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Abstract- We propose Behavior Engineering as a new tech- 
nological area whose aim is to provide methodologies and tools 
for developing autonomous robots. Building robots is a very 
complex engineering enterprise that requires the exact defi- 
nition and scheduling of the activities which a designer, or 
a team of designers, should follow. Behavior Engineering is, 
within the autonomous robotics realm, the equivalent of more 
established disciplines like Software Engineering and Knowledge 
Engineering. In this article we first give a detailed presentation 
of a Behavior Engineering methodology, which we call Behavior 
Analysis and Training (BAT), where we stress the role of learning 
and training. Then we illustrate the application of the BAT 
methodology to three cases involving different robots: two mobile 
robots and a manipulator. Results show the feasibility of the 
proposed approach. 

I. INTRODUCTION 
HIS paper is concerned with problems related to the T development of autonomous robots. A major obstacle 

in the realization of an autonomous robot is programming 
its control system so that the robot carries out its task in a 
reasonably flexible and adaptive way. In fact, the real world 
is so complex and unpredictable that directly programming 
a robot’s controller soon becomes an almost impossible job. 
Recently, machine learning techniques have emerged as an 
interesting attempt to overcome this difficulty; however, it is 
not at all clear how machine learning should be integrated with 
more traditional design methodologies. 

The main purpose of this paper is to analyze machine 
learning as part of an integrated methodology for designing 
and developing autonomous robots. We regard our work as a 
contribution to a new technological discipline, that we call 
Behavior Engineering, whose main concern is to establish 
methodologies, models and tools for shaping the behavior of 
robots. The name ‘Behavior Engineering’ is reminiscent of 
similar terms, like ‘Software Engineering’ and ‘Knowledge 
Engineering,’ the use of which is by now well established. By 
introducing a new term, we want to stress the specificity of the 
problems involved in the development of autonomous robots, 
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and the strict relationships holding between the development of 
artificial agents and the natural sciences’ study of the behavior 
of organisms. Indeed, the relevance of the notion of behavior in 
robotics has already been explicitly recognized, in particular by 
Brooks [4], Arkin [l], Maes [20], Maes and Brooks [21], and 
Saffiotti, Konolige and Ruspini [24]. However, we believe that 
the links between robotics and behavioral sciences have not yet 
been fully appreciated. There is no doubt that the mechanisms 
of learning, and the complex balance between what is learned 
and what is genetically determined, are the main concern of 
behavioral sciences. In our opinion, a similar situation arises 
in autonomous robotics, where a major problem is in deciding 
what should be explicitly designed and what should be left 
for the robot to learn from experience. Besides the intrinsic 
interest of machine learning mechanisms, we believe that the 
whole issue is likely to become of primary importance for 
practical applications. 

So far, learning agents have mainly been studied in sim- 
ulation. But simulated worlds cannot be as complex and 
unpredictable as the real world, for the simple reason that 
a simulated environment implements a model of a physical 
environment. Some researchers have therefore begun to exper- 
iment on the application of learning mechanisms to physical 
robots. Just to name a few, Mahadevan and Connell [22] have 
proposed a subsumption architecture in which basic behaviors 
are learned by a reinforcement learning technique; Beer and 
Gallagher [2] train a six-legged robot to walk by a genetic 
algorithm which evolves neural-net based controllers; Dorigo 
[9], and Dorigo and Colombetti [ 111 apply a learning classifier 
system to the control of a small autonomous robot. However, 
from scientific experiments to engineering practice there is a 
huge gap. Helping to fill this gap is the main objective of this 
article. 

Engineering is based on models, tools, and methodologies. 
As regards models, today there is a wide repertoire of well- 
understood methods that can be applied to robot learning, 
and many software tools are available to develop learning 
systems. In particular, our past work has concentrated on 
Learning Classifier Systems (LCS’s) [3]; as a tool, we have 
used various versions of ALECSYS, a parallel implementation 
of a LCS running on a network of transputers [SI, [9], [14], 
[15]. In contrast, very little is known about the methodological 
issues involved in the effective use of learning as a component 
of practical robot development. In this paper, we concentrate 
on such issues. In Section 11, we propose a methodology for 
Behavior Engineering, that we call BAT (Behavior Analysis 
and Training), based on the experience acquired in our past 
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research. Section I11 is devoted to an analysis of the training 
that plays a fundamental role in our methodology. Sections 
IV, V, and VI support the methodology with the description 
of three practical cases. Finally, Section VI1 presents our 
conclusions and suggests directions for future work. 

11. THE BAT METHODOLOGY 

The goal of any engineering methodology is to help engi- 
neers to design high quality products-where, of course, the 
term ‘quality’ must be understood in a very broad sense. To 
this purpose, a methodology must at least tell us: 

what are the relevant aspects of quality for the product 
being designed; 
how to specify the product to be designed; 
what design choices should be made, in what sequence, 

and on what grounds; 
* how to assess the quality of the final product. 

In this section, we shall discuss all these facets. To keep the 
treatment within reasonable limits, we assume that the problem 
faced by the engineer is to develop an autonomous robot in 
a situation in which: 

The robot shell (i.e., the robot’s “anatomy”) is essentially 
predefined’. For example, one may be constrained to 
use a specific commercial manipulator or mobile robot 
platform. 
The initial environment is predefined. For example, the 
robot may be meant to operate on the lunar surface, or at 
the bottom of a lake, or in a parking lot. 
The robot’s controller will include a leamed component, 
and the learning system has already been chosen. 

In addition we assume that the main stages in the develop- 

To describe the robot shell and the initial environment, 
and to define the robot’s target behavior, that is, the 
desired pattern of interaction between the robot and its 
environment. For example, we may want the robot to 
collect mineral samples from the lunar surface. 
To analyze the target behavior and decompose it into a 
structured collection of simple behaviors. 

0 To provide a complete specijication of the various com- 
ponents of the complete robot. In particular, one has to 
specify: 

ment of a robotic application are: 

The sensors and actuators interfacing the robot with 
its environment, possibly together with some artificial 
extension of the environment, to make perception and 
action possible. For example, we may decide to place 
bar-code signs in specific locations of a parlung lot, to 
help the robot monitor its position. 
The controller architecture, that is, the overall structure 
of the robot’s control program. 
A training strategy, that is, a systematic procedure for 
training the robot to perform the target behavior. 

‘In our terminology, a robot i s  made up of a shell, a sensorimotor mterface, 
and a controller. The “anatomy” of the robot is the structure of its shell. 

I Behavior Analysis I 
t 

+ I Specification 

Design, Implementation 
and Verification of the 

Nascent Robot 

+ 
1 Training I 

Behavior Assessment 

Fig. 1. The sequence of stages in the’BAT methodology 

To design, implement and verify the nascent robot, that 
is, the robot prior to training. 
To cany out training until the target behavior i s  learned. 
To assess both the learning process and the final behavior 
produced by the robot, the latter with respect to the 
specified target behavior. 

These stages can be arranged in a logical sequence, reminiscent 
of the well-known waterfall model of Software Engineering 
(probably first introduced by Royce [23]); the sequence is 
shown in Fig. 1. In the following, we separately analyze the 
six stages. 

A. Application Description and Behavior Requirements 

As behavior is the interaction of the robot’s body with its 
physical environment, a specification of the target behavior 
presupposes a clear description of both such entities. In this 
paper we shall consider different types of robots, namely 
moving platforms (equipped with either wheels or tracks) and 
a two-link manipulator. The environments will be laboratory 
rooms containing different kmds of objects. 

In fact, neither the robot nor the environment can be thor- 
oughly described before we complete the Specification stage 
(see Fig. 1). The reason is that the sensorimotor apparatus of 
the robot can be fully designed only after the robot’s behavior 
has been analyzed in detail; furthermore, the use of certain 
types of sensors or actuators may require us to modify the 
environment to achieve a satisfactory coupling between the 
robot and the environment. Therefore, in this initial phase 
we can only describe the robot shell (with incomplete or no 
sensorimotor apparatus) and the initial environment (prior to 
possible modification). 

The requirements on the target behavior are usually infor- 
mally stated in natural language. For example, we may want 
our robot to inspect an area, collecting objects of a given type. 
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An informal description of the target behavior may well be 
clear and unambiguous, but is not sufficient as a basis for a 
later quantitative assessment of the robot’s actual behavior. 
Therefore, a complete specification of the target behavior 
should include a formal, quantitative component. Continuing 
our previous example, we may specify that the robot has to 
collect at least K . D objects per time unit (where K is a 
constant and D is the average number of objects existing in 
the environment per surface unit), returning to its station at 
most N times per time unit. 

In Fig. 2 we show the products of the first stage of our 
methodology. 

B. Behavior Analysis 

As a support for the subsequent Design stage, the target 
behavior must be analyzed in detail. In fact, the analysis 
of behavior is one of the key aspects of our methodology. 
Our approach involves decomposing the target behavior into 
simpler ones, in such a way that the target behavior results 
from the execution of the simpler behaviors and from their 
interactions. In turn, component behaviors can be further 
decomposed into even simpler ones, and so on. 

Consider again the object-collecting task introduced in the 
previous subsection. To accomplish such a task, the robot will 
have to explore the given area, identify and locate the relevant 
objects, reach for them, grasp them and put them in a container 
onboard. Moreover, the robot will have to avoid obstacles 
during all of its activity and to go back to its station when 
the container is full or the batteries need recharging. Thus the 
overall behavior (e.g., collecting objects) is decomposed into 
lower level components (e.g., exploring, identifying objects, 
locating objects, etc.). 

There is no general rule about how to carve simple behaviors 
out of more complex ones. For example, that “exploring” is a 
single, basic behavior can only be established on the basis of 
general knowledge about robot engineering and past design 
experience. However, once the basic behaviors have been 
singled out, their interactions can, and must, be completely 
defined. For example, we must specify that “going back to 
recharging station” will have to inhibit “exploring” and “iden- 
tifying objects,” but should not inhibit “avoiding obstacles.” 
The product of such an analysis is what we call structured 
behavior. 

What types of interactions among behaviors should one take 
into account? Again, there is no general answer, because this 
issue is strictly connected to the kind of controller architecture 
one is going to design. In a previous paper [ll], we have 
singled out the following types of interaction: 

Description of Robot Shell 
Description of Initial Environment 

Requirements on Targef Behavior 

I Behavior Analysis I 
Structured Behavior 

Fig. 3. Input and output of Behavior Analysis. 

Independent sum: two or more independent behaviors are 
performed at the same time; for example, a robot may 
explore while trying to locate objects. The independent 
sum of behavior a and behavior /3 is written as 

I P. 
Combination: two or more homogeneous behaviors (i.e., 
behaviors involving the same actuators) are combined into 
a resulting behavior; for example, a robot may have to 
avoid an obstacle while attempting to reach for an object. 
The combination of a and /3 is written as 

a+@. 

Suppression: a behavior inhibits a competing one; for 
example, the robot may give up looking for objects in 
order to reach its recharging station as soon as possible. 
If a suppresses P, we write 

a - 
0‘ 

Sequence: a behavioral pattern is built as a sequence of 
simpler behaviors; for example, an object is reached for 
only after having located it. The sequence of a and p is 
written 

moreover, if a sequence o is repeated forever, we write 

o* . 

As we shall see, a clear description of the interactions between 
simple behaviors is essential for the following Specification 
stage. 

The input and the output of the Behavior Analysis stage are 
shown in Fig. 3. 

C. Specification 

As we have already said, we assume both the robot shell 
and the initial environment to be given. In general, however, 
the sensorimotor interface of the robot has to be redesigned for 
each specific behavior. For example, we may find out that ob- 
jects in the environment can be roughly located through a sonar 
belt, and identified through a “chromatic analyzer,” that is, a 
virtual sensor classifying objects on the basis of their color. 
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In turn, the chromatic analyzer can be physically realized 
through a rotating color camera and an appropriate software 
interface. Analogously, requirements on motor control lead 
to decisions on the kind of output that the robot controller 
will have to send to the actuators. For example, suppose we 
need to control a platform moving on two tracks, connected to 
two independent motors. Assuming that the controller sends a 
message to each motor at every control cycle, we may decide 
that the controller’s output can be one of the following: move 
forward, do not move, move backward. 

Given the state of the art in robotics, robots are often unable 
to deal directly with the initial environment. For example, 
it may be necessary to modify the objects with which the 
robot has to interact, so that they can be detected, identified 
and located. It is part of the Specification stage to find out 
what must be added to the environment to make the target 
behavior possible. The environment thus equipped will be 
called Extended Environment. 

Another task of the Specification stage is to establish the 
controller architecture. In our work, we have experimented 
with various kinds of architecture, implemented via ALECSYS 
(see Section 111-A). In a previous paper [ll], we contend 
that the architecture of the controller should parallel the 
organization of the structured behavior, as established by 
Behavior Analysis. This result is obtained by allocating a 
behavioral module (BM) to each simple behavior, interactions 
among behaviors are then dealt with in various ways, that we 
now briefly describe. 

We classify architectures in the following way: 
Monolithic architectures. These are built by only one 
behavioral module, directly connected to the robot’s sen- 
sorimotor interface (see Fig. 4). 
Distributed architectures. These include all architectures 
built by more than one behavioral module. In this case 
we distinguish between two subclasses: 

Flat architectures, built by a number of behavioral 
modules, all directly connected to the robot’s senso- 
rimotor interface. In turn, different behavioral modules 
may have: independent outputs, i.e., they send their 
motor messages to different actuators (Fig. 5(a)); or 
zntegrated outputs, i.e., their motor messages are inte- 
grated in an appropnate way, and then sent to the same 
actuator (Fig. 5(b)): for example, the integration can be 
the vector sum of two movements. 

Hierarchical architectures, built by a hierarchy of lev- 
els, where the modules at level 1 are connected to the 
sensorimotor interface, and modules at level N > 1 are 
connected to at least one module of level N - 1, and 
to no module of level higher than N - 1 (see Fig. 6). 

In fact, there is a natural correspondence between architectures 
and types of behavior interaction. Referring to the classifica- 
tion of interactions proposed in the previous subsection, we 
have the following correspondence: 

Independent sum: flat architecture with independent out- 
puts. 
Combination: flat architecture with integrated outputs, or 
hierarchical architecture. 

E environment 

Fig. 4. The monolithic architecture. 

I 1 

t 
I I env ironm ent env ironm ent I 

(a) ’ (b) 

Fig. 5. Flat archtechres. 

I env ironm ent I 
Fig. 6.  h example of hierarchical architecture. 

Suppression: switch architecture (i.e., a kind of hierarchi- 
cal architecture in which higher-level modules are only 
responsible for enabling lower-level modules). 
Sequence: hierarchical architecture. 

Returning to our running example, the simple behaviors 
exploring, avoiding obstacles, locating objects, reaching for 
objects, going to the recharging station, etc., can be allocated to 
corresponding behavioral modules. As regards the interactions 
among different behaviors: exploring and locating objects will 
have independent outputs; exploring and avoiding obstacles 
will have integrated outputs; exploring and going to the 
recharging station will be connected through a switch; and 
so on. 

Finally, there is one more goal for the Specification stage. 
As we have already suggested, the BAT Methodology assumes 
that behaviors are allocated to behavioral modules by design, 
but the function of each module is developed by machine 
learning techniques. From now on we assume that a reinforce- 
ment learning system will be used. We still have to make a 
decision on the training strategy, including: 

the reinforcement program, that is the information that 
will be provided to the learning system to make the robot 
converge to the target behavior; and: 
the shaping policy, that is whether the structured behavior 
should be learned in a one-shot learning, or by a sequence 
of learning sessions, and in this last case in which order 
the various behaviors and their interactions will have to 
be learned. 

Such decisions are critical, because training is strongly re- 
sponsible for the final performance of the robot. Section I11 is 
devoted to a more detailed analysis of this fundamental issue. 
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Structured Behavior 

t 
Specification 

t 

Fig. 7. Input and output of the Specification stage 

Extended Environment 
Controller Architecture 

Design, lmplementatlon 
and Verltlcatlon of the 

Nascent Robot + 
Nascent Robot 

Fig. 8. Input and output of Design, Implementation and Verification of the 
Nascent Robot. 

Fig. 7 shows the input and the outputs of the Specification 
stage. 

D. Design, Implementation and VeriJcation 
of the Nascent Robot 

At this point we have sufficient information to design, 
implement and verify the nascent robot, that is, the robot 
endowed with all its hardware and software components, but 
prior to training. We have no special remarks on this stage. 
Designers should exploit known methodologies for hardware 
and software engineering. The input and output of this stage 
are shown in Fig. 8. 

E. Training 

Given that the training strategy has already been established, 
the current stage is only responsible for the implementation of 
such a strategy. The main problem of training is that it can be 
an extremely expensive task: even the most efficient learning 
systems converge slowly, and therefore training may require 
numerous lengthy sessions. 

In many cases of practical interest, it is possible to speed 
up training through the use of simulators. Training a simulated 
robot is obviously faster than training a real one, and involves 
only a fraction of the effort. In general, this is not sufficient, 
because in simulated environments much of the richness 
and unpredictability of the real world is lost. A reasonable 
compromise involves using a simulator to develop a first 
approximation of the final controller, that can be refined 
through direct training of the real robot. Another advantage 
of simulation is that it allows one to carry on training in 
environments that are more manageable than the real one in 

Nssaenr fbbot Training Strategy 00 + 
I 

t 
Training I 

Fig. 9. Input and output of the Training stage. 

Robot 

c 
Behavior Assessment 

+ 
Assessment 
of Learning 

Fig. 10. Input and outputs of Behavior Assessment. 

some important respect; we have exploited this aspect in the 
case presented in Section V. 

As shown in Fig. 9, the output of the Training stage is the 
final robot, whose behavior must now be assessed. 

F. Behavior Assessment 

Before introducing an assessment procedure, we need to 
clarify our notion of the quality of behavior. In general, the 
quality of a product is made up of different components. 

We say that the robot’s actual behavior is correct if it con- 
forms to the target behavior, in the environmental conditions 
that have been assumed in the specification. For example, if the 
target behavior includes reaching location P in environmental 
conditions C,  the robot’s behavior will be correct if the robot 
actually reaches P when conditions C hold. 

The robot’s behavior is said to be robust, if it conforms 
to the target even when the structure or the dynamics of the 
environment change with respect to what has been assumed 
in the requirements (without any change to its controller). For 
example, the robot may still be able to reach location P even 
if the environment contains obstacles that were not considered 
in the original description of the target behavior. 

Related to robustness is the concept of adaptiveness, which 
is understood as the robot’s ability to modify its controller so 
that its behavior adapts in real time to changes in the structure 
or the dynamics of the environment. In general, this kind of 
adaptiveness can be guaranteed by learning mechanisms. 

As with all artifacts, it is desirable to realize a system with 
a high degree of modularity. Modularity should be achieved 
at different levels: 

At the robot level: this means that the nascent robot 
should be a modular system. This aspect of modularity 
affects the design of the nascent robot, and will not be 
discussed here. 

. 
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Description of Inftial Environment 

rn Behavior Analysis 

7 Specification F-l Behavior Assessment 

I I I + I 

Robot Training 
Strategy 

4 . 
Design, Implementation 
and Verification of the Training 

Nascent Robot 

Fig. 11 A global sketch of the BAT methodology 

At the behavior level: this means that the controller 
should realize the target behavior in a modular way. This 
aspect of modularity can be enforced by good behavior 
analysis, and by adopting the controller architecture that 
best fits the structured behavior. 
At the training level: this means that the training strategy 
should be independent of low-level details about the 
robot’s architecture. This aspect will be discussed in 
Section 111. 

In general, the performance of the robot can and should be 
evaluated in quantitative terms. We distinguish two types of 
performance indexes: 

Local performance indexes (or learning indexes), that 
measure the effectiveness of the learning process (that 
is, the correspondence between what is taught and what 
is learned). These indexes allow for the assessment of the 
learning process. 
Global performance indexes, that measure the conespon- 
dence of the robot’s behaviors with the target behavior 
(as defined by the corresponding requrrements). These 
indexes allow for the assessment of the robot’s global 
behavior. 

In this paper the local performance index is defined as 

where t is the number of robot moves from the beginning of the 
experiment and R(t) is the number of moves that have been 
positively reinforced from the beginning of the experiment. 

The global performance index was computed as 

where A(&) is the number of achievements from the beginning 
of the experiment (i.e., the number of times the agent has 
reached the goal). Typically, this measure is used when A(t) 
is not fixed in advance, as in the experiments of Section IV. 
When the number of achievements is predefined, as in the 
experiments of Section V, G is computed as the total number 
of moves necessary to obtain them. 

Fig. 10 shows the input to and output from the present stage. 
To conclude this section, Fig. 11 summarizes all the stages 

previously described. The two bidirectional arrows connect the 
outputs of the Assessment stage with the documents against 
which the robot’s behavior has to be evaluated. 

111. ABOUT LEARNING AND TRAINING 

A. 71ze Role of the Trainer 

In the BAT methodology, training plays a fundamental 
role. It involves four components: the robot to be trained, 
its environment, a learning system, and a trainer. Kinds of 
learning systems that have proved to be particularly fit for 
robot training are the ones based on reinforcement learning. 
In reinforcement learning, all or some of the actions performed 
by the robot receive a positive or negative reinforcement from 
the trainer. Positive reinforcements. or rewards, indicate that 
the action performed is correct, given the predefined target 
behavior and the current environmental situation. Negative 
rewards, or punishments, indicate that the action perfosmed is 
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considered incorrect. The information contained in reinforce- 
ments is exploited by the learning system to converge toward 
a robot controller that implements the target behavior in the 
given environment. 

A first classification of reinforcement learning systems 
distinguishes between immediate reinforcement learning and 
delayed reinforcement learning. In the former, reinforcements 
are provided by the trainer for each single action perfomed by 
the robot. In the latter, delayed reinforcements refer to a whole 
sequence of actions, that in principle can be arbitrarily long. 
As an example, let us assume that a robot is being trained 
to reach object A. In immediate reinforcement, the trainer 
will have to reinforce the robot at each elementary movement; 
typically, the robot will be rewarded if it gets closer to A, 
and punished otherwise. In delayed reinforcement, the robot 
is rewarded if and only if it reaches A; such a reward has to be 
considered as a positive evaluation of the movements that led 
it to reach A.  Both Learning Classifier Systems2 (LCS’s) [3], 
the model we used to implement our learning system, and Q- 
learning [25] are typical examples of reinforcement learning 
systems3. Both methods can be given immediate or delayed 
reinforcements, the main difference being the time they require 
to converge on good action policies, usually shorter with 
immediate reinforcement, and the quantity of information the 
trainer needs to evaluate the robot moves, often greater for 
immediate reinforcements. 

There are deep differences between immediate reinforce- 
ment and delayed reinforcement that should be thoroughly 
appreciated. Delayed reinforcement learning has a great con- 
ceptual advantage that can be illustrated through the previous 
example. If the robot has to be rewarded only when it 
reaches object A,  it is sufficient to endow the robot with 
a specific sensor to detect that A has been reached. On the 
contrary, immediate reinforcement involves an evaluation of 
the distance between the robot and A, to be repeated after 
each movement, which may be difficult in many practical 
applications. 

On the other side, delayed reinforcement learning has the 
drawback of being more complex and converging much more 
slowly than immediate reinforcement; in fact, it converges so 
slowly that it is completely useless in most practical cases. 
A good solution to this problem might be to exploit both 
mechanisms, in order to get the best out of each. Even if 
a few steps in this direction have already been made [5], [26], 
no final solution has been proposed yet. Throughout this paper 
we shall assume that training is achieved through immediate 
reinforcement learning (henceforward simply called learning). 

Given that a sufficiently efficient learning system is avail- 
able, the main problem of training is to teach the right 
thing-that is, to make the robot converge precisely to the 
desired behavior. This means that the most critical component 
is the trainer. 

Often, the target behavior cannot be taught directly. Con- 
sider again the behavior of reaching object A. In fact the trainer 

2See the brief description of ALECSYS in the next subsection, or [9], [lo] 

3The similarities existing between the LCS and &-learning have been 
for more details. 

recently discussed in Dorigo and Bersini [lo]. 

Fig. 12. Why moving in the right direction may not be enough. 

cannot just reward the action of reaching A: rather, it has to 
reward the robot when it gets closer to A.  But this means that 
the robot is being taught to approach A, not to reach it. This 
is a consequence of a limitation of any immediate learning 
strategy. 

Moreover, the robot might be able to identify the direction 
in which A is located, without knowing A’s distance. In this 
case, the robot cannot even learn to approach A: at most, it 
can learn to move in A’s direction. This is a consequence of 
a sensory limitation. 

Suppose now that the robot has learned to move in A’s 
direction. Doing so does not logically imply that the robot will 
eventually reach A. In fact, A might just move too fast to be 
ever caught by the robot! The point is that the learned behavior 
(moving in A’s direction) converges to the target behavior 
(reaching A )  only if the environment satisfies a number of 
constraints (e.g., A’s average velocity could be known to be 
lower than the robot’s one). 

This simple example shows that: 
Some target behaviors cannot be directly taught through 
immediate reinforcement learning. Instead of teaching a 
target behavior a, the trainer has to teach a behavior p, 
such that doing ,L? achieves a if the environment satisfies 
a number of constraints. 
What can be directly taught depends on general limi- 
tations of both the immediate training strategy and the 
robot’s sensory apparatus. 

As a consequence, assessing the effectiveness of learning and 
assessing the correspondence of the robot’s final behavior with 
the target behavior are two different things. A robot may have 
a local performance index of loo%, and completely fail to 
carry out the target behavior (for example, the robot may have 
learnt to move in A’s direction, but still be unable to reach 
A-see Fig. 12). 

Another problem related to the trainer is that rewarding 
or punishing an action presupposes the ability to perceive 
its effects. In principle, the trainer could be a human being, 
observing the robot’s behavior and providing reinforcements 
according to his or her understanding of the target behavior. 
In practice, such a solution is seldom viable because human 
beings tend to be rather inaccurate in their evaluations, and 
too slow with respect to the robot’s perception-action cycle. 
Therefore, a trainer is generally a computer program, designed 
to give reinforcements according to the robot’s actions. As 
we shall discuss in Section IV-C, this may require additional 
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winning is proportional to the amount of strength offered. 
Winning rules acquire the right to send their messages 
to actuators or to other rules at the next time step. The 
rules that win the auction pay their bids to those rules 
which posted at the preceding time step the messages by 
which they were activated, or to the external environment 
if the message was sent by sensors. Rules which post 
a message (i.e., win the auction) and whose message 
causes an action, receive reinforcement by the trainer. 
Reinforcement can be either positive, i.e., rewards, or 
negative, i.e., punishments. Rules which post a message 
and whose message matches a winning rule at the next 
time step, receive the amount of strength paid by the 
matching rule. In this way reinforcement flows backward 
from the trainer to the external environment in the form 
of rule strengths. In addition rules lose a small amount 
of their strength at each cycle (this is the so-called life 
tax), so rules that never participate in the auction and that 
never win the auctions will slowly decrease in strength. 
The rule discovery algorithm: The rule discovery al- 
gorithm overwrites low strength rules with new rules 
generated by a genetic algorithm [16]: new rules are cre- 
ated by the recombination and mutation of high strength 
rules. 

IV. CASE 1: AUTONOMOUSE V 
In this section we instantiate the BAT methodology using 

a simple robot, called AutonoMouse V, as a running ex- 
ample. As this section will be paradigmatic of the way the 
BAT methodology should be applied, its organization strictly 
follows the sequence of stages previously discussed in Section 
11. The reader will therefore find in Subsection IV-X the 
description of the output of the activity carried out, within 
the AutonoMouse V application, following the methodology 
as described in Subsection 11-X. 

A. Outputs of the Application Description 
and Behavior Requirements Stage 

Description of Robot Shell: AutonoMOuse V (AM here- 
after) is a small (35 cm long plus 26 cm for the tail, 15 cm 
wide, and 28 cm high) robot (Fig. 13(a)). Its sensory apparatus 
is: two light sensors, one sonar, three whiskers, and a “change 
of direction” sensor (see Fig. 13(b)). It is also provided with 
two motors which control two tracks. The robot carries a 
battery which provides it with three hours of autonomy. 

The light sensors are two photodiodes which are positioned 
within a structure which make them partially directional de- 
vices. The two eyes together cover a 270” zone, with an 
overlapping of 90’ in front of the robot (see Fig. 14). They 
can distinguish 256 levels of light intensity. 

The sonar is highly directional (it detects obstacles in front 
of AM) and can sense an object as far as 10 meters away. It 
returns a number between 0 and 256 which is an estimate of 
the distance to the obstacle. 

The three whiskers, placed on the front of AM (see Fig. 15), 
are devices that change state when AM bumps into an obstacle. 
The directional sensor is a rod, which we call a tail, with 

Fig. 14. AutonoMouse V light sensors. 

Fig. 15. AutonoMouse V whiskers. 

a wheel at its end which can rotate around the rod axis. It 
therefore does not rotate when AM moves forward without 
turning, while it rotates when AM turns. It’s resolution is 
about 1.2’. 

Each AM motor has nineteen activation speeds: nine for- 
ward, nine backward, and one for not moving. 

AM has some onboard computing capabilities to transform 
sensory input into digital messages in the format used by 
the learning algorithms. The learning algorithms run on a 
transputer board in a host computer connected to AM via a 
4800-baud infra-red link. 

Description of the Initial Environment: AM moves in a 
office-like environment lightened by artificial lights. The 
terrain is smooth, and people do not interfere with the robot’s 
movements. In AM’s environment there are no obstacles, 
except for the walls and for the obstacle specifically used in 
experiments. 

Requirements on Target Behavior: In this simple applica- 
tion we want our robot to learn to search and follow a light 
moving at a speed which is comparable to the speed of AM. 
Now and then the light disappears behind an obstacle; in these 
occasions AM should go around the obstacle to see whether the 
light is on the other side and then start to follow it again (see 
Fig. 16). We call the target behavior the SearchdlFollowLight 
behavior. 

B. Output of Behavior Analysis 

The target behavior of our robot, which was described 
informally in Section IV-A, can be expressed as the following 
structured behavior 

ApproachLight 
SearchLight ’ 

ReachLight = 

Light-approaching and light-searching are the two basic be- 
haviors comprising the structured behavior, and the interaction 
among them is suppression. Light-approaching is active when 
the light is seen. Light-searching is a rather complex behavior, 
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90” 

I 

Fig 17 The pleated wall 

Fig 16 The experimental 
architecture was compared with other possible solutions both 
in real world experiments and in simulation; see [7]). In this 

which includes: turning around to look 
approaching the wall 

ard~ikcture the light-approaching and the light-searching be- 
haviors (basic behaviors) are coordinated by a switch module, 

around the wall when which learns to choose which basic behavior to give priority to. 
Training Strategy: As we said in Section 11-C, there are two 

lor 

C. Outputs of the SpeciJication Stage 

closer than 1.5 meters). 

determinations to be made regarding the training strategy: the 
reinforcement program and the shaping policy. 

Reinforcement Programs: The reinforcement program is in 
charge of giving reinforcements after each move of AM. 
It is usually composed of a different subprogram for each 
basic behavior. In AM we defined the following reinforcement 
programs for each of the two behaviors identified in Section 

Light-approaching reinforcement program: After each 
move, the robot is rewarded if its distance from the light 
decreases, otherwise it is punished. Changes in distance are 
evaluated by measuring the change in intensity of light as 
seen by the two AM eyes. AM eyes have therefore a double 
use: as AM sensors (in this case they are thresholded), and 
as trainer sensors (in this case their full granularity is used 
to evaluate changes in light intensity). 
Light-searching reinforcement program: Light-searching is 
not as easy to define as light-approaching, in that it allows 
the definition of a few different searching strategies. The 
main goal of this behavior is to search behind obstacles 
to see whether the light is there. For example, the agent 
could first use sonars to locate the edge of’ the obstacle, 
and then move directly in that direction. Another possible 
strategy could be to use the sonar to locate an obstacle, 
then approach it, and finally turn around it using bumpers to 
maintain contact with the obstacle (this could be done with 
a reinforcement program that rewards a right turn when the 
left bumper is on, and a left turn when it is off; in this way 
AM will learn to move along the obstacle with a zig-zag 
kind of motion). These, and a few other, strategies were 
investigated by Dorigo and Maesani [7]. In this paper we 
used the first strategy, which works as follows: if the sonar 
senses an obstacle, then AM is rewarded if it moves forward 
and at the same time it turns in the same direction of the 
previous move. As soon as the sonar does not sense the 
obstacle any longer, AM is rewarded if, while still moving 
forward, it turns in the opposite direction (“move forward 

IV-B : 
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Fig. 18. ’ The light-searching behavior. 

while turning” moves are obtained by setting one motor to 
speed two and the other to speed one). This reinforcement 
policy generates an obstacle approaching trajectory like the 
one presented in Fig. 18. 
Shaping Policy: The shaping policy used was modular. 

First we trained the two basic behaviors, then we froze them 
(that is, their learning algorithms were switched off), and we 
let the coordination behavior learn, 

D. Outputs of the Design, Implementation 
and Verijication Stage 

As we said in Section 11-D, this step will exploit standard 
hardware and software engineering methodologies. All the 
design and implementation details regarding this stage of the 
BAT methodology are documented in [7]. 

E. Output of the Training Stage 

AM was trained using the training strategy defined in 
Section IV-C. We also compared the results obtained using the 
switch architecture with modular shaping, with those obtained 
training the two basic behaviors in a simulated environment 
and then copying the two rule sets into the two basic behavioral 
modules used to control the real robot. After transferring the 
two rule sets, training continues using the same training and 
shaping strategies as in the previous experiment. 

F. Output of the Behavior Assessment Stage 

This phase of the Bat methodology is devoted to assessing 
the degree of learning achieved by the learning agent. Two 
tools are useful for this assessment: the local and the global 
performance indexes. Figs. 19 and 20 report the behavior 
of L(t)  and G(t) ,  as defined in Section 11-F, for both the 
switch architecture (SA) and the switch architecture with initial 
knowledge (SAIK) respectively. 

Both indexes show that, given the same amount of learning 
cycles, starting with some initial knowledge developed in 
simulation helps. None of the architectures achieves very high 
local performance. This is mainly due to limited learning 
time; in fact, we stopped the experiment when learning was 
still going on. A longer experiment we ran showed that 
after 12000 AM moves the system was still learning. We 
stopped experiments after 6000 AM moves because of time 

I 
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Fig. 19. Local index: Comparison between the SA and the SAIK architec- 
tures (with the local index, a higher value reflects a better performance). 

1 2 0 0  c ;;; 

3 50 
I‘ 

04 1 

0 1000 2000 3000 4000 5000 6000 

Cycles 

Switch Architecture - - - - - - - - - Switch Architecture with 
Initial Knowledge 

Fig. 20. Global index: Comparison between the SA and the SAIK architec- 
tures (with the global index, a lower value reflects a better performance). 

constraints (6000 moves take about one hour of time). Graphs 
are averaged on 5 runs. 

In this experiment the assessment of global behavior is 
somewhat arbitrary, given the highly research-oriented nature 
of the task. G(t)  decreases as L( t )  increases, and this is an 
indication of the fact that the training strategy is somewhat 
successful in driving the learning system toward better global 
performance. Whether the given training strategy is a good 
one or not can be evaluated only by comparing it with other 
training procedures such as the one proposed in Section IV-C. 
In a more application-oriented task, G(t)  would be compared 
against quantitative requirements on the target behavior. 

V. CASE 2: HAMSTER 
A second example of the application of the BAT method- 

ology is HAMSTER, a mobile robot based on a commercial 
platform, whose task is to bring “food” to its “ne~ t . ”~  We 
shall not describe all steps in the development of this robot, 
but confine ourselves to the description of the main differences 
with respect to AM. 

sThis robot’s name is mainly justified by its target behavior. It is also an 
acronym, namely Highly Autonomous Mobile System TrainEd by Reinforce- 
ments. 
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Fig. 21. A picture of HAMSTER 

The chief features of HAMSTER are that it combines ‘‘innate” 
(i.e., prewired) and learned behaviors, and that training was 
carried out in a simulated environment and then transferred to 
the physical robot. 

A. HAMSTER’S Shell 

HAMSTER’S shell is Robuter, a commercial platform pro- 
duced by RoboSoft (see Fig. 21). It is 102 cm long, 68 cm 
wide and 44 cm high. The configuration we used has a belt of 
24 Polaroid sonars, surrounding the whole platform. Motion 
is produced by two motors acting on two independent wheels. 

B. The Hoarding Behavior 
The target behavior is food hoarding, that is, to collect 

food pieces and to store them into HAMSTER’S nest. The 
environment is a room of size 14 x 13.3 m, with various 
obstacles (see Fig. 22). Each piece of food is a cylinder 
(diameter 30 cm, height 70 cm) which slides on the floor 
when pushed by HAMSTER. The nest is located in a corner 
of the room. 

The target behavior can be decomposed as follows: 

HoardFood = (LeaveNest . GetFood . ReachNest)* 
+ AvoidObstacles. 

C. SpeciJication 

Extension to the Robot’s Shell and to the Environment: Two 
rigid metal bars have been adapted to the Robuter’s front so 
that food cylinders do not slip to either side when they are 
pushed. A frontal proximity sensor, based on the frontal sonars, 
allows HAMSTER to sense whether an object in front is far, 
fairly close, very close, or at contact. The food cylinders are 
wrapped into violet paper, and the nest’s position is marked by 
another cylinder (diameter 30 cm, height 130 cm) wrapped in 
pink paper. HAMSTER uses a frontal color camera to identify 
the position of food cylinders and of the nest, which are 
distinguished on the basis of color. Moreover, the nest sensor 
exploits an odometer (that is, a sensor that estimates the robot’s 
position and heading), to approximately identify the position 
of the nest when this is not visible. 

Fig. 22 Map o f  HAMSTER’S envlronment. - 

Fig. 23 Controller architecture for HAMSTER. 

project was to combine learned and innate behavior modules. 
We chose to program AvoidObstacles directly, implementing 
a potential-based avoidance mechanism exploiting Robuter’ s 
sonars (see for example [19]). 

The remaming part of the hoarding behavior, that is the 
food-fetching cycle, can be analyzed as a pseudo-sequence 
[6].  This means that at each control cycle there is enough 
information coming from the sensors to decide which of the 
three sub-behaviors should be active. More precisely: 

* When the robot is in the nest: leave the 
way that previously captured food is left 
When the robot is out of the nest and no food is captured: 
get a piece of food. 
When the robot is out of the nest and a piece of food is 
captured: reach the nest, pushing the piece of food. 

We adopted a hierarchical controller architecture, with four 
behavioral modules at Level 1, and a coordinator module 
at Level 2. Each Level-1 module proposes a direction for 
the robot’s movement. The coordinator chooses one of the 
proposed moves on the basis of the current situation, which is 
then combined with the move proposed by Avoidobstacles (see 
Fig. 23). In general, this combination amounts to some kind 
vector sum of the moves proposed by Avoidobstacles and by 
the rest of the system. There is, however, a more complex case. 
When HAMSTER is nearing a piece of food, the front part of 
the Avoidobstacle behavior has to be inhibited, otherwise the 
food could never be captured. Inhibiting obstacle avoidance in 
such cases is part of the coordinator’s task. 
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mean 
standard deviation 

(a) @) (c) 
Fig. 24. The three experimental situations. Rectangular shaded areas are obstacles, black circles are food pieces. The HAMSTER is shown at its initial 
location, that is in the nest (shaded circle). 

situation a situation b situation c 
365.3 450 313.5 
27.77 127.30 34.33 

Training: HAMSTER was trained through a modular shaping 
policy: that is, each learned Level-1 module was trained 
separately, and then frozen. The Coordinator was then trained 
to achieve the target behavior. 

We decided to use very simple reinforcement programs 
(RP’s). For example, the ReachNest behavior was rewarded if 
and only if the distance from the nest decreased. This decision, 
however, had a very important consequence, in that it obliged 
us to carry out training in a simplified environment, that is, 
one without obstacles. The point is that training the robot while 
obstacle avoidance is active would have forced us to embed 
a model of obstacle avoidance into the RP.  The reason is that 
the RP would be unable to evaluate HAMSTER’S move properly 
without knowing the effects of obstacles on the robot. But then, 
the Rp would have been very complex. 

In order to eliminate the interference of the innate AvoidOb- 
stacles behavior, training had to be carried out in an obstacle- 
free environment. As we had no such physical environment 
available, all training was carried out in a simulated environ- 
ment, and the resulting modules were then transferred to the 
real robot. In fact, we consider the transfer of the learned 
controller from a simulated environment to be an interesting 
option in its own respect. 

D. Assessment6 
The degree of learning was evaluated through the local 

performance indexes of the basic behaviors, computed in the 
simulated environment with no obstacles. As expected, we 
obtained reasonably high values (from .75 to 35 ,  depending 
on the specific behavior and on different RP’s we have 
experimented with). We did not compute the local performance 
index in the environment with obstacles, because it would 
have been meaningless: For example, during the ReachNest 
behavior the robot would have been punished if it moved away 
from the nest in order to avoid an obstacle. 

We then transferred the controller onto the real robot, and 
ran some experiments in the real environment (with obstacles). 
In this environment it is meaningful to evaluate the global 
performance, computed as the number of moves necessary to 
accomplish the task, averaged over a set of sample situations. 

6Given that they are not essential to this example, we do not report here 
on the Design, Implementation and Verification of the nascent robot, nor on 
the details of the Training task. 

More precisely, we chose three different initial situations (see 
Fig. 24), all including two pieces of food, and ran ten trials for 
each of them, recording the total number of cycles necessary 
to complete the hoarding of both pieces of food. 

Finally, we computed the mean and the standard deviation 
of such data (Table I>. In fact, in situation c, HAMSTER was 
unable to accomplish the task five times out of ten, due to the 
difficulty of getting the piece of food in front of the initial 
robot position and then avoiding the close obstacle. For this 
situation, the data reported are relative to the five successful 
trials only. 

E. Conclusions 

The HAMSTER project shows that it is feasible to implement 
a robot’s controller starting from both innate and learned 
behavioral modules. However, to keep the RP’s as simple as 
possible it is necessary to carry out training in environments 
where the innate behaviors are not active. In our case, this 
required that we carry out training in a simulated environment, 
and then transfer the learned controller to the physical robot 
for the final assessment. 

Whether the global performance of HAMSTER is to be 
considered acceptable is difficult to say. In a real application, 
some minimum performance level would have been estab- 
lished in advance. In our case, we can only say that an 
informal observation of the behavior gave us the impression 
that HAMSTER was performing reasonably well. 

VI. CASE 3: THE CRAB ROBOTIC ARM 

For our final example of the BAT methodology we used an 
industrial manipulator, namely an IBM 7547 with a SCARA 
geometry (Fig. 25(a)). In this section, we shall refer to this 
robot as CRAB (Classifier-Based Robotic Arm), a name that 
indeed fits well the shape of its arm. 
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(b) 
Fig 25 
the action space. 

The CRAB manipulator. (a) picture, and @) schematic drawing of 

CRAB is a two-link robotic arm. The first link can rotate 
200” around the shoulder joint, and the second link can rotate 
160°, with respect to the first link, around the elbow joint. As 
a result the end effector, attached to the wrist, can cover the 
gray area shown in Fig. 25(b). The actuators are two motors, 
acting on the shoulder and the elbow joints, that respectively 
rotate the first link (with respect to the fixed base) and the 
second link (with respect to the first link). 

The target behavior we taught to CRAB is a very simple one, 
namely to have the end effector reach a stiill object (“food”), 

Fig. 26. Why a sector-based sensor must be placed on the end effector. (a) 
the position of f cannot be distinguished from the position of the end effector; 
(b) P can be approached with any degree of precision. 

placed in the light gray area of Fig. 25@) (the “foraging area”). 
In this case, the target behavior itself is a simple behavior, 
and therefore Behavior Analysis is absent. The reason why 
we were interested in such a simple behavior is that, given the 
polar geometry of CRAB, ALECsYs has to learn behavior rules 
that are very different from the ones controlling the mobile 
robots described in the previous sections. In particular, the 
relation between the actions (i.e., elementary rotations of the 
two links) and the resulting movement of the end effector 
involves complex trigonometric transformations. 

In CRAB’S environment, there is exactly 
the foraging area at any moment. Each time 
it, the piece of food is moved to a new ran 
the foraging area. To be sensed by the robot, the piece of food 
emits infrared light that can be received by an appropriate 
sensor. Deciding where to place such a sensor is a simple, 
interesting Specification problem. 

A natural agent using m s  to gr 
endowed with two types of sensory cap 
to know the relative position of the limbs; and visi 
identify the relative direction and distance of the object to 
be grasped. Moreover, the visual sensor would be more or 
less rigidly coupIed with the shoulder. 

The problem with our artificial agents is that ALECSYS can 
only deal with a very limited amount of input information, 
largely insufficient to determine relative distances and angles 
of objects with the required degree of precision. Therefore, for 
both proprioception and “infrared vision” we adopted sector- 
based sensors as we, did with our mobile robots. However, 
a sector-based sensor placed on the shoulder is structurally 
unable to precisely locate an object (see Fig. 26(a)). There i s  
only one possibility for a sector-based sensor to guide the end 
effector exactly to a given point: namely, that the sensor itself 
is placed on the end effector (Fig. 26(b)). 

ulation showed that it is enough to have information about 
the elbow angle, that is, the angle between the first and the 
second link [13]. The sensorimotor apparatus of Scara was 
then specified as follows: 

A proprioceptive sensor providing information on 
whether the elbow angle is between 0 and SO”, or 
between 81 and 160”. 
An infrared sensor, placed on the end effector, telling the 
robot in which of 8 equal sectors the food is located (all 
sectors are of 45”). 

As regards proprioception, experiments carried on by 
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Two motor effectors, one each for the elbow and shoulder 
joints. These motors can rotate right (4” for both joints), 
rotate left (4’ for both joints) or stay still. 

Finally, for the controller architecture we chose a monolithic 
architecture, given that the target behavior was made up by a 
single, simple behavior. 

The infrared sensor we implemented allowed us to locate 
the food piece in the correct sector with good precision, but 
gave us a rather noisy estimate of the distance between the 
food piece and the end effector. Note however that information 
about this distance is not used by the learning agent, but only 
by the RP to compute reinforcements. In fact, each move 
was reinforced proportionally to the variation of the distance 
between the end effector and the food piece, as estimated by 
the infrared sensor. 

So far we run only a few pilot experiments with CRAB? 
In a typical experiment, to speed up learning we started 
from an initial rule base obtained from a training session 
of 25000 cycles run in a simulated environment, and ran 
a supplementary training session of 2,500 cycles with the 
real robot. At the end of this training session we obtained 
a local performance index of 0.86, showing a limited increase 
in performance from the initial rule base obtained through 
simulated pre-training (a test run on the real robot with such 
an initial rule base gave us a performance of 0.83). The 
result suggests that the supplementary training session on 
the real robot adapted the rule base learned in the simulated 
environment to the more noisy physical sensor. To confirm this 
hypothesis, we are presently running a number of experiments 
involving longer training sessions. 

As a whole, it appears that ALECSYS is able to learn how 
to reach a still object with a polar motor apparatus. This is 
a very promising result, if one considers the importance of 
manipulators in robotic applications. 

VII. CONCLUSION AND FUTURE WORK 
In this article we have presented a methodology for the 

development of autonomous robots. The main features of 
such a methodology are the attention paid to the analysis of 
behavior, the integration of machine learning techniques with 
other aspects of robot design, and the independent assessment 
of learning and of the global behavior. We believe that the 
three cases we have analyzed show that the methodology is 
sound and can lead to realizations of practical interest. In 
particular, we have shown that complex behavior can be taught 
through modular shaping, that learned behavioral modules 
can be integrated with hand-coded modules, that at least in 
some cases it is possible to use behavioral modules learned 
in simulated environments as a starting point for real robot 
training, and that our methodology is applicable to robots of 
different types (like mobile platforms and robotic arms). 

Needless to say, much work remains to be done. A first 
extension will have to be in the direction of more complex 
behaviors. This will require a larger amount of input informa- 
tion to be processed, and therefore will call for more powerful 

7More experiments are currently being carried out, in order to gather a 
significant sample. 

learning mechanisms. In order to relieve designers from part 
of their burden, learning techniques might be extended to 
other aspects of robot development, like the architecture of 
the controller, This means that the structure of behavioral 
modules should emerge from the learning process, instead of 
being predesigned. Another interesting extension to learning 
would be the possibility of using delayed reinforcements, that 
is, reinforcements that are not given at each single step, but 
only when a certain goal is achieved (see [12]). 

In our work, we have noticed that a major bottleneck in 
the achievement of complex behavior is the richness of input 
information. In particular, realistic applications in complex 
environments will require the robot to recognize and locate 
“passive objects,” that is, objects that are not specially pre- 
designed in order to be sensed by the robot. 

As regards the BAT methodology, we expect it to remain 
fairly stable in the future. This will allow us to design and 
implement a number of software tools to help the designer 
in the process of robot development. Tasks that strongly 
need such tools are Behavior Analysis and Specification, with 
particular regard to the definition of sensors. 

Finally, aspects of Behavior Engineering that deserve a 
deeper analysis are the concept of quality of behavior, and 
the related issue of behavior assessment. An appropriate set of 
behavior metrics will have to be developed, if this area is to 
find its way into the field of industrial applications. 
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