrease in strength.
The rule discovery algorithm: The rule discovery al-
gorithm overwrites low strength rules with new rules
generated by a genetic algorithm [16]: new rules are cre-
ated by the recombination and mutation of high strength
rules.

IV. CASE 1: AUTONOMOUSE V
In this section we instantiate the BAT methodology using

a simple robot, called AutonoMouse V, as a running ex-
ample. As this section will be paradigmatic of the way the
BAT methodology should be applied, its organization strictly
follows the sequence of stages previously discussed in Section
11. The reader will therefore find in Subsection IV-X the
description of the output of the activity carried out, within
the AutonoMouse V application, following the methodology
as described in Subsection 11-X.

A. Outputs of the Application Description
and Behavior Requirements Stage

Description of Robot Shell: AutonoMOuse V (AM here-
after) is a small (35 cm long plus 26 cm for the tail, 15 cm
wide, and 28 cm high) robot (Fig. 13(a)). Its sensory apparatus
is: two light sensors, one sonar, three whiskers, and a “change
of direction” sensor (see Fig. 13(b)). It is also provided with
two motors which control two tracks. The robot carries a
battery which provides it with three hours of autonomy.

The light sensors are two photodiodes which are positioned
within a structure which make them partially directional de-
vices. The two eyes together cover a 270” zone, with an
overlapping of 90’ in front of the robot (see Fig. 14). They
can distinguish 256 levels of light intensity.

The sonar is highly directional (it detects obstacles in front
of AM) and can sense an object as far as 10 meters away. It
returns a number between 0 and 256 which is an estimate of
the distance to the obstacle.

The three whiskers, placed on the front of AM (see Fig. 15),
are devices that change state when AM bumps into an obstacle.
The directional sensor is a rod, which we call a tail, with

Fig. 14. AutonoMouse V light sensors.

Fig. 15. AutonoMouse V whiskers.

a wheel at its end which can rotate around the rod axis. It
therefore does not rotate when AM moves forward without
turning, while it rotates when AM turns. It’s resolution is
about 1.2’.

Each AM motor has nineteen activation speeds: nine for-
ward, nine backward, and one for not moving.

AM has some onboard computing capabilities to transform
sensory input into digital messages in the format used by
the learning algorithms. The learning algorithms run on a
transputer board in a host computer connected to AM via a
4800-baud infra-red link.

Description of the Initial Environment: AM moves in a
office-like environment lightened by artificial lights. The
terrain is smooth, and people do not interfere with the robot’s
movements. In AM’s environment there are no obstacles,
except for the walls and for the obstacle specifically used in
experiments.

Requirements on Target Behavior: In this simple applica-
tion we want our robot to learn to search and follow a light
moving at a speed which is comparable to the speed of AM.
Now and then the light disappears behind an obstacle; in these
occasions AM should go around the obstacle to see whether the
light is on the other side and then start to follow it again (see
Fig. 16). We call the target behavior the SearchdlFollowLight
behavior.

B. Output of Behavior Analysis

The target behavior of our robot, which was described
informally in Section IV-A, can be expressed as the following
structured behavior

ApproachLight
SearchLight ’

ReachLight =

Light-approaching and light-searching are the two basic be-
haviors comprising the structured behavior, and the interaction
among them is suppression. Light-approaching is active when
the light is seen. Light-searching is a rather complex behavior,

374 IEEE TRANSACT1 b NS ON SYSTEMS, MAN, AND CYBERNETICS-PART B CYBERNETICS, VOL 26, NO 3, JUNE 1996

90”

I

Fig 17 The pleated wall

Fig 16 The experimental
architecture was compared with other possible solutions both
in real world experiments and in simulation; see [7]). In this

which includes: turning around to look
approaching the wall

ard~ikcture the light-approaching and the light-searching be-
haviors (basic behaviors) are coordinated by a switch module,

around the wall when which learns to choose which basic behavior to give priority to.
Training Strategy: As we said in Section 11-C, there are two

lor

C. Outputs of the SpeciJication Stage

closer than 1.5 meters).

determinations to be made regarding the training strategy: the
reinforcement program and the shaping policy.

Reinforcement Programs: The reinforcement program is in
charge of giving reinforcements after each move of AM.
It is usually composed of a different subprogram for each
basic behavior. In AM we defined the following reinforcement
programs for each of the two behaviors identified in Section

Light-approaching reinforcement program: After each
move, the robot is rewarded if its distance from the light
decreases, otherwise it is punished. Changes in distance are
evaluated by measuring the change in intensity of light as
seen by the two AM eyes. AM eyes have therefore a double
use: as AM sensors (in this case they are thresholded), and
as trainer sensors (in this case their full granularity is used
to evaluate changes in light intensity).
Light-searching reinforcement program: Light-searching is
not as easy to define as light-approaching, in that it allows
the definition of a few different searching strategies. The
main goal of this behavior is to search behind obstacles
to see whether the light is there. For example, the agent
could first use sonars to locate the edge of’ the obstacle,
and then move directly in that direction. Another possible
strategy could be to use the sonar to locate an obstacle,
then approach it, and finally turn around it using bumpers to
maintain contact with the obstacle (this could be done with
a reinforcement program that rewards a right turn when the
left bumper is on, and a left turn when it is off; in this way
AM will learn to move along the obstacle with a zig-zag
kind of motion). These, and a few other, strategies were
investigated by Dorigo and Maesani [7]. In this paper we
used the first strategy, which works as follows: if the sonar
senses an obstacle, then AM is rewarded if it moves forward
and at the same time it turns in the same direction of the
previous move. As soon as the sonar does not sense the
obstacle any longer, AM is rewarded if, while still moving
forward, it turns in the opposite direction (“move forward

IV-B :

COLOMBETTI et al.: BEHAVIOR ANALYSIS AND TRAINING 375

Fig. 18. ’ The light-searching behavior.

while turning” moves are obtained by setting one motor to
speed two and the other to speed one). This reinforcement
policy generates an obstacle approaching trajectory like the
one presented in Fig. 18.
Shaping Policy: The shaping policy used was modular.

First we trained the two basic behaviors, then we froze them
(that is, their learning algorithms were switched off), and we
let the coordination behavior learn,

D. Outputs of the Design, Implementation
and Verijication Stage

As we said in Section 11-D, this step will exploit standard
hardware and software engineering methodologies. All the
design and implementation details regarding this stage of the
BAT methodology are documented in [7].

E. Output of the Training Stage

AM was trained using the training strategy defined in
Section IV-C. We also compared the results obtained using the
switch architecture with modular shaping, with those obtained
training the two basic behaviors in a simulated environment
and then copying the two rule sets into the two basic behavioral
modules used to control the real robot. After transferring the
two rule sets, training continues using the same training and
shaping strategies as in the previous experiment.

F. Output of the Behavior Assessment Stage

This phase of the Bat methodology is devoted to assessing
the degree of learning achieved by the learning agent. Two
tools are useful for this assessment: the local and the global
performance indexes. Figs. 19 and 20 report the behavior
of L(t) and G(t) , as defined in Section 11-F, for both the
switch architecture (SA) and the switch architecture with initial
knowledge (SAIK) respectively.

Both indexes show that, given the same amount of learning
cycles, starting with some initial knowledge developed in
simulation helps. None of the architectures achieves very high
local performance. This is mainly due to limited learning
time; in fact, we stopped the experiment when learning was
still going on. A longer experiment we ran showed that
after 12000 AM moves the system was still learning. We
stopped experiments after 6000 AM moves because of time

I

0 1000 2000 3000 4000 5000 6000

cycles

Switch Architecture - - - - - - - - - Switch Architecture with
Initial Knowledge

Fig. 19. Local index: Comparison between the SA and the SAIK architec-
tures (with the local index, a higher value reflects a better performance).

1 2 0 0 c ;;;

3 50
I‘

04 1

0 1000 2000 3000 4000 5000 6000

Cycles

Switch Architecture - - - - - - - - - Switch Architecture with
Initial Knowledge

Fig. 20. Global index: Comparison between the SA and the SAIK architec-
tures (with the global index, a lower value reflects a better performance).

constraints (6000 moves take about one hour of time). Graphs
are averaged on 5 runs.

In this experiment the assessment of global behavior is
somewhat arbitrary, given the highly research-oriented nature
of the task. G(t) decreases as L(t) increases, and this is an
indication of the fact that the training strategy is somewhat
successful in driving the learning system toward better global
performance. Whether the given training strategy is a good
one or not can be evaluated only by comparing it with other
training procedures such as the one proposed in Section IV-C.
In a more application-oriented task, G(t) would be compared
against quantitative requirements on the target behavior.

V. CASE 2: HAMSTER
A second example of the application of the BAT method-

ology is HAMSTER, a mobile robot based on a commercial
platform, whose task is to bring “food” to its “ne~ t . ”~ We
shall not describe all steps in the development of this robot,
but confine ourselves to the description of the main differences
with respect to AM.

sThis robot’s name is mainly justified by its target behavior. It is also an
acronym, namely Highly Autonomous Mobile System TrainEd by Reinforce-
ments.

376 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B. CYBERNETICS, VOL 26, NO 3, JUNE 1996

Fig. 21. A picture of HAMSTER

The chief features of HAMSTER are that it combines ‘‘innate”
(i.e., prewired) and learned behaviors, and that training was
carried out in a simulated environment and then transferred to
the physical robot.

A. HAMSTER’S Shell

HAMSTER’S shell is Robuter, a commercial platform pro-
duced by RoboSoft (see Fig. 21). It is 102 cm long, 68 cm
wide and 44 cm high. The configuration we used has a belt of
24 Polaroid sonars, surrounding the whole platform. Motion
is produced by two motors acting on two independent wheels.

B. The Hoarding Behavior
The target behavior is food hoarding, that is, to collect

food pieces and to store them into HAMSTER’S nest. The
environment is a room of size 14 x 13.3 m, with various
obstacles (see Fig. 22). Each piece of food is a cylinder
(diameter 30 cm, height 70 cm) which slides on the floor
when pushed by HAMSTER. The nest is located in a corner
of the room.

The target behavior can be decomposed as follows:

HoardFood = (LeaveNest . GetFood . ReachNest)*
+ AvoidObstacles.

C. SpeciJication

Extension to the Robot’s Shell and to the Environment: Two
rigid metal bars have been adapted to the Robuter’s front so
that food cylinders do not slip to either side when they are
pushed. A frontal proximity sensor, based on the frontal sonars,
allows HAMSTER to sense whether an object in front is far,
fairly close, very close, or at contact. The food cylinders are
wrapped into violet paper, and the nest’s position is marked by
another cylinder (diameter 30 cm, height 130 cm) wrapped in
pink paper. HAMSTER uses a frontal color camera to identify
the position of food cylinders and of the nest, which are
distinguished on the basis of color. Moreover, the nest sensor
exploits an odometer (that is, a sensor that estimates the robot’s
position and heading), to approximately identify the position
of the nest when this is not visible.

Fig. 22 Map o f HAMSTER’S envlronment. -

Fig. 23 Controller architecture for HAMSTER.

project was to combine learned and innate behavior modules.
We chose to program AvoidObstacles directly, implementing
a potential-based avoidance mechanism exploiting Robuter’ s
sonars (see for example [19]).

The remaming part of the hoarding behavior, that is the
food-fetching cycle, can be analyzed as a pseudo-sequence
[6]. This means that at each control cycle there is enough
information coming from the sensors to decide which of the
three sub-behaviors should be active. More precisely:

* When the robot is in the nest: leave the
way that previously captured food is left
When the robot is out of the nest and no food is captured:
get a piece of food.
When the robot is out of the nest and a piece of food is
captured: reach the nest, pushing the piece of food.

We adopted a hierarchical controller architecture, with four
behavioral modules at Level 1, and a coordinator module
at Level 2. Each Level-1 module proposes a direction for
the robot’s movement. The coordinator chooses one of the
proposed moves on the basis of the current situation, which is
then combined with the move proposed by Avoidobstacles (see
Fig. 23). In general, this combination amounts to some kind
vector sum of the moves proposed by Avoidobstacles and by
the rest of the system. There is, however, a more complex case.
When HAMSTER is nearing a piece of food, the front part of
the Avoidobstacle behavior has to be inhibited, otherwise the
food could never be captured. Inhibiting obstacle avoidance in
such cases is part of the coordinator’s task.

COLOMBETIl et al.: BEHAVIOR ANALYSIS AND TRAINING 311

mean
standard deviation

(a) @) (c)
Fig. 24. The three experimental situations. Rectangular shaded areas are obstacles, black circles are food pieces. The HAMSTER is shown at its initial
location, that is in the nest (shaded circle).

situation a situation b situation c
365.3 450 313.5
27.77 127.30 34.33

Training: HAMSTER was trained through a modular shaping
policy: that is, each learned Level-1 module was trained
separately, and then frozen. The Coordinator was then trained
to achieve the target behavior.

We decided to use very simple reinforcement programs
(RP’s). For example, the ReachNest behavior was rewarded if
and only if the distance from the nest decreased. This decision,
however, had a very important consequence, in that it obliged
us to carry out training in a simplified environment, that is,
one without obstacles. The point is that training the robot while
obstacle avoidance is active would have forced us to embed
a model of obstacle avoidance into the RP. The reason is that
the RP would be unable to evaluate HAMSTER’S move properly
without knowing the effects of obstacles on the robot. But then,
the Rp would have been very complex.

In order to eliminate the interference of the innate AvoidOb-
stacles behavior, training had to be carried out in an obstacle-
free environment. As we had no such physical environment
available, all training was carried out in a simulated environ-
ment, and the resulting modules were then transferred to the
real robot. In fact, we consider the transfer of the learned
controller from a simulated environment to be an interesting
option in its own respect.

D. Assessment6
The degree of learning was evaluated through the local

performance indexes of the basic behaviors, computed in the
simulated environment with no obstacles. As expected, we
obtained reasonably high values (from .75 to 35 , depending
on the specific behavior and on different RP’s we have
experimented with). We did not compute the local performance
index in the environment with obstacles, because it would
have been meaningless: For example, during the ReachNest
behavior the robot would have been punished if it moved away
from the nest in order to avoid an obstacle.

We then transferred the controller onto the real robot, and
ran some experiments in the real environment (with obstacles).
In this environment it is meaningful to evaluate the global
performance, computed as the number of moves necessary to
accomplish the task, averaged over a set of sample situations.

6Given that they are not essential to this example, we do not report here
on the Design, Implementation and Verification of the nascent robot, nor on
the details of the Training task.

More precisely, we chose three different initial situations (see
Fig. 24), all including two pieces of food, and ran ten trials for
each of them, recording the total number of cycles necessary
to complete the hoarding of both pieces of food.

Finally, we computed the mean and the standard deviation
of such data (Table I>. In fact, in situation c, HAMSTER was
unable to accomplish the task five times out of ten, due to the
difficulty of getting the piece of food in front of the initial
robot position and then avoiding the close obstacle. For this
situation, the data reported are relative to the five successful
trials only.

E. Conclusions

The HAMSTER project shows that it is feasible to implement
a robot’s controller starting from both innate and learned
behavioral modules. However, to keep the RP’s as simple as
possible it is necessary to carry out training in environments
where the innate behaviors are not active. In our case, this
required that we carry out training in a simulated environment,
and then transfer the learned controller to the physical robot
for the final assessment.

Whether the global performance of HAMSTER is to be
considered acceptable is difficult to say. In a real application,
some minimum performance level would have been estab-
lished in advance. In our case, we can only say that an
informal observation of the behavior gave us the impression
that HAMSTER was performing reasonably well.

VI. CASE 3: THE CRAB ROBOTIC ARM

For our final example of the BAT methodology we used an
industrial manipulator, namely an IBM 7547 with a SCARA
geometry (Fig. 25(a)). In this section, we shall refer to this
robot as CRAB (Classifier-Based Robotic Arm), a name that
indeed fits well the shape of its arm.

~

378 BEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B CYBERNETICS, VOL 26, NO 3, JUNE 1996

(b)
Fig 25
the action space.

The CRAB manipulator. (a) picture, and @) schematic drawing of

CRAB is a two-link robotic arm. The first link can rotate
200” around the shoulder joint, and the second link can rotate
160°, with respect to the first link, around the elbow joint. As
a result the end effector, attached to the wrist, can cover the
gray area shown in Fig. 25(b). The actuators are two motors,
acting on the shoulder and the elbow joints, that respectively
rotate the first link (with respect to the fixed base) and the
second link (with respect to the first link).

The target behavior we taught to CRAB is a very simple one,
namely to have the end effector reach a stiill object (“food”),

Fig. 26. Why a sector-based sensor must be placed on the end effector. (a)
the position of f cannot be distinguished from the position of the end effector;
(b) P can be approached with any degree of precision.

placed in the light gray area of Fig. 25@) (the “foraging area”).
In this case, the target behavior itself is a simple behavior,
and therefore Behavior Analysis is absent. The reason why
we were interested in such a simple behavior is that, given the
polar geometry of CRAB, ALECsYs has to learn behavior rules
that are very different from the ones controlling the mobile
robots described in the previous sections. In particular, the
relation between the actions (i.e., elementary rotations of the
two links) and the resulting movement of the end effector
involves complex trigonometric transformations.

In CRAB’S environment, there is exactly
the foraging area at any moment. Each time
it, the piece of food is moved to a new ran
the foraging area. To be sensed by the robot, the piece of food
emits infrared light that can be received by an appropriate
sensor. Deciding where to place such a sensor is a simple,
interesting Specification problem.

A natural agent using m s to gr
endowed with two types of sensory cap
to know the relative position of the limbs; and visi
identify the relative direction and distance of the object to
be grasped. Moreover, the visual sensor would be more or
less rigidly coupIed with the shoulder.

The problem with our artificial agents is that ALECSYS can
only deal with a very limited amount of input information,
largely insufficient to determine relative distances and angles
of objects with the required degree of precision. Therefore, for
both proprioception and “infrared vision” we adopted sector-
based sensors as we, did with our mobile robots. However,
a sector-based sensor placed on the shoulder is structurally
unable to precisely locate an object (see Fig. 26(a)). There i s
only one possibility for a sector-based sensor to guide the end
effector exactly to a given point: namely, that the sensor itself
is placed on the end effector (Fig. 26(b)).

ulation showed that it is enough to have information about
the elbow angle, that is, the angle between the first and the
second link [13]. The sensorimotor apparatus of Scara was
then specified as follows:

A proprioceptive sensor providing information on
whether the elbow angle is between 0 and SO”, or
between 81 and 160”.
An infrared sensor, placed on the end effector, telling the
robot in which of 8 equal sectors the food is located (all
sectors are of 45”).

As regards proprioception, experiments carried on by

COLOMBETTI et al.: BEHAVIOR ANALYSIS AND TRAINING 319

Two motor effectors, one each for the elbow and shoulder
joints. These motors can rotate right (4” for both joints),
rotate left (4’ for both joints) or stay still.

Finally, for the controller architecture we chose a monolithic
architecture, given that the target behavior was made up by a
single, simple behavior.

The infrared sensor we implemented allowed us to locate
the food piece in the correct sector with good precision, but
gave us a rather noisy estimate of the distance between the
food piece and the end effector. Note however that information
about this distance is not used by the learning agent, but only
by the RP to compute reinforcements. In fact, each move
was reinforced proportionally to the variation of the distance
between the end effector and the food piece, as estimated by
the infrared sensor.

So far we run only a few pilot experiments with CRAB?
In a typical experiment, to speed up learning we started
from an initial rule base obtained from a training session
of 25000 cycles run in a simulated environment, and ran
a supplementary training session of 2,500 cycles with the
real robot. At the end of this training session we obtained
a local performance index of 0.86, showing a limited increase
in performance from the initial rule base obtained through
simulated pre-training (a test run on the real robot with such
an initial rule base gave us a performance of 0.83). The
result suggests that the supplementary training session on
the real robot adapted the rule base learned in the simulated
environment to the more noisy physical sensor. To confirm this
hypothesis, we are presently running a number of experiments
involving longer training sessions.

As a whole, it appears that ALECSYS is able to learn how
to reach a still object with a polar motor apparatus. This is
a very promising result, if one considers the importance of
manipulators in robotic applications.

VII. CONCLUSION AND FUTURE WORK
In this article we have presented a methodology for the

development of autonomous robots. The main features of
such a methodology are the attention paid to the analysis of
behavior, the integration of machine learning techniques with
other aspects of robot design, and the independent assessment
of learning and of the global behavior. We believe that the
three cases we have analyzed show that the methodology is
sound and can lead to realizations of practical interest. In
particular, we have shown that complex behavior can be taught
through modular shaping, that learned behavioral modules
can be integrated with hand-coded modules, that at least in
some cases it is possible to use behavioral modules learned
in simulated environments as a starting point for real robot
training, and that our methodology is applicable to robots of
different types (like mobile platforms and robotic arms).

Needless to say, much work remains to be done. A first
extension will have to be in the direction of more complex
behaviors. This will require a larger amount of input informa-
tion to be processed, and therefore will call for more powerful

7More experiments are currently being carried out, in order to gather a
significant sample.

learning mechanisms. In order to relieve designers from part
of their burden, learning techniques might be extended to
other aspects of robot development, like the architecture of
the controller, This means that the structure of behavioral
modules should emerge from the learning process, instead of
being predesigned. Another interesting extension to learning
would be the possibility of using delayed reinforcements, that
is, reinforcements that are not given at each single step, but
only when a certain goal is achieved (see [12]).

In our work, we have noticed that a major bottleneck in
the achievement of complex behavior is the richness of input
information. In particular, realistic applications in complex
environments will require the robot to recognize and locate
“passive objects,” that is, objects that are not specially pre-
designed in order to be sensed by the robot.

As regards the BAT methodology, we expect it to remain
fairly stable in the future. This will allow us to design and
implement a number of software tools to help the designer
in the process of robot development. Tasks that strongly
need such tools are Behavior Analysis and Specification, with
particular regard to the definition of sensors.

Finally, aspects of Behavior Engineering that deserve a
deeper analysis are the concept of quality of behavior, and
the related issue of behavior assessment. An appropriate set of
behavior metrics will have to be developed, if this area is to
find its way into the field of industrial applications.

ACKNOWLEDGMENT
AutonoMouse IV was designed and built by Franco Dorigo.

The experiments were run: on AutonoMouse V, by F. Dorigo
and A. Maesani; on HAMSTER, by E. Radice; on CRAB, by M.
Papetti. We wish to thank L. Meeden for the useful comments
on an earlier draft version of this article.

REFERENCES

R. C. Arkin, “Integrating behavioral, perceptual, and world knowledge in
reactive navigation,” Robot. Auton. Syst., vol. 6 , no. 1-2, pp. 105-122,
1990.
R. D. Beer and J. C. Gallagher, “Evolving dynamical neural networks
for adaptive behavior,” Adaptive Behavior, vol. 1, no. 1, pp. 92-122,
1992.
L. Booker, D. E. Goldberg, and J. H. Holland, “Classifier systems and
genetic algorithms,” Artif. Intell., vol. 40, no. 1-3, pp. 235-282, 1989.
R. A. Brooks, “Intelligence without representation,” Art$ Intell., vol.
47, no. 1-3, pp. 139-159, 1991.
P. V. C. Caironi and M. Dorigo, “Training &-Agents,” Tech. Rep.
IRIDIN94- 14, Universite Libre de Bruxelles, Belgium, 1994.
M. Colombetti and M. Dorigo, “Training agents to perform sequential
behavior,” Adaptive Behavior, vol. 2, no. 3, pp. 241-275, 1994.
F. Dorigo and A. Maesani, “Realizzazione e controllo di un robot
mobile: integrazione di tecniche di progetto e di apprendimento au-
tomatico,” Master’s Thesis, Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Milano, Italy, 1993.
M. Dorigo, “Genetic and nongenetic operators in ALECSYS,” Evolu-
tionary Comp. J. , vol. 1 , no. 2, pp. 151-164, 1993.
-, “ALECSYS and the AutonoMouse: Learning to control a real
robot by distributed classifier systems,” Machine Learning, vol. 19, no.

M. Dorigo and H. Bersini, “A comparison of &-learning and classi-
fier systems,’’ in Proc. From Animals to Animafs, Third Int. Con$ on
Simulation of Adapfive Behavior (SAB94), 1994, pp. 248-255.
M. Dorigo and M. Colombetti, “Robot shaping: Developing autonomous
agents through learning,” A r f g Infell., vol. 71, no. 2, pp. 321-370,1994.

3, pp. 209-240, 1995.

380 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B CYBERNETICS, VOL 26, NO 3, JUNE 1996

[12] -, “The role of the trainer in reinforcement learning,” in Proc.
MLC-COLT ’94 Workshop on Robot Learning, New Brunswick, NI,

[13] M. Dorigo, M. J. Patel, and M. Colombetti, “The effect of sensory infor-
mation on reinforcement learning by a robot arm,” in Proc. ISRAM’94,
Fifh Int. Symp. Robotics and Manufacturing, Maui, HI, Aug. 1994, pp.

[14] M. Dorigo and U. Schnepf, “Genetics-based machine learning and
behavior-based robotics: A new synthesis,” IEEE Trans. Syst., Man,
Cybern., vol. 23, no. 1, pp. 141-154, 1993.

[15] M. Dorigo and E. Sirtori, “ALECSYS: A parallel laboratory for learning
classifier systems,” in Proc. Fourth Int. ConJ: Genetic Algorithms, 1991,

[16] J. H. Holland, Adaptation in Natural and Art$cial Systems. Ann
Arbor, M I Univ. of Michigan Press, 1975.

[17] -, “Adaptive algorithms for discovering and using general patterns
in growinn knowledge-bases,” Int. J. Policy Anal. Inform. Sysf., vol. 4,

July 1994, pp. 37-45.

83-88.

, pp. 296-302.

ppU217-f40, 1980 -
1181 __, “Escaping brittleness The possibilities of general-purpose lean-

Marco Colombetti was
1951. He received the Laurea (Master of Technol-
ogy) degree in electronics

Computer Science, Engineering Faculty, Politecnico
di Milano, where he currently teaches a CO

on knowledge engineering and expert systems
research interests include knowledge representa
and behavior engineenng, with particular regard to
the application of machine learning techniques to

the development of robot behavior.

the Pohtecnico di Milano, the Italian Association for Artificial Intelligence
(AI*IA), and took part in several European and Nahonal research projects

He IS a member of the Artificial Int

Marc0 Dorigo, (S”92
p. 364.

M’93) for a photograph and biography, see this issue,

Giuseppe Borghi (S’95) was born in Milan, Italy,
1964. He received his Laurea degree in electron-
ics engineering in 1992 from the Politecnico di
Milano, Milan, Italy, with a t
control of mobile iobots based on distributed control
architectures Currently, he is a Ph.D studentiin

mento di Elettronica e Informatica, Universith degli

LADSEB-CNR Laboratory, Padov

Intelligence and Robohcs Project, Politecnico di Milano. He is involv
several National research projects concerning autonomous mobile rob
His current research interests include map learmng, motion planning based on
the potential field approach, application of machine learning to autonomous
robotics, and optimal sensor exploration for mobile robot self-localization.

