
http://adb.sagepub.com
Adaptive Behavior

DOI: 10.1177/105971239400200302
 1994; 2; 247 Adaptive Behavior

Marco Colombetti and Marco Dorigo
 Training Agents to Perform Sequential Behavior

http://adb.sagepub.com/cgi/content/abstract/2/3/247
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 On behalf of:

 International Society of Adaptive Behavior

 can be found at:Adaptive Behavior Additional services and information for

 http://adb.sagepub.com/cgi/alerts Email Alerts:

 http://adb.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://www.isab.org.uk
http://adb.sagepub.com/cgi/alerts
http://adb.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://adb.sagepub.com

Training Agents to Perform Sequential
Behavior

Marco Colombetti*
Politecnico di Milano

Marco Dorigo†‡
Université Libre de Bruxelles

This article is concerned with training an agent to perform sequential behavior.
In previous work, we have been applying reinforcement learning techniques to
control a reactive agent. Obviously, a purely reactive system is limited in the
kind of interactions it can learn. In particular, it can learn what we call
pseudosequences—that is, sequences of actions in which each action is
selected on the basis of current sensory stimuli. It cannot learn proper
sequences, in which actions must be selected also on the basis of some
internal state. Moreover, it is a result of our research that effective learning of
proper sequences is improved by letting the agent and the trainer
communicate. First, we consider trainer-to-agent communication, introducing
the concept of reinforcement sensor, which lets the learning robot explicitly
know whether the last reinforcement was a reward or a punishment. We also
show how the use of this sensor makes error recovery rules emerge. Then we
introduce agent-to-trainer communication, which is used to disambiguate
ambiguous training situations—that is, situations in which the observation of
the agent’s behavior does not provide the trainer with enough information to
decide whether the agent’s move is right or wrong. We also show an alternative
solution to the problem of ambiguous situations, which involves learning to
coordinate behavior in a simpler, unambiguous setting and then transferring
what has been learned to a more complex situation. All the design choices we
make are discussed and compared by means of experiments in a simulated
world.

Key Words: classifier systems; genetic algorithms; training; sequential
behavior; autonomous agents

Introduction
’

; .

In this article, we explore the application of evolutionary reinforcement learning
to the development of agents that act in a given environment. Machine learning
techniques have been widely adopted to shape the behavior of autonomous agents

* Progetto di Intelhgenza Artificiale e Robotica, Dlpartlmento di Elettronica e lnformazione, Piazza Leonardo da Vmci,
32, 20133 Milano, Italy; E-mail: colombet@elet.pohml.lt

t IRIDIA, Avenue Franklin Roosevelt 50, CP 194/6, 1050 Bruxelles, Belgium; E-mail: mdongo@ulb.ac.be
$ On leave from Progetto di Intelhgenza Artificiale e Robotica, Dipartimento di Elettronica e Informazione, Politecnico

di Milano, Piazza Leonardo da Vmct 32, 20133 Milano, Italy; dongo@elet.pohmi.lt.

@ 1994 The Massachusetts Institute of Technology

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

248

in partially unpredictable environments. Most often, agents are viewed as reactive
systems-that is, as systems whose actions are completely determined by current

sensory input. Several works in the literature, both theoretical and experimental,
show that reactive systems can learn to carry out fairly complex tasks (see, for example,
Mahadevan and Connell, 1992; Dorigo and Colombetti, 1994); however, there are

interesting behavioral patterns that just cannot be exhibited by reactive systems, in
that they are not determined by current perceptions alone.

An important class of nonreactive tasks is the class of sequential behavior patterns-
that is, behaviors in which the decision of what action to perform at time t is

influenced by the actions performed in the past. The problem of learning sequential
behavior has been tackled by Singh (1992) in the context of Q-learning. In this

article, we present a different approach to the problem of learning sequential behav-
ior patterns, viewed as the result of coordinating separately learned basic behaviors
(Colombetti and Dorigo, 1992).

The work presented here is part of a wider research effort aimed at developing
agents capable of complex behavior through both explicit design and machine learn-
ing. In our research, which has a strong experimental orientation, we use ALECSYS,
a software tool designed by Dorigo (1992). ALECSYS allows one to implement an
agent as a network of interconnected modules, each module being a learning clas-
sifier system (Booker, Goldberg, and Holland, 1989). The system runs in parallel
on a network of transputers and has been connected to both simulated agents and

physical robots. Although, in principle, ALECSYS allows one to train agents through
delayed reinforcements, in the work presented here the behavior of agents has been
shaped through a step-by-step reinforcement scheme, consisting of reinforcements

provided after each action by an external trainer observing the agent’s behavior.
Our general methodology is as follows: First, we define an environment, an agent,

and a target behavior that we want the agent to exhibit in the environment. Then

we design a sensorimotor interface and a modular control architecture for the agent;
typically, we use a hierarchical architecture wherein lower-level modules are in charge
of implementing basic reactive responses and higher-level modules are in charge of
coordinating such responses to execute the overall task. We also design a training
policy (i.e., a strategy to train the agent) and implement the trainer as a computer
program in charge of giving reinforcements to the agent. Finally, we plan and execute
a number of experiments to determine whether the target behavior emerges and to

analyze the effect of different design choices on the agent’s performance.
In this article, we present the results of a research effort aimed at developing

sequential behavior in a simulated agent. In particular, we concentrate on the problem
of coordinating previously learned basic behaviors in such a way that a sequential
behavior pattern will emerge.

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

249

2 Reactive and Dynamical Behavior

As we have already pointed out, the simplest class of agents is that of reactive systems,
agents that react to their current perceptions (Wilson, 1990; Littman, 1992). In a

reactive system, the action a(t~ produced at time t is a function of the sensory input
s(t) at time t:

As argued by Whitehead and Lin (1994), reactive systems are perfectly adequate
to Markov environments or, more specifically, when (1) the greedy control strategy
is globally optimal, which means that choosing the locally optimal action in each
environmental situation leads to a course of actions that is globally optimal, and
(2) the agent has complete knowledge of both the effects and the costs (or gains) of each

possible action in each possible environmental situation. In this case, there are well-
known learning schemes, such as Q-learning (Watkins, 1989; Watkins and Dayan,
1992), that are demonstrably able to discover the optimal control strategy through
experience. In other words, a learning reactive agent can improve its performance
so that it asymptotically converges to the optimal control strategy.

Although fairly complex behaviors can be carried out in Markovian environments,
very often an agent cannot be assumed to have complete knowledge about the effects
or costs of its own actions. Non-Markov situations are basically of two different
types, hidden-state environments and sequential behavior.
A hidden state is a part of the environmental situation that is not accessible to the

agent but is relevant to the effects or costs of actions. If the environment includes

hidden states, a reactive agent cannot select an optimal action; for example, a reactive

agent cannot choose an optimal movement to reach an object that it does not see.

Regarding sequential behavior, suppose that at time t an agent has to choose an

action as a function of the action performed at time t - 1. A reactive agent can

perform an optimal choice only if the action performed at time t - 1 has some

characteristic and observable effect at time t-that is, only if the agent can infer
which action it performed at time t - 1 by inspecting the environment at time t. For
example, suppose that the agent has to put an object in a given position and then has
to remove the object. If the agent is able to perceive that the object is in the given
position, it will be able to sequence appropriately the placing and removing actions.
However, a reactive agent will be unable to act properly at time t if (1) the effects of
the action performed at time t - 1 cannot be perceived by the agent at time t (this
is a subcase of the hidden-state problem), or (2) no effect of the action performed
at time t - 1 persists in the environment at time t.

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

250

To develop an agent able to deal with non-Markov environments, one must go
beyond the simple reactive model. We say that an agent is dynamical if the action a(t~
it performs at time t depends not only on its current sensory input s(t~ but also on
its state x(t) at time t; in turn, such state and the current sensory input determine
the state at time t + 1:~ 1

In this way, the current action can depend on the past history.
An agent’s states can be called internal states to distinguish them from the states

of the environment. They are often regarded as memories of the agent’s past or as
representations of the environment; however, in spite (or because) of their rather
intuitive meaning, terms such as memory or representation can easily be used in a

confusing way. Take, for example, the packing task proposed by Lin and Mitchell
(1992) as an example of a non-Markovian problem:

~ _

Consider a packing task which involves 4 steps: open a box, put a gift into it,
close it, and seal it. An agent driven only by its current visual percepts cannot
accomplish this task, because when facing a closed box the agent does not
know if the gift is already in the box and therefore cannot decide whether to
seal or open the box. (p. 1)

It seems that the agent needs to remember that it has already put a gift into the box.
In fact, the agent must be able to assume one of two distinct internal states, say 0
and 1, so that its controller can choose different actions when the agent is facing a
closed box. We can associate state 0 to &dquo;the box is empty,&dquo; and state 1 to &dquo;the gift
is in the box.&dquo; Clearly, the state must switch from 0 to 1 when the agent puts the

gift into the box, but now the agent’s state can be regarded as a memory of the past
action &dquo;put the gift into the box&dquo; or as a representation of the hidden environmental
state &dquo;the gift is in the box.&dquo; Probably, the choice of one of these views is a matter
of personal taste.

Let’s consider a different problem. There are two distinct objects in the environ-
ment, say A and B. The agent has to reach A, touch it, then reach B, touch it, then
reach A again, touch it, and so on. In this case, provided that touching an object does
not leave any trace on it, there is no hidden state in the environment to discriminate
the situations in which the agent should reach A from the ones in which it should

reach B. We say that this environment is forgeiful, in that it does not keep track of

1 In automata theory, this definition corresponds to a class of automata known as Mealy machines (McCluskey, 1986).

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

251

the past actions of the agent. Again, the agent must be able to assume two distinct
internal states, 0 and 1, so that its task is to reach A when in state 0, and to reach B

when in state 1. Such internal states cannot be viewed as representations of hidden
environmental states, because such states do not exist. However, we still have two

possible interpretations:
_

o Internal states are memories of past actions. State 0 means that B has just
been touched, and state 1 means that A has just been touched.

o Internal states are goals, determining the agent’s current task. State 0
means that the current task is to reach A, whereas state 1 means that the
current task is to reach B.

The conclusion we draw is that terms such as memory, representation, and goal, which are

very commonly used, for example, in artificial intelligence, often involve a subjective
interpretation of what is going on in an artificial agent. The term internal state,
borrowed from systems theory, seems to be neutral in this respect, and it describes
more faithfully what is actually going on in the agent.

In this article, we are concerned with internal states that keep track of past actions,
so that the agent’s behavior can follow a sequential pattern. In particular, we are
interested in dynamical agents possessing internal states by design, and which learn
to use them to produce sequential behavior. Then, if we interpret internal states as

goals, this amounts to learning an action plan, able to enforce the correct sequencing
of actions. However, this intuitive idea must be considered with care.

Not all behavior patterns that initially appear to be based on an action plan are

necessarily dynamical. Consider an example of hoarding behavior: An agent leaves
its nest, chases and grasps a prey, brings it to its nest, goes out for a new prey, and so
on. This sequential behavior can be produced by a reactive system whose stimulus-

response associations are described by the following production rules (where only
the most specific production whose conditions are satisfied is assumed to fire at each

cycle): :

In fact, we ran several experiments showing that a reactive agent implemented with
ALECSYS can learn easily to perform similar tasks.

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

252

It is interesting to see why the behavior pattern just described, while merely
reactive, appears as sequential to an external observer. In fact, if instead of the agent’s
behavior we consider the behavior of the global dynamical system constituted by the
agent and the environment, the task is actually dynamical. The relevant states are the
states of the environment, which keep track of the effects of the agent’s moves; for
example, the effects of a grasping action are stored by the environment in the form of
a grasped prey, which can then be perceived by the agent. In the following text, we
shall call pseudosequences those tasks performed by a reactive agent that are sequential
by virtue of the dynamical nature of the environment, and we shall reserve the term

proper sequence for tasks that can be executed only by dynamical agents, by virtue of
their internal states.

Let us rephrase the preceding considerations. As has already been suggested in
the literature (see, for example, Rosenschein and Kaelbling, 1986; Beer, 1994),
the agent and the environment can be viewed as a global system, made up by two
coupled subsystems. For the interactions of the two subsystems to be sequential, at
least one of them must be properly dynamical, in the sense that its actions depend
on the subsystem’s state. The two subsystems are not equivalent, however, because
while the agent can be shaped to produce a given target behavior, the dynamics of the
environment are taken as given and cannot be trained. It is therefore interesting to see
whether the only subsystem that can be trained-that is, the agent-can contribute
to a sequential interaction with states of its own: This is what we called a proper

sequence.
In this article, rather than experimenting with sequences of single actions, we

have focused on tasks made up of a sequence of phases, where a phase is a subtask
that may involve an arbitrary number of single actions. Again, the problem to be
solved is: How can we train an agent to switch from the current phase to the next
one on the basis of both the current sensory input and knowledge of the current
phase?

One important decision to be made is when the phase transition should occur.
The most obvious assumption is that a transition signal is produced by the trainer or
by the environment and is perceived by the agent. Clearly, if we want to experiment
on the agent’s capacity to produce proper behavioral sequences, the transition signal
must not itself convey information about which should be the next phase.

B1 .:&dquo;. r&dquo; f. ~ 1
’

3 The Learning System
’ ’ ’

’

ALECSYS is a tool to develop learning agents. Using ALECSYS, the learning &dquo;brain&dquo;
of an agent can be designed as the composition of many learning behavioral modules.
Some of these, which we call basic behavioral modules, are directly connected with

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

253

sensory and motor routines, and their task is to learn responses to external stimuli. In
some architectural organizations-namely, in hierarchical architectures-we define
a second kind of module, called behavior coordination modules, whose main task is to
learn to coordinate other behaviors. Coordination modules are connected to lower-

level modules, both basic and coordination ones, and either can choose which of the
actions proposed by connected modules should be given priority or can compose
such actions into a complex behavioral response (Dorigo and Schnepf, 1993).

There are different ways in which behavioral modules can be put together to build
a learning system. In a recent study (Dorigo and Colombetti, 1994) we investigated
a number of them, which are briefly summarized here:

1. Monolithic architecture. In this architecture (Fig. 1), there is only one
learning module, in charge of learning all the behaviors necessary to .

accomplish the task. It is the most straightforward way of building a
learning system, but it is not very efficient. In fact, it was the inefficiency
of this approach that first motivated distributed architectures.

2. Distributed architectures. In these architectures, the system designer first
analyzes the learning agent task and then splits it up into simpler tasks.
Each of these tasks is then implemented as a monolithic architecture.

’

Usually, the simpler tasks identified by the system designer have an .

intuitive correspondence with the notion of an atomic behavioral ,

module-that is, of a behavioral module that cannot reasonably be further ~ ~ (

decomposed. After atomic behavioral units are identified, they must be
interconnected to build the complete learning system; this can result in
two different kinds of architectural organizations:

a. Flat architectures. In flat architectures, all the behavioral modules
are basic-that is, they are directly interfaced with the
environment. In the event that two or more behavioral modules

produce homogeneous responses (e.g., they control the same
actuators), their actions are composed by an appropriate
composition module (Fig. 2a); otherwise, they just send their
responses to the appropriate actuators (Fig. 2b).

.

b. Hierarchical architectures. In hierarchical architectures, a hierarchy of
modules is used to build the learning system. Aside from basic
behavioral modules, which directly connect the system to the

° external world, there are behavior coordination modules, which
are in charge of coordinating basic and other coordination
modules. Figure 3 shows an example of a possible architecture of
an agent implemented using ALECSYS. In this case, we have three
basic behavioral modules and two coordination modules: C1 is in

charge of coordinating Bl and B2, whereas C2’s task is to
coordinate Cl and B3. For example, C2 could decide that
whenever C 1 and B3 propose an action, C 1 should have priority.

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

254

Figure 1
Monolithic architecture. CS, learning
classifier system. I

Figure 2
Flat architectures. CS, learning classifier system.

In turn, Cl could learn to compose the actions proposed by B1 1 .

and B2 into an intermediate action. Say B1 proposed a movement
in direction -10 degrees and B2 a movement in direction
+30 degrees; then Cl could learn to mediate the two proposals
into a +20 degree movement (other solutions are possible in which

’

the two proposed actions are given different weights). _,

In ALECSYS, every single module is an enhanced version (see Dorigo, 1993) of
a learning classifier system (CS) as proposed, for example, by Booker, Goldberg,
and Holland (1989). CSs are a rather complex paradigm for reinforcement learn-

ing. Functionally, they can be split in three components. The first one, called the

performance system, is a kind of parallel production system; its role is to map input
sensations into output actions. In the version of ALECSYS used for the present work,
the performance system is a reactive system, in that internal messages are not allowed
and therefore the system cannot remember past actions.

The second and third components, respectively called credit apportionment and rule

discovery, are the learning components of a CS. The task of the credit apportionment

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

255

Figure 3
An example of
hierarchical architecture
obtainable with ALECSYS.

subsystem is to evaluate rules in the rule base so that useful rules are ranked higher
than less useful ones. For each rule, a variable called strength measures the usefulness of
the rule as evaluated by the credit apportionment subsystem. Strength is changed by
means of redistribution of reinforcements received by the CS as feedback for actions

performed. The algorithm we used is an extended version of the bucket brigade
(Holland, 1986), which has been presented in detail elsewhere (Dorigo, 1993). In
this article, we use ALECSYS as a step-by-step reinforcement learning system, as
reinforcements are received at each step from an external trainer.

The third component is the rule discovery subsystem, which in ALECSYS is

implemented by means of a genetic algorithm (GA). GAs are a kind of evolutionary
algorithm first proposed by Holland (1975). They work by applying so-called genetic
operators to a population of individuals that code solutions to a given problem. In
the context of machine learning, most of the time individuals are rules, and genetic
operators mutate and recombine rules to produce new, hopefully more useful, ones.
New rules, which overwrite low-strength rules in the population, are tested and
retained in case they demonstrate their utility to the learning system’s performance.

The main strengths of GAs, within the framework of a CS, are that:

0 They can be easily implemented on a parallel computer (e.g., see
Spiessens and Manderick, 1991; Dorigo and Sirtori, 1991).

. They are very efficient in recombining rule components, favoring the .

reproduction, and therefore the survival, of those components that are

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

256

more often contained in rules with a higher-than-average strength. It has

been proved that the number of structures that are processed by the GA
at every cycle is much greater than the number of individuals in the
population (Booker, Goldberg, and Holland, 1989; Bertoni and Dorigo,
1993) .

. They seem to be only slightly sensitive (Fitzpatrick and Grefenstette,
1988) to the precision with which the usefulness of rules-that is, their
strength-is evaluated. This is important because strength, which is
evaluated by the bucket brigade, is only a rough indicator of good
performance.

’! .

In ALECSYS, the GA is called when the apportionment of the credit system has
reached a steady state, that is, when the strengths of rules in the population tend to
be stationary (this property is monitored at run time). It works applying in sequence
the crossover and the mutation operators (Goldberg, 1989) and returning a modified

population of rules. More details about the actual implementation can be found in

Dorigo (1993).

4 Experimental Settings

When planning an experiment, the environment, the agent, and the target behavior
must be designed together. Such entities are introduced here separately for descriptive
convenience only.

4.1 Environment

A good experimental setting in which to show that proper sequences can emerge
clearly is one in which (1) agent-environment interactions are sequential and (2) the
sequential nature of the interactions is not due to states of the environment. Indeed,
under these conditions, we have the guarantee that the relevant states are those of the

agent. Therefore, we have carried out our initial experiments on sequential behavior
in &dquo;forgetful&dquo; environments, ones that keep no track of the effects of the agent’s
move.

’

Our environment is basically an empty space containing two objects, which we

respectively call A and B (Fig. 4). The distance between A and B, which lie on a
bidimensional plane in which the agent can move freely, is approximately 100 forward

steps of the agent. In some of the experiments, both objects emit a signal when the

agent enters a circular area of predefined radius around the object (shown by the
dashed circles in the figure).

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

257

Figure 4
The environment for

sequential behavior.

4.2 The agent’s &dquo;body&dquo;
The agent is a simulation of a simple mobile robot, which is intended to play the
role of an artificial organism and is thus called the animat (see Wilson, 1987). The
animat’s sensors are two on-off eyes with a limited visual field of 180 degrees and an
on-off microphone. The eyes are able to detect the presence of an object in their
visual fields and can discriminate between the two objects A and B. The visual fields
of the two eyes overlap by 90 degrees, so that the total angle covered by the two eyes
is 270 degrees and is partitioned into three areas of 90 degrees each (see Fig. 4). The
animat’s actuators are two independent wheels that can stay still, move one or two

steps forward, or move one step backward.

4.3 Target behavior
’

The target behavior is as follows: The animat should approach object A, then ap-
proach object B, then approach object A, and so on. This target sequence can be
represented by the regular expression Ice,31*, where we denote by a the behavioral
phase in which the animat should approach object A and, by /3, the behavioral phase
in which the animat should approach object B. We assume that the transition from
one phase to the next should occur when the animat senses a transition signal. This
signal tells the animat that it is time to switch to the next phase but does not tell it
which phase should be the next.

There are basically two possibilities for the production of the transition signal.
In externally based transition, the transition signal is produced by an external source
(e.g., the trainer) independently of the current interaction between the agent and its
environment. In result-based transition, the transition signal is produced when a given

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

258

situation occurs as a result of the agent’s behavior (e.g., a transition signal is generated
when the animat has come close enough to an object).

The choice between these two variants corresponds to two different intuitive

conceptions of the overall task. If we choose externally based transitions, what we

actually want from the animat is that it learn to switch phase each time we tell it to
do so. If instead we choose result-based transitions, we want the animat to achieve a

given result and then to switch to the next phase. In fact, suppose that the transition
signal is generated when the agent reaches a given threshold distance from A or from
B. This means that we want the agent to reach object A, then to reach object B, and
so on. As we shall see, the different conceptions of the task underlying this choice
influence the way in which the animat can be trained.

It would be easy to turn the environment just described into a Markovian envi-
ronment, so that a reactive agent could learn the target behavior. For example, we
could assume that A and B are two lights, which are alternately switched on and off,
exactly one light being on at each moment. In this case, a reactive animat could learn
to approach the only visible light, and a pseudosequential behavior would emerge as
an effect of the dynamical nature of the environment.

4.4 The agent’s controller and sensorimotor interfaces
For the {ex¡3} behavior, we implemented two agents with different control archi-
tectures. We used a monolithic architecture and a two-level hierarchical architecture

(see section 3). In this article, we report the experiments performed with the latter,
which gave better results.

The two-level hierarchical architecture was organized as follows. Basic modules
consisted of two independent CSs, that we shall call CS, and CS,, respectively in
charge of learning the two basic behaviors a and ¡3. The coordinator consisted of
one CS, in charge of learning the sequential coordination of the lower-level modules.

The input of each basic module represents the relative direction in which the
relevant object is perceived. Given that the animat’s eyes partition the environment
into four angular areas, both modules have a two-bit sensory word as input. At any
cycle, each basic module proposes a motor action, which is represented by four bits
coding the movement of each independent wheel (two bits code the four possible
movements of the left wheel, and two bits those of the right wheel).

Coordination is achieved by choosing for execution exactly one of the actions
proposed by the lower-level modules. This choice is based on the value of a one-bit
word that represents the internal state of the agent and that we therefore call the

state word. The effect of the state word is hardwired: When its value is 0, the action

proposed by CS, is executed; when its value is 1, it is CSa that wins.

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

259

Figure 5
Controller architecture of
the animat. CS, learning
classifier system.

The coordinator receives as input the current value of the state word and one bit

representing the state of the transition signal sensor; this bit is set to 1 at the rising
edge of the transition signal and is equal to 0 otherwise. The possible actions for the
coordinator are to set the state word to 0 and to set the state word to 1. The tasks that

the coordinator has to learn are to maintain the same phase if no transition signal is

perceived and to switch phase each time a transition signal is perceived.
The controller architecture is described in Figure 5. Viewed as a dynamical system,

it is a Mealy machine (see Equation 1, section 2), in that at each cycle t, the sensory
input and the value of the state word at t jointly determine both the action performed
at t and the value of the state word at t + 1.

4.5 Experimental design
For each experiment reported in this article, we ran twelve independent trials, starting
from random initial conditions. Each trial included a basic learning session of 4000

cycles, in which the two basic behaviors a and /3 were learned; a coordinator learning
session of 12,000 cycles, in which learning of basic behaviors was switched off and

only the coordinator was allowed to learn; and a test session of 4000 cycles, where all

learning was switched off and the performance of the agent was evaluated.
In the learning sessions, the agent’s performance PI earn (t) at cycle t was computed

for each trial as:

I

where an action is considered correct if it is positively reinforced. The graph of

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

260

Plearn(t) for a single trial is called a learning curve. In the test session, the agent’s
performance Ptest is measured for each trial as a single number:

For each experiment, we shall show the coordinator learning curve of a single, typical
trial, and report the mean and standard deviation of the twelve Ptest values for both
the two basic behaviors (a and $) and the two coordinator’s tasks (maintain and switch).
It is important to remark that the performance of the coordinator is judged from
the overall behavior of the agent: That is, the only information available to evaluate
such performance is whether the agent is actually approaching A or approaching B;
no direct access to the coordinator’s state word is allowed. Instead, to evaluate the

performance of the basic behaviors, it also is necessary to know at each cycle whether
the action performed was suggested by CS, or by CS,; this fact is established by
directly inspecting the internal state of the agent.

Finally, to establish whether different experiments result in significantly different
performances, we compute the probability (p) that the sample of performances pro-
duced by the different experiments are drawn from the same population. Following
a widely adopted convention, a difference in performance is considered highly sig-
nificant when p < .01; significant when .01 < p < .05; and weakly significant
when .05 < p < .1. To compute p, we use the Kruskal-Wallis test to compare

groups of more than two experiments and the Mann-Whitney test to compare pairs
of experiments. These tests are the nonparametric counterparts of the more popular
ANOVA (analysis of variance) and Student’s t test for independent samples, respec-
tively. The choice of nonparametric statistics is motivated by the fact that our data
do not meet the requirements for their more powerful parametric counterparts (e.g.,
normal distribution).

_

, ...;)1’ .

5 Training Policies

We view training by reinforcement learning as a mechanism to translate a specification
of the agent’s target behavior, embodied in the reinforcement policy, into a control
program that realizes it (Dorigo and Colombetti, 1994). As the learning mechanism
carries out the translation in the context of agent-environment interactions, the
resulting control program can be highly sensitive to features of the environment that
would be difficult to model explicitly in a handwritten control program.

As usual in the field, reinforcements are provided to our learning agent by a com-
puter program, which we call the reinforcement program (RP). It is therefore the RP

that embodies the specification of the target behavior. We believe it is important for
an RP to be highly agent-independent. In other words, we want the RP to base

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

261

its judgments on high-level features of the agent’s behavior, without bothering too
much about the details of such behavior. In particular, we want the RP to be as inde-
pendent as possible from internal features of the agent, which are unobservable to an
external observer. This requirement is reminiscent of the well-known methodolog-
ical principle advocated by behaviorism, which states that only observable variables
should be considered in behavior theory. The very same requirement seems to be
a sensible engineering principle, although we can observe the internal states of our
artificial agents. An RP that is independent of events internal to the agent will be
more abstract, general, and portable to different agents; in addition, it will be less

sensitive to possible degradation of the agent’s hardware.
Let us consider the Ice0l* behavior, where a means &dquo;approach object A&dquo; and

/3 means &dquo;approach object B.&dquo; The transitions from cx to /3 and from 13 to a should
occur whenever a transition signal is perceived.

The first step is to train the animat to perform the two basic behaviors a and fJ.
This is a fairly easy task, given that the basic behaviors are instances of approaching
responses that can be produced by a simple reactive agent. The only difficulty lies in
the fact that the animat’s world has hidden states: In fact, when an object is behind
the animat, it cannot be seen. The problem has been solved by training each CS to
turn the animat when it does not see the relevant object. This training technique and
its results have been described elsewhere (see, for example, Dorigo and Colombetti,
1994).

After the basic behaviors have been learned, the next step is to train the animat’s s
coordinator to generate the target sequence. Before doing so, we have to decide how
the transition signal is to be generated. We have experimented with both externally
based and result-based transitions.

5.1 I Externally based transitions
Let us assume that coordinator training starts with phase a. The trainer rewards the
animat if it approaches object A and punishes it otherwise. At random intervals, the
trainer generates a transition signal. After the first transition signal is generated, the
animat is rewarded if it approaches object B and is punished otherwise; and so on.

Let us now suppose that in phase c~ the animat changes behavior in absence of any
transition signal. Clearly, as soon as the animat starts approaching B, the trainer will
administer a punishment, because a change of phase is occurring without a transition
signal being produced. However, suppose the animat goes on approaching B. What
should the trainer do? It would be incoherent to continue punishing the animat,
because it is now doing well: That is, it is persisting with the same behavior in the
absence of a transition signal.

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

262

On the basis of these considerations, we have applied what we call a flexible
rein, forcement program (RPRex):

w Start with phase a.
~ In phase a, reward the animat if it approaches A and punish it otherwise;

in phase {3, reward the animat if it approaches B and punish it otherwise.
~ Change phase at each transition signal.
~ If the animat appears to change behavior in the absence of a transition

signal, punish it but change the phase. ,

~ Analogously, if the animat appears not to change behavior in the
presence of a transition signal, punish it but restore the previous phase.

The rationale of this reinforcement program is that the trainer punishes an inadequate
treatment of the transition signal but rewards coherency of behavior. Experiments 1,
2, and 3 (discussed in the next section) were run using PPfl,,,.

5.2 Result-based transitions

Let us now suppose that the target sequential behavior is understood as follows: The
agent should approach and reach object A, then approach and reach object B, and so
on. A major difference with respect to the previous case is that a transition signal is
now generated each time the agent comes close enough to an object (see the dashed
circles in Figure 4). This calls for a different reinforcement program. In fact, it no

longer makes sense for the trainer to change phase flexibly when the agent switches
behavior: A phase is completed only when a given result is achieved-that is, when
the relevant object is reached.
We have therefore used a different reinforcement program, which we call the rigid

reinforcement program (RPr,g):

~ Start with phase a.
~ In phase a, reward the animat if it approaches A and punish it otherwise;

in phase {3, reward the animat if it approaches B and punish it otherwise.
~ Change phase at each transition signal, which is generated when the

animat gets to a predefined distance from the relevant object.

This program embodies the idea that the target behavior involves reaching objects,
not just approaching them. However, the animat did not learn the target behavior
when trained with the RPng’

It is not difficult to understand why. Consider a time interval [tl, t2~, in which
no transition signal is produced, and assume that the animat erroneously changes
behavior at tl. With the RPng, the animat will be punished until it restores the

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

263

previous behavior, but this means that in the interval [tl, t2~ the animat will be

punished if it maintains the same behavior and rewarded if it changes behavior, even
if no transition signal is perceived. From the animat’s point of view, this program
is incoherent: Maintaining the same behavior in the absence of a transition signal is
sometimes rewarded, sometimes punished. In fact, the RPng rewards the animat in
three different cases2:

1. When the animat changes behavior in the presence of a transition signal
’

2. When the animat does not change behavior in the absence of a
transition signal, provided its current behavior is the right one

3. When the animat does change behavior in the absence of a transition
signal, provided its current behavior is the wrong one

~

Clearly, the problem is to make the agent distinguish between cases 2 and 3. To do
so, it is sufficient to know at cycle t + 1 whether the action performed at cycle t was
right or wrong, and therefore, it is sufficient for the animat to store the sign of the
reinforcement received from the RPng at the previous cycle.

To allow the animat to remember whether it had been rewarded or punished at
the previous cycle, we introduced a one-bit reinforcement sensor-that is, a one-bit

field in the sensory interface telling the animat whether the previous action had been
rewarded or punished. In this way, the agent is able to develop specific behavior rules
for case 3, different from the rules for case 2. Experiments 4, 5, and 6 (discussed
in the next section) show that the animat is able to learn the target behavior when
trained with the RPr,g if its sensory interface includes the reinforcement sensor. We
believe that the notion of a reinforcement sensor is not trivial, and therefore it needs
to be discussed in some detail.

5.3 Meaning and use of the reinforcement sensor ’
’

’

At each moment, the reinforcement sensor stores information about what happened
in the previous cycle and, as such, it contributes to the agent’s dynamical behavior.
Its characteristic feature is that it stores information about the behavior of the trainer,
not of the physical environment. It may seem that such information is available to the

animat even without the reinforcement sensor, as it is received and processed by the
credit apportionment module of ALECSYS. The point is that no information about
reinforcement is available to the animat’s controller unless it is coded into the sensory
interface. To speak metaphorically, an agent endowed with the reinforcement sensor
not only receives reinforcements but also perceives them.

2 Analogous cases hold for punishments.

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

264

It is interesting to note how the information stored by the reinforcement sensor
is exploited by the learning process. Let the reinforcement sensor be set to 1 if

the previous action was rewarded and to 0 if it was punished. When trained with
the RPng, the animat will develop behavior rules that can manage case 3 (cited
previously)-that is, rules that change phase in the absence of a transition signal if
the reinforcement sensor is set to 0. Such rules can be viewed as error recovery rules in

that they tell the agent what to do in order to fix a previous error in phase sequencing.
Rules matching messages with the reinforcement sensor set to 1 will be called normal
rules to distinguish them from error recovery rules.

Without a reinforcement sensor, punishments are exploited by the system only
to decrease the strength of a rule that leads to an error (i.e., to an incorrect action).
With the reinforcement sensor, punishments are used for one extra purpose, to enable
error recovery rules at the next cycle. In general, as learning proceeds, fewer and
fewer errors are made by the animat, and the error recovery rules become increasingly
weaker, so that sooner or later they are removed by the GA.

Error recovery rules presuppose a reinforcement and thus can be used only as far
as the trainer is on. If the trainer is switched off to test the acquired behavior, the
reinforcement sensor must be clamped to 1 so that normal rules can be activated.

This means that after we switch the trainer off, error recovery rules will remain silent;
it is therefore advisable to do so only after all recovery rules have been eliminated by
the GA.

In the experiments reported in this article, error recovery rules either were elim-
inated before we switched off the trainer or they became so weak that they were
practically no longer activated. With more complex tasks, however, one can easily
imagine that some error recovery rules could maintain a strength high enough to
survive and to contribute to the final behavior; in similar situations, switching off
the trainer would actually impoverish the final performance. However, one could
switch off the learning algorithm: The use of error recovery rules presupposes that
an external system gives positive or negative &dquo;judgments&dquo; about the animat’s ac-
tions but does not require the learning algorithm to be active. After switching off

learning, the trainer actually turns into an advisor, an external observer in charge of
telling the agent, which is no longer learning anything, whether or not it is doing
well.

We do not know yet whether the use of an advisor has interesting practical
applications. It seems to us that it could be useful in situations where the environment

is so unpredictable that even the application of the most reasonable control strategy
will frequently lead to errors. In a similar case, it would not be possible to avoid
errors through further learning; therefore, error recovery seems to be an appealing
alternative.

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

265

6 Experimental Results .

The results of the experiments on the Ice0l* behavior are reported for sequen-
tial behavior with externally based transitions and a flexible reinforcement program
(experiments 1-3) and sequential behavior with result-based transitions, a rigid re-
inforcement program, and a reinforcement sensor (experiments 4-6). The perfor-
mances of the coordinator tasks (maintain and switch) of experiments 1 through 3 and

experiments 4 through 6 then are compared using the Kruskal-Wallis test. When
this test signals a significant difference, the performances are then pairwise compared
through Mann-Whitney tests.

,

’ ’

Experiment 1 : Externally based transitions and flexible reinforcement program
In experiment 1, transition signals were produced randomly, with an average of
one signal every 50 cycles. The animat was trained with the flexible reinforcement

program, PPflex. Figure 6 shows a typical learning curve for the coordinator learning
session and reports the mean and standard deviation of the performances obtained
in the test session over 12 trials.

It appears that the animat learns to maintain the current phase (in the absence of
a transition signal) better than it learns to switch phase (when it perceives a transition

signal). This result is easy to interpret: As transition signals are relatively rare, the
animat learns to maintain the current phase faster than it learns to switch phase.
On the whole, however, the performance of the coordinator is not fully satis-

factory, at least as far as the switch task is concerned. One factor that keeps the

performance of the coordinator well below 1 is that the performances of the two
basic behaviors are not close enough to 1. In fact, during the training of the co-

ordinator, an action may be punished even if the coordinator has acted correctly,
assuming a wrong move is proposed by the relevant basic CS.

Another reason that the learning of the coordination tasks is not satisfactory is
that RPflex cannot teach perfect coordination because there are ambiguous situations,
situations in which it is not clear whether the reinforcement program should reward

or punish the agent. Suppose that the animat perceives a transition signal at cycle t

when it is approaching A on a curvilinear trajectory such as the one shown in Figure 7
and that at cycle t + 1 it goes on following the same trajectory. By observing this
behavior, RPflex cannot know whether the animat decided to go on approaching
A or whether it changed phase and is now turning to approach object B. As the

agent’s behavior is ambiguous, any reinforcement actually runs the risk of saying the

opposite of what is intended.

Ambiguous situations of the type just described arise because the agent’s internal
state is hidden from the point of view of the trainer. One possible solution is to

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

266

Figure 6
Experiment 1: Learning sequential behavior with externally based transitions.

Figure 7
An ambiguous situation.

make the relevant part of this state known to RPfl,,,. This was implemented in the
next experiment.

Experiment 2: Externally based transitions, a flexible reinforcement program,
and agent-to-trainer communication
To eliminate ambiguous situations, we have simulated a communication process
from the agent to the trainer: Better reinforcements can be generated if the agent
communicates its state to the reinforcement program, because situations such as the

one described earlier are no longer ambiguous.

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

267

Figure 8
Experiment 2: Externally based transitions and agent-to-trainer communication.

To achieve this result, we added to the animat the ability to assume two different
observable states, which we conventionally call colors. The animat can be either

white or black, and can assume either color as the result of an action. In turn,

the trainer can observe the animat’s color at any time. The basic modules are now

able to perform one more action-that is, to set a color bit to 0 (white) or to 1

(black). In the basic learning session, the animat is trained not only to perform the

approaching behaviors cx and f3 but also to associate a single color to each of them.
During the coordinator learning session, RPflea exploits information about the color
to disambiguate the animat’s internal state, using the agent’s color as a message. The
results of this experiment are reported in Figure 8.

Experiment 3 : Externally based transitions, a flexible reinforcement program,
and transfer of the coordinator

Another interesting solution to the problem of ambiguous situations is based on the
notion of transferring behavioral coordination. The idea is that the ~a,Q~* behavior
is based on two components: the ability to perform the basic behaviors a and f3 and
the ability to coordinate them to achieve the required sequence. Whereas the basic
behaviors are strongly linked to the environment, coordination is abstract enough
to be learned in one environment and then transferred to another. Therefore, we

proceeded as follows: _. ,

. The animat learned the complete {o;/3}* behavior in a simpler
environment, where the ambiguity problem did not arise.

. The animat was then trained to perform the two basic behaviors in the
target environment.

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

I. - j

Figure 9
The one-dimensional
environment.

9 Finally, the coordinator rules learned in the simpler environment were
copied into the coordinator for the target task. To this purpose, we
selected the rules that had the highest performance in the simpler
environment; therefore, all 12 experiments in the target environment
were run with the same coordinator.

The simpler, nonambiguous environment used for coordination training is sketched
in Figure 9. It is a one-dimensional counterpart of the target environment: The

animat can move only to the left or to the right on a fixed rail. At each instant, the
animat is either approaching A or approaching B; no ambiguous situations arise.

As reported in Figure 10, the performance achieved in the one-dimensional en-
vironment was almost perfect owing to the simplicity of the task. Figure 11 shows
the results obtained by transferring the coordinator to an animat that had previously
learned the basic behaviors in the two-dimensional environment.

J &dquo;,

Comparison of Experiments 1 through 3
For experiments 1 through 3, the Kruskal-Wallis test applied to the performances
of the coordinator’s tasks revealed no significant difference for the maintain task
(p = .2291) but a highly significant difference for the switch task (p = .0029). We
have therefore applied the Mann-Whitney test to the three pairs of performances of
the switch task, obtaining the following results:

. A weakly significant difference between experiments 1 and 2 (p = .0996)

268

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

269

Figure 10
Experiment 3: Externally based transitions in the one-dimensional environment.

Figure 11 1
,

Experiment 3: Transferring the externally based coordinator from the one-dimensional to the
two-dimensional environment.

. A highly significant difference between experiments 1 and 3 (p = .0018)

. A significant difference between experiments 2 and 3 (p = .0243)
.

,

Taking into account the mean performances of the switch task in the three exper-
iments (see Figs. 7, 8, and 11), we conclude that with externally based transitions
the maintain task is learned reasonably well, and with no significant difference, by
all the strategies with which we have experimented. In contrast, for the switch task,
the three strategies give different results. The best coordinator is obtained through
transfer of the coordinator, although agent-to-trainer communication significantly
overcomes the problem of learning in ambiguous situations.

Experiment 4: Result-based transitions and a rigid reinforcement program with
reinforcement sensor

Experiment 4 was run with result-based transitions: A transition signal was generated
each time the animat reached an object. The target behavior was therefore conceived

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

270

Figure 12
Experiment 4: Learning result-based transitions.

Figure 13
Experiment 5: Result-based transitions and agent-to-trainer communication.

.

’

as reach object A, then reach object B, and so on. Coherently with this view of the
target behavior, we adopted the rigid reinforcement program, RPng (see section 5.2).
The animat was therefore endowed with the one-bit reinforcement sensor. The

results, reported in Figure 12, show that the target behavior was learned, but the
performance of the switch task was rather poor.

Experiment 5: Result-based transitions, a rigid reinforcement program with
reinforcement sensor, and agent-to-trainer communication

Experiment 5 is the result-based analog of experiment 2. The animat was trained to
assume a color, thus revealing its internal state. The results are reported in Figure 13.

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

271

Figure 14
Experiment 6: Result-based transitions in the one-dimensional environment.

Figure 15
Experiment 6: Transferring the result-based coordinator from the one-dimensional to the
two-dimensional environment.

At .

’

Experiment 6: Result-based transitions, a rigid reinforcement program, and
transfer of the coordinator

Experiment 6 is the result-based analog of experiment 3. Figure 14 displays the
results obtained in the one-dimensional environment, and Figure 15 gives the per-
formances of the animat in the two-dimensional environment, after transferring the
best coordinator obtained in the one-dimensional environment.

I

Comparison of experiments 4 through 6
For experiments 4 through 6, the Kruskal-Wallis test applied to the performances of
the coordinator’s tasks demonstrated a highly significant difference for the maintain
task (p = .0002) and a highly significant difference for the switch task (p = .0002).
We have therefore applied the Mann-Whitney test to the three pairs of performances
of both the maintain and the switch tasks, obtaining the following results:

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

272

Figure 16
Results of Mann-Whitney tests for the mamtain (above) and switch (below) tasks. Arrows mdicate the
direction of increasmg value of the mean performance (e.g., the mean of experiment 1 is lower than the
mean of experiments 2 and 3).

~ ~
_

~ _

. For experiments 4 and 5, a highly significant difference for both the
maintain task (p = .0012) and the switch task (p = .0032)

. For experiments 4 and 6, a highly significant difference for both the
maintain task (p = .0001) and the switch task (p = .0002)

. For experiments 5 and 6, no significant difference for the maintain task
(p = .4189) and a weakly significant difference for the switch task
(p = .0972).

Taking into account the mean performances of the two tasks in these experiments
(see Figs. 12, 13, and 15), we conclude that, with result-based transitions, coor-
dinator transfer and agent-to-trainer communication are roughly equivalent. They
significantly overcome the problem of learning in ambiguous situations for both
the maintain and the switch tasks. Figure 16 summarizes the results of the Mann-

Whitney tests for all relevant pairs of experiments. &dquo; ; .

7 Conclusions

In this article, we have presented an approach to training an agent that learns proper
behavioral sequences. Many other researchers have tackled the problem of learning
sequences of actions in the realm of classifier systems (e.g., Riolo, 1989). Our
work differentiates itself in that the building blocks of our sequences are elementary
behaviors instead of simple actions.

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

273

We have discussed at length the difference between pseudosequences and proper
sequences, and we have shown that ALECSYS, our CS-based learning system, can
learn proper sequences. (Pseudosequences were discussed in previous work; see

Dorigo and Colombetti, 1994.)
An important aspect of our research is the interplay among the learner, the trainer,

and the environment. We show that, when considering proper sequences, there are
at least two kinds of transition signals that can cause a change to the next phase of
the sequence: externally based transitions and result-based transitions. Each of these
transition modalities corresponds to a training policy, based on the flexible RP and
the rigid RP, respectively. These policies require the introduction of communication
features into our system: trainer-to-agent communication, through a reinforcement
sensor that makes explicitly available to the agent information about the quality of its
behavior, and agent-to-trainer communication, through some observable behavior,
to let the trainer know the current state of the agent. Most interestingly, the use
of the reinforcement sensor introduces a new kind of rule, called error recovery rules,
which are activated only in case of punishment. These rules tend to disappear as
learning proceeds and performance improves.

Finally, we have shown that behavior coordination, at least in the context of

our experiments, is abstract enough to be learned in a simple situation and then
transferred to a more demanding one.

Acknowledgments
This work has been partially supported by an Italian Ministry for University and for
Scientific and Technological Research 60 percent grant for the year 1992 to Marco
Colombetti and by a NATO-CNR Advanced Fellowship for the years 1993-1994
to Marco Dorigo.

The experiments were run by Sergio Barbesta, Jacopo Finocchi, and Maurizio
Gorla. Helpful comments were made by Mukesh Patel, who read a previous version
of the article, and by Jean-Arcady Meyer. _

References .
’

’

Beer, R. D. (1994). A dynamical systems perspective on autonomous agents. Artificial
Intelligence, to appear.

Bertoni, A., & Dorigo, M. (1993). Implicit parallelism in genetic algorithms. Arti-
ficial Intelligence, 61(2), 307-314.

Booker, L., Goldberg, D. E., & Holland, J. H. (1989). Classifier systems and genetic
algorithms. Artificial Intelligence, 40(1-3), 235-282.

Colombetti, M., & Dorigo, M. (1992). Learning to control an autonomous robot by
distributed genetic algorithms. In Proceedings of "From Animals to Animats," Second
International Conference on Simulation of Adaptive Behavior (SAB92). Cambridge,
MA: MIT Press.

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

274

Dorigo, M. (1992). ALECSYS and the AutonoMouse: Learning to control a real robot by
distributed classifier systems (Tech. Rep. No. 92-011). Milan, Italy: Politecnico di
Milano.

Dorigo, M. (1993). Genetic and non-genetic operators in ALECSYS. Evolutionary
Computation, 1(2), 151-164.

Dorigo, M., & Colombetti, M. (1994). Robot shaping: Developing autonomous
agents through learning. Artificial Intelligence, to appear. Also available as Tech.

Rep. No. 92-040. Berkeley, CA: International Computer Science Institute.
Dorigo, M., & Schnepf, U. (1993). Genetics-based machine learning and behaviour-

based robotics: A new synthesis. IEEE Transactions on Systems, Man, and Cyber-
netics, 23(1), 141-154.

Dorigo, M., & Sirtori, E. (1991). ALECSYS: A parallel laboratory for learning clas-
sifier systems. In Proceedings of the Fourth International Conference on Genetic Algo-
rithms. San Diego: Morgan Kaufmann.

Fitzpatrick, J. M., & Grefenstette, J. J. (1988). Genetic algorithms in noisy environ-
ments. Machine Learning, 3(2/3), 101-120.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning.
Reading, MA: Addison-Wesley.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: The
University of Michigan Press.

Holland, J. H. (1986). Escaping brittleness: The possibilities of general purpose
learning algorithms applied to parallel rule-based systems. In R. S. Michalski,
J. G. Carbonell, & T. M. Mitchell (Eds.), Machine Learning II. Los Altos, CA:
Morgan Kaufmann.

Lin, L.-J., & Mitchell, T. M. (1992). Memory approaches to reinforcement learning in
non-Markovian domains (Tech. Rep. CMU-CS-92-138). Pittsburgh, PA: School
of Computer Science, Carnegie Mellon University.

Littman, M. L. (1992). An optimization-based categorization of reinforcement
learning environments. In Proceedings of "From Animals to Animats," Second Inter-
national Conference on Simulation of Adaptive Behavior (SAB92). Cambridge, MA:
MIT Press.

Mahadevan, S., & Connell, J. (1992). Automatic programming of behavior-based
robots using reinforcement learning. Artificial Intelligence, 55(2), 311-365.

McCluskey, E. J. (1986). Logic design principles. New York: Prentice-Hall.
Riolo, R. L. (1989). The emergence of coupled sequences of classifiers. In J. D.

Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algorithms.
Los Altos, CA: Morgan Kaufmann.

Rosenschein, S. J., & Kaelbling, L. P. (1986). The synthesis of digital machines
with provable epistemic properties. In J. Halpern (Ed.), Proceedings of the 1986
Conference on Theoretical Aspects of Reasoning About Knowledge. Los Altos, CA:
Morgan Kaufmann.

Singh, S. P. (1992). Transfer of learning by composing solutions of elemental se-
quential tasks. Machine Learning, 8(3-4), 323-339.

Spiessens, P., & Manderick, B. (1991). A massively parallel genetic algorithm: Im-
plementation and first analysis. In Proceedings of the Fourth International Conference
on Genetic Algorithms. Los Altos, CA: Morgan Kaufmann.

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

275

Watkins, C. J. C. H. (1989). Learning with delayed rewards. Unpublished doctoral
dissertation, University of Cambridge, England.

Watkins, C. J. C. H., & Dayan, P. (1992). Technical note: Q-learning. Machine
Learning, 8(3-4), 279-292.

Whitehead, S. D., & Lin, L. J. (1994). Reinforcement learning in non-Markov
environments. Artificial Intelligence, to appear.

Wilson, S. (1987). Classifier systems and the animat problem. Machine Learning, 2(3),
199-228.

Wilson, S. (1990). The animat path to AI. In Proceedings of "From Animals to Ani-
mats," First International Conference on the Simulation of Adaptive Behavior (SAB90).
Cambridge, MA: MIT Press.

About the Authors

Marco Colombetti

Marco Colombetti received his Laurea (Master of Technol-
ogy) in Electrical Engineering in 1976 from Politecnico di
Milano, Italy. He is currently an Associate Professor at the
Faculty of Engineering, Politecnico di Milano, Italy, where
he gives a course on Knowledge Engineering. As a mem-
ber of the Politecnico di Milano Artificial Intelligence and
Robotics Project, he took part in several CEC ESPRIT

Projects, and National research projects. He has been ac-
tive in such diverse research fields as knowledge representa-
tion for cognitive modeling, plan-based models of human
communication, and formal theories of mental states. His
main current research interests concern the design, imple-
mentation, training and assessment of artificial agents with
a learning component, and behavior engineering.

Marco Dorigo
Marco Dorigo received his Laurea (Master of Technol-
ogy) in Industrial Technologies Engineering in 1986 and his
Ph.D. in Electrical Engineering of Information and Systems
in 1992 from Politecnico di Milano, Italy. He was a post-
doctoral researcher at the International Computer Science
Institute of Berkeley, CA, and he now holds a postdoctoral
position at IRIDIA, Universite Libre de Bruxelles, Belgium.
He is a member of the Politecnico di Milano Artificial Intel-

ligence and Robotics Project. He took part in several CEC
ESPRIT projects and national research projects. His cur-
rent research interests concern evolutionary computation,
adaptive behavior, robotics, and behavior engineering.

 distribution.
© 1994 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized

 by Marco Dorigo on February 5, 2007 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

