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Abstract

In this thesis, we investigate the problem of path formation and prey retrieval in a
swarm of robots. We present two swarm intelligence control mechanisms used for
distributed robot path formation. In the first, the robots form linear chains. We
study three variants of robot chains, which vary in the degree of motion allowed
to the chain structure. The second mechanism is called vectorfield. In this case,
the robots form a pattern that globally indicates the direction towards a goal or
home location. Both algorithms were designed following the swarm robotics control
principles: simplicity of control, locality of sensing and communication, homogeneity
and distributedness.

We test each controller on a task that consists in forming a path between two
objects—the prey and the nest—and to retrieve the prey to the nest. The difficulty
of the task is given by four constraints. First, the prey requires concurrent, physical
handling by multiple robots to be moved. Second, each robot’s perceptual range
is small when compared to the distance between the nest and the prey; moreover,
perception is unreliable. Third, no robot has any explicit knowledge about the
environment beyond its perceptual range. Fourth, communication among robots is
unreliable and limited to a small set of simple signals that are locally broadcast.

In simulation experiments we test our controllers under a wide range of condi-
tions, changing the distance between nest and prey, varying the number of robots
used, and introducing different obstacle configurations in the environment. Further-
more, we tested the controllers for robustness by adding noise to the different sensors,
and for fault tolerance by completely removing a sensor or actuator. We validate the
chain controller in experiments with up to twelve physical robots. We believe that
these experiments are among the most sophisticated examples of self-organisation
in robotics to date.
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Interdisciplinaires et de Développements en Intelligence Artificielle’ (IRIDIA), which
will always keep a special place in my heart. At IRIDIA I had the opportunity to
meet great people from various countries and cultures, some of which I consider as
close friends now. First of all, I wish to thank my fellow colleagues from the robotics
group: Alexandre Campo (crazy P), who has the most exceptional rhythm of all peo-
ple I know, Anders Christensen, Carlo Pinciroli, Christos Ampatzis (BTP), who is
as good a cook as a friend (despite his female characteristics), Elio Tuci (HP), who
is always honest in expressing his opinion, Erol Şahin, who always lost against me
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Chapter 1

Introduction

In this first chapter, we start by discussing the content of this thesis and specify the
contributions and the related publications in Section 1.1. A brief overview of the
context is given in Section 1.2, where we discuss the concepts of robots, swarms and
teams. Finally, in Section 1.3 we present the thesis layout.

1.1 Content

In this thesis, we study the behaviour of large groups of robots while performing a
task that requires path formation, self-assembly and group transport. We emphasize
the cooperation and collectivity of the robot group, and rely on principles such as
simplicity, homogeneity, distributedness of control, and locality of communication
and information. While the algorithms used for path formation are original con-
tributions, those used for self-assembly and group transport have originally been
developed by Groß et al. (2006a,b), and were modified in order to integrate them
into one controller.

In the considered problem, the robots are initially randomly scattered in a
bounded arena that contains two objects—the prey and the nest. The task is to
retrieve the prey to the nest. The following constraints are given:

• C1: the prey requires concurrent, physical handling by multiple robots to be
moved,

• C2: each robot’s perceptual range is small when compared to the distance
between the nest and the prey; moreover, perception is unreliable,

• C3: no robot has any (explicit) knowledge about the environment beyond its
perceptual range,

1
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• C4: communication among robots is unreliable and limited to a small set of
simple signals that are locally broadcast.

These constraints have implications on the division of labour within the group.
Some robots are required to engage in the physical handling of the prey (constraint
C1). To do so, they self-assemble into physically connected pulling structures. While
pulling the prey, the robots neither perceive the nest (constraint C2) nor have any
knowledge about its location in the environment (constraint C3). In principle, they
could transport the prey in a random direction. However, this has no practical value
in large arenas or open space. Our solution to the problem is to have some robots
establish a path between the nest and the prey (constraints C3 and C4), along which
the transport is guided towards the nest.

1.1.1 Original Contributions and Related Publications

There are three main contributions of this thesis. First, we propose two novel
control mechanisms for navigation and path formation in a swarm of robots: chains
with cyclic directional patterns and vectorfield. Both control mechanisms emphasize
the use of local information and communication, and the behaviours are achieved by
following simple rules rather than relying on complex mechanisms such as building up
a representation of the environment (e.g. a map). Similarities and differences from
other approaches are discussed along with the related work in Chapter 2. Second,
we conduct an extensive analysis to compare the two mechanisms, and to show that
they achieve what is often claimed as a major motivation to use swarm robotics
control mechanisms: a high degree of scalability, robustness, and fault tolerance.
The results from simulation with these two control mechanisms are presented in
Chapters 5 and 8 and were in part published in:

- S. Nouyan. Path formation and goal search in swarm robotics. Technical Re-
port TR/IRIDIA/2004-14, Université Libre de Bruxelles, Belgium, September
2004. DEA Thesis

- M. Dorigo, E. Tuci, R. Groß, V. Trianni, T. H. Labella, S. Nouyan, C. Am-
patzis, J.-L. Deneubourg, G. Baldassarre, S. Nolfi, F. Mondada, D. Floreano,
and L. M. Gambardella. The SWARM-BOTS project. In E. Sahin and W.M.
Spears, editors, Swarm Robotics: SAB 2004 International Workshop, volume
3342 of Lecture Notes in Computer Science, pages 31–33. Springer Verlag,
Berlin, Germany, 2004

- S. Nouyan and M. Dorigo. Chain based path formation in swarms of robots.
In M. Dorigo et al., editors, Ant Colony Optimization and Swarm Intelligence:
5th International Workshop, ANTS 2006, volume 4150 of Lecture Notes in
Computer Science, pages 120–131. Springer Verlag, Berlin, Germany, 2006
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- M. Dorigo, E. Tuci, V. Trianni, R. Groß, S. Nouyan, C. Ampatzis, T. H.
Labella, R. O’Grady, M. Bonani, and F. Mondada. SWARM-BOT: Design and
implementation of colonies of self-assembling robots. In G. Y. Yen and D. B.
Fogel, editors, Computational Intelligence: Principles and Practice, chapter 6,
pages 103–135. IEEE Computational Intelligence Society, New York, 2006

- S. Nouyan, A. Campo, and M. Dorigo. Path formation in a robot swarm.
Swarm Intelligence, 2(1), in press

The mechanism to indicate a direction was originally used in the work on nego-
tiation of a goal direction for the transport of heavy objects and published in:

- A. Campo, S. Nouyan, M. Birattari, R. Groß, and M. Dorigo. Negotiation of
goal direction for cooperative transport. In M. Dorigo et al., editors, Ant
Colony Optimization and Swarm Intelligence: 5th International Workshop,
ANTS 2006, volume 4150 of Lecture Notes in Computer Science, pages 191–
202. Springer Verlag, Berlin, Germany, 2006b

- A. Campo, S. Nouyan, M. Birattari, R. Groß, , and M. Dorigo. Negotiation of
goal direction for cooperative transport. In Proceedings of the 18th Belgium-
Netherlands Conference on Artificial Intelligence, pages 365–366. University
of Namur, Namur, Belgium, 2006a

The third contribution lies in the integration of different controllers to form
a path between a nest and a prey, to assemble to the prey, and to transport it
back to the nest. To the best of our knowledge, the three different tasks of path
formation, self-assembly, and group transport have been tackled only separately
with real robots so far. We present the first attempt to solve these three tasks as
parts of an integrated scenario, using a robot team that is homogeneous both in
hardware and control. This work is based on the chaining algorithm used for path
formation, and a modified version of the controllers for self-assembly and group
transport developed by Groß et al. (2006a,b). The results of the integration of these
three controllers are presented in Chapter 6 and were published in:

- S. Nouyan, R. Groß, M. Bonani, F. Mondada, and M. Dorigo. Group trans-
port along a robot chain in a self-organised robot colony. In Proc. of the
9th Int. Conf. on Intelligent Autonomous Systems, pages 433–442. IOS Press,
Amsterdam, The Netherlands, 2006

- R. Groß, S. Nouyan, M. Bonani, F. Mondada, and M. Dorigo. Division of
labour in self-organised groups. In From Animals to Animats 10. Proceedings
of the Tenth International Conference on Simulation of Adaptive Behavior
(SAB08), pages 426–436. Springer Verlag, Berlin, Germany, 2008
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- S. Nouyan, R. Groß, M. Bonani, F. Mondada, and M. Dorigo. Teamwork in self-
organised robot colonies. IEEE Transactions on Evolutionary Computation,
accepted for publication

Finally, even if not reported in this thesis, we have conducted research in the
area of scheduling problems using a distributed swarm intelligence algorithm based
on the methodology of division of labour in social insects, resulting in the following
publications:

- S. Nouyan. Agent-based approach to dynamic task allocation. In M. Dorigo,
G. Di Caro, and M. Sampels, editors, Ant Colony Optimization and Swarm
Intelligence: 3rd International Workshop, ANTS 2002, volume 2463 of Lecture
Notes in Computer Science, pages 28–39. Springer Verlag, Berlin, Germany,
2002

- S. Nouyan, R. Ghizzioli, M. Birattari, and M. Dorigo. An insect-based algo-
rithm for the dynamic task allocation problem. Künstliche Intelligenz, 4(5):
25–31, 2005

1.2 Context

The first part of the thesis’ title contains three concepts: robots, swarms and team-
work. In this section, we will discuss these three concepts and the motivations that
led us to study them. The first concept, robots, denotes the general area of research
within which we conduct our work. A complete overview of robotics would go beyond
the scope of this work. Instead, we briefly give a historical background and shortly
discuss areas of application in which robots are used nowadays in Section 1.2.1. In
particular, we are interested in studying the control of swarms of robots, which leads
us to swarms, the second concept. Swarms and swarm robotics are the subject of
Section 1.2.2. Finally, the concept teamwork denotes the structural organisation of
individuals when performing a task. This organisation and the particular task we
study are explained in Section 1.2.3.

1.2.1 Robots and Robotics

Historically the term robot comes from the Slavonic word robota, which literally
means “work”. It became known to the public by the play “Rossum’s Universal
Robots”, written by Karel Capek in 1920. In this context, the term robot was used
for artificially created people that were built to serve, which is closer to the modern
idea of androids. There is in general no particular definition of robot that satisfies
everyone. However, a robot typically has some or all of the following properties:

• it is not “natural”, that is, it is artificially created,
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• it can sense its environment, and manipulate or interact with things in it,

• it has some ability to make choices based on its perception of the environment,
often using automatic control or a pre-programmed sequence,

• it moves with one or more axes of rotation or translation,

• it appears to have intent.

The first robot of the modern time was a humanoid robot known as Elektro,
built by the Westinghouse Electric Corporation in the late 1930’s (see Figure 1.1a).
It was built for the New York World Fair in 1939, was over 2m tall and weighed
120 kg. It could walk by voice command, talk, smoke cigarettes, blow up balloons,
and move its head and arms.

Around one decade later, William Grey Walter of the Burden Neurological In-
stitute at Bristol created the first electronic autonomous robots named Elmer and
Elsie (see Figure 1.1b), which could sense light and contacts with objects, and use
this sensory information to navigate.

The first industrial robot was built by George Devol in 1954 and was called
Unimate (see Figure 1.1c). The first Unimate was sold to General Motors in 1960
and was used to lift hot pieces of metal.

As the performance and computational ability of robots rises, and their price
falls, they become affordable for a wide range of applications. For instance, robots
are used in military as unmanned autonomous vehicles. The DARPA Grand Chal-
lenge, organized by the research division of the Pentagon, is stimulating researchers
and car companies to develop cars that can drive autonomously in cities. In
medicine—even if not completely autonomous—robots are controlled remotely to
conduct surgery at a level of precision far beyond the one that can be reached by a
human being. In Japan, robots are starting to be used to take care of children and
of the elderly. The latter is particularly important given the demographic change
with ageing populations in most developed countries. Robots are also conquering
everybody’s home. With more than 2 million copies, the individually most sold
robot to date is a domestic vacuum cleaner robot called Roomba (see Figure 1.1d),
which was built by the company iRobot at the beginning of this decade.

1.2.2 Swarms and Swarm Robotics

In this thesis, we make use of a particular robot, called s-bot. Due to its innovative
features and design, it can be used for the study of swarm robotics. One of the most
innovative features of the s-bot is its abilility to connect to other robots, as displayed
in Figure 1.2. Before explaining what swarm robotics exactly denotes, let us discuss
the term swarms, which is the second important concept given in this thesis’ title.
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(a) (b)

(c) (d)

Figure 1.1: Historical robots: (a) Elektro, a humanoid robot built in the 1930’s
for the world fair, (b) Elsie, the first electronic autonomous robot built in 1948, (c)
Unimate, the first industrial robot built in 1954, (d) Roomba, a domestic vacuum
cleaner robot built by iRobot which is, with over two million copies, the most sold
robot to date.
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Figure 1.2: A group of s-bots performing self-assembly. The s-bot is the robot
platform used in this thesis. The image was exposed during approximately 37 sec.
In this way the image can show the movement of three robots while attempting to
form a physical connection with the robot on the right.
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The term swarm is used to refer to large groups of individuals that behave coher-
ently and form a clearly distinguishable unit. Examples are social insect colonies,
fish schools, bird flocks and microorganisms such as bacteria. Group size is a major
aspect when identifying a group of individuals as a swarm. In addition to a large
group size, it is the behaviour of the individuals and of the group as a whole that
is important. In a swarm everybody is equal. Even though there is no hierarchy,
no leader and no centralization, swarms of animals are highly organized and act like
single entities with abilities that go far beyond those of the single individual. Very
interestingly, this is achieved by following very simple and above all local rules. For
instance, the collective movement in a fish school or bird flock, as those displayed
in Figure 1.3a and b, is performed through local coordination of an individual with
its neighbours. When a predator approaches, it is locally avoided by the individuals
that are closest to it, in this way forming a hole in the structure, and collectively
avoiding the predator. To move in group is an effective strategy to protect from
predators, who struggle to catch an individual because it can only see the swarm as
a whole, but has difficulties to identify an individual.

In order to coordinate their activities, swarms can exploit a particular form of in-
direct communication called stigmergy. Stigmergy is usually based on modifications
of the environment. These modifications lead to a positive or negative feedback to
other individuals. A typical example is given by several termite species building a
large structure in an environment with some building material consisting of pellets
of soil and excrements without any order (Wilson, 1971; Camazine et al., 2001).
Different phases of building up a structure can be distinguished. At the beginning
the workers pass through a state in which their work seems rather uncoordinated.
A pellet placed at one position by a worker is often quickly picked up by another
worker. After some time, seemingly by chance, some pellets get stuck on top of each
other and thereby the behaviour of the workers changes very fast. The little cluster
of pellets is much more attractive to the termites than single pellets, so that they
quickly begin to add more pellets to that cluster. Clusters become pillars, then walls,
then chambers, until the nest is built. In this way the environment is “cleaned” from
single pellets and large structures are built up without any direct communication
among the individuals, but only by modifications of the environment.

The term stigmergy (from the Greek stigma: sting, and ergon: work) was in-
troduced by Grassé (1959). Grassé describes the indirect communication that he
observed in two species of termites: Bellicositermes natalensis and Cubitermes. His
original definition of stigmergy was: “Stimulation of workers by the performance
they have achieved”.

Another example of indirect communication can be found in the mechanism that
leads to prey retrieval in ants. When foraging for food, ants of many species lay trails
of pheromone, a chemical substance that attracts other ants. If the ants are pre-
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(a) (b)

(c) (d)

(e) (f)

Figure 1.3: Swarms in nature: (a) a fish school, (b) a bird flock, (c) a swarm of
bees, (d) an ant “highway”, (e) a group of ants performing collective transport, and
(f) a group of ants forming a bridge.
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sented multiple paths of different lengths to a food source, the laying of pheromone
trails allows them to select the shortest path, as was shown by Deneubourg et al.
(1990). In their experiment the ants are presented one short and one long path. At
the beginning, the ants choose either of the two paths with equal probability. After
some time, the shorter of the two paths has a higher concentration of pheromone
because the ants pass it faster. Therefore, the shorter path is selected in most cases.
This collective decision-making process is achieved through self-organization, which
is at heart of a wide range of collective behaviours in social insects. Garnier et al.
(2007) name four basic ingredients that self-organization relies on:

i. Positive feedback that results from the execution of simple and local be-
havioural rules. In the case of the pheromone trails, the positive feedback
can be found in the attraction of other ants to follow the trail.

ii. Negative feedback, that leads to stabilization. In the case of the pheromone
trails sources of negative feedback are for instance the limited number of for-
agers or the evaporation of pheromone.

iii. Randomness of the individual decision making process, that allows the colony
to find new solutions.

iv. Multiple direct or stigmergic interactions among individuals that lead to the
appearance of a global and enduring structure.

In robotics, by benefiting from the development of ever cheaper and smaller
components, the study of multi-robot systems has received increasing attention over
the last few decades. Using a group of robots instead of a single one can have several
advantages, such as increase in capabilities or efficiency, or increase of redundancy
and fault tolerance. However, also new challenges arise. For example, when the
number of robots becomes large, traditional approaches that rely on a centralised
management of the robots’ activities and on excessive information exchange rapidly
reach limits, for instance, because of the risk of individual failure or of limits in the
communication bandwidth.

To overcome similar problems, researchers in robotics begun to draw inspiration
from decentralised, self-organising biological systems in general and from the collec-
tive behaviour of social insects in particular. Giving birth to the swarm robotics
domain, swarm robotic systems are typically composed of robots that, at the indi-
vidual level, offer relatively limited task solving abilities and that have only limited
knowledge about their environment. Still, the overall system can exhibit complex
behaviour. This is realized in a bottom-up fashion; complexity arises from numerous
interactions among the robots and between the robots and their environment. The
general paradigm is often referred to as swarm intelligence (Bonabeau et al., 1999;
Garnier et al., 2007; Dorigo and Birattari, 2007).
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Presently, little is known about how to design swarm intelligence systems. Thus,
it is not surprising that the complexity exhibited in current implementations does
neither come close to the complexity of biological systems, nor does it come close
to the complexity of systems men built following the more traditional top-down
approach. Dorigo and Şahin (2004) introduce the topic of swarm robotics in the
following way:

Swarm robotics can be loosely defined as the study of how collectively in-
telligent behaviour can emerge from local interactions of a large number
of relatively simple physically embodied agents. Swarm robotics studies
are often inspired by the observation of social insects—ants, termites,
wasps and bees—which stand as fascinating examples of how collectively
intelligent systems can be generated from a large number of simple indi-
viduals.

They identify four criteria to distinguish swarm robotics research from other
multi-robot studies:

i. Large number of robots: Swarm robotics aims at studying the coordination of
large numbers of robots with the goal of reaching a high degree of scalability,
that is, ideally the efficiency of the system should grow with the number of
robots.

ii. Homogeneity: A swarm robotics system should consist of one or relatively few
homogeneous groups. Each of these groups should consist of a large number
of robots.

iii. Cooperation: A task solved by a swarm robotics system should require the co-
operation of multiple robots, or at least the performance should be comparably
low when robots do not cooperate to solve the task.

iv. Locality: The robots should have very limited sensing and communication
abilities that allow them to sense and communicate only in their local vicinity.

These four criteria—even if not meant to be used as a checklist—help to identify
whether a study is located within swarm robotics or not. These characteristics can
be observed in social insects, such as ants, bees or termites, which therefore often
serve as a source of inspiration.

1.2.3 Groups, Teams and Teamwork

One of the aspects investigated in this thesis are the conditions under which com-
plexity can “emerge” in swarm intelligence systems. We believe that the design
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and study of such systems is relevant not only for advancing the state of the art
in robotics and similar technologically driven disciplines, but it may also provide
valuable insights to other disciplines such as biology, economics, and social sciences.

One way of measuring the complexity that “emerges” in a swarm intelligence
system is to look at the structural organisation of individuals when performing
a task. In an insect colony, various organisational levels can be observed. Both
behaviours at the individual level as well as at the colony level have been extensively
studied (Hölldobler and Wilson, 1990). “However, between these two extremes,
numerous functional adaptive units, or ‘parts’ exist” (Anderson and McShea, 2001).
These intermediate-level parts comprise groups and teams.

Teamwork is widely observed in vertebrates. Here, individual recognition is be-
lieved to be an important factor (Wilson, 1975). Fewer examples of teamwork are
known in invertebrates. Oster and Wilson (1978) argue that members of social insect
colonies can not form teams as a consequence of their low grade of discrimination:
social insects can discriminate “nest mates from aliens, [and] members of one caste
as opposed to another” (Oster and Wilson, 1978), however, “there is very little ev-
idence that social insects can recognise each other as individuals (but see Tibbetts
(2002))” (Anderson and Franks, 2004a). In contrast, in the recent literature (Franks,
1986; Hölldobler and Wilson, 1990; Anderson and Franks, 2004a), biologists suggest
that teams are indeed formed in social insects, and do not require individual recogni-
tion. Another aspect that is subject of the ongoing debate is whether inter-individual
differences (e.g., members of different castes) are fundamentally required in team-
work (Hölldobler and Wilson, 1990; Beshers and Fewell, 2001; Anderson and Franks,
2001). Can a team be composed of interchangeable individuals of a monomorphic
society? In general, several models of division of labour have been proposed (Beshers
and Fewell, 2001). Some models suggest some proximate causes of division of labour:
“Two general patterns of division of labour are recognised in social insects: tempo-
ral polyethism, or age-correlated patterns of task performance, and morphological
polyethism, in which a worker’s size and/or shape is related to its performance of
tasks” (Beshers and Fewell, 2001).

Anderson and Franks (2004b) list a number of misconceptions about teamwork
(from their point of view): “groupwork is synonymous with teamwork”, “teamwork
requires inter-individual differences”, “teamwork requires individual recognition”,
“some tasks are inherently team tasks”, “efficient teamwork requires direct commu-
nication”, “teams require a leader”, and “team members need to know the state and
goals of other members”.

One of the merits of studying robotic systems is that the individual morphology
and behaviour are system variables that are controlled. Therefore, we can investi-
gate whether tasks that require a complex division of labour fundamentally require
individual recognition or inter-individual differences. We illustrate the methods and
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results of a series of experimental works in which a set of “identical” robots is re-
quired to perform the complex, cooperative task described at the beginning of this
chapter.

In the following we use the terms groups and teams as defined by Anderson and
Franks (2001). In particular, a group is a set of individuals that tackle a group
task; a team is a set of individuals that tackle a team task. A group task is a task
that “requires multiple individuals to perform the same activity concurrently”; a
team task is a task that “requires different subtasks to be performed concurrently”.
Furthermore, a partitioned task is “a task that is split into two or more subtasks
that are organised sequentially (Jeanne (1986); reviewed in Ratnieks and Anderson
(1999); Anderson and Ratnieks (2000))” (Anderson and Franks, 2004a). Anderson
and Franks (2001, 2004a), and Anderson and McMillan (2003) found that the def-
inition of teamwork, developed primarily from studies of social insects, also applies
more generally to societies of other animals, including humans, and robots.

Figure 1.4 illustrates the division of labour present in our system. The overall
task can be considered a partitioned task comprising three subtasks that are or-
ganised sequentially: (i) path formation (left part of Figure 1.4) requires robots to
explore the environment and form a path in between the nest and the prey; (ii)
assembly (centre part of Figure 1.4) requires robots to follow the path from the
nest to the prey and then assemble either to the prey directly or to another robot
that already gripped to it; (iii) transport (right part of Figure 1.4) requires some
robots to transport the prey back to the nest. The previously formed path guides
them to find the nest. Path formation itself is a group task, because only a group
of robots can establish a path. Similarly, path maintenance and path decomposition
are group tasks. Assembly is a team task, because it requires two different subtasks
to be performed concurrently—path maintenance and path following & grasp, where
the latter is an individual task.1 Transport is a team task as some robots have to
engage in group transport, while others, at the same time, have to reside in the path
to guide the transport robots towards the nest.

1.3 Thesis Layout

This thesis is organized into nine chapters. In Chapter 2, we present an overview
of related work. We describe the current state of the art in exploration, navigation
and path formation in single and multi robot systems, and describe similarities and
differences to other approaches in order to situate our research. Furthermore, we
give a brief overview of self-assembly and group transport in robotics. In Chapter 3,
we present the task, a high-level description of the two control approaches used, and

1It needs to be performed by multiple individuals (constraint C1), however, they do not have to
act concurrently.



14 CHAPTER 1

group transport

path maintenance

path following

& grasp

path construction

path decomposition

(gradual)

transportassemblypath formation

Figure 1.4: Illustration of the division of labour to accomplish the foraging task
under constraints C1, C2, C3 and C4. The overall task is a partitioned task. It
splits into three (sub-)tasks—path formation (left part), assembly (centre part) and
transport (right part)—that are organised sequentially (indicated by arrows). Once
that a path is formed between nest and prey, robots are recruited to the prey by
following the path and then have to assemble to it or to another robot that already
gripped onto it. Transport requires those robots that are gripped onto the prey
and/or to each other, to transport the prey back to the nest. The path then guides
the transporting group to find the nest. Individual tasks, group tasks and team
tasks are framed respectively by dotted, dashed and solid lines.

the hardware and simulator used. In Chapter 4, we describe the chain controller,
give a general description of the resulting group behaviour, explain the different
variants, and detail the different behaviours and rules. We then present the results
obtained with the chain controller in simulation (Chapter 5) and on the real robots
(Chapter 6). Keeping the same structure used for the chain controller, Chapters 7
and 8 describe the algorithm and results in simulation of the vectorfield controller.
Finally, in Chapter 9, we summarize our work, draw conclusions and discuss possible
future directions.
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Related Work

In this chapter we give an overview of the research related to this thesis. This
comprises the three subjects of path formation, self-assembly and group transport.
We put the emphasis on path formation and give an overview of the state of the
art in single- and multi-robot systems in Section 2.1. Afterwards, we briefly discuss
related works in self-assembly in Section 2.2 and group transport in Section 2.3.

2.1 Exploration, Navigation and Path Formation

The term navigation originates from nautics and refers to the science and skill of
sailing from one place to another. The navigator of a ship has to determine the
ship’s position, relate it to the desired destination, and accordingly set an adequate
course for the ship. This description has entered into the domain of robotics nearly
unchanged. For instance, Levitt and Lawton (1990) define navigation by the fol-
lowing three questions: (i) “Where am I?”; (ii) “Where are other places relative to
me?”; (iii) “How do I get to other places from here?”.

The first question refers to the problem of localization, which is the process of
identifying the robot’s specific position. Answering this question does not necessar-
ily have to yield the specific position within a global reference frame, but may more
generally let the robot identify certain characteristics of its position. The second
question denotes the process of putting the current position within a global rep-
resentation of the environment. The answers to these two questions lay the basis
for extracting the required actions to move towards a desired position, which is the
object of the third question.

This interpretation of navigation is used by many robot navigation sys-
tems (Kuipers and Byun, 1988). However, none of these systems has yet reached the
flexibility and performance of animals such as bees, ants, birds or fish (Franz and
Mallot, 2000). This has led robotics researchers to investigate more closely the nav-

15
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igation mechanisms applied in biological systems, which gave birth to the research
field of biomimetic robot navigation. Navigation mechanisms in animals, the main
source of inspiration for biomimetic navigation, do not necessarily rely on answering
all or even any of the three questions mentioned above. On the other hand, the most
important issue appears to be the identification of how to reach the goal, which does
not always require a localization or planning process.

In Section 2.1.1, we introduce the hierarchy of biologically inspired navigation
strategies as defined by Trullier et al. (1997) and extended by Franz and Mallot
(2000). The discussed strategies refer to the single robot domain. Therefore, in Sec-
tion 2.1.2 we discuss some implementations of exploration and navigation strategies
in the multi-robot domain.

2.1.1 Single Robot Systems

Table 2.1 summarizes the six strategies in the navigation hierarchy according to their
behavioural prerequisites and navigation competences. The table is split into local
navigation strategies and way finding strategies. Local navigation strategies have
also been called tactics (Werner et al., 1997) or local control strategies (Kuipers and
Byun, 1988). An agent chooses its action on the basis of current sensory or internal
information only, without representing any objects outside the current sensory hori-
zon. Way finding strategies, on the other hand, also store and make use of global
information.

Random Search: In the simplest form of navigation, a robot randomly explores
the environment. A robot only requires the basic competences of locomotion and
goal recognition. Compared to the strategies presented in the following sections,
random search typically requires a larger amount of time to detect the goal, but can
be used as a backup strategy when the agent is not able to detect the goal.

Target approaching: Navigation would not be possible without the basic abil-
ity of approaching a perceived object. In biology, target approaching can be observed
in most animals that are capable of locomotion. For a robot, to approach a target is
a basic navigational requirement. To do so, the sensory information has to be used
in order to orient the robot in the direction of the goal, often referred to as “body
alignment”. The robot must then be able to move towards the goal.

Braitenberg (1984) shows that minimal sensory information and a very simple
controller suffice to approach a target. Several studies address the target approaching
behaviour in insects. For instance, Lund and Webb (1997); Webb (1995) developed a
controller that mimics the sound approaching behaviour observed in female crickets,
by using a mechanism that is able to discriminate the relative phase and the different
travel times of incoming sound signals. Webb implemented this on a mobile robot
that was able to find an artificial sound source (Webb, 1995). This system was later
extended so that the robot was able to find real crickets (Lund and Webb, 1997).
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Table 2.1: The hierarchy of biologically inspired navigation strategies. Six strategies
are classified with respect to the information they store and their characteristics.

Strategy Used information Characteristics

Local Navigation Strategies

Random search Goal recognition Backup strategy

Target approaching Goal recognition Basic requirement
for body alignment for navigation

Guidance Extraction of goal Local navigation
direction from local
landmark-configuration

Way Finding Strategies

Recognition- Set of landmark- Global guidance
triggered configurations
response for each sub-goal

Topological Set of landmark- Topological detours
navigation configurations linked by

topological relationships

Metric Set of landmark- Metrical detours
navigation configurations linked by Metric shortcuts

metrical relationships

Guidance: Guidance is the process of extracting the direction towards a goal
from the local landmark-configuration.1 Bees and ants are able to use visual guid-
ance to find a goal location which is only defined by an array of locally visible
landmarks (for a review see Collett (1992)). Experiments suggest that to do this, an
insect needs to memorize a snapshot of the spatial relationship between itself and
the landmarks when it is located at the goal position. Later, when it is searching
the goal position, it attempts to move so as to replicate this view.

This simple form of guidance has inspired several robot implementations as it
enables a robot to find a goal that cannot be directly perceived, without requiring a
complex representation of the environment. For instance, Franz et al. (1998) applied
a snapshot-based guidance method using a miniature robot with a conical mirror
camera. Robust performance was shown in a number of experiments in a realistic
low contrast environment. Möller et al. (1998) successfully implemented a similar
method using the Sahabot 2 robot on a flat plane in the Sahara desert with four

1Landmarks, also referred to as beacons, are usually tall objects that can be perceived from
comparably far distances, or even globally in the environment.
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black cylinders as landmarks.
Recognition Triggered Response: Guidance is a local navigation strategy

as it requires only to process the locally available information. On the other hand,
recognition triggered response, requiring the global localization of the robot, is a way
finding method. Recognition triggered response is in many ways similar to guidance,
as it relies on the perceived landmark configuration. It can be considered as an ex-
tension of the simple guidance strategy as, instead of just memorizing one landmark
configuration, a set of landmark configurations is saved, each one connecting two
locations by means of local navigation. In order to associate the appropriate local
navigation method with the current landmark configuration, this method not only
involves the recognition of the goal, but also of the starting location. The sequence
of recognition triggered responses leads an agent to follow a route step by step, where
the arrival at one sub-goal triggers the next step. In this way, a robot can navigate
between locations that cannot be reached by local navigation methods alone.

Insects can associate movement decisions with visual landmarks. Ants, for in-
stance, may learn to always pass a landmark on the right side (Collett et al., 1986).
This association persists even when the order of the landmarks or their relative po-
sitions to the nest are changed. Bees are able to learn routes, that is, a sequence of
recognition triggered responses (Collett et al., 1993).

Recognition triggered response has been used for numerous robotic navigation
systems. Gaussier and Zrehen (1995), for instance, presented a robot that learned as-
sociations between compass directions and landmark configurations. The landmark
configurations were extracted from panoramic images obtained from a rotating cam-
era. A place was characterized by a sequence of local landmark views and bearings
connected by camera movements. The system could find its goal from any posi-
tion inside an office room. Other implementations of recognition triggered response
methods can be found in (Nelson, 1991; Recce and Harris, 1996).

Map-Based Navigation: Map-based navigation seems quite natural to hu-
mans because using a map is a very convenient way to describe an environment
and to share it with other people. However, the human use of a map requires a
lot of high-level cognitive processes to interpret the map and to relate it to the real
world. Map-based navigation relies on three processes (Levitt and Lawton, 1990;
Balakrishnan et al., 1999; Filliat and Meyer, 2003; Meyer and Filliat, 2003):

• Map-learning, which consists in memorizing the data collected by a robot
during exploration into a map.

• Localization, which consists in deriving the current position of the robot within
the map.

• Path planning, which consists in choosing the appropriate actions to reach a
goal destination from its current position.
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In the following, we give a brief description of the two main categories of maps:
topological maps where only particular locations and their relative positions are
stored, and metric maps, where objects are stored in a common reference frame.

• Topological maps: The recognition triggered response method is only capa-
ble to lead an agent always through the same sequences of locations. There
is no planning involved in the navigation process, possibly causing problems,
for instance, if a part of the route is blocked by an obstacle. In that case the
robot would have to perform a random search to find a known place again.
This can be avoided if the spatial representation of the environment is goal-
independent. To do so, a robot needs to be able to detect whether different
routes pass through the same place, and in case they do, merge them by route
integration. Integrated routes then become a topological global representation
of the environment, which can be expressed as a graph with vertices represent-
ing locations, and edges representing the local navigation method to connect
two vertices. Typically stored are the locations of objects, corridors, rooms
and entrances to such rooms. By planning alternative routes, an agent using
topological maps can dynamically adapt its route when encountering obstacles.

Biological systems seem to construct topological representations by integrat-
ing routes in a bottom-up manner (Lieblich and Arbib, 1982). This ability
has been observed in many animals, ranging from honeybees (Dyer, 1991) to
humans (Gillner and Mallot, 1998). Implementations on robots mostly follow
such a bottom-up approach and mainly differ in the place recognition, local
navigation and route integration strategies used.

Matarić (1990), for instance, developed a behaviour-based controller for topo-
logical navigation. In contrast to most other approaches, the recognition of
places in the environment was only determined by their context, that is, by the
sequence of actions preceding the current one. The only information stored in
the topological graph representation were actions, not place descriptions. The
robot was capable of acquiring routes autonomously by following the walls of
the experimental room. Routes were integrated as soon as the robot encoun-
tered previously visited locations. Mallot et al. (1995) used a miniature robot
to explore hexagonal mazes. Between junctions, the robot travelled by means
of corridor following using infrared proximity sensors. Mallot et al. did not
integrate views into a common place representation. Instead, the view graph
was learned by a neural architecture that associated sequences of views with
movement decisions.

• Metric maps: While for topological navigation a robot only memorizes key
locations in the environment, metric navigation requires the robot to learn
all known places and their position in a global reference frame. In contrast
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to topological navigation, where the spatial relations are known between two
directly connected locations only, in metric navigation the spatial relationship
between any two locations can be extracted. An agent using metric naviga-
tion is able to find new paths through unknown terrain, as the integration of
the current location into the reference frame allows it to deduce the spatial
relations to previously visited locations. This includes, for example, shortcuts
and detours around obstacles.

2.1.2 Multi Robot Systems

In this section we discuss the state of the art in multi robot systems exploring the
environment. We will first discuss approaches in which the robots do not use a map.
A path is then formed either by the robots themselves, or by immobile devices in
the environment. Afterwards, we review map-based approaches.

Traditional approaches to environment navigation are often based on an in-
ternal map-like representation of the environment. Such approaches do not scale
well for large groups of agents, where a distributed control strategy may be bet-
ter suited. When approaching the problem of controlling swarms of robots, re-
searchers often take inspiration from social insects and sometimes directly refer to
the term pheromone (Mamei and Zambonelli, 2005; Payton et al., 2001, 2004), or
to ants (Svennebring and Koenig, 2004).

All these approaches employ distributed control mechanisms, and mostly use
simple strategies and local information. We can roughly distinguish between two
categories of distributed multi-agent path planning, based on whether the path is
formed by immobile, or mobile devices:

• The path is formed by a network of immobile devices. The devices
are placed either a priori at fixed positions, or by the robots themselves. An
individual network node is usually very limited in its sensing and computing
capabilities. Robots can locally communicate with the network to find a path
in the environment. Due to their simplicity, network nodes have low power
consumption and are relatively cheap to produce, which makes them ideally
suited for large scale experiments. For instance, O’Hara and Balch (2004) use
a sensor network with up to 156 Gnats sensor nodes that compute the shortest
path using the distributed Bellman-Ford algorithm (Bellman, 1957), and test
the impact of different configurations of sensors placement. Li et al. (2003) use
a similar approach with 50 sensors of the Mote platform and take into account
so called danger zones which have to be avoided. Batalin and Sukhatme (2002)
study a sensor network in the context of terrain coverage and navigation. A
robot action is computed based on transition probabilities between the nodes.
They use the Pioneer mobile robot and 9 nodes.
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In the simplest case, network nodes do not have any sensory capabilities at all
and are used as landmarks or as a medium for indirect, so called stigmergic,
communication. Promising examples for this are RFID-based devices. Mamei
and Zambonelli (2005) use such passively powered RFID tags in an office
environment to mark fixed locations such as a door or a table, and to identify
objects that may move around, such as keys or pencils. In their experiments,
robots can manipulate the RFID tags and leave a trail which enables other
robots to find particular objects. They encountered some problems due to the
very limited storage capacity. Nevertheless, the general idea of using RFID
technology is very appealing as RFID can be produced very cheaply, and will
probably soon be found everywhere.

In addition to their low production cost, such devices have the advantage
of being more robust than robots. However, they have to be placed in the
environment a priori, or by the robots. This is not required if the robots form
the path themselves.

• The robots serve as landmarks or beacons themselves. This is the
case for our approach. When designing our controllers, we took inspiration
from Goss and Deneubourg (1992), who have studied robot chains for a prey
retrieval task. In their approach, every robot in a chain emits a signal indicat-
ing its position in the chain. Similar systems were implemented by Drogoul
and Ferber (1992), and by Cohen (1996). In the latter case the robot group
is heterogeneous, such that there are two groups of robots, one taking care
of path formation and the other exploiting the formed path to follow it to a
goal location. All these works were carried out in simulation, and differ from
our approach to chains because robots in a chain structure need to transmit
as many signals as there are robots. This leads to an increasing degree of
complexity for growing group sizes. In our approach the number of different
signals is independent of the number of robots. For the chains, three colours
for nest and chain, and one colour for the prey are required. For the vectorfield
two colours for nest and prey, and one pattern for direction indication suffice.

Werger and Matarić (1996) use real robots to form a chain in a prey retrieval
task. In their case the chains are not visually connected. Rather, they rely on
physical contact: one robot in the chain has to regularly touch the next one
in order to maintain the chain.

Payton et al. (2001, 2004) study robot networks which can be used to rep-
resent a path as well. To build up the robot network different strategies are
proposed. A gas expansion model leads to a uniform distribution similar to our
vectorfield. A group of robots first spreads in the environment using simple
attraction/repulsion mechanisms. Afterwards the robots communicate three
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different sorts of pheromone to select the shortest of the many different possi-
ble paths. In our case, the network is built up incrementally, and the robots
do not need to communicate at all with each other, except for indicating a di-
rection. Another strategy to form the network is referred to as guided growth,
and results in less branched structures such as our chains. One robot is se-
lected to be the leader. The other robots follow this leader and in this way the
robot structure stretches to form a line. The leading robot can for instance be
designated by the user or by some rule.

Unlike the previously mentioned approaches, map-based navigation usually relies
on a centralized control mechanism, in which the robots share a map.

Rekleitis et al. (1997, 1998, 2001) focus on the problem of reducing the odometry
error during exploration. They separate the environment into stripes that are ex-
plored successively by the robot team. Whenever one robot moves, the other robots
are kept stationary and observe the moving robot, a strategy similar to the one pre-
sented by Kurazume and Shigemi (2001). Whereas this approach can significantly
reduce the odometry error during the exploration process, it is not designed to dis-
tribute the robots over the environment. Instead, the robots stay within visibility
range.

Koenig et al. (2001) analyze different terrain coverage methods for ants which
are simple robots with limited sensing and computational capabilities. They con-
sider environments that are discretized into equally spaced cells. Instead of storing
a map of the environment, the ants leave markers in the cells they visit. Two dif-
ferent strategies for updating the markers are considered. The first is similar to the
approach of Yamauchi (1998) and leads the robots greedily to the closest unexplored
area. In the second approach the ants simply count the number of times a cell has
been visited.

Billard et al. (2000) use a probabilistic model to simulate a team of mobile
robots that explores and maps locations of objects in a circular environment, and
demonstrate the correspondence of their model with the behaviour of a team of real
robots.

Balch and Arkin (1994) analyze the effects of different kinds of communication
on the performance of robot teams for object search or terrain coverage.

In the context of cleaning tasks, Kurabayashi et al. (1996) propose an approach
in which the map of the environment is given a priori, and in which the time to
cover a known environment by a robot team is minimized.

Yamauchi (1998); Yamauchi et al. (1999) present a technique to learn maps with
a robot team, where information about the map is exchanged and continuously
updated among the robots. To explore the environment all robots move to the
closest frontier cell.

Singh and Fujimura (1993) propose an approach that addresses the problem of
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heterogeneous robot systems. While exploring, a robot identifies so called tunnels
to unexplored areas of the environment. In case a robot is too big to pass through
a tunnel it informs other robots better suited for the task.

Zlot et al. (2002) propose a control concept that is based on market economy.
Potential target locations are considered for each robot and tasks are traded using
auctions.

2.2 Self-Assembly

Following Whitesides and Grzybowski (2002), self-assembly can be defined as a pro-
cess by which pre-existing discrete components organise into patterns or structures
without human intervention.

Self-assembly is widely observed in social insects (Sendova-Franks and Franks,
1999; Anderson et al., 2002). Via self-assembly, ants, bees, and wasps can organise
into functional units at an intermediate level between the individual and the colony.
Anderson et al. (2002) identify 18 distinct types of self-assembled structures that
insects build. The function of self-assemblages “can be grouped under five broad
categories which are not mutually exclusive: (1) defence, (2) pulling structures, (3)
thermoregulation, (4) colony survival under inclement conditions, and (5) ease of
passage when crossing an obstacle”. Anderson et al. (2002) claim that in almost all
of the observed instances, the function could not be achieved without self-assembly.

Self-reconfigurable robots (Yim et al., 2002a; Rus et al., 2002) hold the potential
to self-assemble and thus to mimic the complex behaviour of social insects. In current
implementations (Murata et al., 2002; Yim et al., 2002a; Rus et al., 2002; Jørgensen
et al., 2004), however, single modules usually have highly limited autonomous capa-
bilities (when compared to an insect). Typically, they are not equipped with sensors
to perceive the environment. Nor, typically, are they capable of autonomous motion.
These limitations, common to most self-reconfigurable robotic systems, make it dif-
ficult to let separate modules, or groups of modules, connect autonomously. In some
systems, self-assembly was demonstrated with the modules being pre-arranged at
known positions (Yim et al., 2002b; Zykov et al., 2005). Some instances of less con-
strained self-assembly are reported (for an overview see Groß et al. (2006a)). Fukuda
et al. (1988, 1995) demonstrate self-assembly among robotic cells using the CEBOT
system (Fukuda and Ueyama, 1994). In the experiment, a moving cell approached
and connected to a static cell. The moving cell was controlled with a finite-state
automaton. Rubenstein et al. (2004) demonstrate the ability of two modular robots
to self-assemble. Each robot consisted of a chain of two linearly-linked CONRO
modules (Castano et al., 2002). The robot chains were set up at distances of 15 cm,
facing each other with an angular displacement not larger than 45 degrees. The con-
trol was heterogeneous, both at the level of individual modules within each robot
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and at the level of the modular makeup of both robots. Recently, self-assembly has
been demonstrated with the swarm-bot system (Mondada et al., 2005). Experiments
were conducted on different terrains and with up to 16 robots (Groß et al., 2006a).

Self-assembly is a particularly interesting mechanism in social insects (Anderson
et al., 2002). Insects physically connect to each other to form aggregate structures
with capabilities exceeding those of an individual insect. Some observed uses have
strong implications for robotic system design (e.g., the formation of pulling struc-
tures (Hölldobler and Wilson, 1990)).

Most modular robotic systems are not capable of self-assembly—modules are
pre-assembled by the experimenter or by a separate machine (Yim et al., 2002a).
Other systems can self-assemble if the modules are pre-arranged in specific patterns.
Rare instances of less constrained self-assembly with up to three robots have been
reported (Fukuda and Ueyama, 1994; Rubenstein et al., 2004).

2.3 Group Transport

Group transport can be defined as the “conveyance of a burden by two or more
individuals” (Moffett, 1992). In the biological literature, group transport is almost
exclusively reported in the context of ants. In fact, Moffett (1992) claims that group
transport “is better developed in ants than in any other animal group”.

In most studies of transport with robotic groups, the robots move an object by
pushing it. Pushing strategies have the advantage that they allow the robots to
move objects that are hard to grasp. In addition, multiple objects can be pushed at
the same time. On the other hand, it is difficult to predict the motion of the object
and of the robots, especially if the ground is not uniform.2 Therefore, the control
typically requires sensory feedback. Most studies consider two robots pushing a wide
box simultaneously from a single side (Matarić et al., 1995; Sugie et al., 1995; Donald
et al., 1997; Parker, 1999; Gerkey and Matarić, 2002). To coordinate the robots’
actions, robots are specifically arranged (Matarić et al., 1995; Donald et al., 1997;
Parker, 1999; Gerkey and Matarić, 2002), control is synchronised (Matarić et al.,
1995), relative positions are known (Donald et al., 1997; Parker, 1999), explicit
communication is used (Matarić et al., 1995; Parker, 1999), and/or individual tasks
are generated by a designated leader agent (Gerkey and Matarić, 2002; Sugie et al.,
1995).

Only few studies consider more than two robots, pushing a box simultane-
ously (Kube and Zhang, 1993; Yamada and Saito, 2001; Kube and Zhang, 1997;
Kube and Bonabeau, 2000; Tuci et al., 2006; Groß et al., 2006b,c). In these cases,
the control is homogeneous, decentralised, and the robots make no use of explicit
communication. Kube and Zhang (1997) and Kube and Bonabeau (2000) reported

2For a theory on the mechanics of pushing see Mason (1986).
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that if the box is small compared to the size of the pushing robots the performance
decreases drastically with group size as the box offers only limited contact surface.

Many studies consider the transport of an object by multiple mobile robots grasp-
ing and/or lifting it. In these studies, typically 2–3 robots are manually attached
to the object (Desai et al., 1996; Kosuge and Oosumi, 1996; Aiyama et al., 1999;
Sugar and Kumar, 2002; Miyata et al., 2002; Wang et al., 2003). To coordinate
the robots’ actions, robots often have knowledge of their relative positions. In some
systems the desired trajectories are given prior to experimentation to all robots of
the group. The object is transported as each robot follows the given trajectory by
making use of dead-reckoning (Desai et al., 1996). In other systems, the manipula-
tion is planned in real-time by an external workstation, which communicates with
the robots (Miyata et al., 2002). Often, instead of an external computer, a specific
robot called the leader knows the desired trajectory or the goal location. The leader
robot can send explicit high- or low-level commands to the followers (Sugar and
Kumar, 2002; Wang et al., 2003). However, in many leader-follower systems explicit
communication is not required (Kosuge and Oosumi, 1996; Aiyama et al., 1999).
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Chapter 3

Methods

In this chapter we describe the task studied and the approach followed in this thesis.
We start by illustrating the task along with giving a general idea of the two control
algorithms in Section 3.1, and then give a detailed description of the robot platform
and simulation environment on which we tested our controllers in Section 3.2.

3.1 Task and Control Approach

The task that we have chosen as a test-bed for our control algorithms is illustrated
in Figure 3.1. A group of robots has to form a path between two objects—denoted
as nest and prey. The robots have no a priori knowledge about the dimensions and
the position of any object within the environment, and a robot’s perception range is
small when compared to the distance between the nest and the prey. The difficulty
of the task can be varied by changing the distance between nest and prey, and by
placing obstacles in the environment.

Initially, as shown in Figure 3.1a, all robots are placed at random positions.
They search the nest, and once they perceive it, they start to self-organize into
chains (Figure 3.1b) or into a vectorfield (Figure 3.1c). In both cases robots act as
trail markers and attract other robots. Neighbouring robots within the path forming
structure have to be able to sense each other in order to assure the connectivity. As
the robots have no knowledge about the position of the prey, the structures are
oriented in random directions. A self-organized process in which robots leave the
structure and join it again at a different position leads to a continuous exploration
of the environment until the prey is discovered. A path is then formed, and can
be used by other robots to navigate between the nest and the prey, or to transport
the prey to the nest. When controlled by the chain mechanism, robots in the path
signal one out of three colours. The sequence of these colours gives directionality to
the chain. In the vectorfield controller (Figure 3.1c) the directionality is not given

27
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(a) (b) (c)

Figure 3.1: Simulation snapshots from the initial situation (a), and a typical outcome
when employing the chain (b) and the vectorfield (c) controllers. 80 robots are
indicated by small black circles. The task is to form a path between the blue nest in
the centre of the arena, and the red prey in the top right corner. No obstacles are
employed. When a robot in a chain or in a vectorfield perceives the prey, a path is
formed that can be used to transport the prey to the nest.

by a sequence of colours, but each robot explicitly indicates a direction. In addition
to these two control algorithms we employ a mechanism that we call prey extension.
By default, a robot controlled by the chain or vectorfield controller does not react
in case it perceives the prey unless it also perceives a robot that is part of the path
forming structure. However, when the prey extension mechanism is employed, a
robot that perceives the prey and no path has a given probability to activate its
LEDs in the colour of the prey, in this way extending the area in which the prey
can be perceived. Details about the two control mechanisms and the prey extension
mechanism will be given in Chapter 4 for the chain controller, and in Chapter 7 for
the vectorfield controller.

3.2 Hardware and Simulator

The experiments presented later in this thesis have been conducted either on the
robot platform s-bot, or in simulation. Our simulation platform, called TwoDee

(Christensen, 2005), is a multi-robot simulator based on a custom high-level dy-
namics engine. It has been optimized for the use with the s-bot,1 and controllers
developed in simulation have been successfully ported to the real robot for several
tasks (Christensen and Dorigo, 2006; Christensen et al., 2008, 2007; Nouyan et al.,

1The s-bot was developed within the SWARM-BOTS Project, a Future and Emerging Technolo-
gies project funded by the European Commission (see www.swarm-bots.org).
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2006). In this section, we give a description of the s-bot robot, and explain the
mechanisms employed to ensure a realistic simulation. For a more comprehensive
description of the s-bot ’s hardware see Mondada et al. (2005), and for the TwoDee

simulator see Christensen (2005).

3.2.1 The S-bot Robot

Figure 3.2a shows the physical implementation of an s-bot. It has a diameter of 12 cm
and weighs approximately 700 g. In the following we briefly overview the actuators
and sensors relevant to this study.

The robot’s traction system consists of a combination of tracks and two external
wheels, called treels. The s-bot is capable of a maximum speed of 30 cm/s. For the
chaining mechanism, we used a maximum speed of 13 cm/s on the real robot. This
speed corresponds to a maximum angular velocity of 97.6 deg/s when turning on the
spot.

For the purpose of communication, the s-bot has been equipped with eight RGB
LEDs distributed around the robot. In particular, this LED-ring is used by robots in
a chain to activate the LEDs with the colours blue, green and yellow, and by robots
in a vectorfield to activate a pattern which may be used to indicate a direction, as
shown in Figure 3.2b.

In order to perceive the LED-ring, a VGA camera is mounted on top of the s-bot
and is directed towards a spherical mirror, in this way providing an omni-directional
view. The camera is used to perceive the nest, the prey, and other s-bots emitting
a colour with their LED-ring. A snapshot taken from an s-bot ’s camera is shown in
Figure 3.2c. Given that the spherical mirror is mounted at 10 cm on top of a robot,
another robot does not entirely block the view of the camera. However, obstacles,
such as those employed in our experiments, do block the view. Due to differences
among the robots’ cameras, there are some variations in the perceptual ranges. The
software we use on the real robot to detect coloured objects allows a recognition of
the red coloured prey up to a distance of 70− 90 cm, and of the three colours blue,
green and yellow, up to 35 − 60 cm (depending on which robot is used). Due to
the spherical shape of the mirror, the distance to close objects can be approximated
with good precision up to a distance of 30 cm, but it becomes increasingly difficult to
deduce the distance for objects that are further away. The direction to other objects
is perceived quite precisely, and the precision increases with growing distance.

The s-bot has 15 infra-red proximity sensors distributed around its turrets, used
for obstacle avoidance. Using these sensors the s-bot can recognise another object
when its distance is less than 15 cm.

Figure 3.2d shows the s-toy, an object which we use either as nest or as prey
(depending on its colour). It has a diameter of 20 cm and, like the s-bot, it is equipped
with RGB LEDs. The nest is immobile. The prey weighs 800 g and requires the
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Figure 3.2: The hardware. (a) The s-bot. (b) A robot activating its LEDs to indicate
a direction as employed by the vectorfield controller. (c) An image taken with the
omni-directional camera of the s-bot. It shows other s-bots and an s-toy activating
their red LEDs at various distances. (d) The s-toy, which is used both as nest and
as prey.
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cooperative effort of two or more s-bots to be moved.

3.2.2 The TwoDee Simulator

In TwoDee, the s-bot is modelled as an object composed of a cylinder with the
diameter of the s-bot body, and of a cuboid with the dimensions of the s-bot gripper.
The nest and the prey are represented by coloured cylinders of the size of an s-toy.
Despite the efforts to devise a precise simulation, some characteristics of the robots
and of the robot-environment interaction may escape the modelling phase. For this
reason, noise is used to ensure that the behaviour developed in simulation will cope
with differences between simulation and reality (Jakobi, 1997; Jakobi et al., 1995).
Noise is simulated for both actuators and sensors, adding a random value uniformly
distributed in a given range. The noise distribution from the real robots is modelled
by a uniform noise distribution. The bounds of the added random values are specified
in the following and are in general higher than the standard error observed on the
real robots.

The tracks have been simulated by two active wheels. The speed of each wheel
is set individually. We adopted the values of maximum speed and angular velocity
as reported above. When setting the speed of a wheel to v0, we add a noise value
in the range [−0.1 · v0; 0.1 · v0].

The camera and the proximity sensors have been modelled in the simulator trying
to closely match their physical counterpart. A sampling technique was employed
using samples from the corresponding devices recorded from the real robot (Miglino
et al., 1995). These samples are collected in a matrix of activation values that can
afterwards be used in the simulation to characterise the sensor activation for a given
situation.

For the camera, we recorded 100 samples from camera images for 36 angles and
22 distances in the range [5 cm; 100 cm] with respect to a prey, a nest, or another
s-bot. When calculating distance and direction to another object in simulation, we
take the median values from the collected samples for the given situation, and add
noise values in the ranges [−10 cm, 10 cm] for the distance and [−18o, 18o] for the
direction. Concerning the perception of LED patterns indicating a direction, as used
by the vectorfield, we add a noise value in the range [−36o, 36o] to the median value
taken from the samples. The differences in the perception of the different colours
and the differences between the robots are taken into account in simulation as well:
each robot is given a different set of perceptual ranges for the four colours, and each
value is chosen randomly from the ranges mentioned above.

The proximity sensors, like the camera, have been modelled by recording 100
samples from the proximity sensor activation for 36 angles and 18 distances in the
range [1 cm; 20 cm] with respect to either another s-bot or to a wall. To calculate
the value of a proximity sensor in simulation, we take the median value from the
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collected samples for the given situation, and add a noise value in the range [−0.2 ·
proxmax, 0.2 · proxmax], where proxmax is the proximity sensor saturation value.



Chapter 4

Chain Controller

In this chapter we describe the chain controller. We first give a general description of
the overall behaviour in Section 4.1 and of the different variants used in Section 4.2.
In order to integrate the different behaviours required to solve the overall task, we
follow a behaviour based approach (Arkin, 1998) as it allows us to comfortably merge
different approaches and sub-controllers into one structure. Each behaviour consists
of a collection of motor schemas, that is, low level control mechanisms. The motor
schemas used are described in Section 4.3. Afterwards, the different behaviours are
explained in Section 4.4, and the rules that trigger a transition from one behaviour
to another are detailed in Section 4.5.

4.1 General Description

The controller that we designed and implemented to run our experiments consists
of eight behaviours, each of which is designed to achieve a specific goal. The overall
task can be split into the subtasks path formation, assembly and transport. The
individual behaviours for the path formation subtask, which is the focus of this
thesis, are implemented using the motor schema paradigm. For the assembly and
transport subtasks the behaviours are based on the work of Groß et al. (2006a);
Groß and Dorigo (2004) and Groß et al. (2006b), and rely on neural networks or
simple hand written commands. The eight behaviours are detailed in Section 4.4.

At the beginning of a trial, the robots are located at random positions. If a robot
does not perceive the nest or a chain, it performs a random walk (Search Chain

behaviour) until it perceives one of them. Note that the nest is considered as the root
of each chain. A robot that finds the nest starts either to explore the environment
around the nest or to follow an existing chain (Explore Chain behaviour). In the
latter case, when it reaches the tail of the chain, it joins the chain with probability
Pin per time step (Join Chain behaviour). Robots that are part of a chain cannot
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leave it unless they are situated at the chain’s tail, in which case they leave it with
probability Pout per time step. The process of probabilistically joining/leaving a
chain is at the basis of the exploration of the environment as it allows the formation
of new chains in unexplored areas.

If a chain member perceives the prey, it does not leave the chain, so that when
a chain encounters the prey the formed path becomes stable. At this point there
are two possibilities: If the prey is far, other robots can still join the chain to make
a connection that is closer to the prey; if the prey is close, the subtask of path
formation is successfully accomplished. Once a path is formed, it is maintained and
in this way automatically recruits other robots to assemble to the prey (Assemble
behaviour). If a robot that tries to assemble to the prey does not succeed within a
certain time it gives up, moves back to the nest and rests for a while (Recovery-A
behaviour). When a sufficient number of robots has assembled to the prey, the
prey transport starts. Robots assembled to the prey transport it by moving towards
the closest perceived member of a chain (Transport Target behaviour). When the
prey pulling structure moves close to a chain member, the latter leaves the chain and
moves back to the nest to rest for a while (Recovery-P behaviour). In this way the
pulling structure of robots is guided from node to node of the chain to eventually
reach the nest. A robot leaving the chain to rest at the nest emits a sound signal
for a period of 30 s. A robot transporting the prey and perceiving this sound signal
reacts to it by pausing the transport. Otherwise, if it continues moving towards the
sound emitting robot, there is a risk that the robot is blocked from moving back to
the nest. This situation can occur when the pulling structure of transporters touches
the respective robot. No other robots react to the sound signal.

The directionality in our chains relies on the concept of cyclic directional patterns
(Figure 4.1). Each robot emits one out of three signals (i.e., LED colours) depending
on its position in the chain. By taking into account the sequence of the signals, a
robot can determine the direction towards the nest, or towards the prey. The prey
and the nest can be recognised by their colour: the nest is blue, and the prey is red.

4.2 Variants

We implemented three variants of the chain formation mechanism. These variants
differ by the degree of motion allowed to the chain structure. In the simplest case,
referred to as static strategy, there is no motion at all. In the second case, referred to
as aligning strategy, the chains as a whole align. Finally, in the third case, referred
to as moving strategy, the chains perform a circular movement around the nest.

In addition to this, we implemented a prey extension mechanism. When this
mechanism is active, robots that perceive the red prey, but no chain, activate their
red LEDs with a certain probability, in this way increasing the area in which the
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Prey

NestAlign

Move_perpendicular Adjust_distance

Figure 4.1: Chains with cyclic directional patterns (CDP). The small coloured
circles represent robots that have formed a CDP-chain that connects the nest with
the prey. Three colours are sufficient to give directionality to the chain. The large
circles surrounding the robots indicate their perceptual range. The small uncoloured
circle represents an explorer robot following the chain towards the prey. The three
vectors drawn on top of the chain members represent the motor schema that leads
to an overall alignment of the chain. The two vectors drawn on top of the explorer
robot represent the motor schemas that lead to a tangential trajectory along the
chain.

prey can be perceived by the chain (Extend Prey behaviour). This mechanism
potentially speeds up the path formation process because a second path, starting
from the prey, is formed in parallel to the chains.

4.3 Motor Schemas

The behaviours used for path formation are realized following the motor schema
paradigm (Arkin, 1989, 1992). A motor schema couples perception to action without
the use of abstract representations. The motor schemas can be considered as basic
building blocks for a behaviour. Each motor schema outputs a vector denoting the
desired direction of motion. For each behaviour, a set of motor schemas is active
in parallel. Active motor schemas are added and translated into motor activation
at the beginning of each control time step.1 Common to all behaviours is a motor
schema for collision avoidance. In the following, we detail the five employed motor
schemas as shown in Figure 4.2 and Figure 4.3.

• Adjust distance(α, dcurrent, ddesired): returns a vector −−→vAD that points to-
wards an object at angle α if the current distance to the object dcurrent is

1A control time step has a length of 120 ms in simulation. On the real robot this value is not
constant because it depends on the time required for image processing.
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(a) (b)

Figure 4.2: Employed motor schemas. (a) Adjust distance returns a vector pointing
towards an object if the current distance dcurrent is larger than the desired distance
ddesired, and away from it otherwise. (b) Move perpendicular returns a vector di-
rected perpendicularly with respect to an object.

(a) (b) (c)

Figure 4.3: Employed motor schemas. (a) Avoid collisions returns a vector pointing
away from objects that are close. (b) Move straight returns a vector that points
forward. (c) Align returns a vector that leads to the alignment of a chain member
with respect to its neighbours.
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larger than the desired distance ddesired, and in the opposite direction oth-
erwise. The length of the returned vector is proportional to the value of
‖dcurrent − ddesired‖. In order to avoid an oscillating behaviour, the vector
is set to zero if ‖dcurrent − ddesired‖ < 5 cm (see Figure 4.2a):

−−→vAD =







(ddesired − dcurrent) ·

(

cos(α)
sin(α)

)

, ‖ddesired − dcurrent‖ ≥ 5 cm

0 , ‖ddesired − dcurrent‖ < 5 cm.

• Move perpendicular(α, clockwise): returns a unit vector −−→vMP that is per-
pendicular to an object at angle α. The boolean parameter clockwise de-
termines whether the vector is perpendicular in a clockwise sense or not (see
Figure 4.2b):

−−→vMP =















(

−sin(α)
cos(α)

)

, clockwise = 1
(

sin(α)
−cos(α)

)

, clockwise = 0.

• Avoid collisions(IR sensors): returns a vector −−→vAC that takes into account
each activation IRj of a proximity sensor j that is above a threshold Θ (an
activation of a proximity sensor above the value Θ is reached for distances
smaller than 5 cm). The direction of the vector is opposed to the source of
activation αj (i.e. the direction of proximity sensor j with respect to the
robot’s heading), and its length is proportional to the difference between the
activation and the threshold (see Figure 4.3a):

−−→vAC = −

numProx
∑

j=1

max{0, IRj −Θ} ·

(

cos(αj)
sin(αj)

)

.

• Move straight: returns a unit vector −−→vMS that points forward (see Fig-
ure 4.3b):

−−→vMS =

(

1
0

)

.

• Align(αprevious, αnext): returns a vector −−→vAL that leads to the alignment
between the previous and the next chain neighbour which are perceived at the
angles αprevious and αnext. The length of the vector is proportional to the value
of 180o − |αprevious − αnext| . In order to avoid an oscillating behaviour, the
vector is set to zero if |αprevious − αnext| > αalign (αalign is set to 170o for the
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aligning strategy, and to 175o for the moving strategy, with 180o representing
perfect alignment, see Figure 4.3c):

−−→vAL =







(

cos(αprevious) + cos(αnext)
sin(αprevious) + sin(αnext)

)

, |αprevious − αnext| ≤ αalign

0 , |αprevious − αnext| > αalign.

The active motor schemas are summed up, weighting each one with a gain value
gi. The individual gain values are given in the next section and were found through
trial and error. Once the active motor schemas have been summed up, the resulting
vector −−−→vRES has to be translated into movement of the two wheels. This is done by
the following function:

(

lSpeed
rSpeed

)

=















































(

cos(2 · αRES)
1

)

, 0 ≤ αRES < π
2

(

cos(2 · αRES − π)
−1

)

, π
2
≤ αRES < π

(

−1
−cos(2 · αRES)

)

, π ≤ αRES < 3·π
2

(

1
−cos(2 · αRES − π)

)

, 3·π
2
≤ αRES < 2 · π

,

where lSpeed and rSpeed denote the normalized speed of left and right wheel, and
αRES is the desired direction of movement with respect to the current heading. The
resulting speed of the wheels is independent from the length of the summed vector
vRES , and depends on the maximum allowed velocity vmax, which is set to 12.37 cm

sec
,

as on the s-bot for the given length of a time step this was the maximum speed
found to result in a stable behaviour.

4.4 Behaviours

The behaviours and the rules that trigger a transition from one behaviour to another
are illustrated by the state diagram in Figure 4.4. Each state corresponds to a robot
behaviour, and arrows connecting states represent behaviour transitions. Using the
aforementioned motor schemas as basic building blocks, the individual behaviours
used for path formation were implemented as follows:

• Search Chain: perform a random walk by moving straight until an ob-
stacle is detected in the front. Then turn on the spot for a random angle.
LEDs are off. Active motor schemas: Move straight (gain value gMS = 1),
Avoid collisions(gAC = 0.1).
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Figure 4.4: State diagram of the finite state machine that controls each robot. Cir-
cles represent states (i.e., behaviours). Edge labels specify conditions that trigger
transitions between the corresponding states. The initial state is Search Chain.
Pin, Pout, Px−in and Px−out are boolean variables, which are set to True with the
probabilities Pin, Pout, Px−in and Px−out, and False otherwise. The value of Pin

(Pout) determines the rate at which robots join (leave) a chain. The value of Px−in

(Px−out) determines the rate at which robots join (leave) the prey extending struc-
ture.
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• Explore Chain: move along a chain towards its tail or towards the nest.
By default, an explorer moves towards a chain’s tail. In case a robot be-
comes an explorer by leaving a chain, it first moves back to the nest, and
then turns around the nest to follow a (possibly) different chain or prob-
abilistically decides to start a new chain by itself. LEDs are off. Active
motor schemas: Move perpendicular(gMP = 1), Adjust distance(gAD = 10),
Avoid collisions(gAC = 0.1).

• Join Chain: the LEDs are activated with the appropriate colour, depend-
ing on the colour of the previous chain neighbour. For what concerns the
movement of a chain member, we employ three different strategies:

– Static strategy: In this simplest case a chain member does not move at
all. Active motor schemas: none.

– Aligning strategy: A chain member avoids collisions, aligns itself with
respect to its neighbours (see Figure 4.1) and adjusts its distance with
respect to its previous neighbour to roughly 27 cm. The combination
of the last two motor schemas improves the length of the chains and
guarantees a visual connection of the chain neighbours. A side effect of
this is that loops within the chain are avoided. Active motor schemas:
Adjust distance(gAD = 10), Align(gAL = 1), Avoid collisions(gAC = 0.1).

– Moving strategy: The moving strategy is an extension of the aligning
strategy. One motor schema is added, and affects only the last member
in a chain. While for the aligning strategy the last chain member only ad-
justs its distance with respect to its precedent, in the moving strategy the
motor schema to move perpendicularly is employed in addition. In this
way the last chain member turns around the previous one. As the rest of
the chain continuously tries to align itself, the movement of the last mem-
ber results in a clockwise movement of the whole chain around the nest.
The last chain member acts as a kind of leader that triggers the chain as
a whole to move in a circle around the nest. The angular speed of a chain
is determined by the speed of its last member and its length. Active mo-
tor schemas: Move perpendicular(gMP = 1), Adjust distance(gAD = 10),
Align(gAL = 1), Avoid collisions(gAC = 0.1).

• Recovery-P: Move back to the nest and rest. Emit a sound signal for 30 s.
LEDs are off. Active motor schemas: Move perpendicular(gMP = 1), Ad-
just distance(gAD = 10), Avoid collisions(gAC = 0.1).

• Extend Prey: The LEDs are activated with red. Keep a distance of 60 cm to
the closest red object perceived. This is either the prey or another robot in the
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prey extending structure. Active motor schemas: Adjust distance(gAD = 10),
Avoid collisions(gAC = 0.1).

For assembly and transport the following behaviours are used:

• Assemble: two different behaviours are used, depending on whether the be-
haviour is executed on the real robot or in simulation:

– Real robot: A feed-forward artificial neural network—a single-layer
perceptron—takes input from the camera as well as sensor readings from
the left-front and right-front proximity sensors. The network’s output is
used to control the speed and status of the tracks and the connection
mechanisms. The network is trained to let the robot approach and grasp
nearby objects that have activated their LEDs in red. Initially, the prey
is the only object having activated its LEDs in red. Upon connection,
a robot activates its own LEDs in red. Therefore, it becomes itself an
object with which to establish a connection. A detailed description of the
behaviour can be found in (Groß et al., 2006a).

– Simulation: As the connection mechanism of the robot was not accurately
simulated at the time we conducted our experiments, we used a simple
hand written control algorithm that provides a similar behaviour as the
neural network stated above. The simulated robot approaches the object
towards which it attempts a connection, tries to connect, and given the
distance and the angle towards the object it has a given probability that
the assembly is successful. If the attempt to connect is not successful it
moves backwards, and tries to connect again.

• Transport: if a sound signal is perceived the robot rests. Otherwise, if a
chain member is perceived, the robot orients its chassis towards the closest
chain member, which indicates the direction to the nest, and starts pulling.
A detailed description of the behaviour can be found in (Groß et al., 2006b).
If no chain member is perceived we use two different behaviours on the real
robot and in simulation:

– Real robot: A simple recurrent neural network is fed with input from the
robot’s force and torque sensors. The force sensor indicates the mismatch
between the robot’s own direction of motion and the motion of other
robots it is connected with; moreover, it is influenced by the prey if it is
moved by other robots. The torque sensor indicates whether stagnation
is present. The network’s output is used to control the speed of the tracks
and the desired orientation of the chassis. A detailed description of the
behaviour can be found in (Groß and Dorigo, 2004; Groß et al., 2006b).
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– Simulation: As these forces could not be accurately simulated, a robot in
simulation that does not perceive the path does not move at all.

Finally, a recovery behaviour, similar to the one used for the path formation, is
used for the assembly as well. The only difference is that no sound signal is emitted.

• Recovery-A: Move back to the nest and rest. LEDs are off. Active mo-
tor schemas: Move perpendicular(gMP = 1), Adjust distance(gAD = 10),
Avoid collisions(gAC = 0.1).

4.5 Behaviour Transitions

The following set of conditions trigger behaviour-transitions:

• Search Chain→ Explore Chain: if a chain member (this includes the nest)
is perceived. Note that a robot in the Search Chain state does not react to
the perception of the prey, unless the prey extension mechanism is used.

• Search Chain → Extend Prey: if the prey, but no chain member is per-
ceived, the robot joins the prey extending structure with probability Px−in per
time step.

• Explore Chain → Search Chain: if no chain member is perceived any
more.

• Explore Chain → Join Chain: (i) if the prey is not perceived and the tail
of a chain is reached (i.e., only one chain member is perceived), the robot joins
the chain with probability Pin per time step, or (ii) if the prey is perceived at
a distance > 35 cm.

• Explore Chain → Assemble: if the prey is detected at a distance < 35 cm.

• Join Chain → Search Chain: if the previous chain neighbour is no longer
perceived.

• Join Chain → Explore Chain: if a chain member is situated at the tail of
a chain, it leaves the chain with probability Pout per time step.

• Join Chain → Recovery-P: if the prey is perceived at a very close distance
(i.e., less than 5 cm), which only occurs if the prey is transported towards the
chain member.

• Extend Prey → Search Chain: if no red object is perceived any more, or
with probability Px−out per time step.
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• Extend Prey → Explore Chain: if a chain member is perceived.

• Recovery-P → Search Chain: if Trecovery = 30 s has elapsed.

• Assemble → Recovery-A: if the robot does not succeed in connecting to an
object within Tas = 90 s.

• Assemble → Transport-Target: if the robot succeeds in connecting to an
object.

• Recovery-A → Search Chain: if Trecovery = 30 s has elapsed.
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Chapter 5

Chain Controller: Experiments

in Simulation

In this chapter we present the results obtained in the TwoDee simulation environment
for the chain controller. This includes the three chain strategies static, aligning and
moving, as well as a version of each of these with the prey extension mechanism.
After describing the experimental setup in Section 5.1, we explain the method used
for parameter selection and give an overview of the performance in Section 5.2, and
then present the results with the selected parameters for the different tests performed
in Section 5.3.

5.1 Experimental Setup

We employ a bounded arena of size 5m× 5m. The task consists in forming a path
between two locations in the environment, the nest and the prey, to assemble to the
prey and to transport it back towards the nest. The nest is placed in the centre of
the arena, and the prey is placed towards one of the corners. Obstacles are cubes
with a side length of 0.5m (i.e., one obstacle occupies 1% of the arena). An instance
of the task is defined by the triplet (N,D,O), where:

• N is the robot group size,

• D is the distance between nest and prey (in meters),

• O is the number of obstacles in the environment.

The initial position and orientation of the robots, as well as the positions of the
obstacles, are chosen randomly.

The primary performance measure is the completion time. We distinguish the
three completion times for the three subtasks path formation (Tp), assembly (Ta),
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and transport (Tt). For practical reasons, we allow a maximum completion time of
10,000 seconds. If this time does not suffice to establish a path, the trial is stopped
and considered to be a failure. As a second performance measure we use the success
rate, which we define as the ratio of successful trials. Again we distinguish three
success rates, one for each subtask.

5.2 Parameter Selection

The overall behaviour of our controllers is a function of the two parameters Pin and
Pout, and in the cases where the prey extension mechanism is employed, additionally
of the two parameters Px−in and Px−out. The values of these determine the prob-
ability per time step at which the robots join or leave the path forming and prey
extending structures respectively. To assess the general impact of these probabilities
we have conducted a parameter study. For each probability we examined ten values
defined by 0.001 ∗ 2x, with x ∈ {0, 1, 2, 3, . . . , 9}, resulting in 10 candidates in the
range [0.001, 0.512]. We first discuss the parameter landscape and select a parameter
set for the probabilities of Pin and Pout in Section 5.2.1. Then, based on these two
selected parameters, we discuss the parameter landscape and select a parameter set
for the probabilities of Px−in and Px−out in Section 5.2.2.

5.2.1 Parameters Pin and Pout

Figures 5.1, 5.2 and 5.3 show surface plots of the success rate of the Pin/Pout pa-
rameter landscapes for a group of (a) 10 robots, (b) 20 robots, (c) 40 robots and
(d) 80 robots. All trials were conducted in an environment without obstacles and a
nest to prey distance of 3 meters.

The parameter landscapes are qualitatively similar for the three chain variants,
and the aligning and moving chains reach higher success rates than the static chains.
In general, the success rate is higher when Pin > Pout. Low values of Pin result in a
rather patient behaviour: in most cases a single chain is formed slowly. For rather
difficult setups with a small group size and a large distance between nest and prey,
the highest success rates are reached for low values Pin, because this allows the
formation of a single chain, which is the only possibility to solve the task. For high
values of Pin, several chains are formed fast and in parallel. The second parameter,
Pout, determines the stability of the formed chains, directly influencing their lifetime
and the frequency of chain disbandment. High values of Pout lead to an impatient
behaviour where robots joining a chain quickly leave it. In general, the results are
qualitatively similar for other group sizes, distances, and when obstacles are added
to the environment.

The study of the parameter landscapes gives a general idea of the impact of the
parameters and of the overall performance of the controllers. To further analyse



CHAIN CONTROLLER: EXPERIMENTS IN SIMULATION 47

 0

 0.2

 0.4

 0.6

 0.8

 1

P_in

P
_

o
u

t

Success Rate, Static Chains, Group Size = 10 

 0.001  0.004  0.016  0.064  0.256

 0.001

 0.002

 0.004

 0.008

 0.016

 0.032

 0.064

 0.128

 0.256

 0.512

 0

 0.2

 0.4

 0.6

 0.8

 1

P_in

P
_

o
u

t

Success Rate, Static Chains, Group Size = 20 

 0.001  0.004  0.016  0.064  0.256

 0.001

 0.002

 0.004

 0.008

 0.016

 0.032

 0.064

 0.128

 0.256

 0.512

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

P_in

P
_

o
u

t

Success Rate, Static Chains, Group Size = 40 

 0.001  0.004  0.016  0.064  0.256

 0.001

 0.002

 0.004

 0.008

 0.016

 0.032

 0.064

 0.128

 0.256

 0.512

 0

 0.2

 0.4

 0.6

 0.8

 1

P_in

P
_

o
u

t

Success Rate, Static Chains, Group Size = 80 

 0.001  0.004  0.016  0.064  0.256

 0.001

 0.002

 0.004

 0.008

 0.016

 0.032

 0.064

 0.128

 0.256

 0.512

(c) (d)

Figure 5.1: Surface plots of the success rates of the parameter landscapes when
changing the two probability parameters Pin and Pout (100 observations per param-
eter combination), for static chains and a group of (a) 10 robots, (b) 20 robots, (c)
40 robots and (d) 80 robots. All experiments were conducted in an environment
without obstacles and a nest to prey distance of 3 meters. The axes of the parame-
ters are plotted in logarithmic scale. The lighter the surface the higher is the success
rate.
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Figure 5.2: Surface plots of the success rates of the parameter landscapes when
changing the two probability parameters Pin and Pout (100 observations per param-
eter combination), for aligning chains and a group of (a) 10 robots, (b) 20 robots,
(c) 40 robots and (d) 80 robots. All experiments were conducted in an environment
without obstacles and a nest to prey distance of 3 meters. The axes of the parame-
ters are plotted in logarithmic scale. The lighter the surface the higher is the success
rate.
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Figure 5.3: Surface plots of the success rates of the parameter landscapes when
changing the two probability parameters Pin and Pout (100 observations per param-
eter combination), for moving chains and a group of (a) 10 robots, (b) 20 robots,
(c) 40 robots and (d) 80 robots. All experiments were conducted in an environment
without obstacles and a nest to prey distance of 3 meters. The axes of the parame-
ters are plotted in logarithmic scale. The lighter the surface the higher the success
rate.
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the performance under a wide range of experimental settings we have to select one
parameter combination for each controller. For this purpose, we employed the racing
method by Birattari et al. (2002); Birattari (2005). This method is an efficient way
to determine a good parameter set: it sequentially evaluates a set of candidate
parameter configurations, discarding the worst performing candidates as soon as
statistical evidence is gathered against them. The process is stopped when only one
candidate is left, or when the candidates have been tested on all problem instances.

In our case, a candidate configuration is a set of two values for the parameters
Pin and Pout. We considered the same ten values defined by 0.001 ∗ 2x, with x ∈
{0, 1, 2, 3, . . . , 9}, resulting in 100 candidates. Candidate configurations were tested
on 27 experimental setups obtained considering all the possible combinations of
values for N , D, and O, with N ∈ {10, 20, 40}, D ∈ {2, 2.5, 3}, and O ∈ {0, 10, 20}.
Each setup is initialized in 100 different ways, obtained varying the initial positions
of the robots and the obstacle configuration. It is important to note that while for
N = 20 and N = 40 a solution exists for any value of D and O, this is not necessarily
the case for N = 10. In this case, in fact, the 10 robots can form a linear structure
of approximately 3m. Therefore, when O = 0 a solution exists, while when O = 10
or O = 20 the existence of the solution depends on the actual disposition of the
obstacles in the arena.

For each controller there were between three and five candidates left for which no
statistically significant difference was found based on the completion time. Among
these candidates we chose those with the highest success rates. The performance
obtained with these candidates is reported in Table 5.1.

Confirming our previous observation, the aligning and moving chains clearly
outperform the static ones, and successfully form a path in most problem instances
where this is possible. A success rate of 100% is not reachable because the problem
mix includes tasks that cannot be solved by 10 robots.

The lower success rate of the static chains is mainly due to three reasons. First,
the static chains are not straight. Therefore, in general, they cover shorter distances
from the nest than the two dynamic chain strategies whose structures can stretch

Table 5.1: The selected parameter sets for Pin and Pout based on the outcome of
a racing algorithm on 27 experimental setups obtained considering all the possible
combinations of values for N , D, and O, with N ∈ {10, 20, 40}, D ∈ {2, 2.5, 3}, and
O ∈ {0, 10, 20}. Each setup was initialized in 100 different ways.

Strategy Pin Pout Success Rate Median Completion Time

Static 0.064 0.008 62.2 % 4142 seconds

Aligning 0.128 0.004 89.7 % 1066 seconds

Moving 0.128 0.004 91,9 % 1181 seconds
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over longer distances thanks to the aligning mechanism which is used in both of
them. Second, the two dynamic chain strategies allow some motion to the chain
members which leads to an exploration of the arena even of chains that are already
formed. Third and last, the static chains have a higher risk to create loops in the
form of a successive order of three chain members. The risk for this to happen is
much lower for the other two chain strategies as they lead the chains to align.

5.2.2 Parameters Px−in and Px−out

Given the parameter selection for Pin and Pout we performed a similar study for
the parameters Px−in and Px−out. While Pin and Pout represent the rate at which
robots join and leave a chain, Px−in and Px−out determine the rate at which robots
join and leave the prey extending structure.

Figures 5.4, 5.5 and 5.6 show surface plots of the success rate of the Px−in/Px−out

parameter landscapes for a group of (a) 10 robots, (b) 20 robots, (c) 40 robots and
(d) 80 robots. All trials were conducted in an environment without obstacles and a
nest to prey distance of 3 meters.

The parameter landscapes are qualitatively similar for the three chain variants.
Again, the aligning and moving chains reach higher success rates than the static
chains. In general, the performance is high throughout all tested parameters and
the landscapes are flat when compared to those presented in the previous section.
This is due to the fact that the parameters Pin and Pout are fixed according to the
selected values in Table 5.1. Therefore, the basic performance is in general good.
The following observations can be made concerning the effect of the parameters:

• For the most successful parameter combinations the value of Px−in exceeds
the one of Px−out. The ratio of Px−in

Px−out
is in the range [2, 16]. A higher rate to

join the prey extending structure rather than leaving it is beneficial because
otherwise the structure is unstable as robots are leaving it faster than they
join it.

• The performance drops for values of Px−in > 0.128 because that would lead
a robot to join the prey extending structure virtually immediately when per-
ceiving the prey or a prey extending robot. If too many robots join the prey
extending structure then the path from the nest formed by chains is neglected.

• The performance drops for values of Px−out > 0.032 because the prey extending
structure becomes unstable.

• The performance drops for values of Px−in < 0.004 because then robots join
the prey extending structure too rarely.
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Figure 5.4: Surface plots of the success rates of the parameter landscapes when
changing the two probability parameters Px−in and Px−out (100 observations per
parameter combination), for static chains and a group of (a) 10 robots, (b) 20
robots, (c) 40 robots and (d) 80 robots. All experiments were conducted in an
environment without obstacles and a nest to prey distance of 3 meters. The axes of
the parameters are plotted in logarithmic scale. The lighter the surface the higher
is the success rate. The parameters Pin and Pout are fixed according to Table 5.1.
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Figure 5.5: Surface plots of the success rates of the parameter landscapes when
changing the two probability parameters Px−in and Px−out (100 observations per
parameter combination), for aligning chains and a group of (a) 10 robots, (b) 20
robots, (c) 40 robots and (d) 80 robots. All experiments were conducted in an
environment without obstacles and a nest to prey distance of 3 meters. The axes of
the parameters are plotted in logarithmic scale. The lighter the surface the higher
is the success rate. The parameters Pin and Pout are fixed according to Table 5.1.
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Figure 5.6: Surface plots of the success rates of the parameter landscapes when
changing the two probability parameters Px−in and Px−out (100 observations per
parameter combination), for moving chains and a group of (a) 10 robots, (b) 20
robots, (c) 40 robots and (d) 80 robots. All experiments were conducted in an
environment without obstacles and a nest to prey distance of 3 meters. The axes of
the parameters are plotted in logarithmic scale. The lighter the surface the higher
is the success rate. The parameters Pin and Pout are fixed according to Table 5.1.
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Table 5.2: The selected parameter sets for Px−in and Px−out based on the outcome
of a racing algorithm on 27 experimental setups obtained considering all the possible
combinations of values for N , D, and O, with N ∈ {10, 20, 40}, D ∈ {2, 2.5, 3}, and
O ∈ {0, 10, 20}. Each setup was initialized in 100 different ways. The parameters
Pin and Pout are fixed according to Table 5.1.

Strategy Px−in Px−out Success Rate Median Completion Time

Static 0.004 0.002 63.1 % 3156 seconds

Aligning 0.008 0.002 93.9 % 762 seconds

Moving 0.008 0.001 94.3 % 548 seconds

The parameters selected from the racing algorithm for further evaluation are
summarized in Table 5.2.

5.3 Performance Evaluation

In the previous section we selected parameter sets for the three different chain con-
trollers and for the prey extension mechanism. Based on these parameters we per-
formed extensive tests under various conditions to evaluate the performance of the
control mechanisms at hand. These experiments are the subject of this section.
First, we give an overview of the performance in Section 5.3.1, and then show the
results of systematic experiments under various conditions:

• In a difficulty test we vary the distance D between the nest and the prey in
the range [1m, 3m] (Section 5.3.2).

• In a scalability test we vary the number of robots N in the range [10, 200]
(Section 5.3.3).

• In an obstacle test we vary the number of obstacles O in the range [0, 30] and
additionally test two predefined obstacle environments (Section 5.3.4).

• In a set of robustness tests we vary the noise of various sensors (Section 5.3.5).

• In a set of fault tolerance tests we vary the fraction of robots that suffer from
individual failure by disabling various sensors or actuators (Section 5.3.6).

5.3.1 General Evaluation

In this section we discuss the general performance of the three chain strategies and
the prey extension mechanism. We describe first the general behaviour of the three
chain strategies and the prey extension mechanism in Section 5.3.1.1. Then we
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discuss the branching, that is, the number of formed chains in Section 5.3.1.2, and
finally the environment exploration in Section 5.3.1.3.

5.3.1.1 Behaviour

To illustrate the behaviour of the chain strategies Figures 5.7, 5.8 and 5.9 display
a sequence of snapshots from typical simulation trials for the static, aligning and
moving strategy respectively.1

A group of N = 20 robots is randomly distributed in the environment and the
nest to prey distance is D = 2m. In all three cases the robot group succeeds to form
a path, assemble to the prey, and transport it back to the nest. In the following we
give a short explanation of the observed behaviours:

• Static strategy (Figure 5.7): After an initial random walk several robots dis-
cover the nest and quickly form three chains simultaneously (b,c). The chains
have an arbitrary form. Usually they are not straight, as can in particular be
seen by the chain of eleven robots that form a path from nest to prey (d). At
the time that the path is formed there is one other chain that remains. Given
that there is no explicit communication among the robots about the successful
formation of a path there is no explicit mechanism to disaggregate the other
chain. However, following the normal probabilistic mechanism, robots leave
the chain, move back to the nest, and follow the path forming chain towards
the prey and connect to the prey (e). Once that two robots are connected
to the prey the transport can start (f). The transport is made more difficult
as one of the robots in the path forming chain is very close to the wall (g).
Therefore, the transport takes a rather long time and the structure of prey
transporting robots grows continually (h) up to eleven robots once the prey is
successfully transported to the nest (i).

• Aligning strategy (Figure 5.8): Again three chains are formed simultane-
ously (b). The aligning strategy leads the chain members to align with respect
to their neighbours, which results in the chains to be straight when compared
to the static strategy. The path forming chain (c) consists of five robots, six
less than for the trial with the static strategy, and equal to the minimum num-
ber of robots required for the given distance of D = 2m between nest and
prey. Once that two robots are assembled to the prey the transport starts (e).
Due to the reduced number of robots in the path the distance that the prey
has to be transported is effectively reduced as well. Therefore, the transport
is very fast when compared to the static strategy. Seven robots are assembled
to the prey when the transport is finished (i).

1A selection of movies can be found at http://iridia.ulb.ac.be/supp/IridiaSupp2008-014.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7: Sequence of images taken for a simulation trial with group size N = 20
s-bots and distance D = 2m between the nest (blue cylindrical object in the centre)
and the prey (red cylindrical object on the top right), when using the chain controller
with the static strategy: (a) t = 0 s, (b) t = 54 s, (c) t = 231 s, (d) t = 395 s, (e)
t = 462 s, (f) t = 528 s, (g) t = 808 s, (h) t = 1025 s, and (i) t = 1387 s.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.8: Sequence of images taken for a simulation trial with group size N = 20
s-bots and distance D = 2m between the nest (blue cylindrical object in the centre)
and the prey (red cylindrical object on the top right), when using the chain controller
with the aligning strategy: (a) t = 0 s, (b) t = 88 s, (c) t = 131 s, (d) t = 141 s, (e)
t = 168 s, (f) t = 217 s, (g) t = 284 s, (h) t = 309 s, and (i) t = 374 s.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.9: Sequence of images taken for a simulation trial with group size N = 20
s-bots and distance D = 2m between the nest (blue cylindrical object in the centre)
and the prey (red cylindrical object on the top right), when using the chain controller
with the moving strategy: (a) t = 0 s, (b) t = 35 s, (c) t = 90 s, (d) t = 190 s, (e)
t = 235 s, (f) t = 244 s, (g) t = 255 s, (h) t = 283 s, and (i) t = 345 s.
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• Moving strategy (Figure 5.9): Initially there are two (b), and then three
chains (c) that are formed. Similarly to the aligning strategy, chain members
align with respect to their neighbours, and therefore the chains are straight
when compared to the static strategy. The moving strategy employs a stricter
threshold angle of the aligning motor schema than the aligning strategy. This
is required for chain members to follow the overall movement of a chain, and
leads the chains to be straighter than is the case for the aligning strategy.
The movement of the chains leads to a “scanning” of the environment until
the prey is found and a path to it is formed (e). As for the aligning strategy,
this path consists of five robots. The speed of the transport is similar to the
one of the aligning strategy. Five robots are assembled to the prey when the
transport is finished (i).

Figures 5.10, 5.11 and 5.12 display similar sequences of snapshots from typical
simulation trials for the static, aligning and moving strategy respectively when the
prey extension mechanism is employed.

Again, a group of N = 20 robots is randomly distributed in the environment
and the nest to prey distance is D = 2m. Also in these three cases the robot group
succeeds in forming a path, assembling to the prey, and transporting it back to the
nest.

The basic chain formation algorithm and the individual strategies are the same
as when the the prey extension mechanism is not used. Prey extension is a mecha-
nism that functions in parallel to chain formation. The part of the controller that
is responsible for forming chains remains completely unchanged. Therefore, the dif-
ferences between the three individual strategies remain the same as stated above for
the case when no prey extension mechanism is employed.

The prey extension mechanism works in a very simple way. A robot that searches
for a chain and finds the prey (or a robot activating its LEDs in the same colour
as the prey) has a fixed probability to activate its LEDs to enhance the area from
which the prey can be perceived. For a robot that is part of a chain or exploring
one it makes no difference whether it actually perceives the prey or just another
robot that activates its LEDs in the colour of the prey: It is attracted and forms a
connection. In this way paths are in fact formed from both the nest as well as the
prey.

When the prey extension mechanism is used, the aligning and the moving strate-
gies have an important advantage when compared to the static one: In case the prey
extending structure is encountered the chains can follow it until they actually en-
counter the prey. Chains controlled by the static strategy cannot do that as the
individual chain members do not move at all.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.10: Sequence of images taken for a simulation trial with group size N = 20
s-bots and distance D = 2m between the nest (blue cylindrical object in the centre)
and the prey (red cylindrical object on the top right), when using the chain controller
with the static strategy and the prey extension mechanism: (a) t = 0 s, (b) t = 60 s,
(c) t = 130 s, (d) t = 256 s, (e) t = 315 s, (f) t = 326 s, (g) t = 488 s, (h) t = 590 s,
and (i) t = 772 s.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.11: Sequence of images taken for a simulation trial with group size N = 20
s-bots and distance D = 2m between the nest (blue cylindrical object in the centre)
and the prey (red cylindrical object on the top right), when using the chain controller
with the aligning strategy and the prey extension mechanism: (a) t = 0 s, (b)
t = 11 s, (c) t = 140 s, (d) t = 249 s, (e) t = 286 s, (f) t = 385 s, (g) t = 510 s, (h)
t = 646 s, and (i) t = 704 s.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.12: Sequence of images taken for a simulation trial with group size N = 20
s-bots and distance D = 2m between the nest (blue cylindrical object in the centre)
and the prey (red cylindrical object on the top right), when using the chain controller
with the moving strategy and the prey extension mechanism: (a) t = 0 s, (b) t = 24 s,
(c) t = 82 s, (d) t = 146 s, (e) t = 176 s, (f) t = 261 s, (g) t = 328 s, (h) t = 413 s,
and (i) t = 533 s.
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5.3.1.2 Branching

For the selected parameter values, Figure 5.13 shows the number of chains formed
simultaneously in an environment without obstacles and without prey at time t =
3600 sec.

For group sizes with N < 40 in most cases there are two chains formed simul-
taneously. For the static strategy this is still true for larger groups, but for the
other two strategies, three or four chains are formed more frequently. Note that
the number of simultaneously formed chains depends not only on the parameters
selected, but also on the size of the nest. A new chain can only be formed if there is
enough room. If a robot is situated at the nest and perceives a chain it will follow
the chain instead of forming a new one. For the given diameter of the nest there
are not more than three, and in very rare cases four chains formed simultaneously.
There is simply not enough space for more. However, this is not a general limitation
of the chain algorithm. By employing a larger nest diameter this limitation could be
overcome. Figure 5.13 also displays the degree of branching. For group sizes N = 10
and N = 20 there is a very low degree of branching, so that a chain starting from
the nest usually has one sole ending. For larger group sizes the branching is more
pronounced. Each chain splits approximately once into two branches.

5.3.1.3 Exploration

The basic requirement for the chains to find the prey and to connect it to the nest
is to explore the environment. In order to investigate the exploration capabilities
of the chain formation algorithm we performed a test in an environment without
prey. As for the other trials, the robots are initially randomly positioned. We define
a position in the environment to be explored if it is within a radius of 40 cm of an
explorer or chain robot. Initially the arena is completely unexplored. Figures 5.14,
5.15 and 5.16 show the percentage of the explored arena for the three chaining
strategies.

Among the three strategies, the static one performs worst, and the two others
reach a similar performance. For all three strategies the exploration rate grows
continuously, indicating that the mechanism of randomly leaving a chain and joining
one at a different position leads to a continuous exploration so that unexplored areas
of the environment are still found after hours of experimentation. This is particularly
important for smaller group sizes. For larger group sizes the environment gets quickly
explored already for the fact that the density of the robots is sufficiently high to cover
a high percentage of the environment. For the two dynamic strategies and for group
sizes of N ≥ 40 the environment gets entirely explored for all trials.
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Figure 5.13: The histograms show the frequency of the number of chains formed for
the static (left), aligning (centre) and moving (right) chain strategies and a group
size of (abc) 10, (def) 20, (ghi) 40 and (jkl) 80 robots in 100 evaluations. The
results are collected at t = 3600 sec in an obstacle free environment with no prey.
The white bars on the left of each histogram indicate the number of chains formed
directly from the nest. The grey bars on the right also include splits in chains that
lead to different branches of the same chain.
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Static Chains, Group Size = 80, No Obstacles
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Figure 5.14: The box-and-whisker-plots (Becker et al., 1988) show 100 evaluations
of the exploration rate for a group of (a) 10 robots, (b) 20 robots, (c) 40 robots
and (d) 80 robots using the static chain controller in an obstacle free environment.
Given that no prey is present in the arena the results do not rely on the prey
extension mechanism. Boxes represent the inter-quartile range of the data, while
the horizontal bars inside the boxes mark the median values. The whiskers extend
to the most extreme data points within 1.5 of the inter-quartile range from the box.
The empty circles mark the outliers.
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Aligning Chains, Group Size = 80, No Obstacles
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Figure 5.15: The box-and-whisker-plots (Becker et al., 1988) show 100 evaluations of
the exploration rate for a group of (a) 10 robots, (b) 20 robots, (c) 40 robots and (d)
80 robots using the aligning chain controller in an obstacle free environment. Given
that no prey is present in the arena the results do not rely on the prey extension
mechanism. See the caption of Figure 5.14 for an explanation of the box-and-whisker
plots.
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Moving Chains, Group Size = 20, No Obstacles

0
2

0
4

0
6

0
8

0
1

0
0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (s)

E
x
p

lo
ra

ti
o

n
 R

a
te

 (
%

)

(c)

Moving Chains, Group Size = 40, No Obstacles
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Moving Chains, Group Size = 80, No Obstacles
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Figure 5.16: The box-and-whisker-plots (Becker et al., 1988) show 100 evaluations of
the exploration rate for a group of (a) 10 robots, (b) 20 robots, (c) 40 robots and (d)
80 robots using the aligning chain controller in an obstacle free environment. Given
that no prey is present in the arena the results do not rely on the prey extension
mechanism. See the caption of Figure 5.14 for an explanation of the box-and-whisker
plots.
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Table 5.3: Success rates for all strategies for the difficulty test of the chain controller
and a group size of N = 20 robots. The three values represent percentages of the
success rate from 100 trials for path formation, assembly and transport in this order.

D Static Aligning Moving Static-X Aligning-X Moving-X

1.0 100/100/99 100/100/100 100/100/100 100/100/98 100/100/100 100/100/100

1.2 96/95/87 100/100/100 100/100/99 98/98/95 100/100/100 100/100/100

1.4 94/91/83 100/100/100 100/100/100 98/98/89 100/100/100 100/100/100

1.6 83/77/68 100/100/98 100/100/99 100/98/82 100/100/100 100/100/100

1.8 83/79/68 100/100/100 100/100/99 96/95/84 100/100/99 100/100/100

2.0 83/79/63 100/100/99 100/100/100 91/90/73 100/100/99 100/100/99

2.2 72/64/50 99/99/98 99/99/97 91/91/73 100/100/98 100/100/99

2.4 65/60/40 100/100/100 97/97/95 82/78/67 100/100/98 100/100/98

2.6 64/59/45 100/100/95 97/94/85 76/71/47 100/100/95 97/97/93

2.8 48/44/29 100/98/90 94/93/81 80/73/59 100/100/96 98/98/95

3.0 40/38/28 100/100/95 91/90/84 61/60/34 100/100/94 99/99/96

5.3.2 Difficulty Test

We test the ability of the chaining algorithm to cope with changes in the difficulty for
the task by varying the distance D between nest and prey in the range [1m, 3m].
Figure 5.17 shows the completion times of the subtasks (a) path formation, (b)
assembly, and (c) transport, and Figure 5.18 shows the normalized completion times,
that is, the completion time divided by the prey distance ( T

D
), for the same subtasks

and situations. Table 5.3 displays the success rates.

For all three subtasks the aligning and moving strategies outperform the static
one no matter if the prey extension mechanism is used or not. The reasons for
this are the same for subtasks assembly and transport as those previously cited for
subtask path formation: For the static strategy the formed path is not straight.
Therefore, the path is effectively longer and robots take longer to move along the
path to assemble to the prey, and to transport it back to the nest.

For subtask path formation the prey extension mechanism appears to be par-
ticularly useful when the task is more difficult. While the strategies without prey
extension mechanism are faster for small distances, the prey extension mechanism
decreases the completion time for path formation when the prey distance is large.
For subtasks assembly and transport the prey extension mechanism does not have
a significant influence on the completion times.

For growing prey distances, the time to form a path grows more than linearly
(Figure 5.18a). This is due to the fact that the area to be explored grows quadrat-
ically with the distance. The time to assemble to (Figure 5.18b) and transport
(Figure 5.18c) the prey grows linearly with the prey distance as the difficulty for
these subtasks grows linearly as well.
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Figure 5.17: The box-and-whisker-plots (Becker et al., 1988) show the results taken
from 100 trials of the completion time for subtasks (a) path formation, (b) assembly,
and (c) transport when changing the nest to prey distance for a group 20 robots
using the different chain strategies with and without prey extension mechanism in
an environment without obstacles. Note that subtask assembly is only taken into
account in case a path has been formed, and respectively subtask transport is only
taken into account in case the assembly was successful. See the caption of Figure 5.14
for an explanation of the box-and-whisker plots.
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Figure 5.18: The box-and-whisker-plots (Becker et al., 1988) show the results taken
from 100 trials of the normalized completion time (i.e. the completion time divided
by the distance T

D
) for subtasks (a) path formation, (b) assembly, and (c) transport

when changing the nest to prey distance for a group 20 robots using the different
chain strategies with and without prey extension mechanism in an environment
without obstacles. Note that subtask assembly is only taken into account in case a
path has been formed, and respectively subtask transport is only taken into account
in case the assembly was successful. See the caption of Figure 5.14 for an explanation
of the box-and-whisker plots.
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Table 5.4: Success rates for the scalability test of the chain controller with and
without prey extension mechanism for selected group sizes N and a prey to nest
distance of D = 3m. The three values represent percentages of the success rate
from 100 trials for path formation, assembly and transport in this order.

N Static Aligning Moving Static-X Aligning-X Moving-X

10 16/3/0 89/34/9 91/46/13 41/2/0 96/50/19 94/56/14

12 35/18/4 93/93/75 96/90/71 59/39/11 97/96/80 98/96/81

14 42/26/9 93/91/81 89/88/82 60/43/20 95/95/84 93/93/84

16 37/23/7 100/99/93 84/83/77 64/57/30 100/99/94 88/86/81

18 30/25/17 100/100/91 84/84/74 60/57/40 100/100/92 93/93/86

20 40/38/28 100/100/95 91/90/84 61/60/34 100/100/94 99/99/96

25 51/46/30 100/99/93 99/98/94 76/71/52 100/100/93 100/100/98

30 57/49/34 100/100/94 100/100/93 82/79/61 100/100/99 100/100/99

40 71/69/43 100/100/95 100/99/90 82/79/58 100/100/100 100/100/98

50 69/66/50 100/100/94 100/100/94 95/93/71 100/100/97 100/100/98

60 85/83/62 100/100/100 100/100/95 98/98/81 100/100/100 100/100/98

80 93/93/76 100/100/97 100/100/99 99/99/87 100/100/99 100/100/100

100 100/100/82 100/100/100 100/100/100 100/100/86 100/100/95 100/100/93

140 100/100/92 100/100/99 100/100/99 100/100/85 100/100/96 100/100/99

200 100/100/99 100/100/100 100/100/96 100/100/98 100/100/98 100/100/100

5.3.3 Scalability Test

In a scalability test we analyse the performance when varying the group size. In
this test we keep the prey at a distance of D = 3m, and use an obstacle free
environment. A summary of the results is given in Table 5.4 for the success rates.
Figures 5.19 and 5.20 show the completion time and the overall effort for subtasks (a)
path formation, (b) assembly, and (c) transport. The overall effort is the product of
completion time and robot group size. This measure is a good indicator of scalability
and can be used to investigate super-linearity in the system. The usual way to
do this is to divide—rather than multiply—performance by the robot group size.
However, as in our case the specific performance metric of completion time has
to be minimized (rather than maximized), a multiplication is required to obtain a
normalized measure representing the cumulated effort of all robots. A decrease for
growing group sizes means that the added resources lead to a more than proportional
decrease in completion time. The results for the three subtasks can be summarized
as follows:

• Path formation: The performance of all tested controllers improves with the
group size (see Figure 5.19a). In particular, this is true when the prey extension
mechanism is not employed. In this case the overall effort decreases up to 100
robots, that is, the efficiency grows super-linearly, and then remains roughly
constant (see Figure 5.20a). The observed super-linear effect is possible in
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Figure 5.19: The box-and-whisker-plots (Becker et al., 1988) show the results taken
from 100 trials of the completion times for subtasks (a) path formation, (b) assembly,
and (c) transport when changing the robot group size using the different chain
strategies with and without prey extension mechanism in an environment without
obstacles. Note that the subtask assembly is only taken into account in case a path
has been formed, and respectively the subtask transport is only taken into account in
case the assembly was successful. See the caption of Figure 5.14 for an explanation
of the box-and-whisker plots.
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Figure 5.20: The box-and-whisker-plots (Becker et al., 1988) show the results taken
from 100 trials of the overall efforts for subtasks (a) path formation, (b) assembly,
and (c) transport when changing the robot group size using the different chain
strategies with and without prey extension mechanism in an environment without
obstacles. Note that the subtask assembly is only taken into account in case a path
has been formed, and respectively the subtask transport is only taken into account in
case the assembly was successful. See the caption of Figure 5.14 for an explanation
of the box-and-whisker plots.
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our experimental conditions as there is no overcrowding, which would cause
physical interferences between the robots. The performance of the static chains
remains below the one of the dynamic chains throughout all group sizes.

While the combination of chain and prey extension mechanism performs better
for small group sizes, it is less effective for larger group sizes. This is the case
because for large group sizes the prey extension mechanism may lead to some
confusion in the behaviour of the robots. When there is a high density of
robots the prey extension mechanism leads to a fast formation of a network
of prey extending robots covering the arena even at areas that are far away
from the nest. Therefore, it takes some additional time until a chain has found
the real prey instead of a robot activating its LEDs in the colour of the prey.
However, when the group size is small, the prey extension mechanism improves
the performance because it effectively leads to the formation of a path from
both nest and prey, and thereby makes a more efficient use of the resources.

• Assembly: As for path formation, also for subtask assembly the performance
of all tested controllers increases with the group size (see Figure 5.19b). The
overall effort decreases up to a group size of 20 robots, and then increases again,
suggesting that for this particular setup the optimal group size for assembly is
20 robots. If more robots are used, there are usually several robots attempting
to assemble at the same time, in this way disturbing each other to succeed.

Throughout all group sizes the prey extension mechanism has a negative im-
pact on the assembly performance. This is the case because prey extending
robots attract nearby robots to assemble to them, thereby hindering them
from assembling to the prey.

• Transport: Unlike the completion times of the other two subtask, the com-
pletion time of subtask transport does not decrease for growing group sizes.
It decreases up to a group size of roughly 20 robots, and then increases again.
Larger group sizes have a negative impact on the transport performance. If
the transporting structure contains many robots, some of these robots are not
able to perceive the goal direction, that is, a chain robot. Therefore, they do
not contribute to the transport and instead act as an additional weight to be
transported. As is the case for subtask assembly, the prey extension mecha-
nism has a negative impact on the performance. In the case of the transport
subtask, this is due to chains being distracted by prey extending robots.

5.3.4 Obstacle Test

To assess the performance in presence of obstacles, we tested our controllers in three
types of obstacle environments. In addition to the standard arena with a random
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(a) (b) (c)

Figure 5.21: The three different types of arena used for the obstacle test. (a) The
R-arena has a random positioning of the obstacles. In this case 20 obstacles were
included. (b) The X-arena has four corridors. The prey is hidden behind one of
them. (c) The U-arena, where the prey is positioned behind a U-shaped obstacle.

configuration of obstacle cubes (R-arena, Figure 5.21a), we also used two predefined
arenas with a fixed configuration of obstacles: the X-arena (Figure 5.21b) and the
U-arena (Figure 5.21c).

Figures 5.22, 5.23, and 5.24 show the results of the individual subtasks for the
obstacle test for group sizes of (a) 10, (b) 20, (c) 40, and (d) 80 robots, and Table 5.5
shows the success rates for six selected obstacle environments and the four group
sizes. The prey distance is 3m for all cases except for the U-arena, where it is placed
behind a long corridor at a distance of 2.12m.

By adding obstacles to the environment, the task becomes more difficult in sev-
eral ways. First, the presence of obstacles increases the difficulty of navigation, which
is required for all three subtasks. Second, finding the nest or the prey becomes more
difficult because they might be hidden behind the obstacles. Third, it might be
impossible to form a straight path connecting nest and prey. This increases the
length of the shortest path, and implies a particular difficulty for the aligning and
the moving strategies. In fact, these two strategies attempt to align the chains. Due
to this alignment, a chain can be broken up in cases where the line of sight of two
neighboured chain members is blocked by an obstacle. Finally, the obstacles pose
a difficulty for the transport subtask because the prey or the robots transporting
it might get stuck at an obstacle. The difficulties of the environments X and U lie
more in the particular configuration of the obstacles, than in the number of obstacles
employed. In the case of the X-arena, 20 obstacles are employed. The difficulty lies
in the fact that there are four corridors, and the prey is hidden behind one of them.
A minimum number of twelve robots are required to form a path. For the U-arena,
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Figure 5.22: The box-and-whisker-plots show 100 evaluations per box of the comple-
tion time for subtask path formation when changing the number and configuration
of obstacles in the environment for a nest to prey distance of 3 meters and a group of
(a) 10 robots, (b) 20 robots, (c) 40 robots and (d) 80 robots using the different chain
strategies with and without prey extension mechanism. For arenas of type R the
number of obstacles is indicated. See the caption of Figure 5.14 for an explanation
of the box-and-whisker plots.
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Figure 5.23: The box-and-whisker-plots show the results from 100 trials of the
completion time for subtask assembly when changing the number and configuration
of obstacles in the environment for a nest to prey distance of 3 meters and a group
of (a) 10 robots, (b) 20 robots, (c) 40 robots and (d) 80 robots using the different
chain strategies with and without prey extension mechanism. For arenas of type R
the number of obstacles is indicated. Note that a trial is only taken into account in
case a path has been formed. See the caption of Figure 5.14 for an explanation of
the box-and-whisker plots.
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Figure 5.24: The box-and-whisker-plots show the results from 100 trials of the
completion time for subtask transport when changing the number and configuration
of obstacles in the environment for a nest to prey distance of 3 meters and a group
of (a) 10 robots, (b) 20 robots, (c) 40 robots and (d) 80 robots using the different
chain strategies with and without prey extension mechanism. For arenas of type R
the number of obstacles is indicated. Note that a trial is only taken into account in
case the assembly was successful. See the caption of Figure 5.14 for an explanation
of the box-and-whisker plots.
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Table 5.5: Success rates for all strategies for selected setups of the obstacle test of
the chain controller. The three values represent percentages of the success rate from
100 trials for path formation, assembly and transport in this order.

Arena Static Aligning Moving Static-X Aligning-X Moving-X

N = 10

R0 16/3/0 89/34/9 91/46/13 41/2/0 96/50/19 94/56/14
R10 12/0/0 70/19/3 70/24/12 19/3/0 66/27/9 79/27/11
R20 5/0/0 37/8/5 31/12/5 10/0/0 50/12/7 43/9/4
R30 2/0/0 12/2/0 13/1/0 2/0/0 15/0/0 17/1/0
X 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
U 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

N = 20

R0 40/38/28 100/100/95 91/90/84 61/60/34 100/100/94 99/99/96
R10 27/20/13 76/74/65 70/68/59 52/48/27 81/78/61 85/83/77
R20 32/21/7 59/51/41 55/50/36 39/31/17 77/74/52 69/65/56
R30 23/14/3 49/32/13 49/39/24 29/19/6 64/48/32 64/51/27
X 22/19/8 46/45/18 51/49/30 24/16/5 48/44/15 54/53/34
U 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

N = 40

R0 71/69/43 100/100/95 100/99/90 82/79/58 100/100/100 100/100/98
R10 61/54/31 98/96/73 98/98/79 81/74/49 100/100/91 99/97/85
R20 55/46/26 92/84/57 91/87/60 77/69/39 97/94/71 95/92/68
R30 50/44/12 80/50/23 78/63/35 55/49/18 85/75/39 84/74/39
X 38/36/22 48/41/9 53/50/32 49/46/23 50/48/18 59/52/34
U 49/44/5 100/100/9 100/98/9 35/32/6 100/100/39 98/96/27

N = 80

R0 93/93/76 100/100/97 100/100/99 99/99/87 100/100/99 100/100/100
R10 97/95/68 100/100/82 100/100/89 97/97/69 100/100/81 100/100/94
R20 93/88/47 100/99/68 99/98/80 98/96/56 100/97/72 100/99/75
R30 87/80/27 92/81/43 95/88/50 90/83/25 99/88/38 97/89/45
X 69/68/47 78/69/22 80/79/37 85/85/65 85/80/32 87/87/45
U 98/97/5 100/100/2 100/100/2 99/99/24 100/99/11 99/99/5

16 obstacles are employed, and configured such that they are U-shaped. In this case
at least 22 robots are required to form a path. In the following, we give a summary
of the results for each subtask: c

• Path formation: There is a clear performance drop when the environment
contains obstacles. The intensity of performance drop depends on the group
size. For N = 10 the resources are scarce as at least eight robots are required
to form a path in an environment without obstacles. Therefore, if the con-
figuration of the obstacles is such that a straight path can not connect nest
and prey, ten robots are often not sufficient to form a path. In the case of the
aligning and moving strategies, the success rate decreases from roughly 90%
for arena R0, to roughly 15% for arena R30. The performance drop is less
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steep for growing group sizes. For N = 80 the success rate for environment
R30 is 87% for the static strategy, and is even higher for the other strategies.

For the X-arena, the success rate is 0 for N = 10, as the number of robots
is too small to form a path. For N = 20, the aligning and moving strategies
succeed to form a path in roughly every second, and the static strategy in
roughly every fourth case. For N = 40, the success rate of the static strat-
egy increases to 49% when the prey extension mechanism is used, and to 38%
otherwise. Interestingly, the success rates of the other two strategies remain
approximately at the same level as for N = 20. The reason that the success
rate hardly grows beyond 50% is the combination of the particular obstacle
configuration for the X-arena, and the number of chains formed simultane-
ously. For a group size of N = 40, there are in most cases two chains formed
simultaneously (see Figure 5.13). In the X-arena, there are four corridors, and
respectively four paths that a chain normally takes. Once that a chain has
chosen one of the four corridors, it usually remains stuck there. For a group
size of 40 or higher there is a very low probability that the chain gets com-
pletely dissolved as there is an overcrowding of robots at the end of the chain
trying to join it. The observed success rate of 50% represents the probability
that one of the two chains follows the one of the four corridors that leads to
the prey. For a group size of 80 robots the situation is different. There are
more chains formed simultaneously. For the aligning and moving strategies
there are in most cases three chains. Furthermore, due to the large group size
there is a higher probability for a split of one of these chains. Therefore, the
success rate grows to roughly 80%.

The difficulty of the U-arena is different than the one of the X-arena. A chain
can in principle follow two paths, both of which eventually lead to the prey.
The difficulty is mainly that at least 22 robots have to join the chain connecting
nest and prey. This is reflected by the results. For N = 10 and N = 20 the
success rate is 0, and for N=40 the success rate for the aligning and moving
strategies is 100% in nearly all cases. For the static strategy, the success rate
is below 50% for N = 40, but nearly reaches 100% for N = 80.

The prey extension mechanism in general has a positive effect in the presence
of obstacles. As the prey might be hidden behind an obstacle, to extend its
perception is an effective method to speed up the search.

• Assembly: The performance of subtask assembly is in general diminished by
the presence of obstacles. This is due to the fact that a connection to the prey
might be restricted from several directions. However, if there is a sufficient
amount of resources, the robots usually succeed to assemble to the prey in
case a path has been formed.
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• Transport: Also the performance of subtask transport is in general dimin-
ished when the environment contains obstacles. In particular, the performance
is weak for the X- and the U-arenas. There are two reasons for this: First, the
distance of the path, and therefore also the distance of the transport is longer.
The path has a length of approximately 4.2m for the X-arena, and of approxi-
mately 7.8m for the U-arena. On the one hand this increases the time it takes
to transport the prey. On the other hand it increases the probability that too
many robots connect to the prey (or to a robot connected to the prey), which
leads the transport to get stuck. Second, for the X- and U-arenas the chains
have to make a very steep turn around a corner. This poses a particular prob-
lem for the transport as the prey transporting structure can easily get stuck
at such a corner. Interestingly, this appears to pose a bigger problem to the
aligning and moving strategies, than to the static one, where the success rates
for the X- and U-arenas are higher at least for N = 80. Due to the aligning
mechanism the chain gets closer to a corner. The static strategy does not
employ the aligning mechanism, and therefore usually keeps a higher distance
to corners, thereby facilitating the transport task.

5.3.5 Robustness Tests

To analyse how the performance of our controllers changes in the presence of noisy
conditions, we have conducted a series of robustness tests in which we vary the
noise of the various sensors. The noise is calculated at each time step as a uniformly
random value within the range [−noisemax;noisemax], and is added to the considered
sensor value. We varied the noise of the direction to objects2 perceived by the camera
(Section 5.3.5.1), the distance to objects perceived by the camera (Section 5.3.5.2),
and the proximity sensor (Section 5.3.5.3).3

5.3.5.1 Camera Direction

The direction perceived with the camera is on the basis of most decisions that
concern the navigation of and near a chain, as it is the chain members activating
their LEDs that are perceived with the camera. Two examples for this are (i) the
alignment of a chain member with respect to its neighbours as used by the aligning
and moving strategies, and the (ii) motion of a robot along a chain to explore its
vicinity. To decide where exactly to move it is crucial to know the direction at which
a chain member is perceived.

2An object can be another robot, the nest or the prey. Obstacles can not be perceived with the
camera.

3As mentioned in Section 3.2.2, the values used in all experiments for these four noise levels are
18o, 10 cm and 0.2. In the robustness tests we manipulate one value at a time.
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We test the robustness to the noise of this information by adding maximum
noise levels in the range [0o, 180o]. Table 5.6 shows the achieved success rates for
the different strategies and subtasks.

The results show a limited robustness of the controllers with respect to the noise
applied. The larger the group size, the higher is the robustness achieved. In general
the performance decreases when increasing the level of injected noise. This is always
the case when the prey extension mechanism is used. However, when it is not used,
surprisingly, the performance increases for the highest tested noise level of 180o with
respect to the noise levels 108o and 144o, as becomes particularly clear for group
size N = 40.

The reason for this can be found by observing the following behaviour. When
noise is injected the information available to the camera gets more random. There-
fore, also the decisions based on this information become more random. The higher
the noise, the higher is the risk that a wrong decision of motion disrupts a chain. In
the case of a noise level of 180o the information is in fact completely random. The
robot then knows that there is an object, but not where this object is. The result in
the behaviour of the aligning and moving strategies is that for robots in a chain it is
not possible to execute the aligning behaviour, because it tries to align with respect
to two objects that permanently appear to change positions. So, once a robot joined
a chain it effectively stops moving: The chains become static, explaining the similar
results of the three strategies for the highest noise level. By being static, the chains
are prevented getting disrupted, as is the case for lower noise levels. If the density
of robots in the environment is sufficiently high, there is a high probability that the
prey is found by this immobile network of robots.

This positive effect does not occur when the prey extension mechanism is used.
What can be observed is that the higher the level of the injected noise, the more
robots join the prey extending structure instead of the chain, thereby taking away
the resources required to form a path. The reason for this is that the connectivity
of the network of prey extending robots relies on simpler rules than the network
of a chain. In a chain there are three colours. Whether a robot may leave the
chain or not depends on its own colour and on the colours it perceives. In a prey
extending structure the robots all have the same colour and already the perception
of this colour yields a stimulus to remain within the structure. Therefore, when the
direction information from the camera is very noisy, the prey extending structure
becomes more stable than the chains, in this way claiming the majority of the robots,
and making the successful formation of a path very difficult.

The accomplishment of subtasks assembly is very sensitive to the injected noise.
With noise in the perception of direction, the task of assembling becomes very
difficult, as a successful assembly relies on precise information of the direction to
the object towards which the assembly is attempted. For instance, for a group size
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Table 5.6: Success rates of the chain controller for the robustness test on the per-
ception of direction using the camera. The three values represent percentages of
the success rate from 100 trials for path formation, assembly and transport in this
order.

Noise Static Aligning Moving Static-X Aligning-X Moving-X

N = 10

0o 14/2/0 91/33/8 90/44/13 41/2/0 96/33/7 91/42/11
36o 10/0/0 73/49/12 61/36/11 18/1/0 81/57/11 72/39/8
72o 0/0/0 3/1/0 7/1/0 1/0/0 11/4/0 5/0/0
108o 0/0/0 0/0/0 1/0/0 0/0/0 0/0/0 1/0/0
144o 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
180o 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

N = 20

0o 39/31/23 100/100/91 91/89/80 69/59/48 100/100/92 98/98/93
36o 39/37/26 85/78/73 81/78/70 55/52/43 95/95/86 97/97/90
72o 16/12/7 66/43/13 42/31/11 25/21/8 80/70/22 58/41/12
108o 0/0/0 4/0/0 3/0/0 0/0/0 14/4/0 6/3/0
144o 0/0/0 0/0/0 0/0/0 1/0/0 1/0/0 0/0/0
180o 1/0/0 1/0/0 3/0/0 0/0/0 0/0/0 0/0/0

N = 40

0o 68/62/42 100/100/93 100/100/96 83/83/55 100/100/98 100/100/98
36o 57/54/39 98/98/91 100/100/93 85/83/67 99/99/97 100/100/99
72o 40/34/12 88/73/22 76/61/15 65/58/17 99/95/41 92/81/40
108o 6/2/0 33/13/0 20/5/0 8/1/0 50/21/0 42/17/1
144o 3/0/0 10/0/0 3/0/0 6/1/0 33/1/0 18/0/0
180o 31/0/0 35/0/0 22/0/0 0/0/0 0/0/0 0/0/0

N = 80

0o 99/99/74 100/100/96 100/100/95 99/99/81 100/100/97 100/100/97
36o 95/94/73 100/100/98 100/100/99 100/99/78 99/99/98 100/100/99
72o 80/76/31 100/97/24 100/96/36 83/75/28 99/97/29 98/96/29
108o 50/17/0 76/34/0 71/29/0 59/24/0 91/69/0 89/60/0
144o 24/1/0 58/3/0 54/1/0 49/5/0 54/3/0 66/5/0
180o 83/0/0 85/0/0 86/0/0 0/0/0 0/0/0 1/0/0
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of N = 20 and a noise level of 144o on, even if a path is formed in roughly one out
of two trials, only in very rare occasions do the robots succeed to assemble to the
prey.

The noise has an even more disruptive effect on subtask transport. The coop-
erative nature of the subtask requires the robots to agree on the direction towards
which the prey is pulled or pushed. Given that there is no direct communication
between the robots to negotiate the goal direction they can only transport the prey
in case their perception of the goal direction is sufficiently precise.

5.3.5.2 Camera Distance

In addition to the direction towards an object, the camera also informs about the
respective distance. This information is very important in order to adjust the dis-
tance, which is for instance required by explorers to navigate along a chain, or by
chain members to adjust the distance among each other (at least for the aligning
and moving strategies). As is the case for the direction, the knowledge about the
distance to an object is crucial to make decisions on where to move.

We test the robustness to the noise of this information by adding maximum noise
levels in the range [0 cm, 50 cm]. Table 5.7 shows the achieved success rates for the
different strategies and subtasks.

To add noise to the perception of the distance has a disruptive effect on the sta-
bility of the chains. With increasing levels of noise, it becomes increasingly difficult
for the chain members to adjust their distance with respect to each other, and the
probability increases to get out of sight of each other and in this way break up a
chain. In particular, and similarly to the noise in direction, when the prey extension
mechanism is used, a high level of noise leads to the majority of the robots to join the
prey extending structure, as it has a higher degree of stability. Furthermore, a robot
in a chain leaves it if the prey (or a robot that activates its LEDs in the same colour
as the prey) is perceived at a close distance. This is often and especially for large
group sizes falsely the case if the prey extension mechanism is used. Therefore, for
large group sizes the performance decrease is stronger for high levels of noise when
the prey extension mechanism is used.

The static strategy seems to be less disrupted by high levels of noise, in some
cases even reaching a higher success rate with noise than without. One reason is
that the chains are static, that is, they do not move. Therefore, once a chain is
formed it will not get broken up due to neighbouring chain members adjusting their
distance with one another. Another reason is that the noise can lead to a higher
distance between two robots in a chain, in this way increasing the reach of the chain.
A robot joins a chain when it perceives a chain member at a given distance. Due
to the noise this distance can actually be higher than the distance perceived by the
robot, leading the robot to join the chain at a further distance.
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Table 5.7: Success rates of the chain controller for the robustness test on the per-
ception of distance using the camera. The three values represent percentages of the
success rate from 100 trials for path formation, assembly and transport in this order.

Noise Static Aligning Moving Static-X Aligning-X Moving-X

N = 10

0 cm 18/1/0 75/9/2 89/7/2 37/6/1 85/11/7 90/8/3
10 cm 16/3/0 89/34/9 91/46/13 41/2/0 96/50/19 94/56/14
20 cm 7/3/1 58/48/23 81/73/27 38/24/2 83/81/43 86/78/43
30 cm 0/0/0 12/0/0 10/0/0 18/1/0 44/1/0 26/0/0
40 cm 1/0/0 0/0/0 0/0/0 4/0/0 8/0/0 5/0/0
50 cm 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

N = 20

0 cm 40/34/23 100/100/94 95/92/81 67/66/54 100/100/94 97/96/90
10 cm 40/38/28 100/100/95 91/90/84 61/60/34 100/100/94 99/99/96
20 cm 25/25/14 96/92/60 99/97/78 71/59/39 100/100/83 100/100/86
30 cm 21/0/0 48/0/0 52/4/2 72/1/0 92/9/0 95/5/0
40 cm 11/0/0 25/0/0 12/0/0 12/0/0 37/0/0 43/0/0
50 cm 0/0/0 7/0/0 4/0/0 2/0/0 0/0/0 9/0/0

N = 40

0 cm 66/61/35 100/100/87 100/100/98 84/80/57 100/100/97 100/100/97
10 cm 71/69/43 100/100/95 100/99/90 82/79/58 100/100/100 100/100/98
20 cm 56/51/42 100/98/90 100/100/92 94/90/71 100/100/98 100/100/100
30 cm 73/8/1 99/20/4 99/9/3 98/16/5 100/24/7 100/19/3
40 cm 87/0/0 94/0/0 78/0/0 6/0/0 36/0/0 64/0/0
50 cm 59/0/0 83/0/0 67/0/0 1/0/0 4/0/0 9/0/0

N = 80

0 cm 95/93/48 100/100/96 100/100/95 98/98/74 100/100/97 100/100/98
10 cm 93/93/76 100/100/97 100/100/99 99/99/87 100/100/99 100/100/100
20 cm 94/91/83 100/100/79 100/100/80 100/99/86 100/100/97 100/100/96
30 cm 100/58/30 100/59/16 100/35/12 99/41/9 100/20/1 100/26/5
40 cm 100/0/0 100/2/0 100/0/0 36/0/0 41/0/0 61/0/0
50 cm 100/0/0 100/0/0 100/0/0 1/0/0 2/0/0 6/0/0
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For assembly and transport, from noise levels of 30 cm the performance decreases
significantly. The assembly behaviour requires precise information of the distance
towards an object in order to be able to connect to it at the right position. If the
information is too noisy, the robot will try to assemble when it is too far or too close
to grip. A transporting robot chooses the direction towards the closest chain member
as the goal direction. Therefore, a high level of noise may lead it towards the wrong
direction. However, for the aligning and moving strategies, group size N = 10 and
noise levels of 10 cm and 20 cm the success rate to assemble and transport the prey
is increased. This has two reasons. First, the distances between two neighbouring
robots in the chain may be larger in the presence of noise. If the noise is not too
high, the chain is not broken up. In the end fewer robots might be required in order
to form a path, leaving more to assemble to the prey. Secondly, when a robot is
near the prey and perceives the chain, it either joins the chain or assembles to the
prey. The decision depends on the distance at which the prey is perceived. If it is
close the robot assembles, and if it is far the robot joins the chain to make a closer
connection. A low level of noise increases the probability that the prey is falsely
perceived at a close distance, which leads it to assemble to the prey.

5.3.5.3 Proximity Sensors

In the final robustness test, we investigate different levels of noise added to the prox-
imity sensors. The level of noise injected is normalized by the maximum activation
of a proximity sensor, obtained when a robot is placed directly next to a wall, an
obstacle, or another robot. We tested six different ratios of noise in the range [0, 1].
The achieved success rates for the different strategies and subtasks are reported in
Table 5.8.

The proximity sensors are used for obstacle avoidance. When a high level of
activation of an individual proximity sensor above a given threshold is reached,
this leads to the activation of a motor schema that points away from the source
of activation. On the one hand, noisy information of the proximity sensor leads
to more collisions because a nearby object might not be perceived. On the other
hand, it leads to the activation of the avoidance behaviour even in cases when in
fact it is not required. At the same time the robots may try to avoid non existent
obstacles. When observing the behaviour with a high level of injected noise, the
robot movements look more random.

Nevertheless, as can be seen from the results, there is hardly any decrease in
performance for any of the three subtasks. Indeed, for subtasks assembly and trans-
port the proximity sensors are not used at all, and for subtask path formation the
obstacle avoidance behaviour is not a requirement. It is rather a basic behaviour to
protect the robots from getting damaged.
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Table 5.8: Success rates of the chain controller for the robustness test on the percep-
tion of obstacles using the proximity sensors. The three values represent percentages
of the success rate from 100 trials for path formation, assembly and transport in this
order.

Noise Static Aligning Moving Static-X Aligning-X Moving-X

N = 10

0% 18/3/0 93/42/16 88/46/12 41/4/0 94/52/20 93/55/17
20% 11/4/0 95/35/14 83/42/10 25/0/0 92/47/10 90/57/8
40% 13/0/0 91/41/16 92/52/16 43/4/1 95/49/12 91/47/26
60% 11/3/0 91/31/12 82/38/15 28/3/0 92/40/20 89/47/13
80% 12/1/0 86/44/22 86/43/19 30/2/0 93/50/31 90/56/31
100% 10/2/0 84/59/35 76/51/27 22/3/0 89/70/37 79/54/26

N = 20

0% 43/41/28 100/100/92 92/89/79 73/68/48 100/100/92 96/96/94
20% 43/38/23 100/100/96 91/89/83 80/76/56 99/99/95 95/95/85
40% 47/46/31 100/100/96 89/88/79 74/71/46 100/100/95 95/94/86
60% 39/37/22 99/98/90 93/93/86 68/64/47 100/100/94 96/96/90
80% 48/43/21 100/99/88 92/90/83 73/71/50 100/100/96 100/100/91
100% 45/42/27 97/96/84 88/85/75 56/49/32 100/100/93 95/95/89

N = 40

0% 67/64/45 100/100/95 100/100/98 81/78/61 100/100/96 100/100/97
20% 68/66/43 100/100/95 100/100/97 87/82/64 100/100/96 100/100/98
40% 70/69/49 100/100/93 100/100/94 81/80/63 100/100/96 100/100/98
60% 72/71/52 100/100/88 100/100/95 83/83/61 100/100/99 100/100/99
80% 71/66/39 100/100/90 100/100/94 83/81/67 100/100/95 100/100/98
100% 76/72/45 100/100/92 98/98/90 83/80/62 100/100/96 100/100/95

N = 80

0% 97/97/69 100/100/98 100/100/98 100/96/80 100/100/98 100/100/98
20% 96/94/76 100/100/99 100/100/100 99/99/77 100/100/96 100/100/97
40% 98/97/74 100/100/97 100/100/98 100/99/75 100/100/97 100/100/97
60% 99/98/77 100/100/99 100/100/98 100/100/83 99/98/97 100/100/98
80% 96/96/79 100/100/95 100/100/98 100/100/84 100/100/99 100/100/97
100% 96/95/80 100/100/96 100/100/96 100/100/86 98/92/78 100/97/92

5.3.6 Fault Tolerance Tests

In a series of fault tolerance tests we analyse our controllers’ ability to cope with
individual failure by deactivating a sensor or actuator for varying fractions of the
robot group in the range [0%, 100%]. We disabled either the camera (Section 5.3.6.1),
the LEDs (Section 5.3.6.2), the proximity sensors (Section 5.3.6.3), or the tracks
(Section 5.3.6.4).
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5.3.6.1 Camera

In the robustness tests we varied the noise injected to the camera with respect to
the perception of direction and distance. The results show that in particular for a
noisy perception of the direction the behaviour is very sensitive. When the camera is
completely disabled a robot can neither join the path forming structure, nor assemble
to the prey or transport it, and therefore it cannot contribute to the solution of the
problem at all. Instead, it just performs a random walk and can be considered as a
mobile obstacle.

This is confirmed by our results as reported in Table 5.9. The robots for which
the cameras were disabled do not contribute to the problem solution. However, if

Table 5.9: Success rates of the chain controller for the fault tolerance test on disabled
cameras. The three values represent percentages of the success rate from 100 trials
for path formation, assembly and transport in this order.

Fraction Static Aligning Moving Static-X Aligning-X Moving-X

N = 10

0% 11/4/0 95/35/14 83/42/10 25/0/0 92/47/10 90/57/8
20% 10/0/0 67/0/0 66/0/0 21/0/0 88/1/0 87/2/0
40% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
60% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
80% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
100% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

N = 20

0% 43/38/23 100/100/96 91/89/83 80/76/56 99/99/95 95/95/85
20% 38/33/22 99/99/93 91/88/79 64/58/39 99/99/94 94/94/88
40% 41/20/4 94/94/80 97/95/87 62/43/19 95/95/86 96/95/87
60% 10/0/0 74/0/0 79/0/0 34/0/0 92/2/0 94/8/2
80% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
100% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

N = 40

0% 68/66/43 100/100/95 100/100/97 87/82/64 100/100/96 100/100/98
20% 67/65/52 100/100/91 100/100/94 80/78/60 100/100/93 100/100/99
40% 54/50/33 100/100/90 99/99/90 76/73/60 100/100/98 99/99/95
60% 53/42/26 99/99/95 90/87/80 56/52/39 100/100/95 94/93/84
80% 13/0/0 76/0/0 75/0/0 31/0/0 93/0/0 99/0/0
100% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

N = 80

0% 96/94/76 100/100/99 100/100/100 99/99/77 100/100/96 100/100/97
20% 96/96/66 100/100/95 100/100/97 98/97/81 100/100/98 100/100/98
40% 91/89/71 100/100/100 100/100/100 98/98/85 100/100/99 100/100/99
60% 75/71/56 100/100/97 100/100/94 86/84/75 100/100/92 100/99/96
80% 49/45/31 97/97/91 90/89/82 73/70/52 99/99/94 94/93/91
100% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
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the number of remaining robots is sufficiently high, they can complete the task.
Consequently, the tolerance to individual failure is considerably higher for larger
group sizes, so that for the two more dynamic strategies at N = 80 there is still
a very good performance even when for 80% of the robots the camera is disabled.
The static strategy requires more robots to form a path. Therefore, the performance
decrease is stronger.

5.3.6.2 LEDs

Without LEDs robots are not able to signal their state to the other robots in case
they joined a chain or assembled to the prey. Therefore, they do not contribute to
the formation of a path and can be considered as a mobile obstacle. In fact, for what
concerns path formation, a robot without LEDs can even be considered slightly more
disruptive than a mobile obstacle. It is able to perceive the other robots, the nest
and the prey. It tries to join the path forming structure, thereby getting in the way
of other robots whose LEDs do work.

This is reflected by our results as shown in Table 5.10. The performance of
subtask path formation is in most cases below the one of the previously studied test
where the cameras are disabled. The robots with disabled LEDs do indeed disturb
the other robots from forming a path. In case of the two dynamic strategies a high
fraction of erroneous robots also has a disruptive effect on existing chains because
the robots in the chains try to avoid the many erroneous robots and thereby may
break up a chain.

However, once a path is formed, the robots can contribute by assembling and
transporting the prey, even if they may hinder other robots from assemblage as they
do not activate their LEDs. Nevertheless, also for these two subtasks the success
rates are in most cases below the ones when the camera is disabled. This is due to
the fact that usually all erroneous robots try to assemble to the prey at the same
time, in this way disturbing each other in doing so.

5.3.6.3 Proximity Sensors

Our robustness study on injecting noise to the proximity sensors showed that the
performance stays very high even in the presence of very noisy proximity information.
This suggests that the proximity sensors are not crucial for the accomplishment of
the task.

Indeed, our results, as reported in Table 5.11 show a lower degree of performance
decrease than the previous two fault tolerance tests. Nevertheless, there is a decrease
in performance which is more significant for smaller group sizes. In fact, when the
proximity sensors are disabled, a robot does not perceive any obstacles and may
therefore get stuck in a corner of the environment. However, if it perceives a part
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of the path forming structure it can join it. Therefore, a robot without proximity
sensors can still contribute to form a path and the performance stays high even when
the proximity sensors of most robots are disabled.

5.3.6.4 Tracks

With disabled tracks a robot is not able to move and therefore can be considered as
an immobile obstacle. As shown in Table 5.12, the performance remains high as long
as there are a sufficient number of robots that remain fully functional. Removing the
tracks of a robot leads to a similar performance as removing the robot. Nevertheless,
a robot without tracks can in principle still contribute to form a path if, by chance,

Table 5.10: Success rates of the chain controller for the fault tolerance test on
disabled LEDs. The three values represent percentages of the success rate from 100
trials for path formation, assembly and transport in this order.

Fraction Static Aligning Moving Static-X Aligning-X Moving-X

N = 10

0% 11/4/0 95/35/14 83/42/10 25/0/0 92/47/10 90/57/8
20% 10/0/0 65/28/15 56/17/10 20/3/0 86/41/17 88/51/21
40% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
60% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
80% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
100% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

N = 20

0% 43/38/23 100/100/96 91/89/83 80/76/56 99/99/95 95/95/85
20% 49/42/27 100/99/93 88/83/77 75/73/56 100/100/92 96/96/91
40% 26/18/13 94/92/84 85/83/70 62/58/43 99/99/97 94/93/85
60% 8/5/0 49/37/30 39/24/20 22/12/7 82/75/72 76/67/62
80% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
100% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

N = 40

0% 68/66/43 100/100/95 100/100/97 87/82/64 100/100/96 100/100/98
20% 74/64/43 100/100/87 100/100/94 82/80/66 100/100/93 100/100/97
40% 57/43/27 100/99/79 98/97/79 78/75/57 100/100/97 100/100/96
60% 46/28/7 98/86/49 91/83/38 60/50/34 100/100/93 100/99/89
80% 14/5/0 9/3/2 9/1/0 22/9/1 35/20/15 24/11/8
100% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

N = 80

0% 96/94/76 100/100/99 100/100/100 99/99/77 100/100/96 100/100/97
20% 91/87/67 100/100/84 100/100/89 99/99/90 100/100/99 100/100/96
40% 94/85/55 100/100/64 100/100/69 100/97/73 100/100/91 100/100/89
60% 84/68/16 100/96/15 100/98/26 96/90/44 100/100/65 100/100/76
80% 56/31/0 79/22/0 74/17/0 69/39/3 96/58/6 74/35/2
100% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
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Table 5.11: Success rates of the chain controller for the fault tolerance test on
disabled proximity sensors. The three values represent percentages of the success
rate from 100 trials for path formation, assembly and transport in this order.

Fraction Static Aligning Moving Static-X Aligning-X Moving-X

N = 10

0% 11/4/0 95/35/14 83/42/10 25/0/0 92/47/10 90/57/8
20% 8/0/0 73/4/0 65/6/3 20/2/0 88/18/5 89/11/2
40% 1/0/0 18/0/0 19/4/1 4/0/0 38/0/0 38/2/1
60% 0/0/0 7/1/0 3/0/0 0/0/0 12/0/0 4/0/0
80% 0/0/0 1/0/0 0/0/0 0/0/0 2/0/0 3/0/0
100% 0/0/0 0/0/0 0/0/0 0/0/0 1/0/0 0/0/0

N = 20

0% 43/38/23 100/100/96 91/89/83 80/76/56 99/99/95 95/95/85
20% 39/35/21 99/99/97 82/82/75 70/60/34 100/100/96 95/95/83
40% 35/31/12 95/95/87 84/84/69 68/58/34 98/98/91 96/96/91
60% 27/17/8 90/89/71 85/81/65 54/41/21 93/91/74 88/85/65
80% 7/2/0 53/45/27 54/39/24 32/22/6 77/71/50 73/57/39
100% 0/0/0 11/11/5 14/10/5 8/5/1 38/29/19 32/25/14

N = 40

0% 68/66/43 100/100/95 100/100/97 87/82/64 100/100/96 100/100/98
20% 72/72/51 100/100/93 100/100/96 93/92/69 100/100/98 100/100/100
40% 64/62/48 100/100/95 100/100/92 84/82/67 100/100/94 100/100/99
60% 61/58/32 100/99/94 93/92/82 81/77/59 100/100/95 100/100/98
80% 38/34/22 96/96/89 98/98/84 82/79/52 99/99/95 98/98/94
100% 25/21/10 73/71/54 68/63/49 67/63/37 98/97/73 91/89/73

N = 80

0% 96/94/76 100/100/99 100/100/100 99/99/77 100/100/96 100/100/97
20% 96/95/77 100/100/98 100/100/98 99/99/83 100/100/97 100/100/98
40% 97/96/68 100/100/99 100/100/93 99/99/77 100/100/100 100/100/98
60% 90/88/60 100/100/96 100/100/97 99/99/90 100/100/99 100/100/98
80% 91/90/51 100/100/91 100/99/91 99/99/80 100/100/98 100/100/96
100% 87/87/52 99/98/72 93/90/78 98/97/77 100/100/97 100/100/91

it happens to be positioned at the right place. And indeed, for group size N = 80,
when there is a high density of robots, a path can be formed in a few trials even if
no single robot is able to move.

A robot without tracks can of course not assemble to or transport the prey. In
fact, if it is part of the path connecting nest and prey, it will block the transport as
it can not move and therefore can not release itself from the chain.

5.4 Conclusions

In this chapter we presented the results obtained from experiments in simulation for
the chain controller on the task of forming a path between nest and prey, assembling
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Table 5.12: Success rates of the chain controller for the fault tolerance test on
disabled tracks. The three values represent percentages of the success rate from 100
trials for path formation, assembly and transport in this order.

Fraction Static Aligning Moving Static-X Aligning-X Moving-X

N = 10

0% 11/4/0 95/35/14 83/42/10 25/0/0 92/47/10 90/57/8
20% 2/0/0 54/0/0 58/0/0 15/0/0 80/0/0 90/0/0
40% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
60% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
80% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
100% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

N = 20

0% 43/38/23 100/100/96 91/89/83 80/76/56 99/99/95 95/95/85
20% 43/33/19 98/98/88 84/80/69 74/70/45 100/99/92 94/94/86
40% 32/13/8 87/81/57 75/70/61 58/42/21 87/86/79 85/83/79
60% 16/0/0 46/0/0 49/0/0 34/0/0 74/0/0 72/0/0
80% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
100% 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

N = 40

0% 68/66/43 100/100/95 100/100/97 87/82/64 100/100/96 100/100/98
20% 68/66/46 99/99/95 100/100/92 88/83/62 100/100/97 100/100/99
40% 59/55/34 97/95/89 97/96/89 80/74/57 99/99/94 99/99/95
60% 41/32/16 83/78/68 83/74/63 74/68/49 96/94/84 92/90/82
80% 31/0/0 50/0/0 49/0/0 30/0/0 73/0/0 64/0/0
100% 0/0/0 0/0/0 0/0/0 1/0/0 0/0/0 0/0/0

N = 80

0% 96/94/76 100/100/99 100/100/100 99/99/77 100/100/96 100/100/97
20% 94/93/69 100/100/96 100/100/96 97/97/78 100/100/98 100/100/97
40% 98/94/71 100/100/92 100/100/100 99/97/78 100/100/99 100/100/98
60% 86/82/53 99/98/86 100/100/87 86/76/57 99/97/88 100/99/94
80% 73/63/38 85/79/60 91/80/62 51/36/23 82/67/53 92/83/72
100% 7/0/0 6/0/0 6/0/0 4/0/0 5/0/0 2/0/0

to the prey, and transporting it back to the nest. We tested three strategies of
the chain algorithm: Static, aligning and moving. In addition we tested the prey
extension mechanism, a control module which can be mounted on top of the chain
controller.

For what concerns path formation, we found that the more dynamic aligning and
moving strategies outperform the static one. This is due to three reasons. First, the
static chains are not straight, as opposed to the other two strategies, and therefore
cover shorter distances from the nest. Second, the two dynamic chain strategies
allow some motion to the chain members, which leads to an exploration of the arena
even of chains that are already formed. Third and last, the static chains have a
higher risk to create loops in the form of a successive order of three chain members.
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The risk for this to happen is much lower for the other two chain strategies as they
lead the chains to align.

The prey extension mechanism was found to be particularly useful for difficult
tasks with small resources (i.e. robots) as in this way the resources are used more
efficiently. However, for high densities of robots the prey extension mechanism was
found to be less efficient, as in this case the arena gets quickly covered with the prey
extending structure. Therefore, the chains take longer until they find the real prey
instead of a robot activating its LEDs in the colour of the prey.

As shown in the difficulty test, the time to form a path grows more than linearly
with the distance between prey and nest. This is due to the fact that the area that
has to be explored to find the prey grows quadratically with the distance. Opposed
to this, for subtasks assembly and transport, the completion time grows only linearly
with the distance.

The chain controller exhibits good scalability characteristics with all three tested
strategies. When the prey extension mechanism is not used the overall effort of the
system, that is, the product of group size and completion time, decreases up to a
group size of N = 100 robots, and then remains roughly constant. This means that
the system’s efficiency grows super-linearly. Due to the reasons stated in the above,
the scalability is higher when the prey extension mechanism is not used. If it is
used, the highest degree of efficiency is observed for a group size of N = 20 robots.
For subtask assembly, the performance increases, but the efficiency, as measured
through the overall effort, reaches its maximum for a group size of N = 20 robots.
If more robots are used, there are usually also more robots trying to assemble at the
same time, in this way disturbing each other from doing so. For subtask transport,
the situation is similar. If the size of the pulling structure of transporting robots
is large, there are several robots that can not perceive the goal direction (i.e. a
chain member). Therefore, they can not contribute to the transport and even have
a negative impact on the performance as they act as an additional weight that has
to be transported.

We tested the chain controller in three different obstacle environments, and
showed that, even though the performance drops, the chain controller is in principle
able to form a path also if the environment contains obstacles. The performance
drop is mainly due to three reasons. First, the presence of obstacles increases the
difficulty of navigation, which is required for all three subtasks. Second, finding the
nest or the prey becomes more difficult because they might be hidden behind the
obstacles. Third, it might be impossible to form a straight path connecting nest
and prey. This increases the length of the shortest path, and implies a particular
difficulty for the aligning and the moving strategies. In fact, these two strategies
attempt to align the chains. Due to this alignment, a chain can be broken up in
cases where the line of sight of two neighboured chain members is blocked by an
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obstacle. For subtask assembly, the performance drops because a connection to the
prey can be restricted from several directions. For subtask transport, obstacles pose
a particular problem as robots trying to move the prey can get stuck at an obstacle.
Also in this case, the aligning and moving strategies have disadvantages to the static
one because due to the aligning mechanism of the chains the path followed by the
transporting robots is usually closer to corners, and can therefore more easily lead
to a situation where the transporting structure gets stuck.

In a series of robustness tests, we showed that the chain controller can cope
with a noisy perception of sensory data. We varied the noise of the direction at
which objects are perceived using the camera, the distance at which objects are
perceived using the camera, and of the proximity sensors. In general, the achieved
robustness increases with the group size. The more robots there are, the better the
system as a whole can cope with noisy conditions. Among the three kinds of sensory
data, the performance of the chain controller was diminished most for the direction
at which objects are perceived. This is the case for all three subtasks. While
the performance also decreases when injecting noise to the distance perception of
objects, the effect is less disruptive. In both of these cases of noise, the performance
decrease was stronger if the prey extension mechanism was used. In general, the
stability of the chain structure suffers more from noisy conditions than the stability
of the structure of prey extending robots, because the stability of the latter relies
on simpler rules. Therefore, a high level of noise leads to a higher degree of robots
joining the prey extending structure, and therefore not leaving enough robots to
form a path in a chain structure. For what concerns the proximity sensors, the
chain controller showed a high degree of robustness. The proximity sensor is mainly
used for avoiding collisions with objects in the environment, but it is not necessary
for completing the task.

Finally, in a series of fault tolerance tests we analysed the ability of the chain
controller to cope with individual failure by deactivating the camera, the LEDs, the
proximity sensors, or the tracks of a given fraction of robots in the group. In general,
as also observed for the robustness test, a large group size also leads to a higher
degree of fault tolerance. Among the four tests performed, the proximity sensor
again led to the lowest degree of performance decrease. By disabling the camera a
robot acts like a mobile obstacle and can not contribute to any of the three subtasks.
By disabling the LEDs the effect on the behaviour is even more pronounced. A high
degree of erroneous robots then has a disruptive effect on existing chains. In the
case of disabled tracks a robot acts like an immobile obstacle. However, if by chance
it happens to be positioned at the right place, it can in principle contribute to form
a path, but not to any of the other two subtasks.
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Chapter 6

Chain Controller: Experiments

with Robots

In this chapter we present the experiments performed on the s-bot robot platform.
In Section 6.1 we describe the experimental setup. In Section 6.2 we present the
results, and in Section 6.3 we draw some conclusions.

6.1 Experimental Setup

We have tested all three strategies of the chain controller examined in the previous
chapter, and we have chosen the aligning strategy for our experiments because it
was the most stable one. After preliminary tests we have set the probabilities per
time step to join and leave a chain to Pin = 0.14, and Pout = 0.007.

The experiments take place in a bounded arena of size 500 cm × 300 cm. The
nest is positioned in the centre of the arena. The prey is put at distance D from the
nest towards one of the four corners. N s-bots are positioned on a grid composed
of 60 points uniformly distributed in the arena. The initial position of each s-bot is
assigned randomly by uniformly sampling without replacement. An s-bot ’s initial
orientation is chosen randomly from a set of 12 possible directions.

We conduct two sets of experiments. In the first set we examine three setups
(N,D), with a linear relationship between group size N and distance D: (2, 30),
(4, 60) and (8, 120), where distances are expressed in cm. For each of the three
setups we conduct 10 independent trials. In the second set of experiments we study
a wider range of experimental setups, with group sizes N = 1, 2, 3, 4, 5, 6, 7, 8, 10
and 12, and distances (in cm) D = 60, 90, 120, 150, 180, 210 and 240. For each of
these 70 setups we conduct a single trial.

The number of s-bots required to form a path connecting the prey with the
nest depends on the initial distance between the two objects. To calculate lower
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Table 6.1: Number of s-bots required to accomplish subtasks path formation (Np),
assembly (Na) and transport (Nt) for different initial distances (D in cm) between
the nest and the prey.

D 30 60 90 120 150 180 210 240

Np 0 1 2 3 4 6 7 8
Na 2 3 4 5 6 8 9 10
Nt 2 3 4 5 6 8 9 10

bounds for the number of s-bots, we assume the s-bots to be organised in a single
chain, which is perfectly linear and directed towards the prey. The lower bound
values can be calculated from the distances between the individual nodes forming
the path and the distance of the last chain member with the prey (all distances are
measured from centre to centre). The distance between neighbouring nodes forming
the path is programmed to be constant. The actual distances vary slightly due
to imprecision in the s-bots’ perception. The average distance observed between
neighbouring chain members (i.e., s-bots) is 27 cm. The average distance observed
between the first chain member and the nest is 30.5 cm, and the distance between
the last chain member and the prey is at most 38.5 cm.1 The lower bound values
so computed are given in Table 6.1. For the accomplishment of the overall foraging
task, two additional s-bots are required (at the same time) to engage in transport.

During experimentation, the s-bots are fully autonomous. The only exception
to this is when an s-bot topples over. To protect its hardware from being damaged
(e.g., the camera mirror), we then remove the s-bot manually from the arena, and
do not return it until the end of the trial.

We distinguish three levels of success which are satisfied respectively if subtasks
path formation, assembly and transport are completed. The three different levels of
success are satisfied, if

i. path formation: a path connecting nest and prey has been formed and can be
traversed in both directions,

ii. assembly : two or more s-bots have been recruited and are physically assembled
with the prey so that the transport can start,

iii. transport : the transport has been completed, that is, the prey, or an s-bot
transporting it, is in physical contact with the nest.

1The diameter of the nest is 3.5 cm(= 30.5 cm − 27 cm) bigger than the diameter of the s-bot.
The diameter of the prey is 3.5 cm bigger than the diameter of the s-bot ; the remaining distance
of 35 cm to the last chain member corresponds to the threshold that controls the transition explore

chain → join chain.
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Variables Tp, Ta and Tt denote the completion times (in s) for subtasks path
formation, assembly and transport.

6.2 Results

We conduct two sets of experiments. In the first set we examine three setups (N,D),
with a linear relationship between group size N and distance D: (2, 30), (4, 60) and
(8, 120), where distances are expressed in cm. For each of the three setups we
conduct 10 independent trials. In the second set of experiments we study a wider
range of experimental setups, with group sizes N = 1, 2, 3, 4, 5, 6, 7, 8, 10 and 12,
and distances (in cm) D = 60, 90, 120, 150, 180, 210 and 240. For each of these 70
setups we conduct a single trial.

6.2.1 First Set of Experiments

We performed 30 trials in total. In 29 trials the overall task was successfully com-
pleted, that is, all three levels of success were satisfied. In the remaining trial, which
belongs to setup (N,D) = (8, 120), only the first two success levels were satisfied.
The system failed to complete subtask transport as an s-bot incorrectly assumed
that it was part of the transport structure.

Figure 6.1 shows a series of images taken during trial 8 of the setup (N,D) =
(8, 120).2 Within the first 120 s, four s-bots find the nest (Figures 6.1a, b and c),
and establish a path to the prey (Figure 6.1c). At time t = 160 s the first of
the four remaining s-bots is successfully recruited, and thus has gripped onto the
prey and activated its LEDs in red (Figure 6.1d). This s-bot alone is not strong
enough to pull the prey. However, shortly after, another s-bot becomes part of the
pulling structure (Figure 6.1e). The so formed group of two s-bots starts moving the
prey. The transport group follows the path which gradually decomposes as the prey
approaches the nest. The overall task is completed at time t = 318 s (Figure 6.1f).

Table 6.2 lists the measured completion times Tp, Ta and Tt for the different sub-
tasks. In the trials with setups (N,D) = (2, 30) and (4, 60) subtask path formation
is accomplished faster than any other subtask. In setup (2, 30), no path needs to be
formed; in setup (4, 60), a path requires only one s-bot to find the nest and to form
a chain in the direction of the prey (see Table 6.1). Most time was spent for subtask
assembly, on average 211.9 s and 133.3 s for setups (2, 30) and (4, 60), respectively.
Recall that all s-bots start from random positions in the arena and initially search
the nest by performing a random walk. As the arena is large when compared to the
s-bot ’s perceptual range, it can take a considerable amount of time until 2 out of 2,

2A selection of movies can be found at http://iridia.ulb.ac.be/supp/IridiaSupp2008-014.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: Sequence of images taken for a trial with group size N = 8 s-bots and
distance D = 120 cm between the nest (blue cylindrical object) and the prey (red
cylindrical object): (a) t = 0 s, (b) t = 55 s, (c) t = 115 s, (d) t = 160 s, (e) t = 214 s,
and (f) t = 318 s.
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Figure 6.2: Time until the n-th s-bot finds either the nest or a chain (which provides
a path to the nest) for the first set of experiments with (N,D) = (2, 30), (4, 60) and
(8, 120).

or 3 out of 4 s-bots have encountered the area from which they can perceive either
the nest or a chain connected to it.

The situation is different for the setup with 8 s-bots. Only 87.4 s were spent on
average for subtask assembly, which is significantly less than the times observed for
group sizes 2 or 4, respectively (two-sided Mann-Whitney, 5% significance level).
Also the time until a sufficient number of s-bots have found the nest drops from
109 s (103 s) for group size 2 (4) to 56 s for group size 8 (see Figure 6.2). One
possible explanation is the higher degree of redundancy: in the system with 8 s-bots,
five of them are candidate for assembly (while only 2 are required), whereas in the
system with 2 s-bots (4 s-bots) only 2 (4) are candidate for assembly (see Table 6.1).
Another possible explanation is linked to an effect of the formed chain: the larger
the group size, the more s-bots take part in the chain formation process, in this way
extending the area from which a path to the nest can be found by those s-bots still
performing the initial random walk. This accelerates the process of gathering s-bots
at the nest.

The time spent during transport, Tt, grows approximately linearly with the dis-
tance between nest and prey: 23.9 s, 51.8 s, and 95.6 s are required for the three
setups with D = 30,D = 60 and D = 120. This suggests that for the transport it is
not beneficial to increase the number of s-bots. Indeed, we observed that a pulling
structure of 2–3 s-bots seems to be the optimal configuration for this particular
transport task.
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Table 6.2: Summary of the results for the first set of experiments. We investigated three setups (N,D) with a linear
relationship between group size N and distance D: (2, 30), (4, 60) and (8, 120). The value of Tp denotes the time it
takes the s-bots to form the path, Ta denotes the time it takes the first two s-bots to be recruited, and Tt denotes the
time it takes the s-bots to transport the prey to the nest. All results are given in seconds.

Trial 2 s-bots 4 s-bots 8 s-bots
Tp Tr Tt

∑

T Tp Tr Tt

∑

T Tp Tr Tt

∑

T

1 0 78 20 98 30 128 26 184 39 96 67 163
2 0 169 21 190 27 306 51 384 105 217 43 365
3 0 354 19 373 22 85 47 154 214 48 57 323
4 0 148 32 180 12 119 27 158 28 43 178 249
5 0 209 34 243 20 59 37 116 107 80 129 316
6 0 135 24 159 10 195 154 359 76
7 0 394 14 408 29 106 25 160 69 86 86 241
8 0 414 25 439 28 65 82 175 112 56 150 318
9 0 132 23 155 48 119 28 195 72 154 49 285
10 0 86 114 144 19 151 41 211 114 42 91 247

Mean 0 211.9 23.9 235.8 24.5 133.3 51.8 209.6 93.6 87.4 95.6 278.6
(0%) (89.9%) (10.1%) (100%) (11.7%) (63.6%) (24.7%) (100%) (33.8%) (31.6%) (34.6%) (100%)

Std. Dev. 0 127.5 6.3 125.1 10.8 72.8 39.8 89.3 51.9 59.7 46.6 60.3
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Table 6.3: Overall level of success achieved for setups (N , D) in the second set
of experiments: no success (0), subtask path formation accomplished (1), subtask
assembly accomplished (2), and subtask transport accomplished (3). Entries in
parentheses denote setups that were not tested as the number of s-bots N is clearly
not sufficient to solve the task. Grey levels of cells represent the best achievable
level of success (see Table 6.1): White denotes no success, light grey denotes success
level 1, medium grey denotes success level 2, and dark grey denotes success level 3.

D / N 1 2 3 4 5 6 7 8 10 12

60 1 1 3 3 3 3 3 3 3 3
90 0 1 1 3 3 3 3 3 3 3
120 0 0 1 1 3 3 2 3 3 3
150 0 0 0 1 1 1 3 2 3 3
180 (0) (0) 0 0 1 1 1 3 3 3
210 (0) (0) (0) 0 0 1 1 0 3 2
240 (0) (0) (0) (0) (0) 0 0 0 3 3

Table 6.4: Number of s-bots that are part of the path formed between nest and prey
(if any) in setups (N,D) of the second set of experiments.

D / N 1 2 3 4 5 6 7 8 10 12

60 1 1 1 1 1 1 1 1 1 1
90 2 2 2 2 2 2 3 2 2
120 3 3 3 4 4 4 4 3
150 4 5 5 4 5 5 5
180 5 6 7 6 6 6
210 6 7 7 7
240 8 8

6.2.2 Second Set of Experiments

We examine the system under a wide range of group sizes (N) and prey distances
(D). We conducted 70 trials, one for each different setup.3

Tables 6.3 and 6.4 give an overview of the level of success reached, and of the
number of s-bots that formed the path connecting nest and prey.

In 46 out of the 70 setups a path can in principle be formed (see Table 6.1). In
44 out of the corresponding 46 trials the s-bots succeeded in forming a path. Only in

3Given that the limited amount of experimental time available allowed us to conduct max 70
trials, we had the choice between conducting them on 70 different setups, or to reduce the number
of setups to obtain some mean performance on each of them. Although most researchers would say
that the second choice should be followed, the optimal experimental design is the one that we have
chosen Birattari (2005, 2004a,b).
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two setups a path was not formed even though there were enough s-bots. For setup
(N,D) = (8, 210) two s-bots failed to join the chain as explorers, thereby making it
impossible to form a path. For setup (N,D) = (8, 240) a path requires all 8 s-bots
to form one linear chain in the direction of the prey. This would take a long time
as chains form into random directions, and several chains can form simultaneously.
The trial was stopped at time t = 3600 s because of empty batteries of some s-bots.

For setups (N,D) = (5, 180) and (6, 210) a path was formed even though the
number of s-bots was thought to be insufficient. A path of five (six) s-bots has a
maximum predicted length of 30.5 + 4 · 27 + 38.5 = 177 cm (30.5 + 5 · 27 + 38.5 =
204 cm), which is 3 cm (6 cm) less than the distance that needs to be covered, and
therefore still within the range of perceptual error of the camera.

In 33 out of the 46 setups, also subtasks assembly and transport can in principle
be accomplished by the given number of s-bots. In 29 out of these 33 setups, the
s-bot group was able to do so, thereby the entire task was completed. In three
setups, however, although a path was formed and two or more s-bots were recruited
(and gripped onto the prey), the transport back to the nest was not successful. For
setups (N,D) = (7, 120) and (8, 150) the gripper of one of the s-bots in the pulling
structure opened during the transport phase, in this way blocking the transport.
For setup (N,D) = (12, 210) the trial was stopped when 7 s-bots formed a linear
structure to pull the prey. In such a long structure most members cannot perceive
the path, thus the prey could not be moved any more. For setup (N,D) = (6, 150)
the formed path was not linear and thus required one additional s-bot (five in total).
The remaining s-bot was not capable of transporting the prey alone.

Table 6.5 lists the completion times for each of the three subtasks path formation,
assembly and transport. Table 6.6 lists the overall completion time.

Figure 6.3 shows state diagrams for four selected setups (N,D): (12, 150),
(12, 240), (7, 150) and (7, 240). In the first three cases the task was successfully
accomplished. In the last case the system failed as the number of s-bots was too
small to form a path, and thus also too small to accomplish the task. In the following
the four setups are discussed in more detail:

• (N,D) = (12, 150): All s-bots start in state search chain. Once the nest
has been found, they aggregate into chains. At t = 78 s, a path to the prey
consisting of five chain members is established. Even though a path to the
prey is formed, other s-bots that find the nest self-organise into an additional
chain. Recall that the formation of the path is not explicitly communicated
among the s-bot group. However, as the s-bots in the newly formed chain
leave this chain with a constant positive probability, after some time only the
chain forming the path remains. At time t = 128 s a first s-bot is recruited
and grasps the prey, joined by a second s-bot about 16 s later. While the
prey is transported towards the nest, the chain gradually dissolves. During
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Table 6.5: Completion times (in s) of subtasks path formation (Tp), assembly (Ta),
and transport (Tt) in setups (N,D) of the second set of experiments. If no value is
given the respective subtask was not successfully completed.

Tp: time required for path formation
D / N 1 2 3 4 5 6 7 8 10 12

60 82 144 14 64 14 15 11 12 19 1
90 76 45 23 99 28 32 35 14 8
120 192 88 174 483 160 88 97 65
150 662 337 486 32 379 511 78
180 317 1975 902 541 222 1649
210 2135 988 2370 810
240 827 335

Ta: time required for assembly
D / N 1 2 3 4 5 6 7 8 10 12

60 286 62 67 104 257 135 79 61
90 59 272 69 159 168 57 41
120 181 198 281 458 35 110
150 59 635 314 66
180 616 97 729
210 176 170
240 229 138

Tt: time required for transport
D / N 1 2 3 4 5 6 7 8 10 12

60 17 121 246 276 33 47 24 183
90 41 23 158 80 20 545 129
120 56 84 245 144 604
150 201 123 168
180 64 146 170
210 582
240 258 442
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(a) (b)

(c) (d)

Figure 6.3: State diagrams for four selected setups (N,D) from the second set of experiments: (a) (12, 150), (b)
(12, 240), (c) (7, 150) and (d) (7, 240). The respective grey levels indicate the number of s-bots in states search

chain, explore chain and recovery, join chain, assemble, transport target and transport blind.
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Table 6.6: Completion time (in s) of the overall foraging task in setups (N,D) of the
second set of experiments. If no value is given the overall task was not successfully
completed.

D / N 1 2 3 4 5 6 7 8 10 12

60 327 247 327 395 301 194 122 245
90 123 394 710 271 223 616 178
120 411 765 791 276 779
150 292 948 312
180 1221 465 2548
210 3126
240 1314 915

the transport, additional s-bots try to assemble with the pulling structure.
Two of them succeed, whereas others fail because the pulling structure is in
motion. By looking at the state diagram in Figure 6.3a, one can see that some
of the s-bots engaged in transport are not capable of perceiving the path (see
white area). Thus, we have an example where the s-bots exhibit a hierarchy of
teamwork: the group of s-bots that cannot perceive the path need to interact
with the group of s-bots that can perceive the path, and thereby form a team.
This team, which is composed of all transport s-bots can be considered a higher
order entity. It forms part of another team which includes another higher order
entity—the group of s-bots maintaining or decomposing the path.

• (N,D) = (12, 240): Figure 6.4 shows a sequence of images taken during this
trial. During the path formation phase, two chains are formed concurrently
(Figure 6.4b), and it takes several rearrangements of the chains until at time
t = 335 s a path is formed. This path consists of a chain of 8 s-bots (Fig-
ure 6.4c). Shortly thereafter, two s-bots get recruited and assemble with the
prey (Figure 6.4d). During transport, most s-bots of the pulling structure lose
sight of the path, which gradually dissolves, and the prey is moved in the
wrong direction (Figures 6.4e and f). However, the path gets re-established
by a new s-bot extending the chain in the direction to the prey (Figure 6.4g).
As a consequence, the transport resumes and can be completed (Figure 6.4h).
This is an example of a situation in which teamwork among higher-order en-
tities (such as teams or groups) requires a participating entity to adapt its
configuration to unexpected environmental circumstances.

• (N,D) = (7, 150): At time t = 32 s a path between nest and prey is already es-
tablished. At time t = 91 s, two s-bots have been recruited and are assembled
with the prey. The five remaining s-bots are aggregated in the chain form-



108 CHAPTER 6

ing the path. During the transport, chain members disaggregate once in the
immediate vicinity of the prey, and follow the path back to the nest to rest.
After some time, the very same s-bots resume activity, follow the path, and
eventually two of them assemble with the pulling structure and participate in
transport. This is an example of how the composition of teams can adapt to
changes in the workload of the underlying subtasks.

• (N,D) = (7, 240): The s-bot group is too small to form a path. The state
diagram shows a high flux between states explore chain and join chain.
At some stages of the trial all s-bots are aggregated into chains. However, given
that no prey is found, the chains always dissolve. At some stages only one s-
bot is aggregated into chains. Thus, the system effectively restarts the search
process and can form new chains into unexplored areas of the environment.
The diagram suggests that the system retains this ability during the entire
trial (i.e., for 25 minutes).

Figure 6.5 shows the number of distinct behavioural roles (i.e., states) an indi-
vidual s-bot performed during the trials of the second set of experiments. In 75%
of the cases, an s-bot performed either four or five of the seven roles. This suggests
that the s-bots are indeed inter-changeable. The number of roles does not follow a
binomial distribution. Only in 4% of the cases, an s-bot performed less than four
behaviours during the trial. However, in 15.7% of the cases, an s-bot performed all
seven behaviours.

Figure 6.6 shows the number of times an s-bot changes its behavioural role dur-
ing the trials of our experiments. Six to ten changes in the behaviour have most
frequently been observed. Note, however, that both mean and median number of
changes are higher than this range of values (20.9 and 14.5, respectively).

6.3 Conclusions

6.3.1 Results

In this chapter, we have presented an experimental study in which a colony of
autonomous robots has to solve a complex foraging task. The task requires a range of
subtasks to be performed including (a) exploration of the environment, (b) formation
of a path between a prey and a nest, (c) assembly of nest-mates to the prey, (d) self-
assembly into pulling structures, and (e) group transport of the prey back to the nest.
Due to the limited abilities of the robots, the accomplishment of the task requires the
concurrent activity of at least i robots, where i ∈ {2, 3, 4, 5, 6, 8, 9, 10} depends on
the experimental setting. For i > 2, the accomplishment of the task requires division
of labour, in other words, the robots need to perform different subtasks concurrently.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.4: Sequence of images taken for the trial with group size N = 12 s-bots
and distance D = 240 cm between the nest (blue cylindrical object) and the prey
(red cylindrical object): (a) t = 0 s, (b) t = 140 s, (c) t = 360 s, (d) t = 480 s, (e)
t = 720 s, (f) t = 780 s, (g) t = 810 s, and (h) t = 900 s.
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Figure 6.5: Number of distinct behavioural roles (i.e., states) an s-bot performed
during a trial. Data from all s-bots and all trials of the second set of experiments.
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Figure 6.6: Number of times an s-bot changed its behavioural role (i.e., states)
during a trial. Data from all s-bots and all trials of the second set of experiments.
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The robots also have to perform subtasks that are organised sequentially. In general,
we believe that the investigated problem provides a framework that captures the
essence of a variety of problems that are addressed at the collective level in social
insect colonies.

Inspired by the behaviour of the natural counterparts, we developed a relatively
simple, decentralized control algorithm. Each robot executes a copy of this algo-
rithm, thus all robots have an identical control. The robots do not require any
explicit knowledge of the environment beyond their local perceptual range.

A series of experimental results from systematic trials with up to twelve physical
robots confirm the efficacy of the system. In almost all of the trials where the group
size is sufficient to accomplish the overall task, the group succeeded in retrieving the
prey to the nest.

One of the mechanisms we identified to be crucial for the performance of the
system is a robot’s ability to recover from situations in which it is prevented from
achieving its current objective. Such a recovery mechanism was applied in the
behaviours path formation, self-assembly and (to some extent) group transport.
For path formation, chains of visually connected robots that do not extend to a
prey disaggregate with some probability and re-aggregate into other directions. For
self-assembly, the recovery mechanism consists of a simple timeout after which the
robot gives up assembling and moves back to the nest instead. For group transport,
a recovery mechanism allows robots unable to perceive the path to interact with
those robots that are able to perceive the path. Still in a few trials the task was
not completed because of some unexpected behaviour during the transport phase.
A recovery mechanism (allowing to suspend the transport behaviour) might have
prevented stagnation in such circumstances.

It is worth noting that the assignment of individual roles to the robots was
context-dependent, and thus changed both in space and in time. For example,
a transporter robot (i.e., a robot assembled in a pulling structure with the prey)
would behave as a “leader” or as a “follower”, depending on whether it perceived
the path towards the nest or not. An explorer robot (i.e., a robot moving along a
chain of robots) would become a transporter robot if it encountered the prey and
succeeded in assembling to it, however it could assimilate another role under other
circumstances.

By self-organising, the colony displayed a dynamically changing hierarchy of
teamwork in which collaboration took also place among high-order entities including
groups and teams. The higher-order entities (including the entire system) proved
surprisingly robust with respect to the inaccurate and sometimes malfunctioning
behaviour of their component modules—parts of a robot such as the tracks, entire
robots, and even groups of robots broke down or exhibited unexpected behaviour.

We believe that these experiments are among the most sophisticated examples
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of self-organisation in robotics to date. The study confirms that complex forms of
division of labour can indeed result from the interactions of robots that follow rela-
tively simple and local rules. The study also demonstrates that teamwork requires
neither individual recognition (the robots we use are inter-changeable) nor inter-
individual differences (the robots we use are homogeneous in terms of “morphology”
and “brain”), and as such might contribute to the ongoing debate on the role of
such characteristics for the division of labour in social insects.

6.3.2 Transfer of Controller from Simulation to Robot

When designing the chain controller in simulation, we tried to model all character-
istics of the robot as realistically as possible. However, the robot platform was still
in a prototype phase, and some of the characteristics had to be assumed without
knowing exactly if the assumptions would hold on the real robot. In this section
we report on the problems we observed during the transfer of the controller from
simulation to the real robot.

Four of the main problems we observed concern the camera:

i. Number of colours: In our simulation model, we assumed that a robot could
distinguish between at least five colours. We used three colours for the cyclic
directional pattern that leads to the directionality of a chain, one colour for
the nest and one colour for the prey. However, when implementing the camera
software, we recognized that only four colours can be reliably distinguished.
We therefore redesigned the controller and used one of the chain colours for
the nest. The robots are then not able to uniquely identify the nest.

ii. Length of a time step: In simulation we assumed a control time step to have
a length of 100,ms. However, due to the processing speed of the robot and
the camera software used we had to increase the length of a time step to
125,ms. This had implications on the possible maximum speed of a robot,
which therefore had to be decreased accordingly.

iii. Erroneous perception: We observed that some robots have an erroneous per-
ception with the camera for individual time steps, that is, that either they
perceive a coloured object when there is none, or that they perceive a wrong
colour. We therefore implemented a simple mechanism that filters out these
erroneous perceptions. A colour perceived with the camera software is then
only accepted in case it is perceived for eight consecutive time steps. Also
this decreases the possible maximum speed of a robot because it decreases a
robot’s reaction time.

iv. Perceptual range: In simulation we assumed a perceptual range of 100, cm for
all colours perceived with the camera. On the real robot however, we observed
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that the actual perceptual range differs for each colour and for each robot.
In average the perceptual range is approximately 50, cm for the three chain
colours, and approximately 80, cm for the prey colour red. Furthermore, due to
the semi-spherical shape of the mirror the precision of a distance to a coloured
object decreases quickly with its distance. We observed that a reliable distance
estimate can only be made up to a distance of 30, cm. We set the distance
between two chain members accordingly because it is important for a chain’s
stability that the distance between two chain members is roughly constant.

After observing these problems we redesigned the simulation model used so that
they are more realistic. The simulation results presented in this thesis were con-
ducted using the simulation model that takes the observed problems into account.
However, we still observe some differences between simulation and real robot. This
mainly concerns the more physical tasks of assembly and transport. The situations
that occur during these tasks are far more complicated to simulate than for the
chain controller as it mainly relies on visual interactions as opposed to the physical
interactions required for assembly and transport.
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Chapter 7

Vectorfield Controller

In this chapter we describe the vectorfield controller. We first give a general descrip-
tion of the behaviour in Section 7.1 and of the different variants used in Section 7.2.
In order to integrate the different behaviours required to solve the overall task, we
follow a behaviour based approach (Arkin, 1998) as it allows us to comfortably
merge different approaches and sub-controllers into one structure. Each behaviour
consists of a collection of motor schemas, that is, the low level control mechanisms.
The motor schemas used are described in Section 7.3. Afterwards, the different be-
haviours are explained in Section 7.4, and the rules that trigger a transition from
one behaviour to another are detailed in Section 7.5.

7.1 General Description

The controller that we designed and implemented to run our experiments consists
of nine behaviours, each of which is designed to achieve a specific goal. The overall
task can be split into the subtasks path formation, assembly and transport. The
individual behaviours for the path formation subtask, which is the focus of this
thesis, are implemented using the motor schema paradigm. For the assembly and
transport subtasks the behaviours are based on the work of Groß et al. (2006a);
Groß and Dorigo (2004) and Groß et al. (2006b), and rely on neural networks or
simple hand written commands. The nine behaviours are detailed in Section 7.4.

The initial situation is the same as for the chain controller. The robots are
randomly positioned and first have to search for the nest (Search VF behaviour).
The first robot to find the nest stops moving and activates a colour pattern with its
LEDs pointing towards the nest (see Figure 7.1). Another robot that perceives such
a colour pattern uses the indicated direction to move away from the nest (Explore
VF behaviour). It will end up joining the structure of LED-activated robots when it
reaches the border, that is, when it perceives only one LED-activated robot at a dis-

115
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Figure 7.1: A robot activating its LEDs to indicate a direction as employed by the
vectorfield controller.

tance greater than 30 cm. It activates its LEDs to point towards the LED-activated
robot it perceives (Join VF behaviour). The resulting robot structure can be con-
sidered as a vectorfield globally leading to the nest. The structure of the vectorfield
exhibits stronger branching than the chain controller, because the vectorfield con-
troller employs a different rule, which allows a robot to join the structure at various
positions, and not only at the tail.

The process of leaving the vectorfield is probabilistic. At each time step a robot
leaves the vectorfield with probability Pout, but only if it is situated at the vector-
field’s border. Similarly to the chains, the process of joining/leaving the vectorfield
leads to a continuous exploration of the environment until the prey is found. If a
robot of the vectorfield perceives the prey it sets its value of Pout to zero, so that
the established path becomes stable. Again, there are two possibilities: If the prey
is closer than 30 cm, the task of path formation is successfully accomplished, and if
the prey is further away than 30 cm, then other robots can still join the vectorfield.

When a robot leaves the vectorfield it starts a random walk during which it does
not react to the perception of the vectorfield (Random Walk behaviour). Due to
the random walk it might reach a different branch, stay in the vicinity of the same
branch, or lose contact with the vectorfield completely. The time it remains in this
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Figure 7.2: A vectorfield. The six robots with an arrow on their top represent
a path between nest and prey. The arrows indicate the directions the robots are
pointing to and that lead towards the nest.

state is determined by the probability Pin. When the robot enters the search state
again, it continues the random walk until it perceives the vectorfield. This process
is continued until the vectorfield encounters the prey and in this way forms a path.
Figure 7.2 shows a sequence of robots forming such a path. The arrows on top of
the robots represent the directions they are pointing to.

Once a path is formed, it is maintained and other robots arriving at the prey
attempt to assemble to it (Assemble behaviour). If a robot that tries to assemble to
the prey does not succeed within a certain time, it gives up, moves back to the nest
and rests for a while (Recovery-A behaviour). When a sufficient number of robots
has assembled to the prey, the prey transport starts. Robots assembled to the
prey transport it by moving towards the closest perceived member of the vectorfield
(Transport Target behaviour). When the prey pulling structure moves close to a
vectorfield member, the latter leaves the vectorfield and moves back to the nest to
rest for a while (Recovery-P behaviour). In this way the pulling structure of robots
is guided from node to node of the vectorfield to eventually reach the nest. A robot
leaving the vectorfield to rest at the nest emits a sound signal for a period of 30 s. A
robot transporting the prey and perceiving this sound signal reacts to it by pausing
the transport. Otherwise, if it continues moving towards the sound emitting robot,
there is a risk that the robot is blocked from moving back to the nest. This situation
can occur when the pulling structure of transporters touches the respective robot.
No other robots react to the sound signal.

7.2 Variants

We implemented the same prey extension mechanism as used for the chain controller.
When this mechanism is active, robots that perceive the red prey, but no chain,
activate their red LEDs with a certain probability, in this way increasing the area in
which the prey can be perceived by the vectorfield (Extend Prey behaviour). This
mechanism potentially speeds up the path formation process because a second path,
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starting from the prey, is formed in parallel to the chains.
As we use a behaviour based architecture the same module used for the chain

controller can easily be integrated without any need for modifications.

7.3 Motor Schemas

The same motor schemas Adjust distance, Avoid collisions and Move straight as
used for the chain controller are used for the vectorfield controller as well. The only
new motor schema used for the vectorfield controller is Follow vectorfield:

• Follow vectorfield(indicated directions): returns a vector −−→vFV that takes
into account directions αi as indicated by all perceived robots i in the vector-
field, and returns a vector that points in the opposite direction, in this way
moving away from the nest:

−−→vFV = −
∑

i

(

cos(αi)
sin(αi)

)

.

The active motor schemas are summed up, weighting each one with a gain value
gi. The individual gain values are given in the next section and were found through
trial and error. Once the active motor schemas have been summed up, the resulting
vector −−−→vRES has to be translated into movement of the two wheels. This is done by
the following function:

(

lSpeed
rSpeed

)

=















































(

cos(2 · αRES)
1

)

, 0 ≤ αRES < π
2

(

cos(2 · αRES − π)
−1

)

, π
2
≤ αRES < π

(

−1
−cos(2 · αRES)

)

, π ≤ αRES < 3·π
2

(

1
−cos(2 · αRES − π)

)

, 3·π
2
≤ αRES < 2 · π

,

where lSpeed and rSpeed denote the normalized speed of left and right wheel, and
αRES is the desired direction of movement with respect to the current heading. The
resulting speed of the wheels is independent from the length of the summed vector
vRES , and depends on the maximum allowed velocity vmax, which is set to 12.37 cm

sec
,

the same maximum velocity as used for the chain controller.

7.4 Behaviours

The behaviours and the rules that trigger a transition from one behaviour to another
are illustrated by the state diagram in Figure 7.3. Each state corresponds to a robot
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behaviour, and arrows connecting states represent behaviour transitions. Using the
aforementioned motor schemas as basic building blocks, the individual behaviours
used for path formation were implemented as follows:

• Search VF: perform a random walk (until the vectorfield is perceived). LEDs
are off. Active motor schemas: Move straight(gMS = 1), Random(gRA = 0.1),
Avoid collisions(gAC = 0.1).

• Explore VF: follow the vectorfield away from the nest. LEDs are off. Active
motor schemas: Follow vectorfield(gFV = 1), Avoid collisions(gAC = 0.1).

• Join VF: do not move. The LEDs are used to activate a pattern which
indicates the direction towards the precedent robot in the vectorfield. Active
motor schemas: none.

• Random Walk: perform a random walk (even if the vectorfield is per-
ceived). LEDs are off. Active motor schemas: Move straight(gMS = 1),
Random(gRA = 0.1), Avoid collisions(gAC = 0.1).

• Recovery-P: Move back to the nest and rest. Emit a sound signal for 30 s.
LEDs are off. Active motor schemas: Move perpendicular(gMP = 1), Ad-
just distance(gAD = 10), Avoid collisions(gAC = 0.1).

• Extend Prey: The LEDs are activated with red. Keep a constant dis-
tance of 60 cm to the closest red object perceived. This is either the prey
or another robot in the prey extending structure. Active motor schemas: Ad-
just distance(gAD = 10), Avoid collisions(gAC = 0.1).

For assembly and transport the same behaviours as for the chain controller are
used:

• Assemble: We use the same hand written control algorithm as used for the
chain controller. The simulated robot approaches the object towards which it
attempts a connection, tries to connect, and given the distance and the angle
towards the object it has a given probability that the assembly is successful.
If the attempt to connect was not successful it moves backwards, and tries to
connect again.

• Transport: if a sound signal is perceived the robot rests. Otherwise, if a
chain member is perceived, the robot orients its chassis towards the closest
chain member, which indicates the direction to the nest, and starts pulling.
A detailed description of the behaviour can be found in Groß et al. (2006b).
If no chain member is perceived a robot that does not perceive the path does
not move at all.
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Figure 7.3: State diagram of the finite state machine that controls each robot.
Circles represent states (i.e., behaviours). Edge labels specify conditions that trig-
ger transitions between the corresponding states. The initial state is Search VF.
Pin, Pout, Px−in and Px−out are boolean variables, which are set to True with the
probabilities Pin, Pout, Px−in and Px−out, and False otherwise. The value of Pin

(Pout) determines the rate at which robots join (leave) the vectorfield. The value of
Px−in (Px−out) determines the rate at which robots join (leave) the prey extending
structure.
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Finally, a recovery behaviour, similar to the one used for the path formation, is
used for the assembly as well. The only difference is that no sound signal is emitted.

• Recovery-A: Move back to the nest and rest. LEDs are off. Active mo-
tor schemas: Move perpendicular(gMP = 1), Adjust distance(gAD = 10),
Avoid collisions(gAC = 0.1).

7.5 Behaviour Transitions

The following set of conditions trigger behaviour-transitions:

• Search VF → Explore VF: if the vectorfield (this includes the nest) is
perceived. Note that a robot in the Search VF state does not react to the
perception of the prey, unless the prey extension mechanism is used.

• Search VF → Extend Prey: if the prey, but no chain member is perceived,
the robot joins the prey extending structure with probability Px−in per time
step.

• Explore VF → Search VF: if the vectorfield is no longer perceived.

• Explore VF → Join VF: (i) if the prey is not perceived and only one
vectorfield robot is perceived at a distance > 30 cm, or (ii) if the prey is
perceived at a distance > 30 cm.

• Explore VF → Assemble: if the prey is detected at a distance < 35 cm.

• Join VF → Random Walk: (i) if the robot is situated at the border of the
vectorfield, it leaves the vectorfield with probability Pout per time step, or (ii)
if the contact to the vectorfield is lost, that is, if there is no other vectorfield
robot that points towards this robot within a threshold angle of 50o for five
consecutive time steps.

• Join VF → Recovery-P: if the prey is perceived at a very close distance
(i.e., less than 5 cm), which only occurs if the prey is transported towards the
vectorfield.

• Random Walk → Search VF: with probability Pin per time step.

• Extend Prey → Search VF: if no red object is perceived any more, or with
probability Px−out per time step.

• Extend Prey → Explore VF: if the vectorfield is perceived.
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• Recovery-P → Random Walk: if Trecovery = 30 s has elapsed.

• Assemble → Recovery-A: if the robot does not succeed in connecting to an
object within Tas = 90 s.

• Assemble → Transport-Target: if the robot succeeds in connecting to an
object.

• Recovery-A → Random Walk: if Trecovery = 30 s has elapsed.



Chapter 8

Vectorfield Controller:

Experiments in Simulation

In this chapter we present the results obtained in the TwoDee simulation environment
for the vectorfield controller, and also compare the performance with and without the
prey extension mechanism. After describing the experimental setup in Section 8.1,
we explain the method used for parameter selection and give an overview of the
performance in Section 8.2, and then present the results with the selected parameters
for the different tests performed in Section 8.3.

8.1 Experimental Setup

The simulation environment is the same as for our experiments with the chain con-
troller in Chapter 5. We employ a bounded arena of size 5m × 5m. The task
consists in forming a path between two locations in the environment, the nest and
the prey, to assemble to the prey and to transport it back towards the nest. The
nest is placed in the centre of the arena, and the prey is placed towards one of the
corners. Obstacles are cubes with a side length of 0.5m (i.e., one obstacle occupies
1% of the arena). An instance of the task is defined by the triplet (N,D,O), where:

• N is the robot group size,

• D is the distance between nest and prey (in meters),

• O is the number of obstacles in the environment.

The initial position and orientation of the robots, as well as the positions of the
obstacles, are chosen randomly.

The primary performance measure is the completion time. We distinguish the
three completion times for the three subtasks path formation (Tp), assembly (Ta),

123
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and transport (Tt). For practical reasons, we allow a maximum completion time of
10,000 seconds. If this time does not suffice to establish a path, the trial is stopped
and considered to be a failure. As a second performance measure we use the success
rate, which we define as the ratio of successful trials. Again we distinguish three
success rates, one for each subtask.

In the following sections we describe the method used for selecting the four
parameters characterizing our controller. Afterwards, we present the results of an
extensive post-evaluation of the selected parameter sets.

8.2 Parameter Selection

The overall behaviour of the vectorfield controller is a function of the two parameters
Pin and Pout, as they determine the rate at which robots join and leave the vector-
field. Additionally, in the case where the prey extension mechanism is employed,
the two parameters Px−in and Px−out determine probability per time step at which
the robots join or leave the prey extending structures. To assess the general impact
of these probabilities we have conducted a parameter study. For each probability we
examined ten values defined by 0.001∗2x, with x ∈ {0, 1, 2, 3, . . . , 9}, resulting in 10
candidates in the range [0.001, 0.512]. We first discuss the parameter landscape and
select a parameter set for the probabilities of Pin and Pout in Section 8.2.1 using the
same racing algorithm as for the chain controller (Birattari et al., 2002; Birattari,
2005). Then, based on these two selected parameters, we discuss the parameter
landscape and select a parameter set for the probabilities of Px−in and Px−out in
Section 8.2.2.

8.2.1 Parameters Pin and Pout

Figure 8.1 shows surface plots of the success rate of the Pin/Pout parameter land-
scapes for a group of (a) 10 robots, (b) 20 robots, (c) 40 robots and (d) 80 robots.
All trials were conducted in an environment without obstacles and a nest to prey
distance of 3 meters.

Independently from the group size, the most successful parameter combinations
are in the proximity of the line Pin = Pout. If Pin ≪ Pout only few robots get aggre-
gated into the forcefield at all, and if Pin ≫ Pout a structure is formed quickly, but
the exploration of the environment is limited because the robots leave the vectorfield
very rarely and then join it fast at a nearby position.

The performance increases with the group size. While for a group size of N = 10
the success rate is very low throughout all tested parameters, for N = 80 there is a
wide range of parameters with a success rate of 100%.

Table 8.1 shows the selected parameter combination and success rate as found
through the racing algorithm. The success rates reached with the chain controller
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Figure 8.1: Surface plots of the success rates of the parameter landscapes when
changing the two probability parameters Pin and Pout (100 observations per param-
eter combination), for the vectorfield controller and a group of (a) 10 robots, (b)
20 robots, (c) 40 robots and (d) 80 robots. All experiments were conducted in an
environment without obstacles and a nest to prey distance of 3 meters. The axes of
the parameters are plotted in logarithmic scale. The lighter the surface the higher
is the success rate.
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Table 8.1: The selected parameter sets for Pin and Pout based on the outcome of
a racing algorithm on 27 experimental setups obtained considering all the possible
combinations of values for N , D, and O, with N ∈ {10, 20, 40}, D ∈ {2, 2.5, 3}, and
O ∈ {0, 10, 20}. Each setup was initialized in 100 different ways.

Controller Pin Pout Success Rate Median Completion Time

Vectorfield 0.064 0.016 48.1 % 10000 seconds

Table 8.2: The selected parameter set for Px−in and Px−out based on the outcome of
a racing algorithm on 27 experimental setups obtained considering all the possible
combinations of values for N , D, and O, with N ∈ {10, 20, 40}, D ∈ {2, 2.5, 3}, and
O ∈ {0, 10, 20}. Each setup was initialized in 100 different ways. The parameters
Pin and Pout are fixed according to Table 8.1.

Controller Px−in Px−out Success Rate Median Completion Time

Vectorfield 0.016 0.002 65.3 % 3102 seconds

is higher than for the vectorfield controller. This is mainly due to the problem mix
which includes group sizes of 10, 20, or 40 robots. As will be explained in more
detail later, the vectorfield reaches a high degree of efficiency only for larger group
sizes.

8.2.2 Parameters Px−in and Px−out

Given the parameter selection for Pin and Pout we performed a similar study for
the parameters Px−in and Px−out. While Pin and Pout represent the rate at which
robots join and leave a chain, Px−in and Px−out determine the rate at which robots
join and leave the prey extending structure.

Figure 8.2 shows surface plots of the success rate of the Px−in/Px−out parameter
landscapes for a group of (a) 10 robots, (b) 20 robots, (c) 40 robots and (d) 80
robots. All trials were conducted in an environment without obstacles and a nest to
prey distance of 3 meters.

The parameter landscapes are qualitatively similar to those observed with the
chain controller. In particular, briefly repeating our findings from Section 5.2.2,
what can be observed is that the most successful parameter combination of Px−in

and Px−out have (i) a ratio of Px−in

Px−out
roughly in the range [2, 16], (ii) values of Px−in

in the range [0.016, 0.128], and (iii) values of Px−out ≤ 0.032.

The parameters found to be successful when used with the chain controller prove
efficient with the vectorfield controller as well. The selected parameter set as found
from the racing algorithm is specified in Table 8.2.
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Figure 8.2: Surface plots of the success rates of the parameter landscapes when
changing the two probability parameters Px−in and Px−out (100 observations per
parameter combination), for the vectorfield controller and a group of (a) 10 robots,
(b) 20 robots, (c) 40 robots and (d) 80 robots. All experiments were conducted in
an environment without obstacles and a nest to prey distance of 3 meters. The axes
of the parameters are plotted in logarithmic scale. The lighter the surface the higher
is the success rate. The parameters Pin and Pout are fixed according to Table 8.1.
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8.3 Performance Evaluation

In this section we report on the experiments performed with the vectorfield con-
troller based on the parameters selected in the previous section. Following the same
structure as in Section 5.3, we will first give an overview of the behaviour and discuss
some general characteristics in Section 8.3.1, and then show the results of systematic
experiments under various conditions:

• In a difficulty test we vary the distance D between the nest and the prey in
the range [1m, 3m] (Section 8.3.2).

• In a scalability test we vary the number of robots N in the range [10, 200]
(Section 8.3.3).

• In an obstacle test we vary the number of obstacles O in the range [0, 30] and
additionally test two predefined obstacle environments (Section 8.3.4).

• In a set of robustness tests we vary the noise of various sensors (Section 8.3.5).

• In a set of fault tolerance tests we vary the fraction of robots that suffer from
individual failure by disabling various sensors or actuators (Section 8.3.6).

Afterwards, in Section 8.4 we draw some conclusions.

8.3.1 General Evaluation

In this section we discuss the general performance of the vectorfield controller and the
prey extension mechanism. We describe first the general behaviour in Section 8.3.1.1.
Then we discuss the branching behaviour of the vectorfield in Section 8.3.1.2, and
finally the environment exploration in Section 8.3.1.3.

8.3.1.1 Behaviour

A sequence of snapshots from typical simulation trials of the vectorfield controller
is displayed in Figure 8.3 when the prey extension mechanism is not employed, and
in Figure 8.4 when it is employed.1

In both trials we use a group size of 20 robots, a prey to nest distance of 2m,
and an environment without obstacles. Let us start describing the behaviour by
summarizing the differences between chains and vectorfield. There are three main
differences between the chains and the vectorfield.

First, the nature of the signal in the structure is different. In the case of chains
a direction can only be deduced when seeing at least two members of the structure,

1A selection of movies can be found at http://iridia.ulb.ac.be/supp/IridiaSupp2008-014.



VECTORFIELD CONTROLLER: EXPERIMENTS IN SIMULATION 129

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.3: Sequence of images taken for a simulation trial with group size N = 20
s-bots and distance D = 2m between the nest (blue cylindrical object in the centre)
and the prey (red cylindrical object on the top right), when using the vectorfield
controller: (a) t = 0 s, (b) t = 57 s, (c) t = 185 s, (d) t = 323 s, (e) t = 372 s, (f)
t = 552 s, (g) t = 593 s, (h) t = 620 s, and (i) t = 644 s.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.4: Sequence of images taken for a simulation trial with group size N = 20
s-bots and distance D = 2m between the nest (blue cylindrical object in the centre)
and the prey (red cylindrical object on the top right), when using the vectorfield
controller with the prey extension mechanism: (a) t = 0 s, (b) t = 68 s, (c) t = 248 s,
(d) t = 318 s, (e) t = 331 s, (f) t = 367 s, (g) t = 407 s, (h) t = 439 s, and (i) t = 454 s.
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whereas in a vectorfield each member explicitly broadcasts a direction. Explorers
moving along a chain follow the direction given by the order of two members of the
chain. Explorers moving along the vectorfield follow the direction indicated by the
vectorfield members perceived.

This leads us to the second difference, which consists in the process of joining the
path forming structure. For the chains this process is probabilistic, and an explorer
usually joins a chain at its tail. For the vectorfield however, it is deterministic as
robots immediately join the vectorfield when they reach its border. This in general
leads to a higher degree of branching of the vectorfield structure.

Finally, the rule employed for leaving the vectorfield leads to a higher degree of
randomness because the robot performs a random walk and might lose sight of the
structure, having to start the search from scratch. When leaving a chain, a robot
tries to stay in the vicinity of the chain while moving back to the nest to then follow
another chain. Because of this lower degree of randomness, we expect the chains to
perform better when there is a low density of robots.

8.3.1.2 Branching

Branching of the vectorfield was already briefly mentioned in the previous section.
The differences between chain and vectorfield lead to a higher degree of branching
as is also shown in Figure 8.5.

The number of branches directly connected to the nest is roughly constant
throughout all group sizes, and in general higher than for chains (see Figure 5.13).
This is the case because a robot searching for the nest or the vectorfield immediately
starts a branch when it perceives the nest. When employing the chain controller
a robot that finds the nest first explores its vicinity to see if there are any other
chains. Therefore, there are more branches directly at the nest.

For small group sizes N ≤ 20 there are hardly any sub-branches, that is, splits
within one branch are very rare. For larger group sizes however, sub-branching
becomes more pronounced.

8.3.1.3 Exploration

We performed the same exploration test as for the chain controller. Initially, the
robots are randomly positioned and the environment is completely unexplored. A
position in the environment is defined to be explored if it is within a radius of 40 cm
of an explorer or vectorfield robot. Figure 8.6 shows the percentage of the explored
arena for the vectorfield controller.

Compared to the chain controller (see Figures 5.14, 5.15 and 5.16) the exploration
rate is low especially for small group sizes. Indeed, if the density of robots is low
there is continuously a high fraction of the robots in the search state performing a
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Figure 8.5: The histograms show the frequency of the number of branches formed
for the vectorfield controller and a group size of (a) 10, (b) 20, (c) 40 and (d) 80
robots in 100 evaluations. The results are collected at t = 3600 sec in an obstacle
free environment with no prey. The white bars on the left of each histogram indicate
the number of branches formed directly from the nest. The grey bars on the right
also include splits in branches that lead to different sub-branches.
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Figure 8.6: The box-and-whisker-plots (Becker et al., 1988) show 100 evaluations
of the exploration rate for a group of (a) 10 robots, (b) 20 robots, (c) 40 robots
and (d) 80 robots using the vectorfield controller in an obstacle free environment.
Given that no prey is present in the arena the results do not rely on the prey
extension mechanism. Boxes represent the inter-quartile range of the data, while
the horizontal bars inside the boxes mark the median values. The whiskers extend
to the most extreme data points within 1.5 of the inter-quartile range from the box.
The empty circles mark the outliers.
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random walk. This is due to the fact that when a robot leaves the vectorfield it
performs a random walk. When the density of robots is low, the search can take a
considerable amount of time. However, when there is a high density of robots, the
random walk will possibly lead to another branch of the vectorfield quickly. And
as can be seen in Figure 8.6c and d, for larger group sizes the performance of the
vectorfield is comparable to that of chains, and the initial exploration is even faster.

8.3.2 Difficulty Test

In the difficulty we test the ability of the vectorfield controller to cope with changes
in the difficulty of the task, that is, when changing the nest to prey distance D. For
a group size of N = 20 Figure 8.7 shows the completion time, and Figure 8.8 shows
the normalized completion time, that is, the completion time divided by the prey
distance ( T

D
), for the subtasks (a) path formation, (b) assembly, and (c) transport.

Table 8.3 displays the success rates.

As already expected, the results reveal that for this group size the vectorfield
controller performs rather poorly when compared to the chains. Without prey ex-
tension mechanism the success rate to form a path drops below 50% for distances
D > 2m, while it stays constantly high for the chain controller. The use of the prey
extension mechanism improves the performance, but nevertheless it remains below
the one of the chains. The reason for this is mainly that due to the higher degree
of randomness the vectorfield controller requires a higher density of robots to work

Table 8.3: Success rates for the difficulty test of the vectorfield controller with and
without prey extension mechanism, compared to the aligning chain controller for a
group size of N = 20. The three values represent percentages of the success rate
from 100 trials for path formation, assembly and transport in this order.

D Vectorfield Aligning Vectorfield-X Aligning-X

1.0 100/100/99 100/100/100 100/98/97 100/100/100

1.2 100/100/100 100/100/100 100/100/100 100/100/100

1.4 97/92/91 100/100/100 100/97/97 100/100/100

1.6 91/82/80 100/100/98 95/89/88 100/100/100

1.8 85/73/73 100/100/100 94/85/85 100/100/99

2.0 60/50/48 100/100/99 86/82/79 100/100/99

2.2 49/42/42 99/99/98 75/62/61 100/100/98

2.4 57/44/43 100/100/100 64/57/53 100/100/98

2.6 37/27/27 100/100/95 53/44/42 100/100/95

2.8 38/26/26 100/98/90 52/42/40 100/100/96

3.0 17/15/15 100/100/95 41/31/31 100/100/94
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Figure 8.7: The box-and-whisker-plots (Becker et al., 1988) show 100 evaluations
per box of the completion time when changing the nest to prey distance, for a group
of (a) 10 robots, (b) 20 robots, (c) 40 robots and (d) 80 robots using the vectorfield
controller with and without prey extension mechanism in an environment without
obstacles. See the caption of Figure 8.6 for an explanation of the box-and-whisker
plots.
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Figure 8.8: The box-and-whisker-plots (Becker et al., 1988) show the results taken
from 100 trials of the normalized completion time (i.e. the completion time divided
by the distance T

D
) for subtasks (a) path formation, (b) assembly, and (c) transport

when changing the nest to prey distance for a group 20 robots using the different
chain strategies with and without prey extension mechanism in an environment
without obstacles. Note that subtask assembly is only taken into account in case a
path has been formed, and respectively subtask transport is only taken into account
in case the assembly was successful. See the caption of Figure 8.6 for an explanation
of the box-and-whisker plots.
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efficiently. This will be investigated in more detail in the following section where
scalability is tested.

Also for subtask assembly the performance of the vectorfield controller remains
below the one of chains. The reason is that compared the chains, the recruitment
process for the vectorfield controller leads the explorers less directly to the prey once
a path is formed. A robot following a chain usually reaches its tail, and in case the
chain connects nest and prey, the prey. Due to the higher degree of branching, when
following the vectorfield structure, a robot may follow a different branch or start a
new one itself, even if the prey has been found already.

For subtask transport the performance of the vectorfield controller is better.
Even though the overall success rate usually remains below the one of the chain
controller, the relative success rate, that is, the fraction of trials with a successful
transport given a successful assembly, is higher. Furthermore, the transport is faster
than is the case for chains. This has mainly two causes, both of which are related
to the less explicit recruitment of robots to the prey. First, the size of the assem-
bled structure of robots transporting the prey is smaller. This is beneficial for the
transport because in a large pulling structure there are usually some robots that do
not perceive the goal direction and therefore disturb the transport. Second, once
that two robots are connected to the prey, they can transport it with less robots
arriving and trying to assemble to the prey which in effect blocks the transport. For
the chains, this leads to a higher success rate for subtask assembly, but it makes the
transport more difficult and in general less successful and slower.

For subtasks assembly and transport the performance decreases when using the
prey extension mechanism. This has the same reason as for the chains. The prey
extending structure remains after a path has been formed and in this way distracts
the vectorfield. Additionally, given that there is a higher degree of branching for
the vectorfield, using the prey extending structure increases the probability to have
multiple branches that form a path between nest and prey. This distracts the trans-
port as the robots in the prey pulling structure have multiple goal directions towards
which they try to transport the prey.

8.3.3 Scalability Test

In a scalability test we investigate the performance of the vectorfield controller when
changing the group size N . We use groups of up to N = 200 robots, keep the
nest to prey distance constant at a distance of D = 3m, and use an obstacle free
environment. A summary of the results is given in Table 8.4 for the achieved success
rates and the median completion times for path formation, in Figure 5.19 for the
completion time of subtasks (a) path formation, (b) assembly, and (c) transport,
and in Figure 5.20 for the overall effort, that is, the product of completion time and
robot group size. This measure is a good indicator of scalability and can be used to
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investigate super-linearity in the system. In the following we give a summary of the
results for each subtask:

• Path formation: The performance of the vectorfield is comparably bad for
small group sizes. While the aligning chain strategy achieves success rates of
close to 100% already for a group size of N = 10, the vectorfield achieves a
success rate of more than 50% only for group sizes N > 30. However, the bigger
the group size the smaller is the gap between vectorfield and aligning chains,
and from a group size of N = 60 the vectorfield outperforms the aligning
chains. When used without prey extension mechanism, the overall effort of
the vectorfield controller decreases up to a group size of roughly 100 robots,
and then stays roughly constant. The same could be observed for the chain
strategies, but the value at which the overall effort of the vectorfield controller
stabilizes is lower.

While the higher degree of randomness in the vectorfield controller appears
to be a disadvantage for small densities of robots, it apparently turns into an
advantage for larger groups. In fact, it allows the robots to move more freely
after they have left the vectorfield, in this way allowing for a more homogeneous
dispersion of the robots in the environment. For increasing group sizes chains
tend to become overcrowded with robots moving along them. This increases
the amount of physical interactions and makes it difficult for the robots to
move efficiently. Furthermore, the process of joining the vectorfield structure
is simpler than joining a chain, which allows for a faster formation of a structure
and a path.

The prey extension mechanism has a beneficial effect for small group sizes,
but leads to a decrease in performance for larger group sizes. This can be
observed for both vectorfield and chains. For small group sizes it speeds up
the path formation process as it leads to the formation of a path from both
nest and prey, and in this way makes a more efficient use of the resources.
For large group sizes it can lead to confusion in the path formation as prey
extending structure is formed very quickly and the environment is filled with
robots that activate their LEDs in the colour of the prey. The decrease in
performance for large group sizes is more pronounced for the chain controller
than for the vectorfield controller. The reason for this is that the vectorfield
controller is formed more quickly, and therefore leaves less time to the prey
extension structure to be built up.

• Assembly: As could already be observed in the difficulty test of the previous
section, the success rate of assembly for the vectorfield controller is below the
one of the chain controller due to a less explicit recruitment mechanism. For
larger group sizes the gap between the two controllers becomes smaller, and
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Table 8.4: Success rates for the scalability test of the vectorfield controller compared
to the aligning chain controller with and without prey extension mechanism for
selected group sizes N . The three values in the first row of each box represent
percentages of the success rate from 100 trials for path formation, assembly and
transport in this order, and the value in the second row is the median completion
time for path formation Tp.

N Vectorfield Aligning Vectorfield-X Aligning-X

10 0/0/0 89/34/9 1/0/0 96/50/19
Tp =10000 Tp =3531 Tp =10000 Tp =1520

12 4/0/0 93/93/75 5/2/2 97/96/80
Tp =10000 Tp =2057 Tp =10000 Tp =1405.5

14 6/3/3 93/91/81 15/10/9 95/95/84
Tp =10000 Tp =1820.5 Tp =10000 Tp =866.5

16 16/11/11 100/99/93 22/14/12 100/99/94
Tp =10000 Tp =1619 Tp =10000 Tp =970

18 18/13/12 100/100/91 35/24/22 100/100/92
Tp =10000 Tp =946 Tp =10000 Tp =847

20 17/15/15 100/100/95 41/31/31 100/100/94
Tp =10000 Tp =1540.5 Tp =10000 Tp =768

25 36/22/22 100/99/93 54/41/38 100/100/93
Tp =10000 Tp =1069 Tp =5548 Tp =576

30 50/37/36 100/100/94 71/63/62 100/100/99
Tp =9919.5 Tp =757.5 Tp =1461.5 Tp =609

40 66/58/57 100/100/95 81/63/62 100/100/100
Tp =1301.5 Tp =479 Tp =770.5 Tp =613.5

50 84/69/68 100/100/94 89/71/68 100/100/97
Tp =434 Tp =366.5 Tp =459.5 Tp =737

60 100/84/82 100/100/100 99/86/83 100/100/100
Tp =187.5 Tp =212 Tp =296 Tp =772

80 100/93/89 100/100/97 100/98/80 100/100/99
Tp =92 Tp =167 Tp =224 Tp =969.5

100 100/100/95 100/100/100 100/100/77 100/100/95
Tp =58 Tp =128 Tp =161.5 Tp =987.5

140 100/100/94 100/100/99 100/100/74 100/100/96
Tp =39.5 Tp =110 Tp =142.5 Tp =680

200 100/100/100 100/100/100 100/100/92 100/100/98
Tp =28 Tp =72.5 Tp =135.5 Tp =332.5
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Figure 8.9: The box-and-whisker-plots (Becker et al., 1988) show the results taken
from 100 trials of the completion times for subtasks (a) path formation, (b) assembly,
and (c) transport when changing the robot group size using vectorfield controller
with and without prey extension mechanism in an environment without obstacles.
Note that the subtask assembly is only taken into account in case a path has been
formed, and respectively the subtask transport is only taken into account in case
the assembly was successful. See the caption of Figure 8.6 for an explanation of the
box-and-whisker plots.
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Figure 8.10: The box-and-whisker-plots (Becker et al., 1988) show the results taken
from 100 trials of the overall efforts for subtasks (a) path formation, (b) assembly,
and (c) transport when changing the robot group size using the vectorfield controller
with and without prey extension mechanism in an environment without obstacles.
Note that the subtask assembly is only taken into account in case a path has been
formed, and respectively the subtask transport is only taken into account in case
the assembly was successful. See the caption of Figure 8.6 for an explanation of the
box-and-whisker plots.
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from a group size of N = 100 disappears for both success rate and completion
time.

• Transport: In general, the completion time remains roughly constant for
N < 60 and then increases for larger group sizes as there are more robots
trying to assemble to the prey and thereby disturb the transport. The same
is true for the chain controller, where the completion time starts to increase
from a group size of N = 20. Given the less explicit recruitment mechanism of
the vectorfield, the completion time is less affected by larger group sizes and
remains roughly constant up to a group size of N = 80. Up to a group size
of N = 120 the vectorfield is faster than the chain controllers when the prey
extension mechanism is not used. As mentioned in the previous section, when
using the prey extension mechanism the performance drops for larger group
as there are often multiple paths formed to the prey, and the prey pulling
structure of transporter robots has multiple goal directions.

8.3.4 Obstacle Test

To assess the capability of the vectorfield controller to cope with obstacles, we tested
its performance in three types of obstacle environments, as shown in Figure 5.21:
(a) the R-arena with a random configuration of obstacle cubes, (b) the X-arena with
four corridors, one of which leads to the prey, and (c) the U-arena, where the prey is
positioned behind a U-shaped obstacle. The prey distance is 3m for all cases except
for the U-arena, where it is placed behind a long corridor at a distance of 2.12m.

Table 8.5 shows the success rates and median completion times for subtask path
formation for six selected obstacle environments. Figures 8.11 and 8.12 show the
results of the individual subtasks for the obstacle test for group sizes of (a) 40 and
(b) 80 robots. For group sizes of N < 40 the performance of the vectorfield controller
is poor already for an environment with no obstacles. Therefore, we chose not to
display the results for N < 40. In the following we give a summary of the results
for each subtask:

• Path formation: As was the case for chains, for vectorfield there is a perfor-
mance drop when there are obstacles in the environment. In general, as already
observed in the previous tests, the vectorfield controller is outperformed by the
aligning chain controller for N = 40, and outperforms the aligning chain for
N = 80.

The X-arena is the only one where the performance of the vectorfield controller
is comparable to the one of the aligning chains for N = 40. The reason for
this lies in the higher degree of branching observed for the vectorfield. In
the X-arena, there are four corridors, and respectively four paths that can
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Figure 8.11: The box-and-whisker-plots show 100 evaluations per box of the comple-
tion time for subtask path formation when changing the number and configuration
of obstacles in the environment for a nest to prey distance of 3 meters and a group
of (a) 40 robots and (b) 80 robots using the vectorfield controller with and with-
out prey extension mechanism. For arenas of type R the number of obstacles is
indicated. See the caption of Figure 8.6 for an explanation of the box-and-whisker
plots.



144 CHAPTER 8

(a)

0
1

2
3

4
5

6
7

8
9

1
0

R0 R2 R4 R6 R8 R10 R12 R14 R16 R18 R20 R22 R24 R26 R28 R30 X U
Arena Type

C
o

m
p

le
ti
o

n
 t

im
e

 T
a
 (

1
0

3
s
) Assembly, Group Size = 40, Prey Distance = 3 m

(b)

0
1

2
3

4
5

6
7

8
9

1
0

R0 R2 R4 R6 R8 R10 R12 R14 R16 R18 R20 R22 R24 R26 R28 R30 X U
Arena Type

C
o

m
p

le
ti
o

n
 t

im
e

 T
a
 (

1
0

3
s
) Assembly, Group Size = 80, Prey Distance = 3 m

(c)

0
1

2
3

4
5

6
7

8
9

1
0

R0 R2 R4 R6 R8 R10 R12 R14 R16 R18 R20 R22 R24 R26 R28 R30 X U
Arena Type

C
o

m
p

le
ti
o

n
 t

im
e

 T
t 
(1

0
3
s
) Transport, Group Size = 40, Prey Distance = 3 m

(d)

0
1

2
3

4
5

6
7

8
9

1
0

R0 R2 R4 R6 R8 R10 R12 R14 R16 R18 R20 R22 R24 R26 R28 R30 X U
Arena Type

C
o

m
p

le
ti
o

n
 t

im
e

 T
t 
(1

0
3
s
) Transport, Group Size = 80, Prey Distance = 3 m

Figure 8.12: The box-and-whisker-plots show the results from 100 trials of the
completion time for subtasks assembly and transport when changing the number
and configuration of obstacles in the environment for a nest to prey distance of 3
meters and a group of (a) 40 robots and (b) 80 robots using the vectorfield with and
without prey extension mechanism. For arenas of type R the number of obstacles is
indicated. Note that a trial for assembly (transport) is only taken into account in
case subtask path formation (assembly) is successful. See the caption of Figure 8.6
for an explanation of the box-and-whisker plots.
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Table 8.5: Success rates for selected setups of the obstacle test of the vectorfield
controller compared to the aligning chain controller. The three values in the first
row of each box represent percentages of the success rate from 100 trials for path
formation, assembly and transport in this order, and the value in the second row is
the median completion time for path formation Tp.

Arena Vectorfield Aligning Vectorfield-X Aligning-X

N = 40

R0 66/58/57 100/100/95 81/63/62 100/100/100
Tp =1301.5 Tp =479 Tp =770.5 Tp =613.5

R10 67/50/46 98/96/73 71/55/50 100/100/91
Tp =1437 Tp =615.5 Tp =1162.5 Tp =761

R20 61/39/36 92/84/57 61/46/37 97/94/71
Tp =4808.5 Tp =766 Tp =3150.5 Tp =947.5

R30 45/25/18 80/50/23 48/29/18 85/75/39
Tp =10000 Tp =1411.5 Tp =10000 Tp =1632

X 38/18/18 42/35/6 40/22/19 40/38/13
Tp =10000 Tp =10000 Tp =10000 Tp =10000

U 27/15/13 100/100/9 24/12/3 100/100/39
Tp =10000 Tp =913 Tp =10000 Tp =1298.5

N = 80

R0 100/93/89 100/100/97 100/98/80 100/100/99
Tp =92 Tp =167 Tp =224 Tp =969.5

R10 97/87/76 100/100/82 98/93/75 100/100/81
Tp =106 Tp =215.5 Tp =225 Tp =711.5

R20 96/84/65 100/99/68 98/84/59 100/97/72
Tp =151.5 Tp =256 Tp =279 Tp =948.5

R30 95/81/49 92/81/43 93/75/34 99/88/38
Tp =209.5 Tp =648 Tp =424.5 Tp =893

X 93/78/68 78/69/22 94/82/66 85/80/32
Tp =157.5 Tp =282.5 Tp =312 Tp =940.5

U 100/100/49 100/100/2 100/100/24 100/99/11
Tp =254 Tp =513.5 Tp =446 Tp =1545.5

be followed. While for N = 40 there are usually only two chains formed
simultaneously, there are in most cases four branches, and many more sub-
branches for the vectorfield. Therefore, there is a higher probability that all
corridors are explored by the vectorfield controller, which explains its good
performance when compared to the other arenas.

The vectorfield’s performance for N = 40 is particularly poor for the U-arena.
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At least 22 robots are required to form a path. Due to the particular shape of
the arena there are only two possible paths that can be followed. Given the
very low probability of a homogeneous split of the robots for each path, the
aligning chain reaches a success rate of 100% already for group size N = 40.
However, for the vectorfield controller the success rate is just 27% without,
and 24% with prey extension mechanism. The reason for this lower success
rate is mainly given by the random, non-aligning structure of the vectorfield.
In case a path is formed, it usually consists of 30 or more robots that connect
nest and prey. If more than 30 robots are allocated to the same of the two
possible paths, they are very likely to form a path connecting nest and prey.
For a group size of N = 40 there is a low probability for this to happen, which
is represented by the low success rate. However, for N = 80, there are at least
40 robots following each path. Hence the success rate of 100%.

• Assembly: There are two main observations: First, the assembly performance
decreases in the presence of obstacles. The degree of performance drop is
similar as for chains and is due to obstacles making the access to the prey
more difficult. Second, the vectorfield generally performs worse for subtask
assembly than for chains. This could already be observed in the previous tests
and is due to the less explicit recruitment of robots to the prey once a path is
formed.

• Transport: As for the previous two subtasks, also the transport performance
is in general diminished in the presence of obstacles in the environment. In
general, the vectorfield reaches a better performance than the chains. The
reasons for this are the same as stated in the previous sections. Compared to
the aligning chains, the transport performance of the vectorfield is particularly
strong in the X- and U-arenas. These arenas pose difficulties to the transport
subtask due to the increased length of the path (4.2m for the X-arena, and
approximately 7.8m for the U-arena), and due to the very steep turns around
corners. The latter difficulty poses a bigger problem to the aligning (and
moving) chains, as the aligning mechanism leads the chains to be closer to a
corner, which can block the transport. This is not the case for the vectorfield
(and the static chains), where the aligning mechanism is not used. Therefore,
the distance to corners is usually higher, and the performance of the transport
subtask for these two arena types is higher.

8.3.5 Robustness Tests

In order to test the robustness of the vectorfield controller with respect to noisy
information, we conducted a series of tests in which we vary the noise of the various
sensors. The noise is calculated at each time step as a uniformly random value
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within the range [−noisemax;noisemax], and is added to the considered sensor value.
Repeating the same tests performed with the chain controller in Section 5.3.5, we
varied the noise of the direction to objects2 perceived by the camera (Section 8.3.5.1),
the distance to objects perceived by the camera (Section 8.3.5.2), and the proximity
sensor (Section 8.3.5.3). In addition, we perform one test in which we vary the
noise of the direction-to-nest vector indicated by other robots in the vectorfield,
and which is perceived by the camera (Section 8.3.5.4).3 In all robustness tests we
employ group sizes of N ≥ 40, as for smaller group sizes the performance of the
vectorfield controller is poor already for the case that no additional noise is injected
in the controller.

8.3.5.1 Camera Direction

We test the robustness to the noise of the camera direction by adding maximum
noise levels in the range [0o, 180o]. Table 5.6 shows the achieved success rates for
the different strategies and subtasks, and the median completion times for subtask
path formation Tp.

Among the robustness tests performed for the chain controller, the camera di-
rection was shown to be the most sensitive sensory information. Similarly, the
performance of the vectorfield drops significantly for increasing noise levels as well.
In fact, the vectorfield becomes unstable for noise levels above approximately 50o

due to a threshold angle related to the connection between two neighbouring robots.
Robots that are aggregated in the vectorfield structure indicate the direction to-
wards their predecessor. If a robot does not perceive its predecessor at a direction
that is within a threshold of 50o with respect to the indicated direction for a given
number of consecutive time steps, it leaves the vectorfield because it assumes that
the vectorfield structure broke up, in this way triggering all the robots behind to
leave the vectorfield as well. Therefore, if the noise of the direction perceived us-
ing the camera grows beyond this threshold, robots in the vectorfield falsely assume
that the structure broke up and leave, which leads to the instability of the structure.
Surprisingly, as can be seen in the results, for N = 80 the success rate to form a
path is still at 87% for the maximum level of noise. However, a path formed during
a successful trial with such a high level of noise is not stable and will disintegrate at
some point.

When the prey extension mechanism is used the success rate for path formation
drops even stronger. The instability of the vectorfield structure leads the majority
of the robots to join the prey extending structure, which makes path formation im-

2An object can be another robot, the nest or the prey. Obstacles can not be perceived with the
camera.

3As mentioned in Section 3.2.2, the values used in all experiments for these four noise levels are
18o, 10 cm 0.2, and 36o. In the robustness tests we manipulate one value at a time.
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Table 8.6: Success rates of the vectorfield controller compared to the aligning chain
controller for the robustness test on the perception of direction using the camera.
The three values in the first row of each box represent percentages of the success
rate from 100 trials for path formation, assembly and transport in this order, and
the value in the second row is the median completion time for path formation Tp.

Noise Vectorfield Aligning Vectorfield-X Aligning-X

N = 40

0o 68/59/58 100/100/93 83/63/62 100/100/98
Tp =3416.5 Tp =371.5 Tp =881 Tp =504

36o 61/0/0 98/98/91 67/0/0 99/99/97
Tp =3671 Tp =732.5 Tp =2222.5 Tp =1052

72o 17/0/0 88/73/22 2/0/0 99/95/41
Tp =10000 Tp =3077 Tp =10000 Tp =1909.5

108o 4/0/0 33/13/0 0/0/0 50/21/0
Tp =10000 Tp =10000 Tp =10000 Tp =9782

144o 1/0/0 10/0/0 0/0/0 33/1/0
Tp =10000 Tp =10000 Tp =10000 Tp =10000

180o 0/0/0 35/0/0 0/0/0 0/0/0
Tp =10000 Tp =10000 Tp =10000 Tp =10000

N = 80

0o 100/94/89 100/100/96 100/98/80 100/100/97
Tp =119 Tp =184 Tp =195 Tp =994.5

36o 100/6/1 100/100/98 99/0/0 99/99/98
Tp =182 Tp =217 Tp =1130 Tp =1082.5

72o 100/0/0 100/97/24 1/0/0 99/97/29
Tp =512 Tp =738 Tp =10000 Tp =1431.5

108o 99/0/0 76/34/0 0/0/0 91/69/0
Tp =893 Tp =3571.5 Tp =10000 Tp =3108.5

144o 96/0/0 58/3/0 0/0/0 54/3/0
Tp =1865 Tp =6468.5 Tp =10000 Tp =9790.5

180o 87/0/0 85/0/0 0/0/0 0/0/0
Tp =2488 Tp =2720 Tp =10000 Tp =10000

possible. As already explained for the chains, the connectivity of the prey extending
structure is based on simpler rules. Therefore, its stability is far less disturbed by
the injection of noise than is the case for chains and vectorfield.

The drop of the success rate for subtask assembly is more pronounced for the
vectorfield than for the aligning chains. This is mainly due to the fact that the
stability of the vectorfield structure is disrupted. Even if a path is formed, it is
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usually destroyed quickly, and there is in most cases not enough time for robots to
get recruited to assemble to the prey. The same is true for subtask transport, even
though the results are not very meaningful due to the lack of trials with a successful
assembly. If assembly is successful, the transport is made very difficult for increasing
levels of noise as the vectorfield structure is instable, and therefore a goal direction
for the transporters is missing.

8.3.5.2 Camera Distance

In addition to the direction towards an object, the camera informs a robot about
the distance. This distance information is used for navigating along the vectorfield,
for assembly, and for transport. Table 8.7 displays the achieved success rates for the
different subtasks and the median completion times for path formation comparing
the vectorfield to the aligning chains.

For what concerns path formation, the vectorfield controller is in general less
affected by the presence of camera distance noise than the aligning chains. The
same could be observed for static chains when compared to aligning and moving
chains. The path forming structures of vectorfield and static chains do not move,
and are therefore not broken up once formed. For the aligning and moving chains,
neighbouring chain robots adjust their distance with respect to each other. Falsely
assuming that the neighbour is close may lead the robot to move away from the
neighbour, and in case it gets out of sight, the chain breaks up.

For N = 40 the success rate to form a path is even higher for the vectorfield
controller when high levels of noise are injected than at the default level of noise
(10 cm). A similar effect was observed for the static chains. The reason is that due
to noise the distance between neighbouring robots in the vectorfield structure can
be increased.

For high levels of noise, the prey extension mechanism leads to a higher degree
of sensitivity. For the aligning chains this is mainly caused by the instability of the
chains due to which the majority of the robots joins the prey extending structure.
The stability of the vectorfield structure is much less affected by the presence of
noise. The reason that the performance drops is the mechanism that lets a robot
leave the vectorfield in case it perceives the prey (or a robot that activates its LEDs
in the same colour as the prey) perceived at a close distance. This is often and
especially for large group sizes falsely the case if the prey extension mechanism is
used. Therefore, for large group sizes the performance decrease is stronger for high
levels of noise when the prey extension mechanism is used.

The success of subtask assembly, while also diminishing with increasing levels of
noise, is less affected than when used with the aligning chains. This can be explained
with the lower degree of stability for the aligning chains that tend to break up more
easily when a high level of noise is injected. Therefore, a robot does often not have
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Table 8.7: Success rates of the vectorfield controller compared to the aligning chain
controller for the robustness test on the perception of distance using the camera.
The three values in the first row of each box represent percentages of the success
rate from 100 trials for path formation, assembly and transport in this order, and
the value in the second row is the median completion time for path formation Tp.

Noise Vectorfield Aligning Vectorfield-X Aligning-X

N = 40

0 cm 76/62/60 100/100/87 89/80/77 100/100/97
Tp =1255.5 Tp =325 Tp =722.5 Tp =643

10 cm 66/58/57 100/100/95 81/63/62 100/100/95
Tp =1301.5 Tp =479 Tp =770.5 Tp =613.5

20 cm 69/56/2 100/98/90 79/60/0 100/100/98
Tp =1806 Tp =835.5 Tp =1290 Tp =445.5

30 cm 75/59/1 99/20/4 86/38/0 100/24/7
Tp =1577.5 Tp =1623 Tp =1194 Tp =1449.5

40 cm 80/17/0 94/0/0 75/0/0 36/0/0
Tp =1563 Tp =3202.5 Tp =2895.5 Tp =10000

50 cm 88/0/0 83/0/0 33/0/0 4/0/0
Tp =1807 Tp =4495.5 Tp =10000 Tp =10000

N = 80

0 cm 99/98/93 100/100/96 99/96/82 100/100/97
Tp =133 Tp =151 Tp =210 Tp =998

10 cm 100/93/89 100/100/97 100/98/80 100/100/99
Tp =92 Tp =167 Tp =224 Tp =969.5

20 cm 100/99/5 100/100/79 100/97/3 100/100/97
Tp =77 Tp =152 Tp =354.5 Tp =500

30 cm 100/98/0 100/59/16 100/67/0 100/20/1
Tp =103 Tp =165.5 Tp =550 Tp =1483

40 cm 100/58/0 100/2/0 10/0/0 41/0/0
Tp =110 Tp =394.5 Tp =10000 Tp =10000

50 cm 100/1/0 100/0/0 1/0/0 2/0/0
Tp =246 Tp =488.5 Tp =10000 Tp =10000

enough time to assemble.

While the vectorfield showed a higher degree of robustness for subtasks path
formation and assembly, for subtask transport it appears to be more sensitive than
the aligning chain controller. From a noise level of 20 cm the transport success rate
drops to near 0. The reason is that a higher degree of noise also leads to a higher
degree of branching, and therefore to a higher probability that multiple branches
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Table 8.8: Success rates of the vectorfield controller compared to the aligning chain
controller for the robustness test on the perception of obstacles using the proximity
sensors. The three values represent percentages of the success rate from 100 trials
for path formation, assembly and transport in this order.

Noise Vectorfield Aligning Vectorfield-X Aligning-X

N = 40

0% 63/41/38 100/100/95 83/65/59 100/100/96
20% 57/40/37 100/100/95 81/64/60 100/100/96
40% 62/48/45 100/100/93 80/69/66 100/100/96
60% 64/50/48 100/100/88 78/63/58 100/100/99
80% 61/49/47 100/100/90 85/72/71 100/100/95
100% 59/44/42 100/100/92 84/63/61 100/100/96

N = 80

0% 99/91/85 100/100/98 100/99/87 100/100/98
20% 100/96/84 100/100/99 99/95/78 100/100/96
40% 100/94/80 100/100/97 100/95/77 100/100/97
60% 99/92/78 100/100/99 98/94/84 99/98/97
80% 100/91/79 100/100/95 100/94/75 100/100/99
100% 99/90/77 100/100/96 99/95/78 98/92/78

lead to the prey. In this case, once that assembly is finished, the robots may perceive
different goal directions and therefore do not succeed to move the prey.

8.3.5.3 Proximity Sensors

In this test we investigate the capability to cope with a noisy perception of obstacles
when using the proximity sensors. The level of noise injected is normalized by the
maximum activation of a proximity sensor, obtained when a robot is placed directly
next to a wall, an obstacle, or another robot. We tested six different ratios of noise in
the range [0, 1]. The achieved success rates for the different strategies and subtasks
are reported in Table 8.8.

Similarly as found for the chain controller, the performance of the vectorfield
controller is very robust with respect to noise of the proximity sensors. Even though
there are more collisions and the behaviour appears more random with a high degree
of noise, the success rates of none of the three subtasks diminishes significantly.

8.3.5.4 Vectorfield Indicated Direction

In a final robustness test, we investigate the sensitivity with respect to the perception
of the direction indicated by robots in the vectorfield. We test for six different
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Table 8.9: Success rates of the vectorfield controller for the robustness test on the
perception of the direction indicated by the vectorfield for the vectorfield controller.
The three values in the first row of each box represent percentages of the success
rate from 100 trials for path formation, assembly and transport in this order, and
the value in the second row is the median completion time for path formation Tp.

Noise Vectorfield Vectorfield-X

N = 40

0o 69/52/50 80/66/64
Tp =1428 Tp =789

36o 58/41/38 76/55/49
Tp =3074 Tp =754.5

72o 61/41/39 79/65/60
Tp =4066 Tp =922

108o 85/52/50 95/87/84
Tp =2084 Tp =977.5

144o 74/3/1 97/3/2
Tp =3920 Tp =2173.5

180o 7/0/0 30/0/0
Tp =10000 Tp =10000

N = 80

0o 98/92/80 100/96/85
Tp =114 Tp =222

36o 99/90/84 100/94/79
Tp =104.5 Tp =211.5

72o 100/93/84 100/100/86
Tp =116 Tp =256.5

108o 100/92/84 99/97/89
Tp =153 Tp =547.5

144o 100/14/8 92/1/0
Tp =223.5 Tp =2316

180o 100/0/0 26/0/0
Tp =448.5 Tp =10000

maximum noise levels in the range [0o, 180o]. Table 8.9 shows the achieved success
rates for the different subtasks, and the median completion time Tp for subtask path
formation.

The direction indicated by robots in the vectorfield serves two purposes. First,
robots moving along the vectorfield follow the opposite direction of the one indicated.
In this way they move away from the nest and towards the border of the vectorfield.
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Second, a robot in the vectorfield regularly checks the directions towards which the
neighbouring vectorfield robots are pointing. The robot can only leave the vectorfield
in case it perceives no other robot pointing towards it, as otherwise it considers itself
to be situated at the border of the vectorfield and—by leaving—it would risk to break
up the vectorfield structure. For increasing levels of noise in the perception of the
indicated direction, the risk increases that a robot does not recognise a neighbour
pointing towards it. Therefore, the stability of the vectorfield structure is decreased.

Surprisingly, the success rate for path formation does not decrease even for a
very high level of noise. In fact, for N = 40 it even increases up to a noise level
of 144o. However, even if the success rate increases, the median completion time
increases as well. This means that when noise is injected, the problem of forming
a path is solved more reliably, but more slowly as well. The reason for this is that,
when the structure breaks up, the robots rearrange and form a new structure. In
this way time is lost, but—in case a break up does not occur too frequently—it
gives the system the possibility for a fresh start, increasing the probability to search
previously unexplored areas of the arena.

The performance is similarly affected when using prey extension mechanism.
However, for N = 80 and the highest level of noise, the performance decreases to
26%, which is even less than the 30% reached for a smaller group size of N = 40.
The high level of noise leads to a very unstable vectorfield structure. When the prey
extension mechanism is used the majority of the robots joins it. This becomes more
pronounced for a bigger group size, as then the prey extending structure spreads all
over the environment.

For subtasks assembly and transport, the indicated direction by vectorfield
robots is of no importance. However, for high levels of noise, a formed path has
a very short lifetime and therefore there is often no time for other robots to be re-
cruited and get near the prey in order to assemble to it. If they manage to do this,
the transporters often lose sight of the vectorfield structure due to its instability and
therefore lack a goal direction.

8.3.6 Fault Tolerance Tests

In four fault tolerance tests we investigate the ability of the vectorfield controller to
cope with individual failure by deactivating a sensor or actuator for varying fraction
of the robot group in the range [0%, 100%]. As it was done for the chain controller in
Section 5.3.6, we disabled the camera (Section 8.3.6.1), the LEDs (Section 8.3.6.2),
the proximity sensors (Section 8.3.6.3), or the tracks (Section 8.3.6.4).
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Table 8.10: Success rates of the vectorfield controller compared to the aligning
chain controller for the fault tolerance test on disabled cameras. The three values
represent percentages of the success rate from 100 trials for path formation, assembly
and transport in this order.

Fraction Vectorfield Aligning Vectorfield-X Aligning-X

N = 40

0% 66/58/57 100/100/95 81/63/62 100/100/100
20% 63/58/58 100/100/91 81/73/72 100/100/93
40% 52/48/47 100/100/90 62/60/58 100/100/98
60% 22/17/17 99/99/95 45/40/40 100/100/95
80% 0/0/0 76/0/0 2/0/0 93/0/0
100% 0/0/0 0/0/0 0/0/0 0/0/0

N = 80

0% 100/93/89 100/100/97 100/98/80 100/100/99
20% 100/91/88 100/100/95 100/97/79 100/100/98
40% 94/89/86 100/100/100 99/94/79 100/100/99
60% 74/63/59 100/100/97 91/85/77 100/100/92
80% 25/15/12 97/97/91 53/40/29 99/99/94
100% 0/0/0 0/0/0 0/0/0 0/0/0

8.3.6.1 Camera

The only behaviours of both vectorfield and chain controller that do not depend on
the camera are obstacle avoidance and random walk. Respectively, a robot with
a disabled camera can not contribute to the solution of any of the three subtasks.
Instead, it performs a random walk and can be considered as a mobile obstacle. Our
results, as shown in Table 8.10, confirm this.

Disabling the camera of a robot leads to a similar performance as removing it
entirely from the arena. Therefore, the tolerance to failure depends on whether
the group size is large enough to accomplish the task without the erroneous robots.
The chain controller reaches a higher fault tolerance than the vectorfield controller
because in general it requires less robots to solve the task. The prey extension
mechanism is beneficial for reaching a higher degree of fault tolerance as well, because
it further increases the efficiency for small group sizes.

8.3.6.2 LEDs

If a robot’s LEDs are deactivated, it can not signal its internal state to the other
robots. It can still recognise other robots that signal their state, the nest and the
prey, and can therefore assemble to and transport the prey, and in this way par-
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Table 8.11: Success rates of the vectorfield controller compared to the aligning chain
controller for the fault tolerance test on disabled LEDs. The three values represent
percentages of the success rate from 100 trials for path formation, assembly and
transport in this order.

Fraction Vectorfield Aligning Vectorfield-X Aligning-X

N = 40

0% 66/58/57 100/100/95 81/63/62 100/100/100
20% 61/45/44 100/100/87 80/61/59 100/100/93
40% 55/36/35 100/99/79 64/61/55 100/100/94
60% 26/13/13 98/86/49 44/35/30 100/100/93
80% 0/0/0 9/3/2 4/0/0 35/20/15
100% 0/0/0 0/0/0 0/0/0 0/0/0

N = 80

0% 100/93/89 100/100/97 100/98/80 100/100/99
20% 100/92/88 100/100/84 100/95/85 100/100/99
40% 94/87/77 100/100/64 95/89/83 100/100/91
60% 72/53/46 100/96/15 82/67/62 100/100/65
80% 38/17/8 79/22/0 46/27/11 96/58/6
100% 0/0/0 0/0/0 0/0/0 0/0/0

ticipate in the accomplishment of these two subtasks. However, the fault tolerance
test on disabled LEDs with the chain controller (see Section 5.3.6.2) revealed that
by disabling the LEDs of a robot its behaviour becomes even more disruptive for
the whole system than by disabling the camera. The reason is that there is an over-
crowding of the robots without LEDs along chains which can cause the chains to
break up. Furthermore, when a path is formed, all erroneous robots try to assemble
to the prey at the same time and disturb each other from connecting to the prey.

As can be seen in Table 8.11, the success rate of the vectorfield decreases as
well when disabling the LEDs. As in the previous test, the vectorfield is less fault
tolerant than the chains as it requires a higher density of robots. However, for
the vectorfield the performance decrease is comparable to the one observed when
disabling the camera, which means that the effect is less disruptive than for the
chains. The reason for this is that the vectorfield structure does not suffer from a
loss of stability, as due to the higher degree of randomness the behaviour has less or
no overcrowding of the erroneous robots, and as due to the fact that a robot in the
vectorfield does not move it is more stable by default.
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Table 8.12: Success rates of the vectorfield controller compared to the aligning chain
controller for the fault tolerance test on disabled proximity sensors. The three values
represent percentages of the success rate from 100 trials for path formation, assembly
and transport in this order.

Fraction Vectorfield Aligning Vectorfield-X Aligning-X

N = 40

0% 66/58/57 100/100/95 81/63/62 100/100/100
20% 49/41/40 100/100/93 75/64/63 100/100/98
40% 45/42/39 100/100/95 69/65/62 100/100/94
60% 24/24/22 100/99/94 54/52/47 100/100/95
80% 18/15/12 96/96/89 48/47/41 99/99/95
100% 3/3/3 73/71/54 20/20/19 98/97/73

N = 80

0% 100/93/89 100/100/97 100/98/80 100/100/99
20% 100/93/82 100/100/98 99/92/77 100/100/97
40% 98/94/89 100/100/99 100/96/84 100/100/100
60% 94/91/81 100/100/96 99/96/88 100/100/99
80% 85/78/68 100/100/91 97/91/82 100/100/98
100% 92/85/64 99/98/72 97/94/90 100/100/97

8.3.6.3 Proximity Sensors

A robot without proximity sensors is not able to detect other robots (that have not
activated their LEDs), obstacles and walls. Therefore, when making a random walk
it might get stuck in corners without recognising this. However, the robustness test
showed that the performance stays comparably high even for high levels of noise.
Also the fault tolerance test of the chain controller (see Section 5.3.6.3) showed
that the task can still be accomplished very reliably if the proximity sensors are
deactivated.

The results of our fault tolerance test for the vectorfield, as summarized in Ta-
ble 8.12, show a stronger decrease in performance than for the chains. The reason
for this is that more robots tend to get stuck at corners than is the case for the
chains. Robots leaving a chain move back to the nest and then follow another chain.
They therefore usually do not lose sight of the chain and do not get lost once they
found the nest. Robots leaving the vectorfield structure perform a random walk for
some time and therefore might get out of sight of the vectorfield and risk to get
stuck.

This is particularly problematic when the density of robots is not very high, as
for N = 40. For N = 80 the density is sufficiently high so that robots get stuck less
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Table 8.13: Success rates of the vectorfield controller compared to the aligning chain
controller for the fault tolerance test on disabled tracks. The three values represent
percentages of the success rate from 100 trials for path formation, assembly and
transport in this order.

Fraction Vectorfield Aligning Vectorfield-X Aligning-X

N = 40

0% 66/58/57 100/100/95 81/63/62 100/100/100
20% 58/35/35 99/99/95 76/53/49 100/100/97
40% 43/25/23 97/95/89 70/52/51 99/99/94
60% 29/10/10 83/78/68 45/21/18 96/94/84
80% 4/0/0 50/0/0 20/0/0 73/0/0
100% 0/0/0 0/0/0 0/0/0 0/0/0

N = 80

0% 100/93/89 100/100/97 100/98/80 100/100/99
20% 96/82/73 100/100/96 99/93/79 100/100/98
40% 92/66/62 100/100/92 97/90/81 100/100/99
60% 66/32/30 99/98/86 86/64/58 99/97/88
80% 48/13/12 85/79/60 59/22/19 82/67/53
100% 1/0/0 6/0/0 0/0/0 5/0/0

frequently and the performance stays high even if the proximity sensors of all robots
are deactivated.

8.3.6.4 Tracks

When a robot’s tracks are disabled it becomes immobile. It can still perceive other
robots and use its LEDs to signal its internal state, and in case it is by chance
situated at the right position, it can even join the path forming structure. But as
it cannot move at all, it hardly participates in the accomplishment of any of the
subtasks and can be considered as an immobile obstacle.

Not surprisingly, the results from Table 8.13 show that the performance decreases
for growing fractions of robots with disabled tracks. As was the case for the previous
tests, the vectorfield exhibits a lower degree of fault tolerance than the chains as it
requires a higher density of robots to work efficiently.

8.4 Conclusions

In this chapter we analysed the performance of the vectorfield controller on the task
of forming a path between nest and prey, assembling to the prey, and transporting
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it back to the nest, and compared it to the chain controller. As it was done for the
chain controller, we also tested the prey extension module in combination with the
vectorfield controller.

As opposed to the chain controller, we tested the vectorfield controller only in
simulation, and not on the real robot, which is due to three reasons: (i) A deficit of
robots. To work efficiently, the vectorfield requires a high density of robots, and the
number of available robots was not sufficiently high to perform meaningful experi-
ments. (ii) A deficit of processing power. The software used to identify directions
indicated by the vectorfield increases the length of a time step fourfold, which re-
duces the maximum speed of the robots and increases the length of an experiment.4

(iii) A deficit of battery power. For the chain controller, a fully loaded battery can
be used for up to approximately 45 minutes, which is very few for the vectorfield
controller when considering the low number of available robots and the reduced
speed of an experiment.

In general, we could observe that, due to a more uniform dispersal of robots in
the structure, the vectorfield controller requires a higher density of robots than the
chain controller to work efficiently. For low robot densities, the success rate remains
below the one of chains. However, if the density of robots is high, the vectorfield
controller outperforms the chain controller, in general leading to a faster formation
of a path between nest and prey.

Similarly to what was observed for the chain controller, the benefit of the prey
extension mechanism on path formation depends on the resources, that is, the size
of the robot group, given to solve the task. If the resources are scarce, the prey
extension mechanism has a beneficial effect on the overall performance, in general
speeding up the path formation process. However, when the robot group is suffi-
ciently large, the prey extension mechanism has a negative impact because the arena
gets quickly covered with the prey extending structure, and in this way misleads the
vectorfield structures towards regions which are only covered by robots that activate
their LEDs in the colour of the prey, instead of the prey itself.

For subtasks assembly and transport we used the same control modules as were
previously tested with the chain controller. Nevertheless, we found differences in
the overall behaviour when they were used in combination with the vectorfield con-
troller. The performance of subtask assembly is in general worse with the vectorfield
controller than with the chain controller. The success rate is lower and the comple-
tion time is higher. The reason for this can be found in the less explicit recruitment
of the vectorfield once a path between nest and prey is formed. A robot following a
chain usually reaches its tail, and in case the chain connects nest and prey, it is led
to the prey. Due to the higher degree of branching of the vectorfield, when following

4To allow for a better comparison, we set the maximum speed of a robot with the vectorfield
controller in simulation to the same as used for the chain controller.
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the vectorfield structure, a robot may follow a different branch or start a new one
itself, even if the prey has been found already.

The situation is different for subtask transport. The performance of the vec-
torfield controller is better when compared to the chain controller. Even though
the overall success rate usually remains below the one of the chain controller, the
relative success rate, that is, the fraction of trials with a successful transport given
a successful assembly, is higher. Furthermore, the transport is faster than is the
case for chains. This has mainly two causes, both of which are related to the less
explicit recruitment of robots to the prey. First, the size of the assembled structure
of robots transporting the prey is smaller. This is beneficial for the transport be-
cause in a large pulling structure there are usually some robots that do not perceive
the goal direction and therefore disturb the transport. Second, once two robots are
connected to the prey, they can transport it with fewer robots arriving and trying
to assemble to the prey which in effect blocks the transport. For the chains, this
leads to a higher success rate for subtask assembly, but it makes the transport more
difficult and in general less successful and slower.

In a series of robustness tests, we showed that the vectorfield controller can
cope with a noisy perception of sensory data. Repeating the same tests performed
for the chain controller, we varied the noise of the direction at which objects are
perceived using the camera, the distance at which objects are perceived using the
camera, and of the proximity sensors. The influence of noise in the sensory data
has a similar impact as observed for the chains. As it was the case for chains,
the performance drop is most pronounced for a noisy perception of the direction to
other objects, and the performance is in general very robust to a noisy perception of
the proximity sensors. Additionally, we performed one test in which we varied the
noise of the direction-to-nest vector indicated by other robots in the vectorfield, and
which is perceived by the camera. The performance of the vectorfield remains high
for subtask path formation even when a high amount of noise is injected. However,
the noise affects the stability of the vectorfield, so that a high level of noise leads to
a high probability that a path once formed gets destroyed. Consequently, this leads
to a decrease in the success rates of subtasks assembly and transport.

Finally, in a series of fault tolerance tests we analysed the ability of the vectorfield
controller to cope with individual failure by deactivating the camera, the LEDs, the
proximity sensors, or the tracks of a given fraction of robots in the group. In general,
the level of fault tolerance was below the one observed for the chain controller. The
reason for this is that the vectorfield controller requires a high density of robots to
work efficiently, while the chains reach a high performance already for comparably
small robot densities.
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Chapter 9

Conclusions

In this last chapter, we provide a summary of the work done and indicate some
directions for further research. In particular, in Section 9.1 we describe the task;
in Section 9.2, we summarize the control approaches proposed, and in Sections 9.3
and 9.4, we present the experiments performed and an outline of the results achieved.
Finally, in Section 9.5 we discuss possible directions for future work.

9.1 The Task

In this thesis, we studied a complex retrieval task in which a group of robots has
to (i) form a path between two objects (referred to as nest and prey), (ii) assemble
to the prey, and (iii) transport it back to the nest. The difficulty of the task is
determined by the given constraints. First, the robots have to cooperate in order
to form a path because a robot’s perceptual range is small when compared to the
distance between nest and prey. Second, the robots have no explicit knowledge
about the location of nest or prey. Third, communication among robots is limited
to a small set of simple signals that are locally broadcast. Fourth, the prey is too
heavy to be transported by a single robot and therefore requires the cooperative
effort of multiple robots to be moved.

9.2 Control Approaches

The focus and the main original contribution of this thesis lie in the solution of
the path formation subtask. When designing our control algorithms we emphasized
the cooperation and collectivity of the robot group and relied on principles such
as simplicity of rules, homogeneity and distributedness of control, and locality of
communication and information. We developed two novel navigation algorithms:
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chains and vectorfield. Both algorithms lead the robots to form paths by building
up visually connected structures of robots that start from the nest.

In addition to the two control algorithms, we developed a mechanism—referred to
as prey extension—that results in a parallel formation of a second visually connected
structure of robots that starts from the prey. The prey extension mechanism can be
combined with either of the two approaches, and aims at extending the perception
of the prey.

We developed three variants of the chain algorithm, differing from each other
by the degree of motion allowed to the robots in the path forming structure. In
the simplest case, the robots are not allowed to move at all. In the second case,
members of a chain align themselves with respect to each other. In the last case,
the chains move while keeping a visual connection to the nest.

For subtasks assembly and transport the controllers we used were based on the
work of Groß et al. (2006a); Groß and Dorigo (2004) and Groß et al. (2006b), and
modified in order to integrate them with our navigation algorithms.

9.3 Experiments

The chain controller was tested in simulation as well as on the real robot. For
the vectorfield controller our experiments were only performed in simulation. The
reasons why we decided not to perform experiments on the real robot are all related
to limited resources. We did not have enough robots, and the robot computing power
and battery life were less than what would have been needed to run the experiments.

In simulation, we first performed a study of the various parameters of the con-
trollers, and selected the most successful combination of parameters for detailed
evaluation. The controllers were tested under a wide range of experimental condi-
tions, varying the distance between nest and prey, the number of robots used, and
the obstacle configurations in the environment. Furthermore, we performed robust-
ness tests in which we varied the noise added to several sensors, and fault tolerance
tests in which we disabled sensors or actuators of a given fraction of robots. For the
chain controller, we performed experiments in which we varied the distance between
nest and prey, and the robot group size.

9.4 Results

One of the main differences (see Table 9.1) between the two proposed algorithms
is that in the case of chains the created structures are linear, while in the case of
vectorfield the structures are branched. This leads to a more uniform dispersal of
the robots controlled by the vectorfield algorithm, that therefore requires a higher
density of robots to work efficiently. This is also shown by the experimental results,
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Table 9.1: Comparison of chain and vectorfield controllers.
Chain Controller Vectorfield Controller

Linear structure Branched structure → more uniform dispersal

Good for low robot density Good for high robot density → better scalability

Faster assembly Faster transport

where the vectorfield performs worse than the chains for low robot densities. How-
ever, when the robot density is high, the chains can get overcrowded because there
are many robots following the same linear path. Due to the more uniform dispersal
such an overcrowding does not occur when the vectorfield controller is used, which
therefore outperforms the chains for high robot densities. Both controllers exhibit
very good scalability characteristics. In our experimental conditions, the efficiency
of the system in path formation increases with the group size for up to 100 robots
and then remains roughly constant. For assembly and transport the scalability char-
acteristics are worse than for path formation. In the case of assembly, large group
sizes lead to disturbances because multiple robots try to assemble at the same time.
If many robots are assembled to the prey and attempt to transport it, some of the
transporters may not be able to perceive the goal direction (i.e., the path formed by
chain or vectorfield), in this way making the transport more difficult.

Even though we used the same assembly and transport control modules for both
navigation strategies, they reach different levels of success. Assembly is in general
faster when used with the chain controller. This is due to the more explicit recruit-
ment process. A robot moving along a chain usually reaches its tail, while a robot
moving along a vectorfield has a higher probability of starting a new branch. There-
fore, for the chains there are more robots assembling to the transporting structure,
which in turn influences the transporting performance. As explained in the previous
paragraph, a large number of robots in the transporting structure is disadvanta-
geous. Therefore, and because there are less robots arriving to assemble to the prey,
the vectorfield outperforms the chains in the transport subtask.

For growing distances between nest and prey, the completion time for assembly
and transport increases linearly. The completion time to form a path grows more
than linearly because the area that has to be explored grows quadratically.

We tested our controllers in three different obstacle environments, two of which
are predefined, and one where the obstacles are randomly positioned. Even though
the performance drops, both controllers are able to form a path also if the environ-
ment contains obstacles. The performance drop is mainly due to three reasons: (i)
The increased difficulty of navigation, (ii) the possibility that nest and prey are hid-
den behind obstacles, and (iii) the possibility of an increased length of a path in case
the straight path is blocked by an obstacle. For subtask assembly, the performance
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drops because a connection to the prey can be restricted from several directions.
For subtask transport, obstacles pose a particular problem as robots trying to move
the prey can get stuck at an obstacle.

In a series of robustness tests we showed that both controllers are able to cope
with noisy conditions. We tested different noise levels of the direction and distance
perceived with the camera, and of the proximity sensor. Most of the information
that is required for the controllers is provided by the camera. The proximity sensors
are used only to avoid collisions. Therefore, the system is in general more sensitive
to a noisy perception of the information provided by the camera, and in particular
to the direction information. The higher the level of noise, the less stable becomes
the path forming structure, and the higher the probability for it to break up. For
the vectorfield controller we performed one additional robustness test, in which we
varied the noise in the perception of directions indicated by robots in the vectorfield.
Also in this case high levels of noise lead to a less stable vectorfield structure that
can be broken up.

In a series of fault tolerance tests we analysed the ability of the controllers to cope
with individual failures by deactivating either the camera, the LEDs, the proximity
sensors, or the tracks of a given fraction of robots in the group. In general, as also
observed for the robustness test, a large group size also leads to a higher degree
of fault tolerance. Furthermore, the chain controller in general results in a higher
degree of fault tolerance than the vectorfield, because the vectorfield requires a higher
density of robot to work efficiently. Among the four tests performed, the proximity
sensor led to the lowest degree of performance decrease. By disabling the camera a
robot acts like a mobile obstacle and can not contribute to any of the three subtasks.
By disabling the LEDs the effect on the behaviour is even more disruptive. A high
degree of erroneous robots then has a disruptive effect on existing chains. In the
case of disabled tracks a robot acts like an immobile obstacle. However, if by chance
it happens to be positioned at the right place, it can in principle contribute to form
a path, but not to any of the other two subtasks.

The prey extension mechanism has a good impact on the overall performance in
case the resources (i.e., robots) are scarce, because in this case the resources are used
more efficiently. However, for high densities of robots the prey extension mechanism
was found to be less efficient, as in this case the arena gets quickly covered with
the prey extending structure. Therefore, the chains take longer until they find the
real prey instead of a robot activating its LEDs in the colour of the prey. In the
robustness tests we observed that the prey extension mechanism results in a less
tolerant behaviour to noise. The prey extending structure relies on simpler rules
than the chain or vectorfield structure. Therefore, its stability remains high even for
high levels of sensor noise. If a chain or vectorfield structure breaks up, the robots
get quickly assimilated by the prey extending structure, in this way not leaving a
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sufficient amount of robots to form a path.

Among the three variants of chains, we found that the two dynamic strategies
outperform the static one. This is due to three reasons. First, the static chains are
not aligned and therefore cover shorter distances from the nest. Second, the two
dynamic chain strategies allow some motion to the chain members, which leads to
an exploration of the arena even when chains are already formed. Third and last,
the static chains have a higher risk to create loops in the form of a successive order
of three chain members.

In addition to the experiments performed in simulation, we tested the chain
controller on a real robot platform: the s-bot. We believe that these experiments
are among the most sophisticated examples of self-organisation in robotics to date.
The study confirms that complex forms of division of labour can indeed result from
the interactions of robots that follow relatively simple and local rules. The study
also demonstrates that teamwork requires neither individual recognition (the robots
we use are inter-changeable) nor inter-individual differences (the robots we use are
homogeneous in terms of “morphology” and “brain”), and as such might contribute
to the ongoing debate on the role of such characteristics for the division of labour
in social insects.

Summarizing our results, we can say that the proposed navigation algorithms
have complementary characteristics. For low densities of robots, the chains outper-
form the vectorfield, and the prey extension mechanism improves the performance.
However, for high robot densities the opposite is the case: The vectorfield controller
outperforms the chains, and the prey extension mechanism has a negative impact
on the performance.

9.5 Future Work

Swarm robotics is one of the most interesting and fascinating branches of robotics
nowadays. Ever cheaper, more powerful, and smaller hardware components are
opening new possibilities for the development of platforms that can be used to study
swarm robotics. While for the moment swarm robotics is mainly used in research, the
advantages of the swarm robotics approach will certainly lead to future applications.
For instance, in space exploration the use of a swarm of robots instead of just one
or a few robots has the advantage that the robot group will be able to cope better
with the failure of an individual robot. Also, as the swarm robotics approach has a
high degree of robustness, a swarm of robots could cope better with unknown and
unexpected conditions that are found on unexplored planets. Other applications
that could make use of robot swarms are rescue missions, where a swarm of robots
could replace humans. The robots could then autonomously explore dangerous sites
and in this way decrease the risk for humans.
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For the topic of swarm robotics navigation, the future will bring the possibility
of new communication channels. In our work, given the limitations of the available
hardware, we use LEDs and a camera as the only way to communicate. In this
way there are only very few signals that can be transmitted and perceived, and the
signalling range is comparably short (< 1m). While this is compatible with the
emphasis of the swarm robotics approach to make use of simple and local communi-
cation, it limits the possibilities of our approach. The principle of simplicity does not
strictly require the number of signals to be limited to a small set, and the principle
of locality does not limit the communication range to a certain value. In the future,
wireless communication channels will allow for interesting applications in which the
robots can act in a larger physical range, and in which the use of a wider range of
signals can lead to a more sophisticated outcome.

More concretely concerning the control mechanisms presented in this thesis, we
see possible directions for future work in the use of adaptive controllers. We observed
that for a given experimental setup there appears to be an optimal number of s-bots
for each subtask. For instance, and in particular for the real robot we observed that if
too many robots get engaged in transport there are usually some of the robots in the
transporting structure that do not perceive the direction towards which they should
move (i.e. the path). Therefore, a more advanced task allocation mechanism could
be used to prevent too many robots to engage in transport. Furthermore, adaptivity
of the controller could be beneficial in environments in which multiple prey objects
are dynamically added to and removed from the arena. In the parameter study
we showed that the set of parameters employed influences the overall behaviour of
the robot swarm. On the one hand, a given parameter set leads to the formation
of one path at a time which is beneficial for an environment with one prey that is
far away. On the other hand, another parameter leads to the parallel formation of
multiple paths, which would be more efficient in environments with multiple prey
objects. By identifying the density of prey objects in the environment the robots
could adapt their parameters in order to optimize the behaviour of the swarm for
the given environmental conditions. We have already conducted preliminary tests
in environments with multiple prey objects, and observed that both control mech-
anisms are able to form multiple concurrently formed paths to the different preys.
In particular, we observed that due to its more branched structure the vectorfield
controller is very useful in such environments.

Finally, another interesting direction for future work would be the investiga-
tion of our algorithms within the framework of failure modes and effects analysis
(FMEA) Dailey (2004), which is a procedure to analyse a system with respect to
robustness and fault tolerance. Failure causes are any errors or defects in process or
design, and effects analysis refers to studying the consequences of such failures. We
already test our controllers for robustness and fault tolerance. However, in order to
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allow such systems to be applied in real world tasks a more systematic study—such
as offered by FMEA—would be required.
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