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Abstract This research work illustrates an approach to the design
of controllers for self-assembling robots in which the self-assembly
is initiated and regulated by perceptual cues that are brought forth
by the physical robots through their dynamic interactions. More
specifically, we present a homogeneous control system that can
achieve assembly between two modules (two fully autonomous
robots) of a mobile self-reconfigurable system without a priori
introduced behavioral or morphological heterogeneities. The
controllers are dynamic neural networks evolved in simulation
that directly control all the actuators of the two robots. The
neurocontrollers cause the dynamic specialization of the robots
by allocating roles between them based solely on their interaction.
We show that the best evolved controller proves to be successful
when tested on a real hardware platform, the swarm-bot. The
performance achieved is similar to the one achieved by existing
modular or behavior-based approaches, also due to the effect
of an emergent recovery mechanism that was neither explicitly
rewarded by the fitness function, nor observed during the
evolutionary simulation. Our results suggest that direct access to
the orientations or intentions of the other agents is not a necessary
condition for robot coordination: Our robots coordinate without
direct or explicit communication, contrary to what is assumed
by most research work in collective robotics. This work also
contributes to strengthening the evidence that evolutionary
robotics is a design methodology that can tackle real-world
tasks demanding fine sensory-motor coordination.
1 Introduction
Self-assembly is a process that is ubiquitous in nature. According to Whitesides and Grzybowski [41],
self-assembly is defined as “the autonomous organisation of components into patterns or structures
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without human intervention.” At the nano or microscopic scale, the interaction among components is
essentially stochastic and depends on their shape, structure, or chemical nature. Nature also provides
many examples of self-assembly at the macroscopic scale, the most striking being animals forming
collective structures by connecting to one another. Individuals of various ant, bee, and wasp species
self-assemble and manage to build complex structures such as bivouacs and ladders. Self-assembly in
social insects typically takes place in order to accomplish some function (defense, object transport,
passage formation, etc.; see [1]). In particular, ants of the species Oecophylla longinoda can form chains
composed of their own bodies, which are used to pool leaves together to form a nest, or to bridge a
passage between branches in a tree [22].

The robotics community has been largely inspired by cooperative behavior in animal societies
when designing controllers for groups of robots that have to accomplish a given task. In particular,
self-assembly provides a novel method of cooperation in groups of robots. Self-assembling robotic
systems at the macroscopic scale display interesting properties, deriving mainly from the sensors
and actuators that can be incorporated in the robots, providing increased component autonomy
and more advanced and complex ways of interaction with the environment and other compo-
nents (see [18]). Recently, the research work carried out in the context of the SWARM-BOTS
project1 proved that it is possible to build and control a group of autonomous self-assembling robots
by using swarm robotics principles. Swarm robotics is a novel approach to collective robotics in
which autonomous cooperating agents are controlled by distributed and local rules [7]. Research
in swarm robotics focuses on mechanisms to enhance the efficiency of the group through some
form of cooperation among the individual agents. In this respect, self-assembly can enhance the
efficiency of a group of autonomous cooperating robots by overcoming the physical limitations
of each individual robot. Within the SWARM-BOTS project, it has been shown that self-assembly
can offer robotic systems additional capabilities useful for the accomplishment of the following
tasks: (a) robots collectively and cooperatively transporting items too heavy to be moved by a single
robot [17]; (b) robots climbing a hill whose slope would cause a single robot to topple over [32];
(c) robots navigating on rough terrain in which a single agent might topple over [32]. The applica-
tion of such systems can potentially go beyond research in laboratories, space applications being one
of the most obvious challenges (e.g., multi-robot planetary exploration and on-orbit self-assembly;
see [24]).

This article illustrates an approach to the design of controllers for self-assembling robots in which
the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical
robots through their dynamic interactions. More specifically, we focus on the problem of forming
a physical structure with two robots that have to allocate distinct roles between them; these roles are
the gripper (robot that grips) and the grippee (robot that receives the grip). In order to design the
robotsʼ control system, we use evolutionary robotics (ER), a methodological tool to automate the design
of robotsʼ controllers [31]. ER is based on the use of artificial evolution to find sets of parameters
for artificial neural networks that guide the robots to the accomplishment of their task. In contrast to
other design methods, ER does not require the designer to make strong assumptions concerning
what behavioral and communication mechanisms are needed by the robots. The experimenter spe-
cifies the characteristics of a social context in which robots are required to cooperate. Then, the
mechanisms for solitary and social behavior are determined by an evolutionary process that favors
(through selection) those solutions that improve an agentʼs or groupʼs ability to accomplish its task
(i.e., the fitness measure).

In this study, we apply an artificial evolutionary process to synthesize dynamic neural network con-
trollers (continuous-time recurrent neural networks—CTRNNs; see [6]) capable of autonomous de-
cision making and self-assembling in a homogeneous group of robots. In particular, we train via
artificial evolution a dynamic neural network that, when downloaded to real robots, allows them to
1 The SWARM-BOTS project was funded by the Future and Emerging Technologies Programme (IST-FET) of the European Commission,
under grant IST-2000-31010. See also http://www.swarm-bots.org.
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coordinate their actions in order to decide who will grip whom. Dynamic neural networks have been
used in the past as a means to achieve specialization in a robot group (see [34, 38] for examples).
Similarly, we study self-assembly in a setup where the robots interact and eventually differentiate by
allocating distinct roles.

A first important contribution of this work is to show that an integrated (i.e., nonmodularized)
dynamic neural network in direct control of all the actuators of the robots can successfully tackle
real-world tasks requiring fine-grained sensory-motor coordination, such as self-assembly. Our work
should be considered a proof of concept that contributes to strengthening the evidence that ER can
safely be employed to obtain controllers for real robots engaged in real-world tasks requiring fine
sensory-motor coordination.

It is important to note that some characteristics of the hardware may impose important con-
straints on the control of the modules of a self-assembling system. Some hardware platforms consist
of morphologically heterogeneous modules that can only play a predefined role in the assembly pro-
cess. In others, the hardware design does not allow, for example, the assembly of more than two
modules, or requires extremely precise alignment during the connection phase, that is, it requires
great accuracy. As argued by Tuci et al. [39], the swarm-bot platform, thanks to its sensors and
actuators and its connection mechanism, does not severely constrain the design of control mecha-
nisms for self-assembly. This platform consists of identical modules, each equipped with a gripper
and a large area to receive connections from other modules. The lack of hardware constraints and
the homogeneity of the robots requires that self-assembly must be achieved through a differentiation
of roles, resulting in the definition of a gripper and a grippee. In previous work, such differentiation
was either predefined [16], or based on stochastic events and a complex communication protocol
[32]. The main contribution of this work lies in the design of control strategies for real assembling
robots that are not constrained by either morphological or behavioral heterogeneities introduced by
the hardware and the control method, respectively. To the best of our knowledge, there is no system
in the robotic literature that can achieve self-assembly without a priori injected morphological or
behavioral heterogeneities. Instead of a priori defining the mechanisms leading to role allocation
and self-assembly, we let behavioral heterogeneity emerge from the interaction among the systemʼs
homogeneous components. Moreover, we show with physical robots that coordination and coopera-
tion in self-assembly do not require explicit signaling of internal states, as assumed, for example, in [16].
In other words, we present a setup that requires minimal cognitive and communicative capacities on
the part of the robots. We believe that by following such an approach, we can obtain more adaptive
robotic systems with a higher level of autonomy, because the adaptiveness of an autonomous multi-
robot system is reduced if the circumstances an agent should take into account to make a decision
(concerning solitary and/or social behavior) are defined by a set of a priori assumptions made by the
experimenter.

Our approach does not dictate the interaction rules and principles to be used to achieve the allocation
of roles. The automatic process autonomously synthesizes the rules the robots have to employ, without
the involvement of the experimenter. However, we should make clear that our experimentation and
analysis do not take scalability into account. That is, the rules governing our system cannot be extra-
polated to the control of groups of robots of higher cardinality. Expanding our design methodology for
assembly in larger groups is a necessary step to be taken in future work; in this article, we present the
rationale and motivations and we demonstrate the effectiveness of our approach for a pair of physical
robots.

This article is organized as follows: In Section 2, we provide a brief overview of the state of the art
in the area of self-assembling robots, and we discuss the limitations of these systems, justifying the
methodological choices we have made. In the subsequent sections (Sections 3, 4, and 5), we describe
the evolutionary machinery and the experimental scenario used to design neural network controllers.
Then, in Section 6, we show the results of post-evaluation tests on physical robots controlled by the
best-performing evolved controller, and we try to shed some light on the mechanisms underpinning
the behavior of successful robots. The results presented are discussed in Section 7, and conclusions are
drawn in Section 8.
Artificial Life Volume 15, Number 4 467
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2 Related Work

Following the distinction introduced in [18], self-assembling systems can be either self-propelled or
externally propelled. The latter category includes components that need to be externally agitated in
order to form structures (see [27], for example). On the contrary, in self-propelled systems, each
module can be a component that approaches and assembles with other components. Mobile ro-
bots are a typical instantiation of such components, which can range from centimeter size to the
nano scale. Although there is a considerable amount of literature treating self-assembly and pattern
formation at the nano scale (see [2, 35], for example), here we focus our attention on self-propelled
self-assembling systems at the macroscopic scale. Such systems are characterized by a high degree of
autonomy linked to the more advanced and complex ways at their disposal to interact with their
environment.

Several examples of robotic platforms in the literature consist of connecting modules. For a com-
prehensive review of self-propelled self-assembling robotic systems at the macroscopic scale, we
direct the reader to the work of Yim et al. [43], Groß and Dorigo [18], Groß et al. [16], and Tuci
et al. [39]. Following Yim et al. [43], it is possible to identify four different categories: chain-based,
lattice-based, mobile, and stochastic reconfigurable robots. As this work focuses on mobile self-
reconfigurable robots, in the following we provide a short overview of this category only. We then
discuss the platform that is used in this study: the swarm-bot.

2.1 Mobile Self-Reconfigurable Robots
The first example of a mobile self-reconfigurable robot was CEBOT [13, 15]. CEBOT is a hetero-
geneous system composed of cells with different functions (move, bend, rotate, slide). Even though
there are no quantitative results to assess the performance and reliability of this system, Fukuda et al.
[14] have shown how docking can be done between a moving cell and a static object cell. Another
robotic system capable of self-assembly is the super-mechano-colony [11, 20]. In this system, autonomous
components, referred to as child units, can connect to and disconnect from a mother ship. Yamakita
et al. [42] achieved docking by letting the child unit follow a predefined path. Groß et al. [19] recently
demonstrated assembly between one and three moving child modules and a static module. Hirose et al.
[21] presented a distributed robot called Gunryu. Each robot is capable of fully autonomous loco-
motion, and the assembled structure proved capable of navigating on rough terrain where a single unit
would topple over. However, autonomous self-assembly was not studied, as the units were connected
beforehand by means of a passive arm. Self-assembly is also not possible for the Millibot train [8], a
system composed of multiple modules that are linearly linked. This is because no external sensor has
been implemented. In all the above mobile self-reconfigurable systems, self-assembly either is not
achieved at all or is only possible between one unit moving autonomously and a static object or unit.

We should also mention two important examples from the modular chain robot literature,
CONRO and PolyBot. CONRO [9] has been used by Rubenstein et al. [36] to demonstrate auton-
omous docking between two robots. It should be noted, however, that the control was heteroge-
neous at all levels and the generality of the approach was limited by orientation and distance
constraints. Yim et al. [44] demonstrated self-assembly with PolyBot: a six-module arm connected
to a spare module on a flat terrain. One end of the arm and the spare module were fixed to the walls
of the arena at known positions, and the motion of the arm relied on knowledge of the goal position
and inverse kinematics.

2.2 Self-Assembly with the Swarm-Bot
The swarm-bot, a collective and mobile reconfigurable system (see [12, 28] and http://www.swarm-
bots.org), consists of fully autonomous mobile robots called s-bots, which can physically connect to
each other and to static objects (preys, also called s-toys). It is the only robotic platform for which
self-assembly of more than two self-propelled robots has been demonstrated; most physical sys-
tems are still at the two-module self-assembly level to date (e.g., PolyBot, CONRO, and CEBOT,
468 Artificial Life Volume 15, Number 4
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mentioned above). Groß et al. [16] presented experiments with the s-bots that improved the state
of the art in self-assembling robots, mainly with respect to the number of robots involved in self-
assembly, the generality and reliability of the controllers, and the assembly speed. A significant con-
tribution of this work is in the design of distributed control mechanisms for self-assembly relying
only on local perception. In particular, self-assembly was accomplished with a modular approach in
which some modules have been evolved and others handcrafted. The approach was based upon a
signaling system that makes use of colors. For example, the decision concerning which robot makes
the action of gripping (the s-bot gripper) and which one is gripped (the s-bot grippee) is made through the
emission of color signals, according to which the s-bots emitting blue light are playing the role of
s-bot gripper and those emitting red light the role of s-bot grippee. Thus, it is the heterogeneity
among the robots with respect to the color displayed, introduced a priori by the experimenter, that
triggers the self-assembly process. That is, a single s-bot born red among several s-bots born blue
is meant to play the role of s-bot grippee while the remaining s-bot grippers are progressively as-
sembling. Once successfully assembled to another s-bot, each blue-light-emitting robot was pro-
grammed to turn off the blue LEDs and to turn on the red ones. The switch from blue to red
light indicates to the yet unassembled s-bots the metamorphosis of a robot from s-bot gripper to
s-bot grippee. This system is therefore based on the presence of a behavioral or morphological
heterogeneity. In other words, it requires either the presence of a prey lit up in red or the presence
of a robot not sharing the controller of the others, which is forced to be immobile and to signal with
a red color. OʼGrady et al. [32] bypassed this requirement by handcrafting a decision-making mecha-
nism based on a probabilistic transition between states. More specifically, the allocation of roles (which
robot lights up red and triggers the process) depends solely on a stochastic process.
2.3 Motivations
The research works presented above have been very successful in that they also showed how as-
sembled structures can overcome physical limitations of the single robots, for instance in transport-
ing a heavy object or in navigating on rough terrain. However, this modularized architecture is based
on a set of a priori assumptions concerning the specification of the environmental and behavioral
conditions that trigger the self-assembling process. For example, (a) the objects that can be grasped
must be red, and those that should not be grasped must be blue; (b) the action of grasping is carried
out only if all the grasping requirements are fulfilled (among others, a combination of conditions
concerning the distance and relative orientation between the robots; see [16] for details). If the
experimenter could always know in advance in what type of world the agents would be located,
assumptions such as those concerning the nature of the object to be grasped would not represent
a limitation with respect to the domain of action of the robotic system. However, since it is desirable
to have agents that can potentially adapt to variable circumstances or conditions that are partially or
totally unknown to the experimenter, it follows that the efficiency of autonomous robots should be
estimated also with respect to their capacity to cope with unpredictable events (environmental vari-
ability, partial hardware failure, etc.). For example, failure to emit or perceive red light for robots
guided by the controllers presented above would significantly hinder the accomplishment of the
assembly task.

We believe that a sensible step in this direction can be made by not constraining the system to initiate
itsmost salient behaviors (e.g., self-assembly) in response to the a priori specified agentʼs perceptual states.
The work described in this article represents a significant step forward in this direction. Our research
work illustrates the details of an alternative methodological approach to the design of homogeneous
controllers (i.e., where a controller is cloned in each robot of a group) for self-assembly in physical
autonomous robots in which no assumptions are made concerning how agents allocate roles. By using
dynamic neural networks shaped by artificial evolution, we managed to design mechanisms by which
the allocation of the s-bot gripper and the s-bot grippee roles is the result of the dynamic interaction
between the s-bots. Furthermore, coordination and role allocation in our system are achieved solely
through minimal sensors (distance and angle information) and without explicit communication, contrary
Artificial Life Volume 15, Number 4 469



C. Ampatzis et al. Evolving Self-Assembly in Autonomous Homogeneous Robots
to the works described above where the agents signal their internal states to the rest of the group.
Also, due to the nature of the sensory system used, the robots cannot sense the orientation of their group-
mates. In this sense, our approach is similar to (and inspired by) the one of Quinn [33] and Quinn et al.
[34], where role allocation (leader-follower) or formation movement is achieved solely through infrared
sensors. In addition, we show that the evolved mechanisms are as effective as the modular and hand-
coded ones described in [16, 32] when controlling two real s-bots.

3 Simulated and Real S-Bot

The controllers are evolved in a simulation environment that models some of the hardware character-
istics of the real s-bots [29]. An s-bot is a mobile autonomous robot equipped with many sensors useful
for the perception of the environment and for proprioception, a differential drive system, and a gripper
by which it can grasp various objects or another s-bot (see Figure 1a). The main body is a cylindrical
turret with a diameter of 11.6 cm, which can be actively rotated with respect to the chassis. The turret is
equipped with a surrounding ring that receives connections from other s-bots through their grippers.

In this work, to allow robots to perceive each other, we make use of the omnidirectional camera
mounted on the turret. The image recorded by the camera is filtered in order to return the distance of
the closest red, green, or blue blob in each of eight 45° sectors. A sector is referred to as CAMi, where
i = 1, … , 8 denotes the index of the sector. Thus, an s-bot to be perceived by the camera must light
itself up in one of the three colors, using the LEDs mounted on the perimeter of its turret. An s-bot
can be perceived in at most two adjacent sectors. Notice that the camera can clearly perceive colored
blobs up to a distance of approximately 50 cm, but the precision beyond approximately 30 cm is rather
low. Moreover, the precision with which the distance of colored blobs is detected varies with the color
of the perceived object. We also make use of the optical barrier, which is a hardware component com-
posed of two LEDs and a light sensor mounted on the gripper (see Figure 1b). By postprocessing
the readings of the optical barrier, we extract information about the status of the gripper and about the
presence of an object between the gripper claws. More specifically, the postprocessing of the optical
barrier readings defines the status of two virtual sensors: (a) the GS sensor, set to 1 if the optical barrier
indicates that there is an object in between the gripper claws, and 0 otherwise; (b) the GG sensor, set
to 1 if a robot is currently grasping an object, and 0 otherwise. We also make use of the GA sensor,
which monitors the gripper aperture. The readings of the GA sensor range from 1 when the gripper is
completely open to 0 when the gripper is completely closed. The s-bot actuators are the two wheels
and the gripper.

The simulator used to evolve the required behavior relies on a specialized 2D dynamics engine
[10]. In order to evolve controllers that transfer to real hardware, we overcome the limitations of the
Figure 1. (a) The s-bot. (b) The gripper and sensors of the optical barrier. (c) Depiction of the collision manager. The arrow
indicates the direction along which the s-bot-gripper should approach the s-bot-grippee without incurring collision penalties.
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simulator by following the minimal simulation approach proposed in [25]. In our setup, motion is simu-
lated with sufficient accuracy; collisions are not. Self-assembly relies on rather delicate physical inter-
actions between robots that are integral to the task (e.g., the closing of the gripper around an object
could be interpreted as a collision). Instead of trying to accurately simulate the collisions, we force the
controllers to minimize them and not to rely on their outcome. In case of a collision, the two colliding
bodies are repositioned to their previous positions, and the behavior is penalized by the fitness func-
tion if the collision cannot be considered the consequence of an accepted grasping maneuver.

Concerning the simulation of the gripper, we modeled the two gripper claws as triangles extend-
ing from the body of the robot. As the gripper opens, these triangles are pulled into the robot body,
whereas as it closes they grow out of it. Thus, the size of the collision object changes with the aper-
ture of the gripper. In order for a grip to be called successful, we require that there be an object
between the claws of the (open) gripper, as close as possible to the interior of the gripper, and that
the claws close around it. In fact, we require that the object and the gripper socket holding the two
claws collide. However, we do not penalize such a collision when the impact angle between the
s-bots falls within the range [−10°,+10°]. Figure 1c shows how this impact angle is calculated
and also depicts the simulated robots we use. In this way, we facilitate the evolution of approach-
ing movements directed toward the turret of the robot to be gripped (see Figure 1c). Robots that
rely on such a strategy when attempting to self-assemble in simulation can also be successful in
reality. Other types of strategies based on rotating movements proved prone to failure when tested
on real hardware. Having taken care of the collisions involved with gripping, the choice of a simple
and fast simulator instead of one using a 3D physics engine significantly speeds up the evolutionary
process.
4 The Controller and the Evolutionary Algorithm

The agent controller is composed of a continuous-time recurrent neural network (CTRNN) of 10
hidden neurons and an arrangement of 11 input neurons and three output neurons (see Figure 2a and
[6] for a more detailed illustration of CTRNNs). Input neurons have no state. At each simula-
tion cycle, their activation values Ii—with i ∈ [1, 11]—correspond to the sensorsʼ readings. In par-
ticular, I1 corresponds to the reading of the GA sensor, I2 to the reading of the GG sensor, I3 to I10
correspond to the normalized readings of the eight camera sectors CAMi, and I11 corresponds to the
reading of theGS sensor. Hidden neurons are fully connected. Additionally, each hidden neuron receives
Figure 2. (a) Architecture of the neural network that controls the s-bots. (b) How the s-botsʼ starting orientations are
defined given the orientation pair (a, h). S-bot L and s-bot R are the robots whose initial orientations in any given trial
correspond to the values of a and h, respectively.
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one incoming synapse from every input neuron. Each output neuron receives one incoming synapse
from every hidden neuron. There are no direct connections between input and output neurons. The
state of each hidden neuron yi (with i∈ [1, 10]) and of each output neuron oi (with i∈ [1, 3]) is updated
as follows:

Hi
dyi
dt

¼ −yi þ
X11
j¼1

Nji Ii þ
X10
k¼1

NkiZð yk þ hkÞ; oi ¼
X10
j¼1

NjiZð yj þ hj Þ: ð1Þ

In these equations, Hi are the decay constants, Nij is the strength of the synaptic connection from neuron
i to neuron j, hk are the bias terms, and Z(x) = (1 + e -x )-1 is a sigmoid function. Hi, hk, and Nij are
genetically specified network parameters. Z(o1) and Z(o2), linearly scaled into [−3.2 cm/s, 3.2 cm/s],
are used to set the speed of the left and right motors, respectively. Z(o3) is used to set the gripper aperture
in the following way: If Z(o3) > 0.75, the gripper closes; if Z(o3) < 0.25, the gripper opens. Cell potentials
are set to 0 when the network is initialized or reset, and circuits are integrated using the forward Euler
method with an integration step size of 0.2.

Each genotype is a vector comprising 263 real values. Initially, a random population of vectors
is generated by initializing each component of each genotype to values randomly chosen from a
uniform distribution in the range [−10, 10]. The population contains 100 genotypes. Generations
following the first one are produced by a combination of selection, mutation, and elitism. For each
new generation, the five highest-scoring individuals from the previous generation are chosen for
reproduction. The new generations are produced by making 20 copies of each highest-scoring
individual, with mutations applied only to 19 of them. Mutation entails that a random Gaussian
offset be applied to each real-valued vector component encoded in the genotype, with a probabil-
ity of 0.25.
5 The Experimental Setup and the Fitness Function

During evolution, each genotype is translated into a robot controller and cloned onto each agent. At
the beginning of each trial, two s-bots are positioned in a boundless arena at a distance randomly
generated in the interval [25 cm, 30 cm]. These distances are chosen because at this stage we study
role allocation and self-assembly without addressing the issue of aggregation, and because of hard-
ware constraints. In particular, two robots cannot be initialized closer than approximately 23 cm,
given their diameter and the gripperʼs dimensions. Moreover, even if the robots can perceive each
other at distances farther than 30 cm, the precision of the camera beyond that distance is quite low.2

The initial orientations of the robots a and h (see Figure 2b) are predefined. Our initialization is
inspired by the initialization used in [33]. In particular, we defined a set of (unordered) orientation
pairs (a, h) as all the combinations with repetitions from a set

Qn ¼ 2k
n

� i ji ¼ 0;… ; n − 1g;
�

ð2Þ

where n is the cardinality of the set. In other words, we systematically choose the initial orientation of
both s-bots drawing from the set Qn. The cardinality of the set of all the different pairs—where we
2 In fact, beyond 30 cm it is possible to detect the presence of objects, but not to reliably determine their distance, due to the very noisy
readings of the camera sensor.
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consider (a, h) ≡ (h, a)—corresponds to the total number of combinations with repetitions, and can
be obtained by the following equation:

ðn þ k − 1Þ!
k!ðn − 1Þ! ; ð3Þ

where k = 2 indicates that combinations are pairs, and n = 4 lets us define the set of possible initial
orientations Q4 = {0°, 90°, 180°, 270°}. From this, we generate 10 different pairs (a, h). Each group
is evaluated four times at each of the 10 starting orientation pairs for a total of 40 trials. Each trial
differs from the others in the initialization of the random number generator, which influences the
robotsʼ initial distance and their orientation by determining the amount of noise added to the orienta-
tion pairs (a, h). During a trial, noise affects motors and sensors as well. In particular, uniform noise is
added in the range ±1.25 cm for the distance, and in the range ±1.5° for the angle of the colored blob
perceived by the camera. 10% uniform noise is added to the motor outputs Z(oi). Uniform noise ran-
domly chosen in the range ±5° is also added to the initial orientation of each s-bot. Within a trial, the
robotsʼ life span is 50 simulated seconds (250 simulation cycles), but a trial is also terminated if the
robots incur 20 collisions.

The fitness assigned to each genotype after evaluation of the robotʼs behavior is the average of the
fitness achieved in the 40 trials. In each trial, each group is rewarded by the following evaluation func-
tion, which seeks to assess the ability of the two robots to get closer to each other and to physically
assemble through the gripper:

F ¼ A � C � S: ð4Þ

Here A is the aggregation component, computed as follows:

A ¼
1:0

1:0þarctan drr − 16
16ð Þ if drr > 16 cm;

1:0 otherwise;

(
ð5Þ

with drr corresponding to the distance between the two s-bots at the end of the trial. This component
helps to bootstrap evolution and to guide toward solutions in which the robots tend to approach each
other.

C is the collision component, computed as follows:

C ¼

1:0 if nc ¼ 0;

0:0 if nc > 20;

1:0
0:5þ ffiffiffi

nc
p otherwise;

8>>><
>>>:

ð6Þ

with nc the number of robot-robot collisions recorded during the trial; the role of this collision com-
ponent is to gradually punish collisions. The way in which collisions are modeled in simulation and
handled by the fitness function is an element that favors the evolution of assembly strategies in
which the s-bot gripper moves straight while approaching the s-bot grippee (see Section 3). This
has been done to ease transferability to real hardware.
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S is the self-assembly component, computed at the end of a trial (t= T with T∈ (0, 250]), as follows:

S ¼
100:0 if GGðTÞ ¼ 1; for any robot;

1:0þ
29:0

XT
t¼0

KðtÞ
T otherwise;

8>><
>>: ð7Þ

K(t) is set to 1 for each simulation cycle t in which the sensorGS of any s-bot is active; otherwise K(t)= 0.
The role of K(t) within the self-assembly component (S ) is very important: By rewarding the robotʼs sen-
sing the turret of another robot, even if assembly is not achieved, we bootstrap evolution, since sensing an
object within the open gripper is a prerequisite for establishing a connection.

Notice that, given the way in which F is computed, no assumptions are made concerning which s-bot
plays the role of s-bot gripper and which one the role of s-bot grippee. All the components of the fitness
function are meant to bootstrap evolution and to lead to collision-free self-assembly between the agents.

6 Results

As stated in Section 1, the goal of this research work is to design, through evolutionary computation
techniques, dynamic neural networks to allow a group of two homogeneous s-bots to physically con-
nect to each other. To pursue our objective, we run 20 randomly seeded evolutionary simulations for
10,000 generations. Although several evolutionary runs produced genotypes that obtained the highest
fitness score (i.e., F = 100; see Section 5), the ranking based on the evolutionary performance has not
been used to select a suitable controller for the experiments with real robots. The reason for this is
that during evolution the best groups may have taken advantage of favorable conditions (robot initial-
ization, noise level, etc.).

Thus, in order to select the genotype to be downloaded on the s-bots, we used the following
procedure: We first identified the runs that produced genotypes that during evolution achieved the
maximum fitness score (F = 100). Then, for these runs, which are 4 out of 20, the best evolved
genotype from generation 5,000 to generation 10,000 was evaluated again on a series of 36,000 trials,
obtained by systematically varying the s-botsʼ starting orientations. In particular, we evaluated the
evolved genotypes using a wider set of initial orientations Q8, defined by Equation 2. The cardinality
of this set of pairs is equal to 36.3 Each starting condition (i.e., orientation pair) was tested in 1,000 trials,
each time randomly choosing the robotsʼ distance from a uniform distribution of values in the range
[25 cm, 30 cm]. Noise was added to initial orientations, sensor readings, and motor outputs as described
in Section 5.

From this pool of genotypes, we selected the one with the best average performance over the
36,000 post-evaluation trials. This genotype was decoded into an artificial neural network, which was
then cloned and ported onto two real s-bots. In what follows, first we provide the results of post-
evaluation tests aimed at evaluating the success rate of the real s-bots at the self-assembly task as well
as the robustness of the self-assembly strategies in different setups (see Section 6.1). Subsequently, we
illustrate the results of analyses carried out with simulated s-bots, aimed at unveiling operational aspects
underlying the best evolved self-assembling strategy (see Section 6.2).

6.1 Post-Evaluation Tests on Real S-bots
The s-botsʼ controllers are evaluated four times on each of 36 different orientation pairs (a, h),
obtained by drawing a and h from Q8. As mentioned in Section 3, the s-bots have to turn on their
3 The cardinality is given by Equation 3 with n = 8, k = 2, and it is chosen to be higher than the one used during evolution in order to
assess the ability of the controllers to generalize to a wider set of initial conditions.
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colored LEDs in order to perceive each other through the camera. As discussed in Section 2.1, a
significant advantage of our control design approach is that the specific color displayed has no func-
tional role within the neural machinery that brings forth the s-botsʼ actions. However, the camera
readings, as well as the optical barrier readings, vary with respect to the color of the perceived ob-
ject. This effect can influence the performance of the s-bots. In order to test the robustness of our
controllers against different LED colors, we decided to carry out experiments with LEDs emitting
green, blue, and red color, with the robots initialized at 30 cm from each other. These tests are re-
ferred to as G30, B30, and R30, respectively. In the case of the green color, we also test our system
for an initial distance of 25 cm—this test is referred to as G25. In each post-evaluation experiment,
when one robot manages to grasp the other one, the trial is considered successful. Note that, for real
s-bots, the trialʼs termination criteria were changed with respect to those employed with the simu-
lated s-bots. We set no limit on the maximum duration of a trial, and no limit on the number of
collisions allowed. In each trial, we let the s-bots interact until physically connected. As illustrated
later in the section, these new criteria allowed us to observe interesting and unexpected behavioral
sequences. In fact, the s-bots sporadically committed inaccuracies during their self-assembly ma-
neuvers. Yet, the robots demonstrated the required capabilities to autonomously recover from these
inaccuracies. In the following, we describe in detail the performance of the real s-bots in these post-
evaluation trials.4

The s-bots proved to be successful in almost all tests. They managed to self-assemble in 135 out
of 136 trials. Table 1 gives more details about the s-botsʼ performances. We notice that the pro-
portion of successful trials at the first gripping attempt ranges from around 58% in the case of R30
to around 80% for G25. In a few trials, the s-bots managed to assemble after two or three grasping
attempts (see Table 1, 3rd and 7th columns). The majority of the failed attempts were caused by in-
accurate maneuvers—referred to as inaccuracies of type I1—in which a series of maladroit actions by
both robots makes it impossible for the s-bot gripper to successfully grasp the s-bot grippeeʼs cylindrical
turret. In a few other cases the group committed a different inaccuracy—referred to as I2—in which
both robots assume the role of s-bot gripper. In such circumstances, the s-bots head toward each other
Table 1. Results of post-evaluation tests on real s-bots. G25 and G30 refer to the tests in which the s-bots light
themselves up in green and are initialized at a distance from each other of 25 and 30 cm, respectively. B30 and R30
refer to tests in which the s-bots light themselves up in blue and red, respectively, and are initialized at a distance of
30 cm from each other. Trials in which the physical connection between the s-bots requires more than one gripping
attempt, due to inaccurate maneuvers Ii, are still considered successful. I1 refers to a series of maladroit actions by both
robots that makes it impossible for the s-bot gripper to successfully grasp the s-bot grippeeʼs cylindrical turret. I2 refers
to those circumstances in which both robots assume the role of s-bot gripper and collide at the level of their grippers. I3
refers to those circumstances in which, after grasping, the connected structure gets slightly elevated at the connection
point. Failures correspond to trials in which the robots do not manage to return to a distance from each other smaller
than their visual field.
Test
4 Movies
IridiaSup

Artificial
Numbers of successful trials per gripping attempt and types of inaccuracy
of the post-evaluation tests on real s-bots and data not shown in the article can be found at http://irid
p2008-002/.
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No. of failures
1st
 2nd
 3rd
Number
 Number
 I1
 I2
 I3
 Number
 I1
 I2
 I3
G25
 28 (77.78%)
 7 (19.44%)
 6
 1
 0
 1 (2.78%)
 2
 0
 0
 0 (0.00%)
G30
 29 (80.56%)
 6 (16.67%)
 3
 3
 0
 1 (2.78%)
 1
 1
 0
 0 (0.00%)
B30
 26 (72.22%)
 5 (13.89%)
 3
 2
 0
 4 (11.11%)
 8
 0
 0
 1 (2.78%)
R30
 21 (58.33%)
 12 (33.33%)
 8
 0
 2
 4 (11.11%)
 7
 0
 1
 0 (0.00%)
ia.ulb.ac.be/supp/
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until a collision between their grippers occurs. Another type of inaccuracy emerged in test R30: In three
trials, after grasping, the connected structure got slightly elevated at the connection point. We refer to
this type of inaccuracy as I3. Note also that in a single trial, in test B30, the s-bots failed to self-assemble
(see Table 1, last column). In this case, the s-bots moved so far away from each other that they ended up
outside their perceptual camera range. This trial, in which the s-bots spent more than 1 min without
perceiving each other, was terminated and considered unsuccessful. Overall, apart from the one failed
trial, we observe that the s-bots always managed to recover from the inaccuracies and end up successful.
6.1.1 Behavioral Sequences
For each single test (i.e., G25, G30, B30, and R30), the sequences of s-botsʼ actions are rather different
from one trial to another. However, these different histories of interactions can be succinctly described
by a combination of a few distinctive phases and transitions between phases, which portray the ob-
served phenomena. Figure 3 shows some snapshots from a successful trial that represent these phases.
The robots leave their respective starting positions (see Figure 3a), and during the starting phase (see
Figure 3b) they tend to get closer to each other. In the great majority of the trials, the robots move from
the starting phase to what we call the role allocation phase (RA phase; see Figure 3c). In this phase, each
s-bot tends to remain on the right side of the other. They slowly move, following a circular trajectory
corresponding to an imaginary circle centered in between the s-bots. Moreover, each robot rhythmi-
cally changes its heading by turning left and right. The RA phase ends once one of the two s-bots
assumes the role of the s-bot gripper, stops oscillating, and heads toward the other s-bot, which as-
sumes the role of the s-bot grippee and orients itself properly in order to facilitate the gripping (gripping
phase; see Figure 3d). The s-bot gripper approaches the s-bot grippeeʼs turret and, as soon as its GS
sensor is active, closes its gripper. A successful trial terminates as soon as the two s-bots are connected
(see Figure 3e).
6.1.2 Inaccuracies and Recovery
As mentioned above, in a few trials the s-bots failed to connect at the first gripping attempt, by com-
mitting what we called inaccuracies I1 and I3. These inaccuracies seem to indicate problems in the
sensory-motor coordination during grasping. Recovering from I1 can only be accomplished by return-
ing to a new RA phase, in which the s-bots negotiate again their respective roles, and eventually self-
assemble. Recovery from I3 is accomplished by a slight backward movement of both s-bots, which
restores a stable gripping configuration. Given that I3 has been observed only in R30, it seems plausible
to attribute the origin of this inaccuracy to the effects of the red light on the perceptual apparatus of the
s-bots. I2 seems to be caused by the effects of the s-botsʼ starting positions on their behavior. In those
trials in which I2 occurs, after a short starting phase, the s-bots head towards each other until they collide
with their grippers without going through the RA phase. Theway in which the robots perceive each other
at starting positions seems to be the reason why they skip the RA phase. Without a proper RA phase,
the robots fail to autonomously allocate between themselves the roles required by the self-assembly task
(i.e., s-bot gripper and s-bot grippee), and consequently they incur I2. In order to recover from I2, the
s-bots move away from each other and start a new RA phase in which roles are eventually allocated.
Figure 3. Snapshots from a successful trial: (a) initial configuration, (b) starting phase, (c) role allocation phase, (d) gripping
phase, (e) success (grip).
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As shown in Table 1, except for a single trial in test B30 in which the s-bots failed to self-assemble,
the robots proved capable of recovering from all types of inaccuracies. This is an interesting result,
because it is evidence of the robustness of our controllers with respect to contingencies never encoun-
tered during evolution. Indeed, as mentioned in Section 3, in order to speed up the evolutionary pro-
cess, the simulation in which controllers have been designed does not handle collisions with sufficient
accuracy. In those cases in which, after a collision, the simulated robots had another chance to assem-
ble, the agents were simply repositioned at a given distance to each other, and their controller was
punished by the fitness function for incurring a collision. In spite of this, s-bots guided by the best
evolved controllers proved capable of engaging in successful recovering maneuvers, which allowed
them to eventually assemble.

The ability of the neural network to recover from inaccuracies must be directly linked to its gen-
eralization abilities and to the nature of the fitness function (see Section 5) that we employed to
optimize its parameters. This fitness function rewards robots for achieving assembly under a com-
prehensive variety of initial conditions, without dictating the states through which the robots must
go in order to self-assemble. This fact allows the CTRNN controller to operate in a continuous
perception-action space, with the result that the network is able to generalize to conditions not en-
countered during evolution.
6.2 An Operational Description
In view of the results shown in Section 6.1, we believe that evolved neurocontrollers are a promising
approach to the design of mechanisms for autonomous self-assembly. In the previous section, we dem-
onstrated that the evolved mechanisms are as effective in controlling two real s-bots in the assembly
task as those described in [16, 32]. However, it is important to remark that the operational principles of
self-assembly used by the s-bots, controlled by this type of neural structure, are less transparent than the
modular or hand-coded control described in [16, 32]. Further research work and experimental analysis
are required to unveil the operational principles of the evolved neural controllers. What are the strategies
that the s-bots use to carry out the self-assembly task? How do they decide which is the s-bot gripper,
and which is the s-bot grippee? Although extremely interesting, providing an answer to this type of
questions is not always a simple task. The methodologies we have in order to look for the operational
mechanisms of evolved neural networks are limited to networks with a small number of neurons, or to
cases in which the neural networks control simple agents that can only move in a one-dimensional
world, or by discrete steps (see [4, 5, 26] for details). Due to the nature of our system, most of these
methods cannot be directly employed to investigate which mechanisms control the process by which
two homogeneous s-bots differentiate into s-bot gripper and s-bot grippee. In spite of these difficulties,
we describe below the results of an initial series of studies focused on the relationship between the
s-botsʼ starting orientations and the role allocation process.

Do the robotsʼ orientations at the beginning of a trial influence the way in which roles (i.e., s-bot
gripper versus s-bot grippee) are allocated? We start our analysis by looking at the results of the post-
evaluation tests mentioned at the beginning of Section 6. In particular, we look at those data con-
cerning the behavior of the s-bots controlled by the best performing genotype, that is, the genotype
used to build the networks ported on the real robots. Recall that, in these tests, the simulated s-bots
have been evaluated on a series of 36 starting orientation pairs (a, h) obtained from Q8. For each
orientation pair the s-bots underwent 1,000 evaluation trials, each time randomly choosing the agentsʼ
distance from a uniform distribution of values in the range [25 cm, 30 cm]. Also notice that uniform noise
randomly chosen in the range ±5° is added to the initial orientation of each s-bot. The 36 orientation
pairs include eight symmetrical conditions in which a = h. In symmetrical orientation pairs, the robots
share the same perception at the beginning of the trial. That is, they perceive each other through the
same sectors of their corresponding cameras. Asymmetrical orientation pairs are those in which a 6¼ h.

Contrary to the real s-bots, the simulated robots, due to the way our simulator handles collisions, are
not allowed to use any recovery maneuvers. That is, in these post-evaluation tests, the simulated s-bots
are scored according to a binary criterion: A trial can be either successful or unsuccessful. Unsuccessful
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trials are considered those in which the robots did not manage to self-assemble within the time limit, as
well as those that terminated due to the occurrence of collisions that are not considered the result of an
accepted grasping maneuver (see Section 3 for details).

In Figure 4a, we can see boxplots of the success rate of simulated s-bots, controlled by the best
evolved genotype, for asymmetrical and symmetrical sets of trials (see caption for details). We observe
that both medians are around 95%, and thus we can claim that the system manages to be very suc-
cessful for both symmetric and asymmetric conditions.

Given that robots proved to be successful even in symmetrical trials, we can already exclude the pos-
sibility that the system works by following simple rules by which the role is determined by the initial
individual perception. In other words, having the same initial perception does not hinder the robots from
allocating different roles. Therefore, either the system has to be governed by more complex principles
based on the combination of a and h, or the initial orientations do not influence the role allocation pro-
cess. In the remainder of this section, we carry out an analysis that helps us further clarify this issue.

By looking at the frequency with which each s-bot (i.e., s-bot L and s-bot R) plays the role of s-bot
gripper for any given values of a and h, our analysis is intended to unveil any relationship between the
robotsʼ initial orientations and the role they assume during the trial. In particular, we looked at the role
ratio, which can be considered a property of each orientation pair. It indicates how often a given robot
(i.e., s-bot L or s-bot R) played the role of s-bot gripper when repeatedly evaluated on a given orienta-
tion pair. In particular, the role ratio corresponds to the highest frequency of playing the s-bot gripper
role between the one recorded by s-bot L and by s-bot R. Thus, the role ratio can vary between 50%,
when the two robots played the s-bot gripper role with the same frequency, to 100%, when only one
robot plays the s-bot gripper role in all the trials that start with the same perceptual scenario.

In Figure 4b, we provide a boxplot of the role ratio for asymmetrical and symmetrical sets of
trials. We clearly see that while the totality of the orientation duplets corresponding to symmetrical
starting positions is characterized by a role ratio around 50%, the large majority of the orientation pairs
corresponding to asymmetrical starting positions are characterized by a role ratio near 100%. This means
that while in the large majority of the asymmetrical trials the role of s-bot gripper is played by the same
robot, in all symmetrical trials both robots play the role of s-bot gripper with more or less the same
frequency.

Our analysis revealed that in the case in which the two robots have different initial perceptions,
the role that each s-bot assumes can (usually) be predicted knowing the combination of a and h.
This means that the initialization of the robots influences the final role allocation. It is important,
though, to stress that it is the combination of the two orientations that determines the roles. In other
words, perceiving the other robot at a specific distance and at a certain angle does not inform a robot
about the role it will assume during the trial; this role equally depends on the initialization of the
other robot. As a consequence, the robots go through a dynamic interaction that eventually leads
to the allocation of roles. This dynamic interaction can be considered a sort of negotiation phase
478 Artificial Life Volume 15, Number 4
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Figure 4. (a) Success rate for asymmetrical (28 out of 36 pairs) and symmetrical (8 out of 36 pairs) starting conditions
(b) Role ratio for asymmetrical and symmetrical starting conditions. Every observation in the boxplots corresponds to
one orientation pair, and it represents either (a) the percentage of success or (b) the role ratio in 1,000 evaluation trials
Boxes represent the interquartile range of the data, while dashed horizontal bars in bold inside the boxes mark the median
values. The whiskers extend to the most extreme data points within 1.5 times the interquartile range from the box. Crosse
mark the outliers.
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between the two robots to allocate the roles of s-bot gripper and s-bot grippee between them. Such
a negotiation unfolds in time during the whole trial.

On the other hand, in those cases in which the robots start with identical perceptions (a = h),
the experimenter cannot predict the outcome of the role allocation. So the question that should be
asked is what drives the differentiation in the absence of initial perceptual asymmetries. In order to
provide an answer to this question, we perform the following test: We gradually reduce the range of
the random noise applied to sensors and actuators until no noise is present, and we record the aver-
age fitness of the system for 1,000 trials drawn from Q8, for three different conditions: (i) asym-
metrical (a 6¼ h); (ii) symmetrical (a = h); and (iii) symmetrical + 1° (a = h + 1°—in this case, the
initial orientations differ by only 1°).

In Figure 5, we plot the results of this test on a logarithmic scale. We can clearly see that (i) for
asymmetrical trials (see continuous line), the noise scaling factor has no effect on performance and
the initial asymmetry is what causes the differentiation of the controllers; (ii) for symmetrical + 1°
(see dotted line), the same situation holds, that is, even 1° of difference in the initial perceptions can
be enough to produce differentiation; (iii) for symmetrical trials (see dashed line), the noise scaling fac-
tor has a big effect on the number of trials where differentiation is achieved. In particular, this factor
has to be over 10% in order for the performance to reach levels as high as with the other two cases.

Thus, we can say that in the symmetrical case, it is the random noise (real-world, or injected into
the simulation) that introduces subtle asymmetries that lead to role allocation. In this particular case,
the role of an s-bot is determined by stochastic phenomena, which justifies a role ratio of about
50%. Also, we have shown that a difference in initial perception as small as 1° is enough to produce
differentiation and role allocation. This indicates that the neural network is amplifying the differences
among the robots. Indeed, in the absence of noise and of significant asymmetries, it is the internal
dynamics that amplifies the small asymmetries, which results in role allocation.

Finally, it should be mentioned that the type of solution described above is qualitatively similar to
other solutions found by evolution. In particular, we analyzed successful genotypes of other evolu-
tionary runs and we found that the robots rely on similar behavioral strategies to achieve assembly.
However, solutions can differ on how the space of asymmetrical configurations is segmented; that is,
for the same robot initialization, different solutions can lead to a different robot assuming a certain
role. Also, rhythmic oscillation of the heading of the robots seems to be a common characteristic of
successful strategies, even if the motion and trajectories of the robots can be different.

7 Discussion

In a context free of assumptions concerning the nature of the mechanisms underlying the agentsʼ
behavioral repertoire, our evolutionary robotics model exploits an automatic design process that
mimics the mechanisms of natural evolution to define the control structures that allow the robots
Figure 5. Logarithmic plot of the average fitness over 1,000 trials with the noise scaling factor for three different con-
ditions: asymmetrical, symmetrical, and symmetrical + 1°.
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to autonomously self-assemble by playing complementary roles (i.e., s-bot gripper and s-bot grippee).
The results of post-evaluation analyses shown in Section 6.2 illustrate that the allocation of roles is the
result of an autonomous negotiation phase between the two robots. The outcome of any action an
agent chooses depends on the action of the other agent. In other words, neither of the two agents can
know the role it will assume at the end of the trial, judging only from its initial perception.

We have shown on real hardware that explicit communication to directly access the “intention” of
the other agent (through explicit signals, e.g., the ones used in [16]) is not a necessary condition for
coordination. Our robots coordinate without direct and explicit communication. Noble [30] reached a
similar conclusion with an evolutionary simulation model involving two simulated animals contesting
the possession of a resource. Groß and Dorigo [17] have also concluded that cooperative behavior can
be achieved without explicit means of communication. More specifically, in a cooperative transport
task, simulated robots could find effective transport strategies exploiting indirect communication, that
is, by interacting with each other through the object to be transported. Similarly, Ijspeert et al. [23]
show that a homogeneous population of robots deprived of means for explicit communication can
coordinate their actions and assume complementary roles in a stick-pulling experiment. In particular,
each stick in order to be removed from the ground needs the engagement of two robots at different
levels, and implicit communication takes place via the stick elevation. Our work shares with this re-
search the fact that dynamic role allocation can be achieved without a priori introduced heterogeneities.
Finally, our results are very similar to the results obtained by Quinn [33] and Quinn et al. [34], where
role allocation (leader-follower) and formation movement are achieved solely through infrared sensors,
and the control structure is once again an evolved dynamic neural network. In particular, Quinn [33]
reports on role allocation between two robots for symmetrical and asymmetrical cases. While the
author qualitatively explains how the difference in the initial perceptions influences the role allocation
for asymmetrical cases, an analysis of the evolved behavior in the case of insufficient differences is not
performed. In the analysis performed in Section 6.2, we have explained quantitatively, and to some
degree qualitatively, the effect of the starting configuration on the final outcome of a trial (how roles
are allocated); the great majority of asymmetrical configurations severely bias the role allocation pro-
cess, while random noise is the element that produces differentiation and role allocation for symme-
trical configurations.

Our system proved to be very effective in controlling two physical robots, due to its robustness
against real-world noise and inter-robot differences. This robustness is demonstrated by the high per-
formance in all our experiments, also due to the recovery mechanism. However, we did not test the
robustness of the system against the initial distance of the robots, for two reasons: First, the goal of this
research is to obtain self-assembly with physical robots and not the integration of self-assembly with
aggregation. Second, as we have already explained in Section 5, the reliability of the camera sensor for
distances farther than 30 cm is limited. This fact will affect the behavior of the physical agents, even if
we expect the system to cope with this disruption to a certain extent, due to the recovery mechanism.

It should be noted that the robotsʼ initialization is an also important parameter for the evolution-
ary processes. Our choice was aimed to evolve a system that can cope with all possible orientation
pairs. Altering the proportion of symmetrical and asymmetrical orientation pairs experienced
throughout evolution might have an impact on the evolved role allocation strategies. These strategies
also depend on the cardinality of the group, because evolving systems with more robots will defi-
nitely affect their nature. For example, in a system composed of many robots, symmetrical condi-
tions might be extremely rare. Also, asymmetrical conditions could be so numerous that it might be
easier for artificial evolution to design neurocontrollers relying more on stochastic events than the
ones presented in this study. After all, stochastic events are the main driving force for self-assembly not
only in nature, but also in the majority of engineered systems composed of a large number of compo-
nents (see [2, 27] for examples).

Future work will also focus on the scalability of our system. Can the controllers we presented in the
previous sections still manage to achieve assembly if there are more than two robots involved? The
fitness function rewards two robots connecting to each other, but it does not explicitly impose the for-
mation of one single structure: If we put more than three robots in our arena, nothing guarantees
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the formation of one single swarm-bot. We did not perform a full scalability test, but only some initial
experimentation with three robots, whose results are encouraging. In any case, if scalability is a desired
property of our controllers, then it would be useful to make new evolutionary runs with more than two
robots participating in the trials. This is because the controllers we evolved may be optimized for a two-
robot case. This is a common problem in ER experimentation; for example, the controllers evolved
in [34] are nonscalable; that is, they cannot successfully control a group of robots whose cardinality is
larger than the one with which they were evolved [40]. However, we might expect our system to be able
to cope with this challenge to a certain extent, due to its tolerance of inaccuracies and to the recovery
mechanism.

Moreover, if we want to move from the study of self-assembly among s-bots to the study of self-
assembly among swarm-bots, important issues that have been disregarded in the current work have
to be taken into account. More specifically, the connected structure must have the ability to move co-
ordinately: It should be able to perform coordinated motion [3], which means it should be equipped
with more sensors and actuators (traction sensor and rotating turret for the case of the s-bot), in or-
der to actively participate in the assembly process. For example, it could interact with other assembled
structures or individual robots by either receiving connections from them or grasping them.

Finally, it should be mentioned that the research detailed in this article will be integral to the study
of functional self-assembly, which will be tackled in future work. More in detail, we have managed to
design a simulated environment that can model the relevant aspects of the fine-grained sensory-motor
coordination required sufficiently well to achieve assembly with real robots. Thus, we will reuse this
environment in order to study cases when the assembly should not be a priori demanded, but instead
should be a consequence of the environmental contingencies. In other words, we will study more
complex scenarios in which self-assembly is functional to the achievement of particular objectives that
are beyond the capabilities of a single robot. For example, in [37] we started experimentation exploiting
a setup where robots have to infer if the environment requires self-assembly by categorizing it indi-
vidually or collectively. In particular, in one environment, the robots should move as an assembled
structure in order to bridge a gap too large to be crossed by an individual robot and eventually reach
a goal location.
8 Conclusion

In this article, we have presented the results of an evolutionary methodology for the design of con-
trol strategies for self-assembling robots. More specifically, to the best of our knowledge, the con-
trol method we have proposed for the physical connection of two robots is the only one existing in
the literature where the role allocation between gripper and grippee is the result of an autonomous
negotiation phase between homogeneous robots; there is no a priori injected behavioral or morpho-
logical heterogeneity in the system. Instead, the behavioral heterogeneity emerges through the in-
teraction of the robots. Moreover, the communication requirements of our approach are reduced to
the minimum; simple coordination by means of the dynamic interaction between the robots—
as opposed to explicit communication of internal states—is enough to bring forth differentiation
within the group. We believe that reducing the assumptions on necessary conditions for assembly
is an important step to obtain more adaptive and more general controllers for self-assembly in auton-
omous robots.

The results of this work are a proof of concept: They prove that dynamic neural networks shaped
by evolutionary computation techniques directly controlling the robotsʼ actuators can provide physical
robots all the required mechanisms to autonomously perform self-assembly. Contrary to the modular
or hand-coded controllers described in [16, 32], the evolutionary robotics approach did not require the
experimenter to make any a priori assumptions concerning the roles of the robots during self-assembly
(i.e., either s-bot gripper or s-bot grippee) or about their status (e.g., either capable of moving or re-
quired not to move). Furthermore, in Section 6.1 we presented a system that exhibits recovery capabil-
ities that could not be observed during the artificial evolution and that were not coded or foreseen by the
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experimenter. Such a feature in our case comes for free, while in the case of Groß et al. [16] a recovery
mechanism had to be designed as a specific behavioral module to be activated every time the robots
failed to achieve assembly.

One major contribution of our work is the strengthening of the evidence that evolved neural
networks can be a reliable and efficient way of controlling real robots engaged in real-world tasks
requiring fine sensory-motor coordination, such as the establishment of a physical connection be-
tween two autonomous mobile robots. It is important to stress that the networks we used directly
control all robots actuators, without the need for hand-coded filters mediating between the output
of the network and the performed actuation.

Nevertheless, despite the advantages presented above, our system is not as transparent as a hand-
coded control system, as we cannot easily break its behavior down to a set of rules or states. To do so
seems to be very challenging and particularly difficult, especially when the network size is large and/or
the movement of the robots takes place in a continuous and noisy world, such as the real world. How-
ever, we would like to stress that we do not consider this step a necessary precondition for the success
of research work using evolutionary robotics as a design methodology. Our view is that it is more
important to identify those choices that made the implementation and experimentation successful. That
is, we put the stress on better understanding which principles make the evolutionary machinery able
to produce efficient rules to guide groups of robots, rather than on identifying each and every one of
these rules.
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