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Abstract

The paper introduces ACO/F-Race, an algorithm for tackling combinatorial optimiza-
tion problems under uncertainty. The algorithm is based on ant colony optimization and on
F-Race. The latter is a general method for the comparison of a number of candidates and
for the selection of the best one according to a given criterion. Some experimental results
on the probabilistic traveling salesman problem are presented.

1 Introduction

In a large number of real-world combinatorial optimization problems, the objective function
is affected by uncertainty. In order to tackle these problems, it is customary to resort to a
probabilistic model of the value of each feasible solution. In other words, a setting is considered
in which the cost of each solution is a random variable, and the goal is to find the solution
that minimizes some statistics of the latter. For a number of practical and theoretical reasons,
it is customary to optimize with respect to the expectation. For a given probabilistic model,
the expectation can always be computed but this typically involves particularly complex ana-
lytical manipulations and computationally expensive procedures. Two alternatives have been
discussed in the literature: analytical approximation and empirical estimation. While the for-
mer explicitly relies on the underlying probabilistic model for approximating the expectation,
the latter estimates the expectation through sampling or simulation.

In this paper we introduce ACO/F-Race, an ant colony optimization algorithm [7] for tack-
ling combinatorial optimization problems under uncertainty with the empirical estimation
approach. F-Race [5, 4] is an algorithm for the comparison of a number of candidates and for
the selection of the best one. F-Race has been specially developed for tuning metaheuristics.1

In the present paper, F-Race is used in an original way as a component of an ant colony opti-
mization algorithm. More precisely, it is adopted for selecting the best-so-far ant, that is, the
ant that is appointed for updating the pheromone matrix.

1A public domain implementation of F-Race for R is available for download [3]. R is a language and envi-
ronment for statistical computing that is freely available under the GNU GPL license.
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The main advantage of the estimation approach over the one based on approximation is
generality: Indeed, a sample estimate of the expected cost of a given solution can be simply
obtained by averaging a number of realizations of the cost itself. On the other hand, computing
a profitable approximation is a problem-specific issue and requires a deep understanding of the
underlying probabilistic model. Since ACO/F-Race is based on the empirical estimation ap-
proach, it is straightforward to apply it to a large class of combinatorial optimization problems
under uncertainty. For definiteness, in this paper we consider an application of ACO/F-Race
to the probabilistic traveling salesman problem, more precisely to its homogeneous
variant [9]. An instance of the probabilistic traveling salesman problem (PTSP) is
defined as an instance of the well known traveling salesman problem (TSP), with the
difference that in PTSP each city has a given probability of requiring being visited. In the
paper we consider the homogeneous variant, in which the probability that a city must be vis-
ited is the same for all cities. PTSP is here tackled in the a priori optimization sense [1]:
The goal is to find an a priori tour visiting all the cities, which minimizes the expected length
of the associated a posteriori tour. The a priori tour must be found prior to knowing which
cities indeed require being visited. The associated a posteriori tour is computed after knowing
which cities need being visited, and is obtained by visiting them in the order in which they
appear in the a priori tour. The cities that do not require being visited are simply skipped.
This problem was selected as the first problem for testing the ACO/F-Race algorithm for two
main reasons: First, PTSP is particularly simple to describe and to handle. In particular, the
homogeneous variant is rather convenient since a single parameter, that is, the probability that
each city requires being visited, defines the “stochastic character” of an instance: When the
probability is one, we fall into the deterministic case; as it decreases, the normalized standard
deviation of the cost of a given solution increases steadily. We can informally conclude that an
instance of the homogeneous PTSP becomes more and more stochastic as the probability that
cities require being visited decreases. This feature is particularly convenient in the analysis
and visualization of experimental results. Second, some variants of ant colony optimization
have been already applied to PTSP: Bianchi et al. [2] proposed pACS, a variant of ant colony
system in which an approximation by defect of the expected length of the a posteriori tour is
optimized. Gutjahr [8] proposed S-ACO, in which an estimation of the expected length of the
a posteriori tour is optimized.

The rest of the paper is organized as follows: Section 2 discusses the problem of estimating,
on the basis of a sample, the cost of a solution in a combinatorial optimization problem
under uncertainty. Section 3 introduces the ACO/F-Race algorithm. Section 4 proposes some
results obtained by ACO/F-Race on PTSP. Section 5 concludes the paper and highlights future
research directions.

2 The empirical estimation of stochastic costs

For a formal definition of the class of problems that can be tackled by ACO/F-Race, we follow
Gutjahr [8]:

Minimize F (x) = E[f(x, ω)], subject to x ∈ S, (1)

where x is a solution, S is the set of feasible solutions, the operator E denotes the mathematical
expectation, and f is the cost function which depends on x and also on a random (possibly
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multivariate) variable ω. The presence of the latter makes the cost f(x, ω) of a given solution
x a random variable.

In the empirical estimation approach to stochastic combinatorial optimization, the expec-
tation F (x) of the cost f(x, ω) for a given solution x is estimated on the basis of a sample
f(x, ω1), f(x, ω2), . . . , f(x, ωM ), obtained from M independently-extracted realizations of the
random variable ω:

F̂M (x) =
1
M

M∑

i=1

f(x, ωi). (2)

Clearly, F̂M (x) is an unbiased estimator of F (x).

In the case of PTSP, the elements of the general definition of a stochastic combinatorial
optimization problem given above take the following meaning: A feasible solution x is an
a priori tour visiting once and only once all cities. If cities are numbered from 1 to N ,
x is a permutation of 1, 2, . . . , N . The random variable ω is extracted from an N -variate
Bernoulli distribution and prescribes which cities need being visited. In the homogeneous
variant of PTSP, each element in ω is independently extracted from a same univariate Bernoulli
distribution with probability p, where p is a parameter defining the instance. The cost f(x, ω)
is the length of an a posteriori tour visiting the cities indicated in ω, in the order in which
they appear in x.

3 The ACO/F-Race algorithm

It is straightforward to extend an ant colony optimization algorithm for the solution, in the
empirical approximation sense, of a combinatorial optimization problem under uncertainty.
Indeed, it is sufficient to consider one single realization of the random influence ω, say ω′, and
optimize the function F̂1(x) = f(x, ω′). Indeed, F̂1(x) is an unbiased estimator of F (x). The
risk we run by following this strategy is that we might sample a particularly atypical ω′ which
provides a misleading estimation of F (x). A safer choice consists in considering a different
realization of ω at each iteration of the ant colony optimization algorithm. The rationale behind
this choice is that unfortunate modifications to the pheromone matrix that can be caused by
sampling an atypical value of ω at a given iteration, will not have a large impact on the overall
result and will be corrected in following iterations. In this paper we call ACO-1 an ant colony
optimization algorithm for stochastic problems in which the objective function is estimated
on the basis of one single realization of ω which is sampled anew at each iteration of the
algorithm.

A more refined approach has been proposed by Gutjahr [8] and consists in using a larger
sample for estimating the value of F (x). In Gutjahr’s S-ACO, the solutions produced at a
given iteration are compared on the basis of a single realization. The iteration-best is then
compared with the best-so-far solution on the basis of a larger sample whose size is determined
dynamically on the basis of a parametric statistical test: Further realizations are considered
till when either a maximum amount of computation is performed, or when the difference
between the sample means for the two solutions being compared is larger than 3 times their
estimated standard deviation. The selected solution is stored as the new best-so-far for future
comparisons and is used for updating the pheromone matrix.
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The ACO/F-Race algorithm we propose in this paper is inspired by S-ACO and similarly
to the latter it considers, at each iteration, a number of realizations for comparing candidate
solutions and for selecting the best one which is eventually used for updating the pheromone
matrix. The significant difference lays in the algorithm used at each iteration for selecting
the best candidate solution. ACO/F-Race adopts F-Race, an algorithm originally developed for
tuning metaheuristics [5, 4]. F-Race is itself inspired by a class or racing algorithms proposed
in the machine learning literature for tackling the model selection problem [11, 12]. In F-Race,
as in the other racing algorithms, a set of given candidates are sequentially evaluated on a
number of test cases. As soon as sufficient evidence is gathered that a candidate is worse than
at least another one, the former is discarded from the race and is not further evaluated. The
race terminates when either one single candidate remains, or when a maximum amount of
computation time is reached. The peculiarity of F-Race compared to other racing algorithms
is the adoption of the Friedman two-way analysis of variance by ranks [6], a nonparametric
statistical test that appears particularly suitable in the context of racing algorithms.

At each iteration of ACO/F-Race, m ants, where m is a parameter, construct a solution as
it is customary in ant colony optimization. In particular, we have adopted here the random-
proportional rule [7]. The m solutions built by the ants, together with the best-so-far solution,
are evaluated and compared via F-Race. The procedure consists in a series of steps at each
of which a new realization of ω is considered and is used for evaluating the solutions that are
still in the race. At each step, a Friedman test is performed and solutions that are statistically
dominated by at least another one are discarded from the race. The solution that wins the
race is used for updating the pheromone and is stored as the best-so-far to be used in the
following iteration of the algorithm.

4 Experimental results

In our experimental analysis we compare ACO/F-Race with ACO-1 and S-ACO. The three
algorithms differentiate only for what concerns the procedure used for selecting, at the end
of each iteration, the best-so-far solution that gets reinforced. Apart for this element, the
algorithms are identical. The implementation used in the experiments is based on Stützle
[13]. The problems considered are homogeneous PTSP instances obtained from TSP instances
generated by the DIMACS generator [10]. We present the results of two experiments. In
the first, cities are uniformly distributed, in the second they are clustered. For each of the
two experiments, we consider 100 TSP instances of 300 cities. Out of each TSP instance we
obtain 21 PTSP instances by letting the probability range in [0, 1] with a step of 0.05. The
run time is of 60 seconds on an AMD OpteronTM 244. The three algorithms were not fine-
tuned, and the parameters adopted are those suggested in Gutjahr [8] for S-ACO. This might
possibly introduce a bias in favor of S-ACO. The solutions selected by each algorithm on each
instance were then evaluated on 300 freshly-selected realizations. The results are reproduced
in Figure 1.

Although trivial, the evaluation method adopted by ACO-1 gives the best results when the
variance of the length of the a posteriori tour is small (or null), that is, when the probability
is close to 1. This is easily explained: using large samples for estimating F (x) is simply a
waste of time when the variance of f(x, ω) is low. On the other hand, when the probability
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Figure 1: Experimental results on uniformly distributed and clustered instances. The plots
represent the expected length of the a posteriori tour obtained by ACO/F-Race and S-ACO,
normalized by the one obtained by ACO-1. The results proposed are obtained by running each
algorithm on each instance for 60 seconds on an AMD OpteronTM 244.

decreases and the problem indeed becomes stochastic, considering a larger sample does repay,
and ACO/F-Race and S-ACO obtain better results than ACO-1. Further, Figure 1 shows that
F-Race improves over the parametric procedure adopted in S-ACO: Throughout the whole
range of probabilities, ACO/F-Race is significantly better than S-ACO according to a paired
Wilcoxon test (α = .01).

5 Conclusions and future work

The preliminary experimental results proposed in Section 4 confirm the generality of the
approach proposed in Gutjahr [8], and show that the F-Race algorithm can be profitably
adopted for comparing solutions in the framework of applications of ant colony optimization to
combinatorial optimization problems under uncertainty.

Further research is needed for properly assessing the quality of ACO/F-Race. We are
currently developing an estimation-based local search for PTSP. We plan to study the behavior
of ACO/F-Race enriched by this local search on homogeneous and non-homogeneous problems.

In the experimental analysis proposed in Section 4 the goal was to compare the evaluation
procedure based on F-Race with the one proposed in Gutjahr [8] and with the trivial one
based on a single sample. For this reason, solution construction and pheromone update were
implemented as described in Gutjahr [8]. We plan to explore other possibilities, such as
construction and update as defined in MAX–MIN ant system [14]. Applications to other
problems, in particular of the vehicle routing class, will be considered too.
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[5] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for config-
uring metaheuristics. In W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis,
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