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ABSTRACT
In this paper, we propose a novel top-down design method
for the development of collective behaviors of swarm robotics
systems called property-driven design. Swarm robotics sys-
tems are usually designed and developed using a code-and-fix
approach, that is, the developer devises, tests and modifies
the individual robot behaviors until a desired collective be-
havior is obtained. The code-and-fix approach can be very
time consuming and relies completely on the ingenuity and
expertise of the designer. The idea of property-driven de-
sign is that a swarm robotics system can be described by
specifying formally a set of desired properties. In an iter-
ative process similar to test-driven development, the devel-
oper produces a model of the system that satisfies the de-
sired properties. Subsequently, the system is implemented
in simulation and using real robots. Property-driven design
helps to minimize the risk of developing a system that does
not satisfy the required properties, and to promote the reuse
of hardware independent models. In this paper, we start by
giving a general description of the method. We then present
a possible way to apply it by using Discrete Time Markov
Chains (DTMC) and Probabilistic Computation Tree Logic*
(PCTL*). Finally, we conclude by presenting the applica-
tion of the proposed method to the design and development
of a swarm robotics system performing aggregation.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Robotics

General Terms
Design, Verification

Keywords
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1. INTRODUCTION
Swarm robotics is a distributed approach to multi-robot

systems in which, through local interactions, robots achieve
a self-organized collective behavior. Swarm robotics systems
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Figure 1: The most common method for the devel-
opment of a swarm robotics system. The individual
behavior is developed, tested and modified until the
desired collective behavior of the swarm is obtained.

have the potential to display interesting properties, such as
robustness, scalability and flexibility [13].

Swarm robotics systems are complex systems [9]. They
exhibit dynamics at two different levels: the collective, or
macroscopic, level, and the individual, or microscopic, level.
The collective behavior is the result of the interactions of
the individual robots with each other and with the envi-
ronment. In order to obtain a desired collective behavior,
the individual behaviors and the interactions of the robots
must be carefully designed. However, this design process is
usually non-trivial, as the dynamics of complex systems are
very often difficult to predict [1].

Despite the increasing attention on swarm robotics sys-
tems in the past two decades [4], a top-down methodology
for the design and development of this kind of systems has
not been defined yet. Swarm robotics systems are usually
designed and developed using a code-and-fix approach [7].
This means that, usually, the individual behavior is devel-
oped, tested and modified until the desired collective be-
havior is obtained. This process is often performed first in
computer simulations and eventually on real robots (see Fig.
1).

We believe that, to improve the quality of swarm robotics
systems and to reduce the effort for their development, it
is necessary to create a new, specific branch of engineer-
ing that we call swarm engineering. We define swarm en-
gineering to be the systematic application of scientific and
technical knowledge to specify requirements, design, realize,
verify, validate, operate and maintain an artificial swarm
intelligence system.

Traditional system engineering approaches are not suited
for swarm robotics systems. System engineering is mainly
aimed towards centralized systems or, in general, systems in
which the interactions of the components can be precisely
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predicted. In this respect, swarm robotics systems, which
can have hundreds of interacting robots, present unprece-
dented challenges [12].

In this paper, we propose a top-down design method, that
we call property-driven design. Property-driven design pro-
vides ways to specify requirements, design, develop, verify
and validate a swarm robotics system.

We believe that property-driven design has many advan-
tages compared with code-and-fix development: it helps to
formally specify the requirements of the system; to reduce
the risk of developing the “wrong” system, that is, a system
that does not satisfy the requirements; to develop a set of
hardware independent models that can be reused for future
applications; and to shift the focus of the development pro-
cess from implementation to design, given that most of the
developing effort happens in the modeling phase.

In Section 2, we present related work on top-down design
methods and verification techniques for swarm robotics. In
Section 3, we present property-driven design. In Section 4,
we propose a possible way to specify properties and vali-
date a model for a swarm robotics system. In Section 5, we
present an example application of property-driven design to
the design and development of a system able to perform ag-
gregation. In Section 6, we discuss about the features and
limits of property-driven design. In Section 7, we conclude
this paper.

2. RELATED WORK
Design methods: Developing a top-down design me-

thod for complex systems is still an open challenge [31]. In
the last years, the effort on this topic has been quite limited.

Bachrach et al. [2] proposed a scripting language called
Protoswarm. This language enables the definition of a vec-
tor field on an abstract spatial machine. This vector field is
then translated by a middleware into individual robot be-
haviors. Protoswarm allows the developer to focus mostly
on the collective behavior, removing some of the effort nec-
essary to develop the individual behaviors. However, Pro-
toswarm is thought for situations in which the robots are
covering the entire environment and keep constant network
connectivity. Thus, it is more suited for sensor networks
than for swarm robotics systems. Another thing to note is
that Protoswarm is not a design method, but a scripting
language. As such, it can be used only as a development
tool, requiring an appropriate design method to guide the
process.

Kazadi et al. [19] proposed the Hamiltonian method, a de-
sign method based on Hamiltonian vector fields. This me-
thod allows one to develop systems by specifying one or more
numerical properties, such as the energy level of a particular
state of the system. One limitation of this design method is
that it is suited only for spatially-organizing behaviors. The
goal of spatially-organizing behaviors is to achieve a spe-
cific robot distribution in the environment, such as pattern
formation (e.g., [30]).

Another possible approach to the design of swarm robotics
systems are automatic design methods. Work on automatic
design methods for swarm robotics systems focuses mainly
on evolutionary robotics [24] and reinforcement learning [26].
Automatic design methods can be considered top-down ap-
proaches because, in principle, the development process is
driven by the desired collective-level goal behavior. How-
ever, a lot of domain knowledge is required to tackle medium

to complex applications. Moreover, once a system is ob-
tained, it is, in general, non-trivial to understand its behav-
ior and it is often very difficult to verify its properties or
adapt it to other applications, even if they are similar to the
original one.

Property verification: The problem of property ver-
ification in swarm robotics systems has been tackled only
in a limited way. Dixon et al. [14], used Linear Tempo-
ral Logic (LTL) to define properties of individual robots
and of the swarm. This method is based on modeling the
individual robot behavior with a Markov chain, and then
considering the collective behavior as the result of the and-
composition of these individual-level models. A limitation
of this approach is that linear temporal logic deals only with
binary values. This limits the possibility to analyze systems
displaying stochastic properties, such as non-trivial swarm
robotics systems. Furthermore, in this method, there is a
possible scalability problem, because the number of states of
the system grows exponentially with the number of robots:
∼ Θ(kn), where k is the number of states of the individual
Markov chain and n is the number of robots.

Recently, Konur et al. [20] proposed an approach to verify
formally the properties of a swarm behavior through prob-
abilistic computation tree logic [16]. Their approach is able
to overcome the limits of linear temporal logical while pro-
viding scalability.

3. PROPERTY-DRIVEN DESIGN
The idea behind property-driven design is that a swarm

robotics system can be formally described through a series of
properties. These properties are the distinguishing features
of the system the developer wants to realize. They can be
task specific, such as the system eventually completes the
task X, or they can express more generic properties, such
as the system keeps working as long as there are at least N
robots or the system will never enter state Y.

A schema showing the different steps of property-driven
design is presented in Figure 2.

Phase One: The first phase of property-driven design
consists in formally specifying the requirements of the sys-
tem by stating its desired properties. The clearer and more
complete these properties are in this phase, the more the
developed system will conform to the requirements.

Phase Two: In the second phase, a model of the sys-
tem is created. At first, similarly to test-driven development
[5], one cannot expect the system to satisfy all the desired
properties. In an iterative process, the developer expands
and improves the model, and checks whether the properties
are verified. The outcome of this process is a model of the
system that satisfies the stated properties. Note that the
model must be complete just enough to capture all the im-
portant characteristics of the system, avoiding unnecessary
complication. For example, to model failures, the devel-
oper could insert in the model only a general failure state,
without specifying all the possible hardware problems if not
necessary. Eventually, through this process, one obtains a
model that satisfies all the required properties.

At the end of this phase, the developed model is robot
independent. The developer can now identify a set of neces-
sary sensors and actuators to select the proper robot plat-
form to use in implementing the system.

Phase Three: In this phase, the developer can use
the model to guide the process of implementing the swarm
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Figure 2: The four different phases of property-driven design to develop a swarm robotics system.

robotics system using, for instance, a physics-based com-
puter simulation (henceforth simply simulation). As dis-
cussed in Section 1, this phase can be challenging, as moving
from a macroscopic model to the microscopic implementa-
tion is a process that is guided mainly by the ingenuity and
expertise of the developer. However, the defined model gives
a clear picture of the system that can greatly help in its de-
velopment.

It is possible that the simulation does not validate the
model [22]. In this case the developer must go back to step
2, modify the model to include the results obtained from the
simulation, and verify whether the required properties still
hold true.

Phase Four: The last phase consists in deploying the
system on real robots.

Similarly to the transition between the model and the sim-
ulation, if the implementation on real robots reveals that
some assumptions made during the previous phases do not
hold, it might be necessary to modify the simulated version
or the model, in order to keep all levels consistent.

4. DTMC AND PCTL*
So far, we purposely did not mention how to model the

system or how to specify its properties. There are several
possible ways to perform this activity. Here, we do not dis-
cuss the different options available, as a review of the possi-
ble techniques for modeling swarm robotics system is out of
the scope of this paper. The interested reader can refer to
Lerman et al. [21].

Of all the various possibilities, the developer can choose
the one that best fits the system to develop and its personal
experience. In this section, we briefly introduce one possible
way to model a swarm robotics system and specify its prop-
erties based on Deterministic Time Markov Chains (DTMC)
and Probabilistic Computation Tree Logic* (PCTL*).

DTMC are often used to model swarm robotics systems
[21]. One of the main advantages of DTMC is that, in many
cases, the model comprises both the microscopic and the
macroscopic levels. At the microscopic level, the model rep-
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Figure 3: A simple Markov chain (on the left) and
its computation tree (on the right).

resents the behavior of a single robot. At the macroscopic
level, each state can be used to count the number of robots
in that particular state. For example, at the microscopic
level, one can model the behavior of a single robot with a
3-state DTMC. The same DTMC can be augmented by as-
sociating a counter to each state. Each counter keeps track
of the number of robots in the associated state. Another
advantage of DTMC is that their use can ease property ver-
ification, especially if the properties are written through the
use of logic predicates [11].

Among the many formal logical systems, we consider Prob-
abilistic Computation Tree Logic* (PCTL*). PCTL*, orig-
inally developed by Hansson and Jonsson [16], is an exten-
sion of CTL (Computation Tree Logic), a branching time
logic. CTL is based on the idea that a Markov chain can be
“expanded” in a computation tree. A computation tree is a
potentially infinite rooted tree in which the root is the initial
state of the corresponding Markov chain, and each node is a
possible state of the system. The edges link a state with its
next possible states. An example of a simple Markov chain
and its computation tree is displayed in Figure 3.

Through CTL, one can express time-related properties
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such as property α will eventually become true or property
α will hold true for at least 10 seconds. PCTL* extends
CTL by introducing probabilities. In this way, one can ex-
press properties such as property α will eventually become
true with probability 0.45 or there is a 0.7 probability that
α will hold true for 10 seconds. PCTL* is well suited for
swarm robotics systems as it can capture the time-related
and stochastic aspects of this kind of systems. We do not
discuss the details of the presented logics, we refer the in-
terested reader to Ciesinski and Größer [10].

Our approach is based on model checking, a technique
that allows to verify automatically and completely whether
a set of formulae is satisfied by a given system. As model
checker software we choose PRISM [17]. PRISM is a prob-
abilistic model checker which supports DTMC and PCTL*
among many other models and logics. With PRISM, it is
possible not only to verify properties, but also to perform so
called “experiments,” in which the model checker computes
the probability of the property being true against different
parameter values. In this way, it is possible to find the pa-
rameter set that scores the best probability in verifying a
property.

5. AN EXAMPLE APPLICATION: AGGRE-
GATION

In order to show the characteristics of property-driven de-
sign, we present an example application: aggregation. In this
application the robots have to cluster in an area of the envi-
ronment. The robots have neither a map of the environment
nor knowledge of the position of the other robots. We choose
aggregation as a case study for four reasons:

• aggregation is a simple behavior: this allows us to focus
on the development process without being hampered
by the details of the system itself;

• aggregation is a common test-case behavior for the
swarm robotics community, and it has been studied
extensively in the past (see, for example, [3, 22, 29,
32, 6]);

• aggregation is a collective behavior that cannot be de-
veloped easily with Protoswarm [2], since the robots
can often lose network connectivity; or using the Hamil-
tonian method [19], since no specific spatial distribu-
tion is required once the aggregate is formed;

• aggregation possesses many of the salient traits of a
typical swarm robotics behavior. It is completely dis-
tributed, it is based on simple robot-to-robot inter-
actions, and it is characterized by stochasticity and
spatial requirements.

The collective behavior we study in this paper is similar to
the one presented by Jeanson et al. [18]. We consider a
dodecagonal environment with two black spots called area
A and area B. We call area C the remaining white area.
Each of the black spots is big enough to host all the robots.
See Figure 7 for a screenshot of the environment. In the
following, we will follow the 4-phase process explained in
Section 3 using DTMC and PTCL* as modeling tools and
PRISM as model checker.

Phase One: The property we focus on is “eventually all
the robots form an aggregate”. We would like that the aggre-
gate is formed as fast as possible (for example, in the first

a
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b
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Pac Pcb

Pbc

c

Pcc

Pca

Figure 4: The DTMC model of the aggregation ex-
ample. Each state is used to count the number of
robots in that particular area.

1,000 seconds) but we do not differentiate between obtaining
the aggregate in area A or area B. Using PRISM syntax, we
can define this property as follows:

P=? [F<=1000 (a=N_total)|(b=N_total)] (1)

In less formal terms, we compute the probability (P=?) that,
in the first thousand seconds (F<=1000), the number of robots
in area A or in area B is equal to the total number of robots
in the swarm ((a=N_total)|(b=N_total)). Since we want
to maximize this probability, we do not specify a value for
it.

Another property we want for the system is that the ag-
gregate, once formed, is stable for a certain period. In this
example we set such period to 10 seconds. We verify this
property with probability greater or equal to 2

3
' 0.67:

(a=N_total)|(b=N_total) =>

P>=0.67 [G>=10 (a=N_total)|(b=N_total)]
(2)

In natural language, Property 2 can be expressed in this way:
from the aggregate state ((a=N_total)|(b=N_total)) is it
true with probability greater or equal to 0.67 (=> P>=0.67)
that the system stays for at least 10 seconds (G>=10) in the
aggregate state?

Phase Two: Once the above desired properties have
been specified we need to build the model. We start by
setting the total number of robots in the system. In order to
perform a scalability test, we selected three different group
sizes: Nt = 10, 20, 501. Then, we specify three states: state
Sa, Sb and Sc. A robot in area A or B is in state Sa or
Sb, respectively. Robots outside area A or B are in state
Sc. Moreover, three counters a, b and c are associated to
the respective states. These counters are used to keep track
of the number of robots that are in state Sa, Sb and Sc,
respectively. Note that a+b+c=Nt. See Figure 4 for the
DTMC model of the system.

We design the following behavior for a robot: it performs
random walk and when it finds a black area it stops with
probability 1. The robot then decides whether to leave ac-
cording to a certain probability.

1We tested the system also with 100 robots, but the probability
of obtaining an aggregate in less than 1000 seconds was close to 0.
We decided thus not to include these results in order to simplify
the explanation.
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In this initial stage of the definition of the model, we as-
sume that our system can be effectively described by a non-
spatial model, that is, a model in which the trajectories of
the robots are ignored and a robot can move instantaneously
from area C to area A or B, and vice versa. Moreover, we
also ignore the effects of interferences between robots [21].
However, especially for larger group sizes, the performance
of the system may be reduced by the fact that robots must
avoid each other or that robots stopping in the black areas
prevent other robots from entering it. In case these assump-
tion proves to be not realistic and the results obtained with
the model do not match those obtained in simulation or with
real robots, we will modify them in the following phases, as
explained in Section 3. Note that a model of a similar system
is presented in O’Grady et al. [25].

Since our model is non-spatial and ignores interference,
we consider only the geometric properties of the areas to
compute pca. A robot in area C can either go in area A,
go in area B or stay in area C. This means that a robot
in area C has a probability of going from area C to area
A equal to pca = AA

Aarena
, of going from area C to area B

equal to pcb = AB
Aarena

, and of staying in area C equal to

pcc = AC
Aarena

= 1−(pca+pcb). In our scenarios we used three
different arena sizes for the three different group sizes. In
Table 1 it is possible to find the details about the parameters
used for the experiments.

We need to define the remaining probabilities. The ag-
gregate can be obtained in area A or area B, thus we set
the probabilities of leaving these two areas to be equal:
pac = pbc. Since the two areas have the same size we set
paa = pbb. A robot in area A can only return to area C or
stay in area A, thus paa = 1 − pac. The only independent
probability remaining is pac. Initially, we set pac to a fixed
value. Through model checking, we can find the value of
pac that maximizes the probability of satisfying Property 1.
The process consists in automatically testing the model for
different pac values and find the best one.

The best values found with PRISM are pac = 0.05, 0.04,
0.04 when Nt = 10, 20, 50, respectively. With these values,
the probabilities of satisfying Property 1 are 0.75, 0.15 and
8.8 × 10−5. Property 2 is not satisfied for any of the three
group sizes. The developed behavior, thus, obtains poor
results and the system does not cope well with increasing
group sizes.

It is thus necessary to improve the developed model by
modifying the behavior of the robots. A fixed pac does not
promote the formation of a single cluster. A better solution
is to let a robot decide whether to leave according to the
number of sensed robots around it [18]: with only few robots
nearby, the probability to leave the aggregate pac is high and
vice versa. We set pac = pmin−ac ∗ (Ns + 1), where pmin−ac
is the minimum staying probability we want for a robot and
Ns is the number of other robots sensed. We add 1 to the
number of robots sensed, as we want to include also the
robot that is choosing its next action. Subsequently, we use
PRISM to find the best value of pmin−ac for the different
group sizes. As reported in Table 1, results are better than
before, both for Property 1 and Property 2.

With the current model we are also able to define require-
ments on the hardware capabilities of the robots: a ground
sensor, to differentiate between the two black areas A and B
and the white area C; a sensor to detect nearby robots; and

Table 1: A table that presents the obtained results.
Column pmin−ac shows the best value of pmin−ac
found using PRISM. Column Pr 1 shows the prob-
ability of satisfying Property 1, and column Pr 2
shows whether Property 2 is satisfied.

Nt AA Aarena pca pmin−ac Pr 1 Pr 2
10 0.38m2 4.91m2 0.0784 [0.19, 0.24] 0.95 X
20 0.78m2 19.63m2 0.0625 0.12 0.79 X
50 3.14m2 50.26m2 0.0625 0.10 0.25 X

wheels to move. An example of such a robot is the e-puck
[23] robot which has a range and bearing board that allows
it to perceive the presence of neighboring robots [15].

Phase Three: In this aggregation example, the model
captures well the microscopic behavior of the single robots,
thus it is quite easy to implement the system in simulation.
However, several implementation details are not explicitly
present in the model, such as how the robots perform ran-
dom walk. These implementation details must be dealt with
in such a way that they do not falsify the model.

We implemented the system using the ARGoS simulator
[27]. Figure 6 shows a screenshot of the simulated system.
We performed three different sets of experiments, one for
each group size. To validate the model we measured the
average time necessary to form a complete aggregate on 100
runs with different values of pmin−ac. The robots were de-
ployed in a random position at the beginning of each experi-
ment. Each experiment stopped when a complete aggregate
was formed or after 10,000 seconds.

As reported in Figure 5, for all the three group sizes, the
best results were obtained with the value pmin−ac predicted
using the model. However, the results obtained for Property
1 with the simulated version of the system are usually worse
than those predicted by the model, in particular with 20
and 50 robots. With 10 robots and pmin−ac = 0.22 the sim-
ulated system was able to form a complete aggregate before
1,000 seconds 100 times out of 100, in line with the model
predictions. However, with 20 robots and pmin−ac = 0.12,
Property 1 was satisfied only 53 times out of 100, whereas in
the model it was satisfied with a probability of 0.79. With
50 robots and pmin−ac = 0.10 the difference is even more
evident: only 2 runs out of 100 resulted in an aggregation
time of under 1,000 seconds whereas the model predicted a
probability of satisfying Property 1 of 0.25.

As explained in Section 3, since the results obtained from
the model and from the simulation do not match, we need
to modify the model in order to make them consistent. The
discrepancy between the model and the simulated system is
due to the fact that, as the number of robots grows, interfer-
ence between robots reduces pca. This is because the robots
spend more time avoiding collisions and because the robots
stopping in the black areas prevent other robots from ac-
cessing them. Reducing pca in the model allows us to obtain
results that are closer to those obtained in simulation. For
20 robots and pca = 0.0475, we observe that Property 1 is
satisfied with probability 0.5275, which matches the results
obtained in simulation. For 50 robots we set pca = 0.041,
which gives a probability of satisfying Property 1 of 0.01.

We also tested Property 2. 100 runs of the simulated ex-
periments were executed for 10,000 seconds with the three

143



Aggregation times with 10 Robots

P_min−ac

T
im

e
 [

s
]

0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

1
0

0
0

5
0

0
0

1
0

0
0

0

Aggregation times with 20 Robots

P_min−ac

T
im

e
 [

s
]

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

1
0

0
0

5
0

0
0

1
0

0
0

0

Aggregation times with 50 Robots

P_min−ac

T
im

e
 [

s
]

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

1
0

0
0

5
0

0
0

1
0

0
0

0

Figure 5: Some results obtained with the ARGoS
simulator. The graphs show the time necessary to
form the complete aggregate with different pmin−ac
over 100 runs for 10, 20 and 50 robots.

Figure 6: A screenshot of the simulated version of
the system using 20 robots.

Figure 7: A screenshot of the experiment performed
with the 10 e-puck robots.

group sizes. In the experiments, we measured whether the
system satisfies Property 2, that is, whether a complete ag-
gregate, once formed, lasts more than 10 seconds. In all
the cases in which a complete aggregate was formed before
10,000 seconds, Property 2 was satisfied.

Videos of the simulated experiments are available in the
supplementary pages [8].

Phase Four: In the last phase, we implement the sys-
tem using real e-pucks. We performed 10 experiments with
a group of 10 e-pucks in an arena identical to the simulated
one. A picture of an experiment can be seen in Figure 7.
Figure 8 shows a comparison between the results obtained
with the real robots and in simulation. A video of a run is
available in the supplementary pages [8].

In 10 runs out of 10, both Property 1 and Property 2
were satisfied. The results obtained with the real robots are
in line with those obtained in simulation, even though the
aggregation time is slightly longer. This is probably due to
a higher wheel speed in the simulated experiments.

6. DISCUSSION
Property-driven design aims at supporting the develop-

ment of swarm engineering, that is, a systematic applica-
tion of scientific and technical knowledge to specify require-
ments, design, realize, verify, validate, operate and maintain
a swarm intelligence system. The code-and-fix development
method for swarm robotics systems relies completely on the
ingenuity and experience of the developer. On the contrary,
the proposed property-driven design offers several advan-
tages.

First, property-driven design is an iterative process that
guides and helps the designer in developing the system. The
great majority of iterations occur when building the model.
This allows the developer to focus only on the important
aspects of the system because “whereas a simulation should
include as much detail as possible, a good model should
include as little as possible” [28],

Another advantage is that the risk of developing a sys-
tem that does not satisfy the required properties is reduced,
as these properties are evaluated at each step of the design
and development phase. With the code-and-fix development
these properties are either not verified or verified a poste-
riori, so the risk of developing the “wrong” system is high.
Note that this holds only if the model is “good”, meaning
that it is able to faithfully represent the system. In this
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Figure 8: A graph showing the empirical cumulative
distribution function (Fn(x)) of the results obtained
with real robots (10 runs) and in simulation (100
runs). In both cases pmin−ac = 0.22.

paper, we did not discuss in details model validation. The
interested reader can see, for example, Martinoli et al. [22].

Finally, since the developed model is hardware indepen-
dent, it can be used to choose the robotic platform that
fits best the characteristics of the system. Also, the model
can be partially or completely reused for other applications,
limiting the issue known as “reinventing the wheel”. In the
future, it is possible to imagine a set of publicly available
models for swarm robotics applications that can be reused
and modified by other developers.

While property-driven design has many advantages, it also
has some limits. Being based on modeling, property-driven
design inherits its advantages and limits. As with model-
ing, property-driven design can be applied to a large variety
of swarm robotics systems. However, modeling a swarm
robotics system is a hard task on its own. Many critical
aspects of a swarm robotics system, such as robot-to-robot
interaction or time and spatial aspects of the system are not
always easy to capture in a model. Fortunately, many as-
pects of modeling a swarm robotics system have been stud-
ied extensively over the years (see, for instance, a review on
modeling [21]).

Property-driven design can guide the developer in design-
ing and developing a swarm robotics system. However, de-
pending on the complexity of system to develop, implement-
ing the model in simulation (phase 3) might be complicated.
In these cases the ingenuity and expertise of the developer
are still necessary.

7. CONCLUSION
In this paper, we presented property-driven design: a top-

down design method based on the idea that a swarm robotics
system can be described through a series of properties. Once
these properties have been specified, it is possible to create a
model of the system that satisfies them. In an iterative pro-

cess, the model is improved until it correctly describes the
system that the developer wants to design and satisfies the
desired properties. The obtained model can then guide the
development of a computer simulated version of the system.

Property-driven design is one of the first attempts towards
the development of swarm engineering. Differently from
code-and-fix development, property-driven design offers a
systematic approach towards the development of a swarm
robotics system. Among the advantages of property-driven
design, compared with code-and-fix development, there are:
a shift of the focus of the development process from im-
plementation to design, given that most of the iterations
happen at the design level; a formal way to specify the re-
quirements of the system; a reduced risk of developing the
“wrong” system, that is, a system that does not satisfy the
requirements; and the possibility to develop a set of hard-
ware independent models that can be reused for future ap-
plications.

In the future we plan to apply property-driven design to
more complex applications, possibly using different model-
ing approaches. One problem to tackle is deriving the in-
dividual behavior of the robots starting from a collective
behavior. Several possibilities can be studied, such as the
integration of property-driven design with spatial computing
or artificial evolution.
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