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Abstract

A swarm intelligence system is a type of multiagent system with the following distinctive
characteristics: (i) it is composed of a large number of agents, (ii) the agents that comprise
the system are simple with respect to the complexity of the task the system is required to
perform, (iii) its control relies on principles of decentralization and self-organization, and
(iv) its constituent agents interact locally with one another and with their environment.

Interactions among agents, either direct or indirect through the environment in which
they act, are fundamental for swarm intelligence to exist; however, there is a class of
interactions, referred to as interference, that actually blocks or hinders the agents’ goal-
seeking behavior. For example, competition for space may reduce the mobility of robots
in a swarm robotics system, or misleading information may spread through the system in
a particle swarm optimization algorithm. One of the most visible effects of interference in
a swarm intelligence system is the reduction of its efficiency. In other words, interference
increases the time required by the system to reach a desired state. Thus, interference
is a fundamental problem which negatively affects the viability of the swarm intelligence
approach for solving important, practical problems.

We propose a framework called incremental social learning (ISL) as a solution to the
aforementioned problem. It consists of two elements: (i) a growing population of agents,
and (ii) a social learning mechanism. Initially, a system under the control of ISL consists
of a small population of agents. These agents interact with one another and with their
environment for some time before new agents are added to the system according to a
predefined schedule. When a new agent is about to be added, it learns socially from a
subset of the agents that have been part of the system for some time, and that, as a
consequence, may have gathered useful information. The implementation of the social
learning mechanism is application-dependent, but the goal is to transfer knowledge from
a set of experienced agents that are already in the environment to the newly added agent.
The process continues until one of the following criteria is met: (i) the maximum number
of agents is reached, (ii) the assigned task is finished, or (iii) the system performs as
desired. Starting with a small number of agents reduces interference because it reduces
the number of interactions within the system, and thus, fast progress toward the desired
state may be achieved. By learning socially, newly added agents acquire knowledge about
their environment without incurring the costs of acquiring that knowledge individually. As
a result, ISL can make a swarm intelligence system reach a desired state more rapidly.

We have successfully applied ISL to two very different swarm intelligence systems.
We applied ISL to particle swarm optimization algorithms. The results of this study
demonstrate that ISL substantially improves the performance of these kinds of algorithms.
In fact, two of the resulting algorithms are competitive with state-of-the-art algorithms
in the field. The second system to which we applied ISL exploits a collective decision-
making mechanism based on an opinion formation model. This mechanism is also one of
the original contributions presented in this dissertation. A swarm robotics system under
the control of the proposed mechanism allows robots to choose from a set of two actions
the action that is fastest to execute. In this case, when only a small proportion of the
swarm is able to concurrently execute the alternative actions, ISL substantially improves
the system’s performance.
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López-Ibáñez, Tom Lenaerts, Renaud Lenne, Tianjun Liao, Max Manfrin, Mattia Man-
froni, Amin Mantrach, Bruno Marchal, Xavier Mart́ınez-González, Franco Mascia, Nithin
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Chapter 1

Introduction

The term swarm intelligence refers to the group-level intelligence that some groups of
animals exhibit in nature (Bonabeau et al., 1999; Dorigo and Birattari, 2007; Garnier
et al., 2007a). Famous examples of the swarm intelligence exhibited by some groups of
animals are the ability of swarms of bees to choose the best site on which to build their
nest (Seeley, 2010) or the ability of ant colonies to find the shortest path between their nest
and a food source (Goss et al., 1989). A fundamental characteristic of a group exhibiting
swarm intelligence is its ability to solve problems that the group’s constituent members
cannot solve individually. This fact has made scientists wonder whether it is possible
to design problem-solving techniques or systems that use many, yet simple, constituent
parts – referred to as agents1. A first wave of advances in swarm intelligence research led
to the development of successful optimization techniques such as ant colony optimization
(ACO) (Dorigo et al., 1991a,b; Dorigo, 1992; Dorigo et al., 1996; Dorigo and Di Caro,
1999; Bonabeau et al., 2000; Dorigo and Stützle, 2004; Dorigo, 2007) and particle swarm
optimization (PSO) (Kennedy and Eberhart, 1995; Kennedy et al., 2001; Engelbrecht, 2005;
Clerc, 2006; Poli et al., 2007; Dorigo et al., 2008). In this first wave of advances, swarm
intelligence was also investigated in the context of multi-robot systems (Deneubourg et al.,
1990b; Holland and Melhuish, 1999; Dorigo et al., 2004; Beni, 2005).

Most artificial swarm intelligence systems in existence today were inspired by natural
swarms. For example, the foraging behavior of ants inspired the design of ACO (Dorigo
and Stützle, 2004), and the flocking behavior of birds inspired the design of PSO (Kennedy
and Eberhart, 1995). Likewise, in swarm robotics research it is possible to find complete
research projects inspired by the way social insects, in particular ants, cooperate to solve
problems (see e.g., Dorigo et al. (2004); Kernbach et al. (2008)). Despite the differences
among these systems, their constituent agents share a common behavioral trait: they are
usually searching agents, that is, they are agents that are continuously in search of a target
state. What agents search for depends on the purpose of the system. For example, in
ACO, the agents that form the swarm (called “colony” in the context of ACO) search for
solutions to combinatorial optimization problems. In PSO, agents search for solutions to
continuous optimization problems. In swarm robotics, the searching behavior of robots
can be more elusive, but in many cases, it involves searching for a desired individual or
collective state. For example, in the work of Turgut et al. (2008) or Trianni and Nolfi
(2009), robots are continuously searching for a state that makes the swarm cohesive in
space (flocking) or time (synchronization), respectively.

Swarm intelligence is the result of agents interacting with each other and with their
environment. At the same time, however, sharing information and an environment with
other agents produces negative interactions that we refer to as interference. This class of
interactions blocks or hinders an agent’s behavior. As a result of interference, the speed
at which a swarm intelligence system reaches a desired state will be reduced. Importantly,
interference will tend to increase with the size of the system as a result of the fact that

1Throughout this dissertation, we will use the word agent to generically refer to an entity, be it an
animal or an artifact, such as a robot or a piece of software, capable of autonomous perception and action.
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interference is a function of the number of interactions within a system. Thus, interference
hinders the scalability of swarm intelligence systems.

Two examples will help us illustrate how interference reduces the performance of swarm
intelligence systems. We first consider a PSO algorithm, in which a swarm of agents (called
particles) exchange information with one another in order to bias their search toward the
best points they find in the search space of a continuous optimization problem. Although
cooperation is fundamental for the success of the algorithm, it is also a source of inter-
ference, especially during the first iterations of the algorithm. The mutual influence that
particles exert on each other makes them move to regions that do not contain the optimal
solution to the problem. If the swarm of particles is large, the number of objective function
evaluations spent in this initial phase will also be large, and thus, the time needed by the
swarm to start making progress toward good solutions will increase. As a second example,
we consider a swarm robotics system in which robots have to search for a resource. Since
the environment in which they move has finite dimensions, robots have to continuously
avoid collisions with each other. If the swarm of robots is large, the space between robots
may be such that robots spend most of their time and energy unproductively by avoiding
collisions rather than completing their assigned tasks. The overall effect of interference in
this example is also to slow down progress toward a desired state.

1.1 Objective

The main objective of the work presented in this dissertation is to reduce the effects of
interference in swarm intelligence systems composed of multiple searching agents. Since
interference manifests itself as an influence that slows down progress toward a desired state,
reducing its effects helps a swarm intelligence system to reach a desired state more rapidly.

To meet the aforementioned objective, in this dissertation we introduce the incremental
social learning (ISL) framework. This framework consists of two elements: (i) an initially
small population of agents that grows over time, and (ii) a social learning process whereby
new agents learn from more experienced ones. A small population of agents would reach
a certain state more rapidly than a large population because of the reduced interference.
However, it is possible that a small swarm cannot reach the desired state. For example,
imagine a scenario in which too few robots cannot move a heavy object. We tackle this
problem by adding agents to the swarm according to some predefined criterion. An agent
that is added to the swarm learns from the agents that have been in the swarm for some
time. This element of ISL is attractive because new agents acquire knowledge from more
experienced ones without incurring the costs of acquiring that knowledge individually.
Thus, ISL allows the new agents to save time that they can use to perform other tasks.
After the inclusion of a new agent, the swarm needs to re-adapt to the new conditions;
however, the agents that are part of the swarm do not need to start from scratch because
some useful work would have already been completed.

1.2 Methodology

We considered two case studies of the application of the incremental social learning frame-
work to swarm intelligence systems:

1. Swarm intelligence for continuous optimization. We considered PSO algo-
rithms as a case study to measure the effectiveness of ISL. As a result, three PSO-
based optimization algorithms are proposed. Two of these algorithms obtain results
comparable with those obtained by other state-of-the-art continuous optimization
algorithms. The development and analysis of these algorithms is presented in Chap-
ter 4.

2. Swarm intelligence for robotics. As a second case study, we considered a swarm
intelligence system in which robots perform a foraging task that involves collective
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transport. In this task, robots need to choose one of two available paths to a storage
room for transported objects. In this second case study, we first developed a collective
decision-making mechanism that allows a swarm of robots to select the shortest
path. Then, we instantiated the incremental social learning framework using the
aforementioned decision-making mechanism as the searching algorithm used by the
swarm. The collective decision-making mechanism and its combination with ISL are
presented in Chapter 5.

In both case studies, the application of the incremental social learning framework re-
sulted in a substantial improvement of the underlying system’s performance. These suc-
cesses should be taken as proof of concept. Our experiments are not formal proof that
the approach will always produce positive results. However, some requirements that the
underlying swarm intelligence system should satisfy in order to expect benefits from the
application of ISL are proposed.

1.3 Contributions

In this dissertation, the following three contributions are presented:

1. Incremental social learning framework. This original framework aims to tackle
interference in swarm intelligence systems. Since such systems are usually composed
of a large number of interacting agents, interference can be a major problem because
the effects of interference are stronger when a large population of agents is involved.
The incremental social learning framework addresses this problem by making a swarm
intelligence system start with a small population and by letting new agents learn from
more experienced agents.

2. High-performance PSO algorithms. A number of high-performance PSO algo-
rithms are proposed in this dissertation. Two of these algorithms are the result of
the instantiation of the incremental social learning framework in the context of PSO
algorithms. These algorithms are identified by the names IPSOLS and IPSOLS+.
They are PSO algorithms with a growing population size in which individual and so-
cial learning are simulated through local search and biased initialization, respectively.
The third algorithm, which is not based on the incremental social learning frame-
work, is presented in Appendix A. This algorithm, called Frankenstein’s PSO, is an
integration of algorithmic components that were found to provide good performance
in an extensive empirical evaluation of PSO algorithms.

3. Self-organized collective decision-making mechanism for swarms of robots.
A self-organized collective-decision making mechanism with application to swarm
robotics is proposed. Positive feedback and a consensus-building procedure are the
key elements of this mechanism that allows a population of robots to select the
fastest-to-execute action from a set of alternatives, thus improving the efficiency of
the system. We apply the incremental social learning framework to this mechanism
in order to make it more efficient in situations where a small fraction of the swarm
can concurrently execute the available alternative actions.

1.4 Publications

A number of publications have been produced during the development of the research
work presented in this dissertation. Many of these publications have been written in
collaboration with colleagues under the supervision of Prof. Marco Dorigo and/or Dr.
Thomas Stützle.

The publications associated with this dissertation are listed below. The majority of
them deal with the incremental social learning framework and its applications. However,
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we have also listed publications that laid the ground for the development of the incremental
social learning framework.

1.4.1 International Journals

1. Montes de Oca, M. A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M.,
and Dorigo, M. (2010b). Majority-rule opinion dynamics with differential la-
tency: A mechanism for self-organized collective decision-making. Technical Report
TR/IRIDIA/2010-023, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.
[Revision submitted to Swarm Intelligence]

2. Montes de Oca, M. A., Aydın, D., and Stützle, T. (2011a). An incremental par-
ticle swarm for large-scale optimization problems: An example of tuning-in-the-
loop (re)design of optimization algorithms. Soft Computing. Forthcoming. DOI:
10.1007/s00500-010-0649-0

3. Montes de Oca, M. A., Stützle, T., Van den Enden, K., and Dorigo, M. (2011b).
Incremental social learning in particle swarms. IEEE Transactions on Systems, Man
and Cybernetics - Part B: Cybernetics, 41(2):368–384

4. Montes de Oca, M. A., Stützle, T., Birattari, M., and Dorigo, M. (2009c). Franken-
stein’s PSO: A composite particle swarm optimization algorithm. IEEE Transactions
on Evolutionary Computation, 13(5):1120–1132

5. Dorigo, M., Montes de Oca, M. A., and Engelbrecht, A. P. (2008). Particle swarm
optimization. Scholarpedia, 3(11):1486

1.4.2 International Conferences, Workshops and Symposia

1. Liao, T., Montes de Oca, M. A., Aydın, D., Stützle, T., and Dorigo, M. (2011). An
incremental ant colony algorithm with local search for continuous optimization. In
Krasnogor, N. et al., editors, Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO 2011). ACM Press, New York. To appear. Preprint avail-
able at http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-005r002.pdf

[Nominated for the best paper award in the Ant Colony Optimization
and Swarm Intelligence track]

2. Montes de Oca, M. A., Stützle, T., Birattari, M., and Dorigo, M. (2010c). Incremen-
tal social learning applied to a decentralized decision-making mechanism: Collective
learning made faster. In Gupta, I., Hassas, S., and Rolia, J., editors, Proceedings of
the Fourth IEEE Conference on Self-Adaptive and Self-Organizing Systems (SASO
2010), pages 243–252. IEEE Computer Society Press, Los Alamitos, CA

3. Montes de Oca, M. A., Ferrante, E., Mathews, N., Birattari, M., and Dorigo, M.
(2010a). Opinion dynamics for decentralized decision-making in a robot swarm. In
Dorigo, M. et al., editors, LNCS 6234. Proceedings of the Seventh International Con-
ference on Swarm Intelligence (ANTS 2010), pages 251–262. Springer, Berlin, Ger-
many [Nominated for the best paper award]

4. Yuan, Z., Montes de Oca, M. A., Stützle, T., and Birattari, M. (2010). Modern
continuous optimization algorithms for tuning real and integer algorithm parameters.
In Dorigo, M. et al., editors, LNCS 6234. Proceedings of the Seventh International
Conference on Swarm Intelligence (ANTS 2010), pages 204–215. Springer, Berlin,
Germany

5. Montes de Oca, M. A., Ferrante, E., Mathews, N., Birattari, M., and Dorigo, M.
(2009a). Optimal collective decision-making through social influence and different
action execution times. In Curran, D. and O’Riordan, C., editors, Proceedings of the
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Workshop on Organisation, Cooperation and Emergence in Social Learning Agents
of the European Conference on Artificial Life (ECAL 2009). No formal proceedings
published

6. Montes de Oca, M. A., Van den Enden, K., and Stützle, T. (2008). Incremental
particle swarm-guided local search for continuous optimization. In Blesa, M. J. et al.,
editors, LNCS 5296. Proceedings of the International Workshop on Hybrid Metaheu-
ristics (HM 2008), pages 72–86. Springer, Berlin, Germany

7. Montes de Oca, M. A. and Stützle, T. (2008b). Towards incremental social learning
in optimization and multiagent systems. In Rand, W. et al., editors, Workshop
on Evolutionary Computation and Multiagent Systems Simulation of the Genetic
and Evolutionary Computation Conference (GECCO 2008), pages 1939–1944. ACM
Press, New York

8. Montes de Oca, M. A. and Stützle, T. (2008a). Convergence behavior of the fully
informed particle swarm optimization algorithm. In Keijzer, M. et al., editors, Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO 2008),
pages 71–78. ACM Press, New York [Nominated for the best paper award in
the Ant Colony Optimization, Swarm Intelligence, and Artificial Immune
Systems track]

9. Montes de Oca, M. A., Stützle, T., Birattari, M., and Dorigo, M. (2006a). A compa-
rison of particle swarm optimization algorithms based on run-length distributions. In
Dorigo, M. et al., editors, LNCS 4150. Proceedings of the Fifth International Work-
shop on Ant Colony Optimization and Swarm Intelligence (ANTS 2006), pages 1–12.
Springer, Berlin, Germany

10. Montes de Oca, M. A., Stützle, T., Birattari, M., and Dorigo, M. (2006b). On the
performance analysis of particle swarm optimisers. AISB Quarterly, 124:6–7

1.5 Structure

This dissertation consists of six chapters and one appendix. In Chapter 2, we provide
relevant background information for the rest of the dissertation. In Chapter 3, we present
the rationale and the algorithmic structure of the incremental social learning framework as
well as a discussion of related work. The application of ISL to PSO algorithms is described
in Chapter 4. First, we present a simple incremental PSO algorithm, called IPSO. Then,
we present two high-performing PSO algorithms, called IPSOLS and IPSOLS+, that are
derived from it. In Chapter 5, we present the application of ISL to a swarm robotics system.
First, we describe the actual swarm robotics system the framework is applied to. Then, we
describe the application of ISL to this system. Finally, in Chapter 6, we present the main
conclusions of the research work documented in this dissertation. Appendix A is devoted
to the description of Frankenstein’s PSO algorithm, which is the result of an extensive
experimentation with several PSO algorithms. Results of those experiments inspired in
part some features of the ISL framework.
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Chapter 2

Background

In this chapter, we present some of the basic concepts of swarm intelligence and social
learning, which are central to our work. In Section 2.1, we present the concept of swarm
intelligence, and describe its principles and mechanisms. We also describe the most success-
ful artificial swarm intelligence systems together with the natural phenomena that inspired
their development. In Section 2.2, we present the concepts of individual and social learning,
and describe the main mechanisms involved in social learning.

2.1 Swarm Intelligence

In nature, different kinds of animals tend to congregate in large numbers. For instance,
European starlings can gather in thousands to form flocks (Carere et al., 2009), atlantic
silversides form schools of hundreds of individuals (Partridge, 1982), and ants make colonies
that range in size from a few dozen to millions of ants (Hölldobler and Wilson, 1990). When
animals form these swarms, they are often able to solve problems that no single member
could if it acted alone. From an external observer’s point of view, it may appear as if the
swarm possessed a certain level of intelligence that is well superior to that of any of its
constituent members. This collective-level intelligence is called swarm intelligence.

The size and behavior of swarms have fascinated humans since antiquity. At times,
swarms inspire fear. For example, it is written in the Bible that swarms of locusts plagued
Egypt (Exodus:10.3–6). At other times, swarms inspire respect. An old Mesoamerican leg-
end tells the story of how ants helped the gods feed all humans with cultivated maize (Nut-
tall, 1930). Both extremes of feelings, fear and awe, have motivated researchers to wonder
whether it is possible to control swarms. On the one hand, controlling swarms would allow
us to alleviate the effects of plagues, like those of locusts or termites (Buhl et al., 2006). On
the other hand, controlling swarms would allow us to devise techniques that can be used
to control man-made artifacts such as robots or software agents (Bonabeau et al., 1999).
However, before we are able to control swarms, we need to understand their governing
principles.

2.1.1 Principles and Mechanisms

Even though the characteristics of swarm-forming animals vary substantially, swarms ex-
hibit behaviors that are in fact very similar. This similarity has pointed toward the exis-
tence of a set of general principles responsible for the emergence of swarm-level organization
and intelligence (Buhl et al., 2006). The existence of these principles makes the design of
artificial swarm intelligence systems possible. Thus, as a discipline, swarm intelligence has
a twofold objective. First, it aims to understand the fundamental principles that are the
responsible for the collective-level intelligence sometimes exhibited by large groups of ani-
mals. Second, it aims to define engineering methodologies for the design and construction
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of large groups of man-made entities that collectively solve practical problems (Dorigo and
Birattari, 2007).

Researchers have made progress in the study of swarm intelligence and a set of principles
and mechanisms that make it possible have been identified. The principles and mechanisms
that we will describe have been found to operate in many animal societies, but especially in
social insects groups (Bonabeau et al., 1999; Garnier et al., 2007a; Beekman et al., 2008).

Decentralization

The behavior exhibited by a swarm is not dictated by any central authority. The unfortu-
nate name given to the reproductive member of an ant colony or a bee hive (i.e., a “queen”)
gives the impression that the organization observed at the collective level is the result of a
hierarchical command structure. However, it is now well known that such a structure does
not exist (Bonabeau, 1998; Garnier et al., 2007a). In a swarm, no single agent supervises
the actions of, or issues orders to, other members of the swarm. The perception and inter-
action scope of a swarm member is local. Thus, the swarm’s organization is the result of
local interactions, both among the swarm members and between the swarm members and
the environment.

Stigmergy

The theory of stigmergy (from the Greek roots stigma, which means mark, sign, or punc-
ture, and ergon, which means action, labor, or work) was proposed by Grassé (1959) in
the context of task coordination and nest construction regulation in colonies of termites.
Grassé defined stigmergy as “the stimulation of the workers by the very performances they
have achieved” (Grassé, 1959) p. 79. In other words, stigmergy refers to the coordination
process that arises when an agent performs an action as a consequence of stimuli that are
the result of another agent’s – or possibly the same agent’s – actions.

Stigmergy is key to explain how termites and other social insects are able to build
structures and produce collective-level patterns that are orders of magnitude larger than
a single individual, all without a central authority or global blueprint. For example, the
construction of soil arches in termite nests starts when a termite fortuitously places a soil
pellet on top of other pellets. This bigger soil structure stimulates termites to keep placing
pellets on top. A self-reinforcing process then follows: the larger the structure, the stronger
the attraction termites feel toward that structure to deposit soil pellets. Eventually an arch
is built if two pillars happen to be at an appropriate distance. Another prominent example
of how stigmergy enables swarm intelligence to occur is the ability of ants of some species
to find the shortest path between their nest and a food source. While moving, ants deposit
on the ground chemical substances called pheromones. These pheromones modify the envi-
ronment and trigger a change in the behavior of ants. In particular, ants become attracted
to areas of the environment marked with pheromones. This pheromone laying and follow-
ing behavior induces a positive feedback process whereby areas with high concentration of
pheromones become more and more attractive as more ants follow them (Pasteels et al.,
1987; Goss et al., 1989; Deneubourg et al., 1990a). As a result, if there are several paths
to the same food source, the colony is more likely to select the shortest path because ants
will traverse it faster, and thus, it will have a higher pheromone concentration than longer
ones.

Self-Organization

The theory of self-organization has found applications in such diverse fields as economics,
urbanism, physics, chemistry, and biology (Haken, 2008). For example, it has been used to
explain chemical reactions, such as the Belousov-Zhabotinsky reaction (Zhabotinsky, 2007),
and the organization of cities (Portugali, 2000). In biology, it has been used to explain
the external patterns on the skin or on the protective shells of some animals (Camazine
et al., 2001), the movement of vertebrates in crowds (Couzin and Krause, 2003), and, most
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relevant for our discussion here, the behavior of social insects swarms (Bonabeau et al.,
1997).

Self-organization is a term with different meanings in different contexts (Gershenson,
2007). In this dissertation, we adopt Camazine et al.’s definition:

Definition Self-organization is a process in which [a] pattern at the global level of a sys-
tem emerges solely from numerous interactions among the lower-level components of the
system. Moreover, the rules specifying interactions among the system’s components are
executed using only local information, without reference to the global pattern. (Camazine
et al., 2001) p. 8.

With this definition, some forms of swarm intelligence can be considered to be the
result of self-organization. For example, the ability of ant colonies to find the shortest path
between their nest and a food source can be seen as a self-organization process. First, a
pheromone trail that connects an ant colony nest to a food source is the pattern at the global
level cited in Camazine et al.’s definition. Such a trail is the result of several ants reinforcing
it every time they traverse it, that is, it is the result of multiple interactions among the
system’s components (the ants). Stigmergy is in this case the interaction mechanism.
The pheromone-laying and pheromone-following behavior exhibited by ants serves as an
interaction rule, which is triggered only when an ant perceives pheromones in its vicinity.
Finally, the behavioral rules followed by ants do not make any reference to pheromone
trails and do not encode desired goals such as finding shortest paths. The shortest path
between an ant colony’s nest and a food source is an emergent pattern.

Self-organization is itself the result of the interaction of several processes and elements.
According to Camazine et al. (2001) and Moussaid et al. (2009), these processes and
elements are the following:

1. Multiple direct or indirect interactions among the system’s components. By defi-
nition, a self-organizing system is composed of a number of components whose be-
havior depends on the state of their immediate environment or on the information
they possess. In such a setting, the system’s components mutually influence each
other because the behavior of one of them may affect the environment of, or the
information perceived by, other components. If the system’s components are able to
communicate directly with each other, it is also possible to influence the behavior of
these components via direct communication.

2. Presence of fluctuations. The components of a self-organizing system may be subject
to external perturbations or may behave nondeterministically. As a result, there
may be fluctuations in the system’s state. For example, in the absence of pheromone
trails, an ant chooses a walking direction at random, or an ant colony may suffer the
sudden loss of several members due to the presence of predators or inclement weather
conditions.

3. Positive feedback. Fluctuations, random or not, are often reinforced in self-organizing
systems. The way termites construct pillars with soil pellets or the reinforcement of
pheromone trails by ants are examples of positive feedback processes. Positive feed-
back is responsible for the appearance of new structures (e.g., pillars or pheromone
trails) that in turn modify the behavior of the system.

4. Negative feedback. The self-reinforcing process brought about by positive feed-
back loops must be limited. It is impossible, for example, that the concentration
of pheromones in an ant trail grows to infinity. In self-organizing systems this task is
performed by a so-called negative feedback process. Negative feedback encompasses
all limiting environmental factors and a system’s internal regulation processes. In the
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ant trails example, negative feedback includes pheromone evaporation, food depletion
and satiation.

5. Bifurcations and multiple stable states. Self-organizing systems often show abrupt
changes in their behavior without an abrupt change in the value of a control pa-
rameter. For example, the density of insects is often a parameter that affects the
behavior of a swarm. Below a certain threshold, no swarm behavior is observed,
whereas above it, a swarm behavior suddenly appears (Buhl et al., 2006). A self-
organizing system will reach a stable state which depends on the initial conditions.
Since self-organization is often triggered by random fluctuations, the stable state of
a system may be just one of several available states.

Currently, there is a growing interest in developing methodologies for the design and
control of self-organizing systems (see, for example, Gershenson (2007); Di Marzo Seru-
gendo et al. (2004); Bruecker et al. (2005, 2006, 2007)). The knowledge gained in the
process will certainly affect our ability to design and control swarm intelligence systems.

Other Mechanisms

Self-organization can account for many swarm intelligence behaviors, but they may also
be the result of other mechanisms, either alone or in combination with a self-organizing
process (Camazine et al., 2001; Johnson, 2009). Some of these mechanisms are leadership,
blueprints, recipes, templates, or threshold-based responses (Bonabeau, 1998; Camazine
et al., 2001; Garnier et al., 2007a). Leadership may play a role when some individuals are
more experienced than others or simply when there are better informed individuals. This
mechanism, as we will discuss in Chapter 3, is important in the framework proposed in
this dissertation. Leadership plays an important role in large groups of moving animals as
suggested by recent studies (Couzin et al., 2005). Blueprints are usually associated with
the process of constructing a structure. They are representations of the desired structure;
however, they do not specify how such a structure should be built. There is an ongoing de-
bate as to whether blueprints are actually used by building animals; however, it is definitely
possible to imagine man-made swarm intelligence systems in which agents use such a mech-
anism. Recipes are step-by-step directions to carry out a task. The execution of a recipe
often ignores feedback from the execution process. This aspect of recipes is fundamental
in order to distinguish them from stigmergic task execution, in which the execution of an
action modifies the environment providing feedback to the acting animal or agent. A tem-
plate is a kind of “preexisting pattern” in the environment that elicits a specific response
from the members of a swarm, normally to actually build over them. For example, termites
build a chamber around the body of the queen which produces a pheromone gradient that
serves as a template (Bonabeau et al., 1998). Finally, in a threshold-based mechanism, an
action is performed as a response to the strength of a stimulus. Threshold-based models
have been used in the context of social insects to explain division of labor (Theraulaz et al.,
1998), the mechanism whereby insects split responsibilities, as well as to explain collective
phenomena in humans (Granovetter, 1978).

2.1.2 Artificial Swarm Intelligence Systems

The design and construction of artificial swarm intelligence systems have been heavily
inspired by the behavior of natural swarms. The first efforts toward the development of
artificial swarm intelligence systems began in the 1990s with pioneering works in robotics,
data mining, and optimization. In fact, these domains are still the application areas of
most artificial swarm intelligence systems (Dorigo and Birattari, 2007).

In the remainder of this section, we describe some of the most successful swarm intel-
ligence systems devised to date.
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Ant Colony Optimization

The ants’ pheromone trail laying and trail following behavior described in Section 2.1.1
inspired the development of ant colony optimization (ACO) (Dorigo et al., 1991a,b; Dorigo,
1992; Dorigo et al., 1996; Dorigo and Di Caro, 1999; Bonabeau et al., 2000; Dorigo and
Stützle, 2004; Dorigo, 2007). Some aspects of the real behavior of ants that allows them to
find shortest paths in nature are simulated in ACO algorithms in order to tackle optimiza-
tion problems. In nature, real ants form pheromone trails; in ACO, artificial ants construct
candidate solutions to the problem instance under consideration. Solution construction is
a stochastic process biased by artificial pheromone trails and possibly by available heuristic
information based on the input data of the instance being solved. Pheromones are simu-
lated as numerical information associated with appropriately defined solution components.
A positive feedback process implemented by iterative modifications of the artificial phero-
mone trails is key for all ACO algorithms. In ACO algorithms, pheromone trails can be
thought of as a function of the ants’ search experience. The goal of positive feedback is to
bias the colony towards the most promising solutions.

The ACO metaheuristic (Dorigo and Di Caro, 1999; Dorigo et al., 1999) is an algorithmic
framework that allows the implementation of the aforementioned ideas for the approximate
solution of optimization problems. Such a framework needs to be instantiated into an
algorithm in order to tackle a specific problem. The framework is flexible enough to
accommodate specialized problem-solving techniques.

ACO is commonly used to solve combinatorial optimization problems. A formal defi-
nition of a combinatorial optimization problem is given next.

Definition A combinatorial optimization problem is modeled by the tuple (S, f , Ω), where:

• S is the set of candidate solutions defined over a finite set of discrete decision variables
X. S is referred to as the search space of the problem being tackled;

• f : S → R is an objective function to be minimized ;1

• Ω is a (possibly empty) set of constraints among the decision variables.

A decision variable Xi ∈ X, with i = 1, . . . , n, is said to be instantiated when a value

vji that belongs to its domain Di =
{
v1
i , . . . , v

|Di|
i

}
is assigned to it. A solution s ∈ S

is called feasible if each decision variable has been instantiated satisfying all constraints
in the set Ω. Solving the optimization problem requires finding a solution s∗ such that
f(s∗) ≤ f(s) ∀s ∈ S, while satisfying all constraints in Ω.

Three high-level procedures compose ACO (see Algorithm 1):

• ConstructSolutions. This procedure implements the artificial ants’ incremental
construction of candidate solutions.

In ACO, an instantiated decision variable Xi ← vji is called a solution component
cij ∈ C, where C denotes the set of solution components. A pheromone trail value
τij is associated with each component cij ∈ C.

A solution construction starts from an initially empty partial solution sp. At each
construction step, it is extended by appending to it a feasible solution component
from the set of feasible neighbors N(sp) ⊆ C that satisfies the constraints in Ω. The
choice of a solution component is guided by a stochastic decision policy, which is
biased by both the pheromone trail and the heuristic values associated with cij . The
exact rules for the probabilistic choice of solution components vary across different
ACO variants. The rule proposed in the Ant System algorithm (Dorigo et al., 1996)
is the best known rule:

1Note that minimizing the value of an objective function f is the same as maximizing the value of −f ;
hence, every optimization problem can be described as a minimization problem.
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Algorithm 1 Basic structure of an ant colony optimization algorithm

repeat
ConstructSolutions
DaemonActions /* Optional */
UpdatePheromones

until Stopping criterion is satisfied

pcij |sp =
[τij ]

α · [ηij ]β∑
cil∈N(sp)

[τil]
α · [ηil]β

, (2.1)

where τij and ηij are, respectively, the pheromone value and the heuristic value
associated with the component cij . The parameters α > 0 and β > 0 determine the
relative importance of pheromone versus heuristic information.

• DeamonActions. This procedure, although optional, is important when state-of-
the-art results are sought (Dorigo and Stützle, 2004). It allows for the execution of
problem-specific operations, such as the use of local search procedures, or of central-
ized actions that cannot be performed by artificial ants. It is usually executed before
the update of pheromone values so that ants bias their search toward high quality
solutions.

• UpdatePheromones. This procedure updates the pheromone trail values associ-
ated with the solution components in the set C. The modification of the pheromone
trail values is composed of two stages: (i) pheromone evaporation, which decreases
the pheromone values of all components by a constant factor ρ (called evaporation
rate) in order to avoid premature convergence, and (ii) pheromone deposit, which in-
creases the pheromone trail values associated with components of a set of promising
solutions Supd. The general form of the pheromone update rule is as follows:

τij ← (1− ρ) · τij + ρ ·
∑

s∈Supd|cij∈s

F (s) , (2.2)

where ρ ∈ (0, 1] is the evaporation rate, and F : S → R+ is a function such that
f(s) < f(s′) ⇒ F (s) ≥ F (s′), ∀ s 6= s′ ∈ S. F (·) is called the fitness function.
Different definitions for the set Supd exist. Two common choices are Supd = sbsf,
and Supd = sib, where sbsf is the best-so-far solution, that is, the best solution found
since the start of the algorithm, and sib is the best solution of the current iteration.
The specific implementation of the pheromone update mechanism differs across ACO
variants (Dorigo et al., 1991a,b, 1996; Dorigo and Gambardella, 1997; Gambardella
and Dorigo, 1996; Stützle and Hoos, 2000).

Many ACO algorithms have been proposed. Some of them aim to solve specific prob-
lems, and others have a more general purpose. In Table 2.1, we list some of the most
representative ACO algorithms proposed to date.

Particle Swarm Optimization

Particle swarm optimization (PSO) (Kennedy and Eberhart, 1995; Eberhart and Kennedy,
1995; Kennedy et al., 2001; Engelbrecht, 2005; Clerc, 2006; Poli et al., 2007; Dorigo et al.,
2008) is a population-based stochastic optimization technique primarily used to tackle
continuous optimization problems. A continuous optimization problem is defined as follows:
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Table 2.1: Representative ACO works.

ACO algorithm Main references
Ant System (AS) (Dorigo et al., 1991b; Dorigo, 1992; Dorigo et al.,

1996)
Elitist AS (Dorigo et al., 1991b; Dorigo, 1992; Dorigo et al.,

1996)
Ant-Q (Gambardella and Dorigo, 1995)
Ant Colony System (ACS) (Dorigo and Gambardella, 1997; Gambardella and

Dorigo, 1996)
MAX–MIN Ant System
(MMAS)

(Stützle and Hoos, 1996, 1997, 2000)

Rank-based AS (Bullnheimer et al., 1999)
ANTS (Maniezzo, 1998, 1999)
Best-worst AS (Cordón et al., 2002, 2000)
Population-based ACO (Guntsch and Middendorf, 2002)
Beam-ACO (Blum, 2004, 2005)

Definition Given a set Θ ⊆ Rn and an objective function f : Θ → R, the continuous
optimization problem consists in finding at least one member of the set

Θ∗ = arg min
θ∈Θ

f(θ) = {θ∗ ∈ Θ: f(θ∗) ≤ f(θ), ∀θ ∈ Θ} .

The set Θ is referred to as the feasible solution space or as the search space of function
f . If Θ = Rn, then the problem is called an unconstrained continuous optimization problem.
Otherwise, the problem is called a constrained continuous optimization problem.

PSO has roots in computer graphics, social psychology, and natural swarm intelligence.
Within the computer graphics field, the first antecedents of PSO can be traced back to the
work of Reeves (1983), who proposed particle systems to model objects that are dynamic
and cannot be easily represented by polygons or surfaces. Examples of such objects are
fire, smoke, water and clouds. In these systems, particles are independent of each other
and their movements are governed by a set of rules. A few years later, Reynolds (1987)
used a particle system to simulate the collective behavior of a flock of birds. In a similar
kind of simulation, Heppner and Grenander (1990) included a roost that was attractive
to the simulated birds. Reynolds’s and Heppner and Grenander’s models inspired the
set of rules that were later used in the original PSO algorithm (Kennedy and Eberhart,
1995). According to Kennedy (2006), social psychology research, in particular the theory
of social impact (Latané, 1981; Nowak et al., 1990), was another source of inspiration in
the development of the first particle swarm optimization algorithm (see Chapter 3 for more
information).

PSO is a direct search method, which means that it works only with ordinal relations
between objective function values and does not use the actual values to model, directly or
indirectly, higher order properties of the objective function. In a PSO algorithm, simple
agents, called particles, move in the solution space of an n-dimensional objective function
f (see definition above). There are three vectors associated with a particle i at time
step t: its position vector x t

i , which represents a candidate solution, its velocity vector v t
i ,

representing the particle’s search direction, and its personal best vector pb t
i , which denotes

the particle’s best position attained by particle i since the beginning of the algorithm’s
execution.

The rules that determine the particles’ movement are the core of any PSO algorithm.
These rules determine from which other particles a certain particle i should get information,
and how that information should be exploited. The set of particles from which particle i
may obtain information is referred to as particle i’s neighborhood and is denoted by Ni.
However, particle i’s informers, denoted by Ii with Ii ⊆ Ni, are the particles from which
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Figure 2.1: Example population topologies. The leftmost picture depicts a fully connected
topology, that is, Ni is composed of all the particles in the swarm (self-links are not drawn
for simplicity). The picture in the center depicts a so-called von Neumann topology, in
which |Ni| = 4 ∀i. The rightmost picture depicts a ring topology in which each particle is
neighbor to two other particles.

it actually obtains information. The sets Ni can be visualized as a graph called population
topology (see Figure 2.1). The model of influence defines the mechanism to form Ii from
Ni. Finally, a particle’s velocity-update rule determines how to compute the particle’s next
position using information from its informers.

In the standard PSO algorithm (Bratton and Kennedy, 2007), for example, the afore-
mentioned factors are instantiated as follows: (i) fully-connected graphs or rings (respec-
tively known as gbest and lbest models in PSO parlance) as population topologies, (ii) a
best-of-neighborhood model of influence such that only the best particle in the neighbor-
hood and the particle itself are taken as informers, and (iii) an update rule for the jth
component of the ith particle’s velocity and position vectors given by

v t+1
i,j = wv ti,j + ϕ1U1

(
pb ti,j − x ti,j

)
+ ϕ2U2

(
lb ti,j − x ti,j

)
, (2.3)

and
x t+1
i,j = x ti,j + v t+1

i,j , (2.4)

where w is a parameter called inertia weight (Shi and Eberhart, 1998a), ϕ1 and ϕ2 are
parameters called acceleration coefficients, U1 and U2 are uniformly distributed pseudo-
random numbers in the range [0, 1) that are generated for each particle for each coordinate
at each iteration. A particle’s velocity in each coordinate j is usually constrained within the
range [−vmax, vmax]. Finally, the vector lb ti is the best solution in particle i’s neighborhood
Ni, that is:

lb ti = arg min
j∈Ni

f(pb tj ) . (2.5)

The basic structure of a PSO algorithm is shown in Algorithm 2. In the procedure
InitializeSwarm, a certain number of particles are created and placed uniformly at random
in the problem’s search space. Each particle’s velocity is initialized to zero or a small
random value (Dorigo et al., 2008). In this procedure, the population topology is also
initialized. In the procedure EvaluateSwarm, each particle’s position is evaluated using
the problem’s objective function. If a particle finds a position that is better than its
personal best solution, it updates its memory. Otherwise, it remains unchanged. In the
procedure UpdatePositions, all particles are moved using Eqs. 2.3 and 2.4. The procedures
EvaluateSwarm and UpdatePositions are executed iteratively until the stopping criterion
is satisfied.

Different settings for the population topology, the model of influence, or the velocity-
update rule give rise to different PSO algorithms. Two-dimensional lattices, small-world
networks or random graphs are among the possible choices for replacing the standard
fully-connected or ring graphs as population topologies (Kennedy, 1999; Kennedy and
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Algorithm 2 Basic structure of a particle swarm optimization algorithm

InitializeSwarm
repeat
EvaluateSwarm
UpdatePositions

until Stopping criterion is satisfied

Table 2.2: Representative PSO works
Investigated Aspect Main references
Acceleration Coefficients Kennedy (1997); Ratnaweera et al. (2004); Chat-

terjee et al. (2007); Chaturvedi et al. (2009)
Inertia Weight Shi and Eberhart (1998a,b, 1999, 2001); Eberhart

and Shi (2001); Zheng et al. (2003a,b); Chatterjee
and Siarry (2006)

Model of Influence Mendes et al. (2004); Jordan et al. (2008); Montes
de Oca and Stützle (2008a)

Population Size van den Bergh and Engelbrecht (2001); Lanzarini
et al. (2008); Coelho and de Oliveira (2008); Chen
and Zhao (2009)

Population Topology Kennedy (1999); Suganthan (1999); Janson and
Middendorf (2003, 2005); Mohais et al. (2005);
Kennedy and Mendes (2006)

Theoretical Aspects Ozcan and Mohan (1999); Clerc and Kennedy
(2002); Trelea (2003); Kadirkamanathan et al.
(2006); Poli (2007, 2009); Fernández Mart́ınez and
Garćıa Gonzalo (2009); Ghosh et al. (2011)

Velocity-Update Rule Kennedy (2003); Blackwell and Branke (2006);
Mendes and Kennedy (2007); dos Santos Coelho
(2008)

Mendes, 2002). Likewise, alternatives to the best-of-neighborhood model of influence can
be implemented. The most salient example is the fully-informed model, in which a particle
is informed by all of its neighbors (Mendes et al., 2004; Mendes, 2004). In Table 2.2 we list a
number of works in which one or more of the three aforementioned factors are investigated.

Swarm Robotics

Robotics has been pivotal in the development of the swarm intelligence field. In fact, it
was in a robotics paper that the term swarm intelligence was first used (Beni and Wang,
1993; Beni, 2005). Swarm intelligence applied to the multi-robot domain is called swarm
robotics (Dorigo and Şahin, 2004; Şahin, 2005; Bayindir and Şahin, 2007). It is sometimes
defined as “the study of how [a] large number of relatively simple physically embodied
agents can be designed such that a desired collective behavior emerges from the local
interactions among agents and between the agents and the environment.” (Şahin, 2005)
(p. 12). This definition is very similar to that of the engineering branch of the swarm
intelligence field (Dorigo and Birattari, 2007). The particularity of swarm robotics is the
embodiment of robots. In one of the first works in the field, Deneubourg et al. (1990b)
used the term “ant-like” to describe the robots they used in one of the first experiments
in the history of the swarm robotics field. At the same time, Deneubourg et al. reinforced
the link of the field with one of its major sources of inspiration: social insects. Deneubourg
et al. also showed that swarm robotics could be used as a scientific tool to test hypotheses
about the mechanisms involved in swarm organization in animals— cf. Webb (2000). For
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this and other reasons, swarm robotics research, unlike ACO and PSO research, does not
focus solely on applications.

In swarm robotics, some mechanisms involved in robot control and the benchmark
tasks robots solve, have been inspired by studies of real swarm-forming animals. For
example, Deneubourg et al. (1990b), Holland and Melhuish (1999), Wilson et al. (2004),
and Melhuish et al. (2006) studied swarms of robots performing spatial sorting inspired
by the brood sorting behavior of ants; Theraulaz and Bonabeau (1995) and Grushin and
Reggia (2008) studied structure building mechanisms inspired by wasps and other social
insects; Kube and Bonabeau (2000) and Groß and Dorigo (2008) reproduced with robots
the cooperative transport abilities of ants; and Mondada et al. (2004) and O’Grady et al.
(2010b) draw inspiration from social insect assemblages (Anderson et al., 2002) to devise
control algorithms that allow swarms of robots to perform collective tasks.

Research in swarm robotics is not only focused on tasks that can be solved collectively
by robots. There are also practical problems that need to be tackled in a swarm robotics
system. For example, robots that are part of a swarm may need to know when one of their
peers stops working properly, or they may need to know how many robots compose the
swarm. Some of these problems have been tackled using nature-inspired as well as purely
engineered approaches. For instance, Christensen et al. (2009) proposed a distributed
mechanism for robot fault detection within a swarm that was inspired by models of firefly
synchronization. Using a similar approach, Brambilla et al. (2009) built on the work
of Holland et al. (1999) to design a mechanism that allows individual robots to reliably
estimate the size of the group that they belong to. Energy supply within a swarm is
another practical problem that needs to be dealt with. Batteries have a limited capacity,
thus, robots have a limited lifetime. If the robots lifetime is short, a swarm of robots is
of little practical use. To tackle this problem, some researchers, for example Witkowski
(2007), Melhuish and Kubo (2007), and Schloler and Ngo (2008) have proposed energy
sharing mechanisms inspired by trophallaxis, that is, the direct exchange of food between
animals (Hölldobler and Wilson, 1990). By sharing charge with one another, some robots
can continuously operate while other robots get their batteries recharged.

One application area for which swarm robotics is particularly appealing is the con-
struction of two- and three-dimensional structures (Stewart and Russell, 2006; Werfel and
Nagpal, 2008; Mellinger et al., 2010). In this application area, most of the basic collective
behaviors inspired by animals can be integrated into a single complex task. For example,
robots need to aggregate, find construction materials, sort them, transport them from one
place to another (most likely, cooperatively), and finally, coordinate their actions in order
to actually build the desired structure.

Other Swarm Intelligence Systems

ACO, PSO, and swarm robotics have undoubtedly been the most popular swarm intelli-
gence systems to date. However, other systems exist and deserve being mentioned.

A family of swarm intelligence systems is used to perform data clustering. The goal
of any clustering algorithm is to partition a set of data or objects into clusters (groups,
subsets, classes) so that elements belonging to the same cluster are as similar as possible
and elements that belong to different clusters are as dissimilar as possible (Höppner et al.,
1999). Some of these swarm intelligence systems for data clustering focus on optimization,
and thus, use ACO, or PSO to tackle the problem (Martens et al., 2011). Other systems,
however, are inspired by the brood sorting behavior of some ant species. These systems are
called ant-based clustering algorithms (Lumer and Faieta, 1994; Handl et al., 2005; Handl
and Meyer, 2007).

Ant-based clustering algorithms are related to experiments in swarm robotics. Deneubourg
et al. (1990b) made robots execute the following rules: pick up an object if it is relatively
isolated, and put down an object if there are other objects around. As a result, the robots
created “heaps” of objects in the environment. Lumer and Faieta (1994) implemented in
software a similar system in which agents move over a toroidal square grid on which there
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are objects representing data items. Agents pick up an object with high probability if it is
not surrounded by other similar objects. By the same token, agents put down objects on
any free location surrounded by similar objects to the one they are carrying. As a result,
groups of similar data items are created. In other words, the algorithm performs data
clustering. A number of improvements of the basic technique have followed (see the work
of Handl and Meyer (2007) for one of the latest surveys of the topic).

A family of swarm intelligence algorithms, inspired by the behavior of bees, is attract-
ing the attention of researchers in the field (see the work of Karaboga and Akay (2009)
for a recent review). One of the algorithms that belong to this category is called Bee
Colony Optimization (BCO) (Teodorović, 2009). This algorithm is typically used to tackle
combinatorial optimization problems. BCO consists of two procedures that are executed
iteratively. In the first procedure, artificial bees build partial candidate solutions. In the
second procedure, the artificial bees “meet” in order to recruit other bees to search in the
area in proximity to the best found partial solutions. These two procedures roughly mimic
the behavior of scout bees looking for rich food sources and of the waggle dance of bees,
which is aimed at recruiting other bees from the nest. Another bee-inspired algorithm, the
Artificial Bee Colony (ABC) algorithm (Karaboga and Basturk, 2007), is used for tackling
continuous optimization problems. In ABC, the position of the bees represent candidate
solutions to the problem. The algorithm works through the interaction of three kinds of
artificial bees. Bees can be play three roles. They can be “employed”, “onlookers”, or
“scouts.” An employed bee exploits a promising region. In other words, the bee carries
out a sort of local search. Onlooker bees search around promising regions based on their
quality. Onlooker bees can compare the quality of different regions in the search space,
thus they perform a more global search than employed bees. Finally, scout bees perform
random search, which enables them to discover new promising regions in the search space.

2.2 Social Learning

Social and individual learning are terms that are often used vaguely, meaning different
things in different contexts. For the purpose of this dissertation, it is therefore important
to clearly define the meaning of these two concepts and their relationship.

Individual (or asocial) learning is the process whereby an agent benefits from experience
to become better adapted to its environment (Rescorla, 1988). The exact meaning of
“experience” and “adaptation” depends on the context in which the term “learning” is
used. In any case, learning implies a change in an agent’s behavior from the moment in
which it interacts with its environment, or gains “experience”, and the moment in which
its level of “adaptation” to its environment is measured or observed. In Chapters 4 and 5,
we will explicitly define these terms in the context of the two case studies presented in this
dissertation.

From a machine learning perspective, learning is finding an association between inputs
and some output. Inputs can have many forms, from abstract data, to actual information
gathered through electronic sensors. An agent’s output can be, for example, actions that
change the agent’s environment, or an abstract concept, such as a category identifier. The
association between inputs and output changes during the lifetime of the learning agent.
This association represents the agent’s “experience” discussed in the previous paragraph.
The purpose of associating inputs with outputs is to maximize some performance measure.
A better score using a performance measure means that the agent is “better adapted” to
its environment. There are roughly three categories of learning problems (Birattari, 2009):
supervised, reinforcement, and unsupervised. In supervised learning (Aha et al., 1991),
a supervisor provides examples of the desired input-output associations. In this case, a
learning agent tries to minimize the differences between its own responses and the desired
ones. Reinforcement learning (Kaebling et al., 1996) is based on rewards given to a learning
agent when it performs actions that lead to a certain environment state. In this case, a
learning agent tries to maximize the collected rewards. Unsupervised learning (Jain et al.,
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1999) does not require any examples or rewards. In this case, a learning agent tries to
identify input patterns that trigger similar outputs or responses.

There are more definitions of social learning than of individual learning. Fortunately,
Heyes (1994) provides a definition onto which one can map many working definitions ex-
isting in the literature:

Definition The term ‘social learning’ refers to learning that is influenced by observation
of, or interaction with, another animal (typically a conspecific) or its products [. . . ]. The
complementary set is commonly known as ‘individual learning’. (Heyes, 1994) p. 207.

Heyes’s definition is general enough to encompass the definitions of Biederman et al.
(1993) who refer to social learning as learning from the observation of others’ behavior,
and Caldwell and Millen (2009) who use the term social learning as learning from the
interaction with others. Other authors prefer to use Heyes’s full definition (Brown and
Laland, 2003; Caldwell and Millen, 2009; Rendell et al., 2010b,a, 2011).

Social learning in animals has been studied since the 19th century (Galef Jr., 1990).
In humans, social learning started to be seriously studied around the 1970s with the work
of Bandura (1977) and other psychologists. Similarly to other theories of behavior, social
learning in humans and animals has been studied from a mechanistic as well as from a
functional point of view. Ethologists and psychologists take a mechanistic perspective in
order to determine the mechanisms and strategies that animals use to learn from others.
Biologists and scientists from other disciplines, including economics, study social learning
from a functional perspective in order to answer the question of why and under which
circumstances social learning is useful.

2.2.1 Social Learning Mechanisms and Strategies

Social learning mechanisms (how an agent may learn from others) and strategies (when
and from whom should an agent learn socially) are the subject matter of the mechanistic
approach to the study of social learning. In the following paragraphs, we will briefly define
some of the most commonly studied social learning mechanisms and strategies.

Mechanisms

Imitation, emulation, enhancement, conditioning, facilitation and mimicking are social
learning mechanisms. They are not learning phenomena themselves, but they may lead
to learning (Heyes et al., 2000). Imitation and emulation involve copying. When an
observer imitates, it copies the actions of a demonstrator with the goal of reproducing
the actions’ effects; when an observer emulates, it uses its own actions to reproduce the
results produced by a demonstrator’s actions (Heyes, 1994; Caldwell and Millen, 2009;
Cakmak et al., 2010). Imitation has been traditionally assumed to be the main mechanism
through which animals learn socially (Galef Jr., 1990). However, imitation is a relatively
complex process that implies that the copying animal is able to take the perspective of
the demonstrating animal. Thus, to explain social learning in animals that are considered
to have limited cognitive abilities, such as insects, simpler mechanisms have been sought.
One such mechanism is called social enhancement (Franz and Matthews, 2010). Some
authors distinguish between two forms of social enhancement: stimulus enhancement and
local enhancement. Stimulus enhancement occurs when an agent calls the attention of
another one to a particular object, increasing the likelihood that the observer interacts
with that object (or with objects with similar physical features) in the future, regardless
of the objects’ location (Heyes, 1994; Bonnie and de Waal, 2007; Franz and Matthews,
2010). Local enhancement occurs when an agent is attracted to the location where a
certain behavior was observed (Galef Jr., 1990; Heyes, 1994; Franz and Matthews, 2010).
Social enhancement makes some features of the environment more salient than others. As
a result, the observer may save time and effort exploring the environment in order to find
interesting objects or locations. Social enhancement imposes lower cognitive capabilities
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Table 2.3: Examples of “When” and “From whom” components of a social learning strat-
egy.

When From whom
When established behavior is unproductive From majority

When asocial learning is costly From successful individuals
When uncertain From good social learners

When dissatisfied From related individuals (kin)
When environment is stable From familiar individuals

From older individuals

on animals than imitation or emulation do. Conditioning in a social context means that
an animal learns an association between two stimuli as a result of observing the reaction
of a demonstrator to a stimulus (Heyes, 1994). Social facilitation occurs when an animal
manifests a behavior more (or less) strongly in the presence of another passive animal
of the same species (Zajonc, 1965; Guérin, 1993; Heyes et al., 2000). Social facilitation
is considered a social learning mechanism because the influence of another animal may
increase or decrease the responsiveness of the observer to its environment, and thus, may
change the observer’s learning ability. Mimicking is similar to imitation in that the observer
copies the actions of a demonstrator. However, when mimicking, the observer is not trying
to get the same results as the demonstrator; it simply performs the actions without regard
to the actions’ goals (Tomasello, 2004). Mimicking could be seen as a socially mediated
action exploration mechanism.

Strategies

Functional studies of social learning (see Section 2.2.2) suggest that agents should not
learn socially all the time. Instead, these studies conclude that agents should selectively
choose between individual and social learning depending on the characteristics of their
environment. The strategy used by an agent to decide when and from whom to learn is
called a social learning strategy (Laland, 2004; Galef Jr., 2009).

Social learning strategies have been studied mostly theoretically within a functional
framework to determine which ones are more likely to offer advantages under predefined
circumstances (Laland, 2004). Examples of social learning strategies can be built from
the components listed in Table 2.3, which lists some plausible “when” and “from whom”
components of a social learning strategy. This list was proposed by Laland (2004) and
later adapted by Galef Jr. (2009).

In experiments with animals, some scientists have reported what probably is the ex-
ecution of certain social learning strategies. For example, a copy-when-uncertain social
strategy could explain the behavior of Norway rats in an experiment designed by Galef Jr.
(1996) in which Norway rats had to choose between two completely novel foods. In such
an uncertain situation, the rats preferred the foods that had been consumed by other rats
(detected through breath odor) instead of trying any of them with equal probability, which
would have been the case if they had been learning individually.

The study of social learning strategies is still in its infancy, but some important efforts
are being made in order to discover strategies robust to different environmental condi-
tions. For example, Rendell et al. (2010a) organized a computer-based tournament aimed
at discovering effective social learning strategies under a wide range of environmental con-
ditions. In total, 104 strategies were submitted and the final outcome of the tournament
has given researchers useful insight into what makes a social learning strategy successful.
The strategy that won the tournament favored social learning almost all the time. The
reason, Rendell et al. conclude, is that since agents frequently demonstrated the highest-
payoff behavior, social learners could observe and copy only promising behaviors. In effect,
through the demonstration of good behaviors, agents were filtering out mediocre behaviors
that could not be spread through social learning.
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2.2.2 Functional Value of Social Learning

The functional approach to the study of social learning aims at understanding the condi-
tions under which social learning evolved and what the adaptive value of social learning is.
This approach is of interest to scientists of many disciplines. For example, biologists wonder
how variable can an environment be so that social learning evolves (Wakano et al., 2004).
Sociologists consider that social learning is at the root of culture but since social learning
is a product of evolution, they wonder how cultural and genetic evolution interact (Cavalli-
Sforza and Feldman, 1983; Boyd and Richerson, 1985; Flinn, 1997). Economists wonder
what is the effect of social learning in the decisions economic agents make and its con-
sequences for the population as a whole (Ellison and Fudenberg, 1995; Chamley, 2004).
Computer scientists and engineers are interested in exploiting social learning in the design
and use of software and robots (Thomaz, 2006; Nehaniv and Dautenhahn, 2007; Cakmak
et al., 2010). We belong to this last class of researchers. As it will be discussed in more
detail in Chapter 3, the work presented in this dissertation takes a functional approach
toward the application of social learning ideas.

The adaptive value of social learning has been studied mainly through mathematical
and computational models. Almost all models assume that social learning is a convenient
way to acquire adaptive behavior because it allows the social learning agent to save time
and energy that it would otherwise spend learning individually (Laland, 2004). There are
also other advantages associated with social learning, such as reducing the risk of exposure
to predators or lowering the chances of getting poisoned as a result of trying unknown
foods (Galef Jr., 2009). Consequently, it would be reasonable to assume that a population
composed of social learning agents would have a higher average fitness than a population
composed of only individual learning agents. As it turns out, this reasoning is flawed as
shown by Rogers (1988). He demonstrated that social learning agents have an advantage
only when individual learning agents are present. This insight motivates research on social
learning strategies as we saw above.

A family of social learning models is aimed at investigating the degree to which an
environment can change so that social learning is useful (Bergman and Feldman, 1995;
Wakano et al., 2004; Laland and Kendal, 2003; Galef Jr., 2009). These models study the
relative advantage that reliance on social and individual learning as well as genetically
encoded behavior offers to an agent in the presence of a changing environment. As a result
of years of theoretical work, it is now well established that when the environment does
not change, or when it changes too frequently, a genetically encoded behavior prevails. In
the first case, it is assumed that there is a cost associated to learning. Thus, a genetically
encoded behavior provides everything an agent needs at a lower cost. In the second case,
there is no possibility of learning and thus, again for economic reasons, a genetically encoded
behavior prevails. At high rates of change that still allow for some predictability of the
environment, individual learning lets an agent have up-to-date information whereas social
learning can potentially be harmful since outdated information can pass from one agent to
another. At intermediate rates of change social learning flourishes more than individual
learning because it is a cheaper way of obtaining adaptive information. Note that social
learning models and their implications are subject to change because their predictions have
been subjected to limited empirical tests (Laland and Kendal, 2003). As recently shown
by (Rendell et al., 2010a), a population of agents might still rely on social learning even in
a frequently changing environment simply because demonstrators will tend to adapt their
own behavior to the new circumstances and thus, they can still pass useful information to
others.

Other models have been devised in order to study the spread of behavior through so-
cial learning (Laland and Kendal, 2003; Cavalli-Sforza and Feldman, 1981). The goal of
these models is to find a “signature” of social learning in the curves that represent the
proportion of individuals in a population adopting a particular behavior. Unfortunately,
these models do not consider simple explanations that could account for the adoption
patterns observed (Laland and Kendal, 2003). Finally, there are models aimed at under-
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standing whether culture (the cumulative effect of social learning) and natural evolution
interact (Feldman and Laland, 1996; Laland and Kendal, 2003). The basic assumption
here is that an animal’s genotype may determine what it learns, and that learned behavior
affects, in turn, the selection pressure on that genotype.
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Chapter 3

Incremental Social Learning

In this chapter, we present the incremental social learning (ISL) framework. First, we de-
scribe the problem of interference in multiagent systems. Then, we explain how interference
is addressed by the ISL framework and present the framework’s algorithmic structure. We
finish with a brief discussion of related work. Work specifically related to each instantiation
of the ISL framework in our case studies is discussed in Chapters 4 and 5.

3.1 Interference

There are different kinds of interactions among agents in multiagent systems. Depending
on the effect of such interactions, they can be labeled as “positive”, “negative”, or “neutral”
interactions (Gershenson, 2007). Positive interactions facilitate the accomplishment of an
assigned task. For example, in a collective transport task, robots form teams in order to
transport objects that are too difficult for a single robot to move (Kube and Bonabeau,
2000; Tuci et al., 2006). Negative interactions, also called interference1 (Matarić, 1997),
friction (Gershenson, 2007), or repulsive and competitive interactions (Helbing and Vicsek,
1999), are those that block or hinder the functioning of the system’s constituent agents.
As a result, interference decreases the performance of a multiagent system. For instance,
in an ant-based clustering algorithm (see Section 2.1.2) agents can undo the actions of
other agents, which increases the time needed by the algorithm to find a satisfactory final
clustering. A neutral interaction does not affect the system’s dynamics in such a way that
it benefits or harms progress toward the completion of an assigned task. Deciding whether
an interaction is positive, negative, or neutral depends on the time scale used to measure
the interaction’s effects. For example, an interaction that involves two robots performing
a collision avoidance behavior can be labeled as a negative interaction in the short term
because time is spent unproductively. However, if the time horizon of the task the robots
are performing is significantly longer than the time frame of a collision avoidance maneuver,
then the overall effect of such an interaction may be negligible. In this case, such interaction
can be labeled as neutral.

Interference is one of the main challenges to overcome during the design and opera-
tion of systems composed of many agents (Gershenson, 2007). For example, Kennedy and
Eberhart, the designers of the first PSO algorithm, pondered different candidate particle
interaction rules before proposing the rules that we now know (see Eqs. 2.3 and 2.4). Their
ultimate goal was to design rules that promoted positive interactions between particles. In
the final design, particles cooperate, that is, they engage in positive interactions, by ex-
changing information with one another about the best solution to an optimization problem
that each particle finds during its lifetime. At the same time, however, such an exchange
of information can “distract” particles and make them search in regions of a problem’s
search space that seem promising but that in fact do not contain the optimal solution

1In this dissertation, we use the term interference to refer to the set of negative interactions that occur
within multiagent systems, including swarm intelligence systems.
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that the particles are looking for. The net effect of such interactions is that particles may
spend objective function evaluations unproductively. This effect intensifies as the size of
the particle swarm increases.

Directly measuring interference is difficult. First, one can determine whether the effects
of an interaction, or a set of interactions, are beneficial or not only after the task has been
performed. Second, as we mentioned before, an interaction may be positive, negative or
neutral, depending on the time scale used to measure its effect. In this dissertation, we
advocate for qualifying interactions based on their effects in the long term. We do so
because it is only at a time scale similar to the time a system needs to perform a task that
labeling interactions is relevant for practical purposes. Third, the nature of the interactions
themselves poses a challenge. In some systems, agents interact directly on a one-to-one or
one-to-some basis, such as in PSO algorithms. In other systems, such as ACO algorithms,
agents interact indirectly through the environment and there may be extended periods
of time between the moment an agent acts and the moment another agent is affected by
those actions. With these restrictions, interference can only be measured indirectly through
observation of the system’s performance. Despite these difficulties, two measures can be
used to indirectly gauge interference: (i) the time needed by the system to reach a desired
or target state, or (ii) the amount of work performed in a certain amount of time. If one
compares two systems, we expect the system with higher interference to make progress
toward a desired state more slowly than the system with lower interference. As a result, if
one let two systems run for the same amount of time, the system with larger interference
would perform less work than the system with lower interference.

There are two properties of systems composed of many agents that are in direct relation
with interference:

1. Interference increases with the number of agents in the system. This effect is the
result of the increased number of interactions within the system. The larger the
number of agents that comprise the system, the higher the probability of a negative
interaction occurring.

2. Interference tends to decrease over time. At one extreme of the spectrum, one can
find a system in which interactions between agents are completely random or not
purposeful. In such a case, it is expected that agents cannot coordinate and thus,
cannot perform useful work. Thus, we expect interference to remain at a constant
level over time. At the other extreme of the spectrum, one finds well-behaved systems
consisting of a number of agents whose interaction rules are designed in order to make
agents coordinate with each other. Initially, we expect a high-level of interference
because agents would not have enough knowledge about their current environment.
However, over time, the behavioral rules of these agents would exploit any gained
knowledge in order to make progress toward the completion of the assigned task.
Thus, we expect that in cases like these, interference decreases over time, because
the other alternatives would be a random behavior or a pathological system in which
interference increases.

By making use of these two properties, it is possible to control, to a certain extent, the
levels of interference in a multiagent system. The incremental social learning framework,
which will be described next, is based on this observation.

3.2 The Incremental Social Learning Framework

Our goal with the incremental social learning (ISL) framework is to reduce the effects of
interference in swarm intelligence systems. ISL is a framework because it offers a concep-
tual structure that does not prescribe a specific implementation of the ideas on which it
relies. Each instantiation of the framework will benefit from knowledge about the specific
application domain, and therefore, specific properties of the framework should be analyzed
in an application-dependent context.
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Algorithm 3 Incremental social learning framework

Input: Agent addition criteria, stopping criteria
1: /* Initialization */
2: t← 0
3: Initialize environment Et

4: Initialize population of agents Xt

5:

6: /* Main loop */
7: while Stopping criteria not met do
8: if Agent addition criteria is not met then
9: default(Xt,Et) /* Default system */

10: else
11: Create new agent anew
12: slearn(anew,X

t) /* Social learning */
13: Xt+1 ← Xt ∪ {anew}
14: end if
15: Et+1 ← update(Et) /* Update environment */
16: t← t+ 1
17: end while

The ISL framework consists of two elements that manipulate and exploit the two prop-
erties mentioned in Section 3.1. The first element of the framework directly affects the
interference levels within a system by manipulating the number of interactions among the
system’s constituent agents. Such a control is achieved by varying the number of agents in
the system. The strategy for controlling the size of the agent population exploits the second
property, that is, that interference tends to decrease over time. The system starts with a
small population that grows at a rate determined by agent addition criteria specified by
the user. Two phenomena with opposite effects occur while the system is under the control
of the ISL framework. On the one hand, interference increases as a result of adding new
agents to the swarm (first property described in Section 3.1). On the other hand, interfer-
ence decreases because the system operates while the population grows (second property
described in Section 3.1).

The second element of the framework is social learning. This element is present before
a new agent freely interacts with its peers. Social learning is used so that the new agent
does not produce extra interference due to its lack of knowledge about the environment.
Leadership, a swarm intelligence mechanism (see Chapter 2), is present in the framework
in the process of selecting a subset of agents from which the new agent learns. The best
strategy to select such a set depends on the specific application. However, even in the case
in which a random agent is chosen as a “model” to learn from, knowledge transfer occurs
because the selected agent will have more experience than the new agent that is about
to be added. As stated in Chapter 2, we take a functional approach to the use of social
learning concepts. We do not pay attention to the mechanisms used by the agents to learn
from each other. Instead, we are interested in the effects that social learning has on the
agents and on the system.

The two elements that compose ISL are executed iteratively as shown in Algorithm 3.

In a typical implementation of the ISL framework, an initial population of agents is
created and initialized (line 4). The size of the initial population depends on the specific
application domain. In any case, the size of this initial population should be small in order
to reduce interference to the lowest level possible. A loop structure allows the interspersed
execution of the underlying system and the creation and initialization of new agents (line
7). This loop is executed until some user-specified stopping criteria are met. Stopping
criteria can be specific to the application or related to the ISL framework. For example, the
framework may stop when the task assigned to the swarm intelligence system is completed
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or when a maximum number of agents are reached. While executing the main loop, agent
addition criteria, which are also supplied by the user, are repeatedly evaluated (line 8).
The criteria can range from a predefined schedule to conditions based on statistics of
the system’s progress. If the agent addition criteria are not met, the set of agents work
normally, that is, the underlying swarm intelligence system is executed. In line 9, such an
event is denoted by a call to the procedure default(Xt,Et). If the agent addition criteria
are satisfied, a new agent is created (line 11). In contrast to a default initialization such
as the one in line 4, this new agent is initialized with information extracted from a subset
of the currently active population (line 12). Such an initialization is denoted by a call
to the procedure slearn(anew,X

t). This procedure is responsible for the selection of the
agents from which the new agent will learn, and for the actual implementation of the social
learning mechanism. Once the new agent is properly initialized, it becomes part of the
system (line 13). In line 15, we explicitly update the environment. However, in a real
implementation, the environment may be continuously updated as a result of the system’s
operation.

In most swarm intelligence systems, the population of agents is large and homogeneous,
that is, it is composed of agents that follow exactly the same behavioral rules. Thus, any
knowledge acquired by an agent is likely to be useful for another one. The social learning
mechanism used in an instantiation of the ISL framework should allow the transfer of
knowledge from one agent to the other. In some cases, it is possible to have access to the
full state of the agent that serves as a “model” to be imitated, and thus, the social learning
mechanism is simple. In other cases, access to the model agent’s state may be limited and
a more sophisticated mechanism is required. In most cases, the result of the social learning
mechanism will not be simply a copy of the model agent’s state, but a biased initialization
toward it. Copying is not always a good idea because what may work very well for an
agent in a system composed of n agents may not work well in a system of n+ 1 agents.

3.3 Related Work

The ISL framework and many works in the field of multiagent systems (Wooldridge, 2009)
share a common goal: interference reduction. The means used by these works and the ISL
framework to achieve this goal differ. In traditional multiagent systems, interference is a
problem that has been tackled indirectly through the careful design of interaction proto-
cols that consider all the possible events that the agents can possibly experience (Shoham
and Tennenholtz, 1995; Gmytrasiewicz and Durfee, 2000). Examples of protocols designed
in such a way are the following: Contract Net (Smith, 1980), coalition formation algo-
rithms (Shehory and Kraus, 1998), or the protocols used for negotiation in agent-mediated
electronic commerce applications (He et al., 2003). Tackling interference has required a
significant effort on the part of the multiagent systems community. These efforts could
be grouped into categories such as methodologies, standards, or communication protocols.
Early on in the development of the field of multiagent systems, researchers recognized that
for analyzing and designing multiagent systems, new methodologies were required. Well-
known methodologies that are the result of work in this direction are MaSE (Deloach et al.,
2001) and the Gaia methodology (Zambonelli et al., 2003). Through these methodologies,
interactions between agents are identified and carefully designed. Standards have been pro-
posed to allow interoperability of agents developed by different parties. The best known
organization dedicated to establish specifications for multiagent systems is the Foundation
for Intelligent Physical Agents (FIPA)2 (O’Brien and Nicol, 1998). A sign that interactions
are one of the main issues in the design of multiagent systems is that the core FIPA speci-
fication is the one related to agent communication. Methodologies and standards call for a
common communication language between the agents that comprise a system. As a result,
some agent languages have been proposed. For example, languages such as KQML (Finin
et al., 1994), or FIPA-ACL (IEEE Foundation for Intelligent Physical Agents, 2011) have

2http://www.fipa.org
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explicit specifications that let agents exchange knowledge with each other.
A complete review of the literature in the field of multiagent systems that deals with

interference, either directly or indirectly, is out of the scope of this dissertation. However,
we can say that there are strong differences between practically all previous works in the
field of multiagent systems and the ISL framework. First, the size of the systems that
can be designed with a traditional approach is limited to just a few and very sophisticated
agents. Moreover, when taking a traditional approach, one is necessarily assuming that the
number of agents is constant over time. This assumption is needed because with traditional
approaches, each agent plays a specific role in the system, and adding or removing an agent
would require the designer to re-program all or at least some of the agents that comprise
the system.

In contrast, in the ISL framework we assume that the agents are very similar, if not
identical, to each other. As a result, since each agent does not play a specific role, it is
possible to assume that the number of agents can change over time and that the total
number of agents can be very large. Thus, even though the framework may work for small
systems, we are proposing the framework to be primarily used with systems composed of
a large number of agents. Hence, we expect the ISL framework to have a larger impact on
the design and operation of swarm intelligence systems than on the design and operation
of small multiagent systems.

The other body of literature that is related to the ISL framework is the one in which
social learning or related concepts are used in the context of multiagent systems and swarm
intelligence systems. Two main categories of works can be distinguished: (i) those that
study social learning using a multiagent system as a tool, and (ii) those that exploit social
learning as a tool for developing better performing systems. The ISL framework belongs to
this second category of works. Until recently, the first category was the most active of the
two. Simulations of social systems in computers began in the 1950s (Conte et al., 1998)
and have continued gaining popularity. This increased popularity is evidenced by the fact
that there are now scholarly journals, such as the Journal of Artificial Societies and Social
Simulation (JASS)3, devoted to the topic. Areas of interest in this category range from
the study of the usefulness of social learning under different environmental conditions (An-
nunziato and Pierucci, 2003; Noble and Franks, 2003; van der Post and Hogeweg, 2004;
Priesterjahn and Eberling, 2008) to the evolution of language and culture (Divina and
Vogt, 2006; Vogt, 2006). The second category of works has being attracting the attention
of a growing community. Social learning as a mechanism to improve the performance of
systems composed of many agents has been investigated in the context of robotics (Matarić,
1997; Pini and Tuci, 2008; Cakmak et al., 2010), multiagent systems (Kopp and Graeser,
2006; Garćıa-Pardo et al., 2010), and neural computation (Jang and Cho, 2002).

In the swarm intelligence field, social learning concepts have been associated with PSO
algorithms almost since they were first proposed. Kennedy (2006) explains how the de-
velopment of the first PSO algorithm was heavily influenced by Latané’s social impact
theory (Latané, 1981). This theory argues that an individual changes its psychological
state to a degree that is a function of the strength, immediacy, and the number of other
individuals. In the context of PSO algorithms, this theory was another source of inspira-
tion for the rules that govern the movement of particles. Although swarm intelligence is
based on the idea that the actions of one agent can affect the behavior of another agent, for
instance, via stigmergy (see Section 2.1), social learning has been overlooked by researchers
in the field. We hope that this dissertation makes social learning research more visible to
the swarm intelligence community, and that the community of scientists studying social
learning in animals becomes aware of the potential of swarm intelligence as a hypothesis
and application testing field. We hope that the mutual exchange of ideas will serve to
enrich both fields.

In the next two chapters, we will describe the case studies designed to test the effective-
ness of the ISL framework. Previous work specifically related to the instantiation of the
ISL framework in the context of each case study is presented in the corresponding chapter.

3http://jasss.soc.surrey.ac.uk
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Chapter 4

Incremental Social Learning Applied
to Particle Swarms

In this chapter, we describe the first of the two case studies that we use to evaluate the
effectiveness of the ISL framework. In the instantiation of the ISL framework described in
this chapter, a PSO algorithm serves as the underlying swarm intelligence system. Three
different algorithms are presented. The first two algorithms are straightforward instantia-
tions of the ISL framework. The third algorithm is the result of a more elaborate design
process in which automatic tuning plays an important role.

In Section 2.2, we said that the meanings of “experience” and “adaptation” need to be
explicitly defined in order to understand the role of social learning in a specific instantiation
of the ISL framework. In the case study presented in this chapter, these terms are intimately
related to the purpose of particles in a PSO algorithm. The term “experience” is the
memory that each particle maintains about its search history, that is, the best solution
found since the beginning of the algorithm’s run. The term “adaptation” is interpreted as
the actual quality of that best-found solution. Therefore, in the context of the case study
presented in this chapter, “learning” is interpreted as a process through which a particle’s
memory is used in order to find better solutions to the optimization problem at hand. The
social learning procedure used throughout this chapter (see Section 4.1) is consistent with
this interpretation.

As mentioned in Section 2.1.2, PSO is a direct search method. Thus, no assumptions
are made regarding the features of the problems PSO is applied to. In other words, our
experiments are carried out under the assumption that the objective function’s derivatives
are not available and that only direct function evaluations can be performed. In this
context, interference in PSO algorithms is seen as a trade-off between solution quality and
the number of function evaluations used. This trade-off is greatly affected by the size of the
population: When a limited number of function evaluations are allowed, small populations
obtain the best results. In contrast, when solution quality is the most important aspect,
large populations usually work better (van den Bergh and Engelbrecht, 2001) (see also
Appendix A). Thus, the analysis of the benefits due to the use of the ISL framework is
based on the solution quality obtained after a certain number of function evaluations or
the number of function evaluations needed to find a solution of a certain quality.

4.1 Incremental Particle Swarm Optimizer

The first instantiation of the ISL framework in the context of PSO algorithms is an algo-
rithm with a growing population size that we call incremental particle swarm optimizer
(IPSO). IPSO is based on the constricted PSO algorithm, which strictly speaking is a
particular setting of numerical parameters of the standard PSO algorithm. However, this
setting has become so popular since it was proposed by Clerc and Kennedy (2002) that we
refer to it as a variant.
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Clerc and Kennedy (2002) modified Eq. 2.3 and introduced a constant called constric-
tion factor. The goal of this modification was to avoid the unlimited growth of the particles’
velocity that may occur with certain parameter settings (Clerc and Kennedy, 2002). In
the constricted PSO variant, the velocity update rule for particle i’s j-th component is

v t+1
i,j = χ

(
v ti,j + ϕ1U1(pb ti,j − x ti,j) + ϕ2U2(lb ti,j − x ti,j)

)
, (4.1)

where χ is the constriction factor. The value taken by the constriction factor is based

on the following relation: χ = 2/
∣∣∣2− ϕ−√ϕ2 − 4ϕ

∣∣∣, where ϕ = ϕ1 + ϕ2 and ϕ > 4.

Note that Eqs. 2.3 and 4.1 can be equivalent if the values of w and ϕ1 and ϕ2 are set
appropriately.

In the ISL framework, every time a new agent is added to the population, it learns
socially from a subset of the more experienced agents. In IPSO, every time a new particle
is added, it is initialized using information from particles that have already been part of the
swarm for some time. This social learning mechanism is implemented as an initialization
rule that moves a new particle from an initial randomly generated position in the problem’s
search space to one that is closer to the position of a particle that serves as a “model” to
imitate (hereafter referred to as model particle). The initialization rule used in IPSO, as
applied to a new particle’s j-th dimension, is as follows:

x′new,j = xnew,j + U · (pmodel,j − xnew,j), (4.2)

where x′new,j is the new particle’s updated position, xnew,j is the new particle’s original
random position, pmodel,j is the model particle’s previous best position, and U is a uniformly
distributed random number in the range [0, 1). Once the rule is applied for each dimension,
the new particle’s previous best position is initialized to the point x′new and its velocity is
set to zero. The random number U is the same for all dimensions in order to ensure that the
new particle’s updated previous best position will lie somewhere along the direct attraction
vector pmodel−xnew. Using independent random numbers for each dimension would reduce
the strength of the bias induced by the initialization rule because the resulting attraction
vector would be rotated and scaled with respect to the direct attraction vector. Finally,
the new particle’s neighborhood, that is, the set of particles from which it will receive
information in subsequent iterations, is generated at random, respecting the connectivity
degree of the swarm’s population topology. A pseudo-code version of IPSO is shown in
Algorithm 4.

The model particle can be selected in several ways. Here we present the results obtained
with the best particle as a model. Experimental results indicate that choosing the model
particle at random does not produce significantly different results. We conjecture that this
result is due to the tendency that particles have to cluster in the search space. In such a
case, the distance between the best and a random particle would not be large enough to
produce significantly different results.

4.2 Incremental Particle Swarm Optimizer with Local
Search

The second instantiation of the ISL framework in the context of PSO algorithms is an
incremental particle swarm optimizer with local search (IPSOLS). This algorithm works
similarly to IPSO; However, in IPSOLS, particles not only move using the traditional PSO
rules, but also by invoking a local search procedure. In the context of the ISL framework,
the local search procedure can be interpreted as a particle’s “individual learning” ability
because it allows a particle to improve its solution in the absence of any social influence.

In IPSOLS, the local search procedure is called only when it is expected to be beneficial;
the local search procedure is called only when a particle’s previous best position is not
considered to be already in a local optimum. We determine when to call again the local
search procedure by letting the local search procedure return a value that indicates either
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Algorithm 4 Incremental particle swarm optimizer: IPSO

Input: Objective function f : Θ ⊆ Rn → R, the initialization domain Θ′ ⊆ Θ, the agent-addition
criterion A, the maximum population size N , and the parameters used by the PSO rules (ϕ1,
ϕ2, and χ).

Output: The best found solution sol ∈ Θ

/* Initialization */
t← 0 /* Iteration counter */
i← 1 /* Population size */
Initialize position vector x t

i to random values within Θ′

Initialize velocity vector v ti to zero
p ti ← x t

i

/* Main Loop */
repeat

/* PSO Rules */
for j = 1 to i do

Generate x t+1
j using Eqs. 4.1 and 2.4

if f(x t+1
j ) < f(p tj ) then

p t+1
j ← x t+1

j

end if
end for

/* Population Growth and Social Learning */
if Particle addition criterion A is met and i < N then

Initialize vector p t+1
i+1 using Eq. 4.2 for each component

Initialize velocity vector v t+1
i+1 to zero

x t+1
i+1 ← p t+1

i+1

i← i+ 1
end if
t← t+ 1
sol← argmin

j∈{1,...,i}
f(p tj )

until Stopping criterion is satisfied

that it finished because a very small difference between two solutions was detected or that
the maximum number of iterations allocated to it was reached. In the first case, it is
assumed that the local search has converged to a local optimum, and the particle does
not invoke the procedure again because no further significant improvements are expected.
In the second case, the particle may call the local search procedure again because further
significant improvements can still be achieved. The two parameters of the local search
procedure that control these exit criteria are the tolerance and the maximum number of
iterations respectively. IPSOLS is sketched in Algorithm 5.

In principle, any local search algorithm for continuous optimization can be used with
IPSOLS. In the first set of experiments (reported in Section 4.4), we use Powell’s conjugate
directions set method using Brent’s technique (Brent, 1973) as the auxiliary line minimiza-
tion algorithm. In Section 4.5.2, we explore the impact that the selection of a specific local
search algorithm has on the performance of IPSOLS.

Powell’s conjugate directions set method tries to minimize an n-dimensional objective
function by constructing a set of conjugate directions through a series of line searches.
Directions vi, i ∈ {1 : n}, are said to be conjugate with respect to an n × n positive
definite matrix A, if

vTi Avj = 0, ∀i, j ∈ {1 : n}, i 6= j .

Additionally, directions vi, i ∈ {1 : n}, must satisfy linear independence to be con-
sidered conjugate. Conjugate search directions are attractive because if A is the Hessian
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Algorithm 5 Incremental particle swarm optimizer with local search: IPSOLS

Input: Objective function f : Θ ⊆ Rn → R, the initialization domain Θ′ ⊆ Θ, the agent-addition
criterion A, the maximum population size N , the local search procedure parameters (tolerance,
maximum number of iterations, step size) and the parameters used by the PSO rules (ϕ1, ϕ2,
and χ).

Output: The best found solution sol ∈ Θ

/* Initialization */
t← 0 /* Iteration counter */
i← 1 /* Population size */
Initialize position vector x t

i to random values within Θ′

Initialize velocity vector v ti to zero
p ti ← x t

i

ei ← true /* If ei = true, a local search should be invoked for particle i */

/* Main Loop */
repeat

/* Local Search */
for j = 1 to i do

if ej = true then
ej ← localsearch(f,p tj ) /* true if exited without converging, else returns false */

end if
end for

/* PSO Rules */
for j = 1 to i do

Generate x t+1
j using Eqs. 4.1 and 2.4

if f(x t+1
j ) < f(p tj ) then

p t+1
j ← x t+1

j

ej ← true
end if

end for

/* Population Growth and Social Learning */
if Agent-addition criterion A is met and i < N then

Initialize vector p t+1
i+1 using Eq. 4.2 for each component

Initialize velocity vector v t+1
i+1 to zero

x t+1
i+1 ← p t+1

i+1

ei+1 ← true
i← i+ 1

end if

t← t+ 1
sol← argmin

j∈{1,...,i}
f(p tj )

until Stopping criterion is satisfied

matrix of the objective function, it can be minimized in exactly n line searches (Press et al.,
1992).

Powell’s conjugate directions set method starts from an initial point p0 ∈ Rn. It
then performs n line searches using the unit vectors ei as initial search directions ui.
A parameter of the algorithm is the initial step size s of the search. At each step, the
new initial point from which the next line search is carried out is the point where the
previous line search found a relative minimum. A point pn denotes the minimum discovered
after all n line searches. Next, the method eliminates the first search direction by doing
ui = ui+1, ∀i ∈ {1 : n−1}, and replacing the last direction un for pn−p0. Then, a move to
the minimum along the direction un is performed. The next iteration is executed starting
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from the minimum found in the last step. We used an implementation of the method
similar to the one described by Press et al. (1992). In this implementation, line searches
receive a parameter referred to as step size that determines the initial points from which
the method performs its initial bracketing steps. The line search method is restricted to a
line segment equal to 100 times the length of the step size. Thus, the line search procedure
is not constrained within a line segment of length equal to the step size parameter, but
can potentially explore the full search direction. Our implementation terminates when the
maximum number of iterations, MaxITER, is reached or when the tolerance FTol, that
is, the relative change between solutions found in two consecutive iterations, falls below a
certain threshold.

4.3 Determining the Probability Density Function In-
duced by the Social Learning Rule

The position of a newly added particle in IPSO and IPSOLS can be modeled as a random
variable Z which is a function of two independent continuous random variables X and Y . X
is a uniformly distributed random variable in the complete initialization range [xmin, xmax),
while Y is a uniformly distributed random variable in the range [0, 1). Y determines the
strength of the attraction toward the position of the particle used as a model (the best
particle in the swarm in our case). The model’s position is, strictly speaking, also a random
variable due to the fact that it is the result of a number of iterations of the PSO position-
update mechanism. However, when the initialization rule is invoked, the model’s position
can be taken as a constant. Based on Eq. 4.2, Z is defined as follows:

Z = X + Y (c−X) , (4.3)

where xmin ≤ c < xmax is a constant representing the location of the attractor particle.
The distribution function FZ of Z is given by

FZ(a) = P (Z ≤ a) =

∫∫
(x,y):x+y(c−x)≤a

f(x, y) dx dy , (4.4)

where f(x, y) is the joint probability distribution of X and Y .
Since X and Y are independent, we have that

f(x, y) = fX(x)fY (y) =
1

xmax − xmin
, (4.5)

where fX and fY are the marginal probability functions of X and Y respectively. This
holds for xmin ≤ x < xmax and 0 ≤ y < 1.

Using 4.5 and considering that y = a−x
c−x , we can rewrite 4.4 as follows

FZ(a) =
1

xmax − xmin

∫ xmax

xmin

y dx

=
1

xmax − xmin

∫ xmax

xmin

a− x
c− x

dx . (4.6)

Eq. 4.6 must be solved in two parts: when xmin ≤ x ≤ a < c and when c < a ≤ x <
xmax. In the special case when x = c, FZ(a) = c/(xmax − xmin) (see Eq. 4.3).

When xmin ≤ x ≤ a < c, we obtain

FZ(a) =
1

xmax − xmin

∫ a

xmin

a− x
c− x

dx

=
1

xmax − xmin

[
a+ (a− c) ln

∣∣∣∣c− xmin

c− a

∣∣∣∣] . (4.7)
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Figure 4.1: Probability density function induced by the initialization rule of new particles.
In the figure, the attractor pmodel,j = 0.2. The initialization range in this example is [0, 1).
The figure shows both the analytical density function and the density histogram obtained
using Monte Carlo simulation (105 samples).

When c < a ≤ x < xmax, we obtain

FZ(a) =
1

xmax − xmin

[
1−

∫ xmax

a

a− x
c− x

dx

]
=

1

xmax − xmin

[
a+ (a− c) ln

∣∣∣∣c− xmax

c− a

∣∣∣∣] . (4.8)

Hence the probability density function fZ of Z is given by

fZ(z) =
d

dz
FZ(z) =

1

xmax − xmin


ln
∣∣∣ c−xmin

c−z

∣∣∣ if z < c

0 if z = c

ln
∣∣∣ c−xmax

c−z

∣∣∣ if z > c .

(4.9)

Changing variables, we obtain the probability density function induced by the social
learning rule for dimension j:

fXj (xj) =
1

xmax,j − xmin,j
·


ln
∣∣∣pmodel,j−xmin,j

pmodel,j−xj

∣∣∣ if xj < pmodel,j

0 if xj = pmodel,j

ln
∣∣∣pmodel,j−xmax,j

pmodel,j−xj

∣∣∣ if xj > pmodel,j ,

(4.10)

where xmin,j and xmax,j are the minimum and maximum limits of the initialization range
over the problem’s jth dimension and xmin,j ≤ xj < xmax,j . Figure 4.1 shows the exact
density function and a density histogram obtained using Monte Carlo simulation when the
initialization range is [0, 1) and pmodel,j = 0.2. In a density histogram, the height of each
rectangle is equal to oi

wiN
, where oi is the number of observations of class i in an experiment

of N samples. The value wi is known as class i’s width, and it is the length of the range
that defines class i. In our case, we set the class width to wi = 0.02.

Most of the samples concentrate around the model’s position as desired. Note, however,
that there is a nonzero probability of sampling regions far away from the model. This
probability distribution offers a certain level of exploration-by-initialization which would
be difficult to obtain with a normally distributed initialization around the model particle’s
position. The problem would be that setting the right value for the standard deviation
would depend on the model particle’s position. The probability density function induced
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Figure 4.2: Probability density function induced by the initialization rule of new particles
when the attractor lies outside the original initialization range. In the figure, the attractor
pmodel,j = 1.2. The initialization range is [0, 1). The figure shows that the density function
follows the analytical density function up to the limit of the original initialization range.
The histogram obtained using Monte Carlo simulation (105 samples) shows the actual
density function.

by the new particles initialization rule is not symmetric except in the case pmodel,j =
(xmax,j + xmin,j)/2. The expected value of a new particle’s position is the following:

E(x′new,j) = E(xnew,j) + E(U) (pmodel,j − E(xnew,j))

= E(xnew,j) +
1

2
(pmodel,j − E(xnew,j))

=
xmax,j + xmin,j

4
+
pmodel,j

2
. (4.11)

The analysis presented above is valid only if the attractor particle’s position is within the
range [xmin,j , xmax,j). If the attractor is outside the initialization range, the probability
density function remains the same within the initialization range. However, the probability
density function is similar to a uniform distribution outside this range (see Figure 4.2).

Under these conditions, a new particle will follow the model from only one of its sides.
The initialization rule is not able to position a new particle beyond the location of the
attractor particle if this particle is outside the original initialization range. This effect is
not necessarily a drawback because one would usually expect the sought global optimum
to lie within the chosen initialization region.

4.4 Experimental Evaluation

In this section, we first describe the setup used to carry out our experiments. Next, we
present and discuss the results of the empirical performance evaluation of the algorithms
presented in Sections 4.1 and 4.2.

4.4.1 Setup

The performance of IPSO and IPSOLS was compared to that of the following algorithms:

1. A constricted PSO algorithm with constant population size. This algorithm was
included in the evaluation in order to measure the contribution of the incremental
population component used in IPSO. This algorithm is labeled as PSO-X, where X
is the population size.
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2. A recently proposed PSO algorithm, called EPUS, in which the population size varies
over time (Hsieh et al., 2009). This algorithm increases the population size by one
if the best-so-far solution is not improved during h consecutive iterations and if the
current population size is not larger than a maximum limit. The new particle’s
position is equal to the result of a crossover operation on the personal best positions
of two randomly selected particles. If the best-so-far solution is improved during h
consecutive iterations, the worst particle of the swarm is removed from the swarm
unless the population size falls below a minimum limit after the operation. Finally,
if the population size is equal to the maximum limit but the swarm is unable to
improve the best-so-far solution during h consecutive iterations, the worst particle is
replaced by a new one. We do not use the mutation and solution sharing mechanisms
described in (Hsieh et al., 2009) in order not to confound the effects of the variable
population size with those of these operators.

3. A hybrid particle swarm optimization algorithm with local search (labeled PSOLS).
This algorithm is a constant population size particle swarm algorithm in which the
particles’ previous best positions undergo an improvement phase (via Powell’s con-
jugate directions set method) before the velocity update rule is applied. The local
search is only applied when a particle’s previous best position is not located in a local
optimum, just as is done in IPSOLS. PSOLS was included in the evaluation because,
by comparing its performance to that of IPSOLS, we can measure the contribution of
the incremental population component in combination with a local search procedure.

4. A hybrid algorithm (labeled EPUSLS) that combines EPUS with local search (Pow-
ell’s conjugate directions set method). This algorithm allows us to measure the
relative performance differences that may exist between purely increasing and vari-
able population size approaches in combination with a local search procedure. The
same parameter settings used for EPUS were used for EPUSLS.

5. A random restart local search algorithm (labeled RLS). Every time the local search
procedure (also Powell’s conjugate directions set method) converges, it is restarted
from a newly generated random solution. The best solution found so far is considered
to be the output of the algorithm. This algorithm was considered a baseline for
the evaluation of the effectiveness of the PSO component in EPUSLS, PSOLS, and
IPSOLS.

All algorithms were run on a set of twelve commonly used benchmark functions whose
mathematical definition is shown in Table 4.1. In all cases, we used the 100-dimensional
versions of the benchmark functions (n = 100). In our experimental setup, each algorithm
was run with the same parameter settings across all benchmark functions. The parameter
settings used for each algorithm are the most commonly used in the PSO literature. These
settings are listed in Table 4.2.

Our results are based on statistics taken from 100 independent runs, each of which
was stopped whenever one of the following criteria was met: (i) 106 function evaluations
had been performed, or (ii) the objective function value was less than or equal to 10−15.
However, it is still possible to find solutions with a lower value than this threshold because
the stopping criteria were evaluated outside the local search procedure. To eliminate the
effects of any possible search bias toward the origin of the coordinate system, at each run,
a benchmark function was randomly shifted within the specified search range. Functions
Schwefel and Step were not shifted since their optima are not at the origin of the coordinate
system. Bound constraints were enforced by putting variable values of candidate solutions
on the corresponding bounds. This mechanism proved to be effective and easily applicable
to both PSO and local search components.

PSOLS was run with fewer particles than PSO because larger populations would have
prevented us from observing the effects that are due to the interaction of the PSO and
local search components, given the stopping criteria used. Given the number of function
evaluations required by each invocation of the local search procedure and the maximum
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Table 4.1: Benchmark functions used for evaluating IPSO and IPSOLS

Name Definition
Search Range
[xmin,xmax]

n

Ackley −20e
−0.2

√
1
n

∑n
i=1

x2
i −e

1
n

∑n
i=1 cos(2πxi)+20+e [-32,32]n

Axis-parallel
Hyper-ellipsoid

∑n
i=1(ixi)

2 [-100,100]n

Expanded Schaffer
ES(x)=

∑n−1
i=1 S(xi,xi+1)+S(xn,x1),where

[-100,100]n

S(x,y)=0.5+
sin2 (
√
x2+y2)−0.5

(1+0.001(x2+y2))2

Griewank 1
4000

∑n
i=1 x

2
i−
∏n
i=1 cos

(
xi√
i

)
+1 [-600,600]n

Penalized function

π
n
{10 sin2 (πy1)+

∑n−1
i=1 (yi−1)2[1+10 sin2 (πyi+1)]+(yn−1)2}

[-50,50]n+
∑n
i=1 u(xi,10,100,4),where

yi=1+(xi+1)/4 , u(x,a,k,m)=


k(xi−a)m if xi > a

k(−xi−a)m if xi < a

0 otherwise

Rastrigin 10n+
∑n
i=1 (x2i−10 cos(2πxi)) [-5.12,5.12]n

Rosenbrock
∑n−1
i=1 [100(xi+1−x2i )

2+(xi−1)2] [-30,30]n

Salomon 1−cos
(
2π
√∑n

i=1 x
2
i

)
+0.1

√∑n
i=1 x

2
i [-100,100]n

Schwefel 418.9829n+
∑n
i=1 −xi sin

(√
|xi|

)
[-500,500]n

Sphere
∑n
i=1 x

2
i [-100,100]n

Step 6n+
∑n
i=1bxic [-5.12,5.12]n

Weierstrass
∑n
i=1

(∑kmax
k=1

ak cos
(
2πbk(xi+0.5)

))
−n

∑kmax
k=1

[
ak cos

(
πbk

)]
,where

[-0.5,0.5]n
a=0.5, b=3, kmax=20

Table 4.2: Parameter settings used for evaluating IPSO and IPSOLS
Setting(s) Algorithm(s)

Acceleration coefficients: ϕ1 = ϕ2 = 2.05 All except RLS

Constriction coefficient: χ = 0.729 All except RLS

Maximum velocity: Vmax = ±xmax All except RLS

Population size: 10, 100, 1000 particles PSO

Population size: 5, 10, 20 particles PSOLS

Population size control parameter: h = 2 EPUS, EPUSLS

Minimum population size: 1 particle EPUS, EPUSLS, IPSO, IPSOLS

Maximum population size: 1000 particles EPUS, EPUSLS, IPSO, IPSOLS

Model particle for initialization: Best IPSO, IPSOLS

Powell’s method tolerance: 0.01 EPUSLS, IPSOLS, PSOLS, RLS

Powell’s method maximum number of iter-
ations: 10

EPUSLS, IPSOLS, PSOLS, RLS

Powell’s method step size: 20% of the
length of the search range

EPUSLS, IPSOLS, PSOLS, RLS

number of function evaluations allocated for each experiment, a large population would
essentially behave as a random restart local search, which was included in the comparison.

All particle swarm-based algorithms (PSO, PSOLS, EPUS, EPUSLS, IPSO and IP-
SOLS) were run with two population topologies: a fully connected topology, in which each
particle is a neighbor to all others including itself, and the so-called ring topology, in which
each particle has two neighbors apart from itself. In the incremental algorithms, the new
particle is randomly placed within the topological structure.
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4.4.2 Performance Evaluation Results

Algorithms for continuous optimization are often evaluated according to two different cri-
teria. One of these criteria measures the quality of the solutions (through the objective
function values associated with them) that algorithms are able to find, given a maximum
number of function evaluations. The other criterion measures the number of function evalu-
ations needed by algorithms to reach a target objective function value. Since the algorithms
used in our study are stochastic, both performance measures are also stochastic. For this
reason, we look at the distribution of the objective function values obtained after a certain
number of function evaluations (the number of function evaluations used for tackling a
problem is also called run length (Hoos and Stützle, 2004)), and the distribution of the
number of function evaluations needed to reach some target objective function values.1 We
also look at some central tendency measures to have a more aggregated summary of the
performance of the compared algorithms. Finally, we present a summary of the statistical
data analysis performed on all the data. In the discussion of the results, we pay particular
attention to the two main components of the ISL-based algorithms: the variable population
size and the use of a local search procedure.

Particle Addition Schedule

The first aspect that we investigate is the effect of the particle addition schedule on the
performance of IPSO and IPSOLS. Figure 4.3 shows the average solution quality2 obtained
with three instantiations of IPSO and four of the constant population size PSO as a function
of the number of function evaluations used. The three instantiations of IPSO are labeled
“IPSO-X”, meaning that a new particle is added every X iterations. The labels used for
the constant population size PSO are explained in Section 4.4.1.

Clearly, the particle addition schedule affects the exploration-exploitation behavior of
IPSO. Faster schedules encourage exploration while slower ones encourage exploitation.
The result of this behavior is that better solutions are found in the long run with IPSO
with a fast particle addition schedule. In IPSOLS, the exploitative behavior induced by the
local search procedure needs to be balanced with an exploration-encouraging, fast particle-
addition schedule. Thus, in the experiments that are described next, we use the fastest
particle addition schedule, that is, we add a particle every iteration of the algorithm until
a maximum population size is reached. In Section 4.5, both the initial population size and
the particle addition schedule are free parameters that are later tuned.

Constant vs. Variable Population Size

The distributions of the objective function values after 104 and 106 function evaluations
are shown in Figures 4.4 and 4.5, respectively. On top of each box plot there may be two
rows of symbols. The lower row, made of + symbols, indicates in which cases a statistically
significant difference exists between the marked algorithm and IPSO (in favor of IPSO).
The upper row, made of × symbols, indicates in which cases a statistically significant differ-
ence exists between the marked algorithm and IPSOLS (in favor of IPSOLS). Significance
was determined at the 5% level using a Wilcoxon test with Holm’s correction method for
multiple comparisons.

The performance of constant population size PSO algorithms without local search
greatly depends on the population size. These results, together with the ones of the pre-
vious section, confirm the trade-off between solution quality and speed that we mentioned
at the beginning of this chapter. Swarms of 10 particles usually find better solutions than

1In this dissertation’s supplementary information web page Montes de Oca (2011), the reader can find
the complete data that, for the sake of conciseness, are not included. Nevertheless, the main results are
discussed in the text.

2The quality of a solution is its objective function value. For minimization problems, the lower the
objective function value, the better. In the rest of the chapter, the terms “solution quality” and “objective
function value” are used interchangeably.

38



CHAPTER 4. INCREMENTAL SOCIAL LEARNING APPLIED TO PARTICLE
SWARMS

Function evaluations

S
o
lu

ti
o
n
 v

a
lu

e

10
0

10
1

10
2

10
3

10
4

10
5

10
6

5
1
0

2
0

IPSO−1

IPSO−5

IPSO−10

PSO−1000

PSO−100

PSO−10

PSO−1

(a) Ackley

Function evaluations

S
o
lu

ti
o
n
 v

a
lu

e

10
0

10
1

10
2

10
3

10
4

10
5

10
6

2
0
0

5
0
0

1
0
0
0

2
0
0
0

IPSO−1

IPSO−5

IPSO−10

PSO−1000

PSO−100

PSO−10

PSO−1

(b) Rastrigin

Function evaluations

S
o
lu

ti
o
n
 v

a
lu

e

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1
2

5
1
0

2
0

5
0

IPSO−1

IPSO−5

IPSO−10

PSO−1000

PSO−100

PSO−10

PSO−1

(c) Salomon

Function evaluations

S
o
lu

ti
o
n
 v

a
lu

e

10
0

10
1

10
2

10
3

10
4

10
5

10
6

3
5

4
0

4
5

5
0

IPSO−1

IPSO−5

IPSO−10

PSO−1000

PSO−100

PSO−10

PSO−1

(d) Schaffer

Function evaluations

S
o
lu

ti
o
n
 v

a
lu

e

10
0

10
1

10
2

10
3

10
4

10
5

10
61

0
0
0
0

1
5
0
0
0

2
5
0
0
0

3
5
0
0
0

IPSO−1

IPSO−5

IPSO−10

PSO−1000

PSO−100

PSO−10

PSO−1

(e) Schewfel

Function evaluations

S
o
lu

ti
o
n
 v

a
lu

e

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1
0
0

2
0
0

3
0
0

4
0
0

IPSO−1

IPSO−5

IPSO−10

PSO−1000

PSO−100

PSO−10

PSO−1

(f) Step

Figure 4.3: Effect of the particle addition schedules on the performance of IPSO. We plot
the average objective function value as a function of the number of function evaluations.
In the figure, we plot the results obtained with three particle addition schedules as well as
the results obtained with four instantiations of a constant population size PSO algorithm.
Fully-connected topologies were used to produce the data on which this plots are based.

larger swarms up to around 104 function evaluations. The swarms of 100 particles are typi-
cally the best performing after 105 function evaluations, and after 106 function evaluations,
the swarms with 1000 particles often return the best solutions. This tendency can also be
seen in Table 4.3, which lists the median objective function values obtained by the tested
algorithms on all benchmark functions at different run lengths.

Regarding the algorithms with variable population size, it can be said that IPSO is the
best among the studied algorithms for runs of up to 102 function evaluations. The data in
Table 4.3 show that IPSO finds the best median objective function values for 11 out of the
12 functions used. IPSOLS and RLS find the best solutions for 6 out of the 12 possible
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(b) Axis-parallel Hyper-ellipsoid
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(c) Extended Schaffer

P
S

O
−

1
0

P
S

O
−

1
0
0

P
S

O
−

1
0
0
0

E
P

U
S

IP
S
O

P
S

O
L
S

−
5

P
S

O
L
S

−
1
0

P
S

O
L
S

−
2
0

E
P

U
S

L
S

R
L
S

IP
S
O
L
S

0

500

1000

1500

2000

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

+ + +
× × × × ×

(d) Griewank
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(e) Penalized function
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(f) Rastrigin
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(g) Rosenbrock
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(h) Salomon

P
S

O
−

1
0

P
S

O
−

1
0
0

P
S

O
−

1
0
0
0

E
P

U
S

IP
S
O

P
S

O
L
S

−
5

P
S

O
L
S

−
1
0

P
S

O
L
S

−
2
0

E
P

U
S

L
S

R
L
S

IP
S
O
L
S

5000

10000

20000

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

+ +
× × × × × × × × × ×
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(j) Step
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(k) Sphere
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(l) Weierstrass

Figure 4.4: The box plots show the distribution of the solution quality obtained with the
compared algorithms for runs of up to 104 function evaluations. These results correspond
to the case in which a fully-connected topology is used with all particle swarm-based
algorithms. A symbol on top of a box plot denotes a statistically significant difference at
the 5% level between the results obtained with the indicated algorithm and those obtained
with IPSO (in favor of IPSO, marked with a + symbol) or with IPSOLS (in favor of
IPSOLS, marked with a × symbol).
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(a) Ackley
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(b) Axis-parallel Hyper-ellipsoid
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(c) Extended Schaffer
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(d) Griewank
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(e) Penalized function
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(f) Rastrigin
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(g) Rosenbrock
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(h) Salomon
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(j) Step
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(k) Sphere
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(l) Weierstrass

Figure 4.5: The box plots show the distribution of the solution quality obtained with the
compared algorithms for runs of up to 106 function evaluations. These results correspond
to the case in which a fully-connected topology is used with all particle swarm-based
algorithms. In the Griewank and Sphere functions, the solution values obtained with the
traditional PSO algorithm with 10 particles are so much higher than those obtained with
the other algorithms that its box plot does not appear. A symbol on top of a box plot
denotes a statistically significant difference at the 5% level between the results obtained
with the indicated algorithm and those obtained with IPSO (in favor of IPSO, marked
with a + symbol) or with IPSOLS (in favor of IPSOLS, marked with a × symbol).
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Table 4.4: Number of Times IPSO Performs Either
Better or no Worse1 than Other PSO-based Algo-
rithms at Different Run Lengths2

Evaluations PSO-101 PSO-102 PSO-103 EPUS
102 17 (5) 22 (2) 22 (2) 22 (2)
103 1 (5) 23 (1) 24 (0) 19 (2)
104 10 (2) 17 (7) 24 (0) 10 (2)
105 14 (0) 3 (7) 22 (2) 8 (2)
106 23 (0) 10 (5) 19 (5) 9 (3)

1 No worse cases shown in parenthesis.
2 12 problems × 2 topologies = 24 cases.

cases for runs of up to 103 function evaluations; however, the best results are distributed
among all the tested algorithms. For 104 or more function evaluations, algorithms that
use local search find the best solutions (except for the Salomon function). IPSOLS finds
at least the same number of best solutions as the other local search-based algorithms. For
runs of up to one million function evaluations, IPSOLS finds 8 out of the 12 possible best
median solutions.

Data from Figures 4.4 and 4.5, and Table 4.3 suggest that in contrast with constant
population size PSO algorithms, the performance of EPUS and IPSO does not greatly
depend on the duration of a run. A strong point in favor of PSO algorithms that vary the
population size over time is that both EPUS and IPSO compete with the best constant
population size PSO algorithm at different run durations. However, the mechanism used for
varying the size of the population does have an impact on performance as demonstrated in
Table 4.4, which shows the number of times IPSO performs at least as well (in a statistical
sense) as other PSO-based algorithms at different run durations. In total, 24 cases are
considered, which are the result of summarizing the results obtained on the 12 benchmark
functions using both the fully connected and ring topologies. Also in Table 4.4, one can
see that IPSO dominates at least two of the constant population size PSO algorithms at
different run durations. For runs of up to 105 function evaluations, the constant population
size PSO algorithms with 100 and 1000 particles are dominated by IPSO. For longer runs,
IPSO dominates the algorithms with 10 and 1000 particles. The data shown in Table 4.4
demonstrate that the performance of IPSO follows closely the performance of the best
constant population size PSO algorithm for a certain run-length. Regarding the difference
in performance due to differences in the mechanism for varying the population size, IPSO
dominates EPUS for short runs. For long runs, IPSO performs better or not worse than
EPUS in half of the cases.

Use vs. No Use of Local Search

The local search component plays a major role in the performance of the algorithms that
include it. Table 4.3 and Figures 4.4 and 4.5 show that for runs of at least 103 function
evaluations, the quality of the solutions obtained with the algorithms that include a local
search procedure is typically higher than the quality of the solutions obtained with the
algorithms that do not. The only case in which an algorithm without a local search
component (IPSO) dominates is when solving the Salomon function. Speed is also affected
by the use of a local search component. Table 4.5 lists the first, second, and third quartiles
of the algorithms’ run-length distributions (Hoos and Stützle, 2004). A hyphen in an
entry indicates that the target objective function value was not reached within the 106

function evaluations allocated for the experiments. Therefore, if there is a hyphen in a
third quartile entry, least 25% of the runs did not find the target objective function value.
A similar reasoning applies if there is a hyphen in a first or second quartile entry. The data
in Table 4.5 show that the algorithms that combine a variable population size with a local
search component (EPUSLS and IPSOLS) are the fastest and most reliable of the studied
algorithms. EPUSLS and IPSOLS together are the fastest algorithms for 9 out of the 12
considered functions.
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Table 4.6: Number of Times IPSOLS Performs Either Bet-
ter or no Worse1 than Other PSO-Local Search Hybrids at
Different Run Lengths2

Evaluations PSOLS-5 PSOLS-10 PSOLS-20 EPUSLS RLS
102 0 (3) 0 (2) 0 (2) 0 (24) 0 (23)
103 15 (6) 15 (6) 15 (6) 0 (23) 0 (23)
104 14 (5) 15 (4) 15 (4) 12 (11) 8 (15)
105 15 (4) 14 (5) 14 (5) 19 (4) 14 (9)
106 12 (5) 10 (7) 12 (5) 18 (2) 14 (9)

1 No worse cases shown in parenthesis.
2 12 problems × 2 topologies = 24 cases.

In terms of the quality of the solutions found by the local search-based algorithms,
IPSOLS outperforms EPUSLS, as seen in Tables 4.3 and 4.6. Table 4.6 shows the number
of times IPSOLS performs either better or no worse (in a statistical sense) than other
PSO-local search hybrids at different run durations.

The difference in performance between the constant population size algorithms that we
observed when they do not use local search, almost disappears when local search is used.
For runs of some hundreds of function evaluations, IPSOLS performs no better than any
other hybrid PSO–local search algorithms (see first row in Table 4.6). These results occur
for two reasons: (i) the Powell’s conjugate directions set method has to perform at least n
line searches (n is the number of dimensions of the problem) before significantly improving
the quality of the solutions found, and (ii) PSOLS first explores and then invokes the local
search component. However, for longer runs, IPSOLS clearly dominates all other hybrid
algorithms, including EPUSLS.

IPSOLS is an algorithm that repeatedly calls a local search procedure from different
initial solutions. In this respect, IPSOLS is similar to a random restart local search algo-
rithm (RLS). However, the difference between RLS and IPSOLS is that in RLS, the new
initial solutions are chosen at random, while in IPSOLS the new initial solutions are the
result of the application of the PSO rules. Thus, a comparison of the results obtained
with these two algorithms can give us an indication of the impact of the PSO component
in IPSOLS. The results presented in Figure 4.5 indicate that IPSOLS outperforms RLS
in all problems except on Axis-parallel Hyper-ellipsoid, Griewank, Penalized, Sphere and
Weierstrass. In the case of the Sphere function, the local search procedure alone is able to
find the optimum (with an objective function value that is lower than or equal to 10−15,
one of our stopping criteria). In the case of the Griewank function, IPSOLS solves the
problem with a population of around 3 particles — data shown in Montes de Oca (2011).
Thus, IPSOLS’s behavior is similar to that of RLS when its population does not grow
significantly (see Figure 4.6).

In Figure 4.6, we show two examples of the compared algorithms’ behavior over time.
These examples correspond to the solution development over the number of function eval-
uations obtained by a selection of the compared algorithms on the Rastrigin and Sphere
functions. These functions are chosen so that the behavior of the algorithms on unimodal
(Sphere) and multimodal (Rastrigin) functions can be compared. In these figures, we also
show the average population size growth over time in IPSO, EPUS, EPUSLS and IPSOLS.

In some cases, as noted before, IPSOLS is outperformed by other algorithms for short
runs (in our case, runs between 102 and 103 function evaluations). However, IPSOLS im-
proves dramatically once the population size starts growing, as exemplified in Figure 4.6(d)
in which IPSOLS starts differentiating from RLS, EPUSLS and PSOLS after approximately
5,000 function evaluations. IPSOLS improves rapidly once the local search procedure be-
gins to make progress, as seen in Figure 4.6(c). When IPSOLS and EPUSLS are applied
to the Sphere function, the population size does not grow (see Figure 4.6(e)). As a result,
IPSOLS, EPUSLS, and RLS are equivalent on problems solvable by local search alone. In
most cases, the population growth in IPSOLS is independent of the population topology
used — data shown in Montes de Oca (2011).
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Figure 4.6: Solution development over time obtained by a selection of the compared algo-
rithms (PSO-based algorithms using a fully-connected topology) on the Sphere and Rast-
rigin functions. Figures (a) and (b) show the results without local search. Figures (c) and
(d) show the results with local search. Figures (e) and (f) show the average population
size growth in IPSO, EPUS, EPUSLS and IPSOLS.

An exception in the conclusions of the analysis of the results has been the Salomon
function case. This function can be thought of as a multidimensional wave that is symmetric
in all directions with respect to the optimum. We believe that the poor performance of all
the tested local search-based algorithms is due to the undulatory nature of this function.
When the local search is invoked in the proximity of the global optimum, valleys that are
far away from it can actually attract the local search method. As a result, the global
optimization algorithm that calls the local search method is “deceived.” This phenomenon
seems to be exacerbated when Powell’s method is applied in high dimensions.

From a practitioner’s point of view, there are at least two advantages to using IPSOLS
instead of a hybrid PSO algorithm: (i) IPSOLS does not require the practitioner to fix
the population size in advance, hoping to have chosen the right size for his/her problem,
and (ii) IPSOLS is more robust to the choice of the population’s topology. The difference
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Table 4.7: Amplitudes used in the Rastrigin function to obtain specific fitness distance
correlations (FDCs)

Amplitude FDC Amplitude FDC
155.9111 ≈ 0.001 13.56625 ≈ 0.6
64.56054 ≈ 0.1 10.60171 ≈ 0.7
40.09456 ≈ 0.2 7.938842 ≈ 0.8
28.56419 ≈ 0.3 5.21887 ≈ 0.9
21.67512 ≈ 0.4 0.0 ≈ 0.999
16.95023 ≈ 0.5 - -

between the results obtained through IPSOLS with a fully-connected topology and with a
ring topology are smaller than the differences observed in the results obtained through the
hybrid algorithms — data shown in Montes de Oca (2011).

4.4.3 Is Social Learning Necessary?

The ISL framework calls for social learning when a new agent is added to the population.
However, is social learning really necessary in the context of IPSO and IPSOLS? Would
the performance of these algorithms be the same if new particles were simply initialized at
random? In this section, we present the results of an experiment aimed at measuring the
effects of the social learning rule (Eq. 4.2) on the performance of IPSO and IPSOLS.

We measure the extent to which the initialization rule applied to new particles affects
the quality of the solution obtained after a certain number of function evaluations with
respect to a random initialization. For this purpose, IPSO and IPSOLS are run with
initialization mechanisms that induce a bias of different strength toward the best particle
of the swarm. These mechanisms are (in increasing order of bias strength): (i) random
initialization, (ii) the initialization rule as defined in Eq. 4.2 (labeled as “weak bias”), and
(iii) the same rule as defined in Eq. 4.2, but with the random number U drawn from a
uniform distribution in the range [0.95, 1) (labeled as “strong bias”).

The experiments are carried out on problems derived from the Rastrigin function. Each
derived problem has different fitness distance correlation (FDC) (Jones and Forrest, 1995).
To compute a problem’s FDC, a set of sample solutions are generated. For each sample,
its objective function value (called “fitness” in the evolutionary computation field where
the measure originated) and its distance to a reference point are computed. The reference
point can be the known optimum or the best known solution to the problem. A problem’s
FDC is simply the correlation between the objective function values of the samples and
their distance to the reference point. If a problem’s FDC is large and positive, an algorithm
that searches in the vicinity of the best-so-far-solution is expected to perform well. If the
problem’s FDC is low or negative, the problem becomes much harder because the best-so-
far solution does not give much information about which regions of the search space are
promising.

Since the social learning rule used in IPSO and IPSOLS implicitly assumes that good
solutions are close to each other, the hypothesis is that the performance of the algorithms
degrades as the problem’s FDC approaches zero. Additionally, one hypothesizes that the
rate of performance degradation is faster with stronger initialization bias.

The Rastrigin function, whose n-dimensional formulation is nA+
∑n
i=1 (x2

i −A cos(ωxi)),
can be thought of as a parabola with a superimposed (co)sine wave with an amplitude and
frequency controlled by parameters A and ω respectively. By changing the values of A and
ω one can obtain a whole family of problems. In our experiments, we set ω = 2π, as is usu-
ally done, and tuned the amplitude A to obtain functions with specific FDCs. The search
range and the dimensionality of the problem are set to [−5.12, 5.12]n and n = 100, respec-
tively. The amplitude and the resulting FDCs (estimated using 104 uniformly distributed
random samples over the search range) are shown in Table 4.7.
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IPSO and IPSOLS with the three initialization rules described above were run 100
times on each problem for up to 106 function evaluations. To measure the magnitude of
the effect of using one or another initialization scheme, we use Cohen’s d statistic (Cohen,
1988), which for the case of two samples is defined as follows:

d =
µ̂1 − µ̂2

σpooled
, (4.12)

with

σpooled = sqrt
(n1 − 1)σ̂1

2 + (n2 − 1)σ̂2
2

n1 + n2 − 2
, (4.13)

where µ̂i and σ̂i are the mean and standard deviation of sample i, respectively (Nakagawa
and Cuthill, 2007).

As an effect size index, Cohen’s d statistic measures the difference between the mean
responses of a treatment and a control group expressed in standard deviation units (Sheskin,
2000). The treatment group is, in our case, the set of solutions obtained with IPSO and
IPSOLS using the initialization rule that biases the position of a new particle toward the
best particle of the swarm. The control group is the set of solutions obtained with IPSO
and IPSOLS when new particles are initialized completely at random. (Since in our case
the lower the solution value the better, the order of the operands in the subtraction is
reversed.) An effect size value of 0.8, for example, means that the average solution found
using the particles’ initialization rule is better than 79% of the solutions found without
using it. The practical significance that the value associated with an effect has depends,
of course, on the situation under consideration; however, Cohen (1988) states that a value
of 0.8 can already be considered a large effect.

The observed effect sizes with 95% confidence intervals on the solution quality obtained
with IPSO and IPSOLS after 106 function evaluations are shown in Figure 4.7.

In IPSO, the effects of using the new particles initialization rule are very different from
the ones in IPSOLS. In IPSO, the weak bias initialization rule produces better results than
random initialization only in two cases: (i) when the problem’s FDC is almost equal to
one and the algorithm is run with a ring topology, and (ii) when the problem’s FDC is
close to zero, irrespective of the population topology used. In all other cases, the weak bias
initialization rule produces results similar to those obtained with a random initialization.
The strong bias initialization rule reports benefits only in the case of a high FDC and a
ring topology. In all other cases, the strong bias initialization rule produces results that
are significantly worse than the results obtained with a random initialization. The worst
performance of IPSO with the strong bias initialization rule is obtained when the problem’s
FDC is in the range (0.3,0.6). This behavior is a consequence of the new particle’s velocity
being equal to zero, which effectively reduces the particle’s initial exploratory behavior.
Setting the new particle’s initial velocity to a value different from zero reduces the effect
of the initialization bias because it would immediately make the particle move to a quasi-
random position right after the first iteration of the algorithm’s PSO component. The
performance observed when the problem’s FDC is close to zero is the result of the fact that
with a fixed search range and a high amplitude, the parabolic component of the Rastrigin
function has a much lower influence and many of the locally optimal solutions are of the
same quality. Thus, moving close to or away from already good solutions has no major
impact on the solution quality.

While the effect in IPSO is positive only in a few cases, in IPSOLS, the effect size
is not only positive in almost all cases but it is also large. IPSOLS with the weak bias
initialization rule produces significantly better solutions than with a random initialization
in all but one case. This case corresponds to the situation where the problem’s FDC is
close to one. When the strong bias initialization rule is used, IPSOLS produces better
solutions than with random initialization when the problem’s FDC is in the range (0.1,
1.0). In the range (0.4,1.0), the solutions obtained with a strong bias initialization rule are
better than or equal to those obtained with a weak bias initialization rule.
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(a) IPSO, Fully-connected topology
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(b) IPSO, Ring topology
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(c) IPSOLS, Fully-connected topology
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(d) IPSOLS, Ring topology

Figure 4.7: Effect size of the new particles initialization rule, as measured using Cohen’s d
statistic with 95% confidence intervals (indicated by either error bars or dashed lines), on
the solution quality obtained with IPSO and IPSOLS after 106 function evaluations. Two
bias strengths are tested: (i) weak bias and (ii) strong bias. The reference results (line at
zero) are obtained with a random initialization.

In IPSOLS, when the problem’s FDC is almost one, initializing a new particle com-
pletely at random, or with a bias toward the location of the best particle of the swarm,
is effectively the same. This phenomenon can be explained if we recall that IPSOLS is a
local search algorithm that starts from a single solution. Since a local search algorithm
alone can solve a problem with an FDC close to one, no population growth occurs, and the
initialization rule is never used. Thus, it does not matter how new particles are initialized.
The degradation of the effect size as the problem’s FDC decreases can be observed in the
range (0.0,0.5) for the strong bias initialization rule and in the range (0.0, 0.3) for the weak
bias initialization rule. As hypothesized, the rate of degradation is faster when using a
strong bias.

In summary, the use of the weak bias initialization rule in IPSOLS, which is the origi-
nally proposed social learning rule, provides significant benefits over random initialization
on the family of problems we examined with a fitness distance correlation in the range
(0,1).

4.5 IPSOLS+: A Redesigned IPSOLS

In this section, we present a variant of IPSOLS, called IPSOLS+, that is the result of
a redesign process based on an automatic parameter tuning system. The motivation for
this approach arose from the fact that the once art of algorithm design, has turned into
an engineering task (Stützle et al., 2007, 2009). In part, this transition has happened

49



CHAPTER 4. INCREMENTAL SOCIAL LEARNING APPLIED TO PARTICLE
SWARMS

thanks to the recent availability of automatic parameter tuning systems, which make the
semi-automated design of high-performing optimization algorithms possible. Nowadays,
optimization algorithms can be seen as entities made of a number of components that a
designer integrates with one another in order to tackle an optimization problem. However,
despite the progress hitherto made, there are still many decisions in the design process that
are made by the designer based on intuition or limited information about the interaction
between the chosen components and their behavior on the target problem. For example, a
designer may choose a mutation operator for a genetic algorithm (Goldberg, 1989) based on
information gathered through some limited tests. However, what if the designer’s choice of
parameter settings during testing is unfortunate? Could one operator make the algorithm
have a better average performance than another one once properly tuned?

Clearly, if the designer left all the possibilities open until a final parameter tuning phase,
the design problem could be seen as a stochastic optimization problem. First steps in this
direction have already been taken with some very promising results (see e.g., (KhudaBukhsh
et al., 2009; López-Ibáñez and Stützle, 2010)). In these works, however, the high-level
algorithm architecture that defines the component interactions remains fixed and is based
on the extensive experience of the authors with the target problems. In this section, we take
a step back and explore the integration of automatic tuning as a decision-aid tool during the
design loop of optimization algorithms. We see two advantages in such a tuning-in-the loop
approach: (i) the parameter search space is kept to a reasonable size, and (ii) the result of
tuning can give us insight into the interactions between algorithmic components and their
behavior on the optimization problem at hand. We describe the whole redesign process of
IPSOLS and study the final algorithm’s performance scalability as the dimensionality of
the problem increases. This scalability study is carried out following the protocol defined
by Lozano et al. (2011), which consists in running an algorithm 25 times on each of the
19 benchmark functions listed in Table 4.8 for up to 5000n function evaluations, where
n is the dimensionality of the function. Algorithms are stopped earlier if the objective
function value of the best-so-far solution is lower than 1e−14 (we refer to this number as
0-threshold). When an objective function value lower than the 0-threshold is found, we
report 0e+00 instead. This evaluation protocol is used throughout the rest of this chapter.

Some of the benchmark functions shown in Table 4.8 are hybrid, that is, they combine
two basic functions (from F1 to F11). Herrera et al. (2010) describe the combination
procedure denoted by the symbol ⊕. The parameter mns is used to control the number of
components that are taken from a nonseparable function (functions F3, F5, F9, and F10).
A higher mns, results in a larger number of components that come from a nonseparable
function.

For functions F1 to F11 (and some of the hybrid functions, F12 to F19), candidate
solutions, x, are transformed as z = x − o before evaluation. This transformation shifts
the optimal solution from the origin of the coordinate system to o, with o ∈ [Xmin, Xmax]n.
For function F3, the transformation is z = x− o+ 1.

4.5.1 Tuning Algorithm: Iterated F-Race

During the redesign cycle of IPSOLS, we used iterated F-Race (Balaprakash et al., 2007;
Birattari et al., 2010) to perform an ad-hoc tuning of the algorithm’s parameters on the
complete benchmark function set shown in Table 4.8. F-Race (Birattari et al., 2002; Bi-
rattari, 2009) is at the core of iterated F-Race. F-Race is a method used for selecting the
best algorithm configuration (a particular setting of numerical and categorical parameters
of an algorithm) from of a set of candidate configurations under stochastic evaluations.
In F-Race, candidate configurations are evaluated iteratively on a sequence of problem
instances. As soon as sufficient statistical evidence is gathered against a candidate con-
figuration, it is discarded from the race. The process continues until only one candidate
configuration remains, or until the maximum number of evaluations or instances is reached.

The generation of candidate configurations is independent of F-Race. Iterated F-Race
is a method that combines F-Race with a process capable of generating promising can-
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Table 4.8: Scalable Benchmark Functions for Large Scale Optimization

Name Definition
Search Range
[Xmin, Xmax]n

F1
∑n
i=1 z

2
i [-100,100]n

F2 maxi{|zi| , 1 ≤ i ≤ n} [-100,100]n

F3
∑n−1
i=1 [100(z2i − zi+1)2 + (zi − 1)2] [-100,100]n

F4 10n+
∑n
i=1 (z2i − 10 cos(2πzi)) [-5,5]n

F5
1

4000

∑n
i=1 z

2
i −

∏n
i=1 cos

(
zi√
i

)
+ 1 [-600,600]n

F6 −20e
−0.2

√
1
n

∑n
i=1 z

2
i − e 1

n

∑n
i=1 cos(2πzi) + 20 + e [-32,32]n

F7
∑n
i=1 |zi|+

∏n
i=1 |zi| [-10,10]n

F8
∑n
i=1

(∑i
j=1 zj

)2
[-65.536,65.536]n

F9

∑n−1
i=1 f10(zi, zi+1) + f10(zn, z1),where

[-100,100]n
f10(x, y) = (x2 + y2)0.25(sin2(50(x2 + y2)0.1) + 1)

F10
∑n−1
i=1 (z2i + 2z2i+1 − 0.3 cos (3πzi)− 0.4 cos (4πzi+1) + 0.7) [-15,15]n

F11
∑n−1
i=1 (z2i + z2x+1)0.25(sin2(50(z21 + z2i+1)0.1) + 1) [-100,100]n

F12 F9 ⊕ F1 , mns = 0.25 [-100,100]n

F13 F9 ⊕ F3 , mns = 0.25 [-100,100]n

F14 F9 ⊕ F4 , mns = 0.25 [-5,5]n

F15 F10 ⊕ F7 , mns = 0.25 [-10,10]n

F16 F9 ⊕ F1 , mns = 0.5 [-100,100]n

F17 F9 ⊕ F3 , mns = 0.75 [-100,100]n

F18 F9 ⊕ F4 , mns = 0.75 [-5,5]n

F19 F10 ⊕ F7 , mns = 0.75 [-10,10]n

didate configurations. Iterated F-Race consists of the steps of configuration generation,
selection and refinement iteratively. For numerical parameters, the configuration genera-
tion step involves sampling from Gaussian distributions centered at promising solutions.
The standard deviations of these Gaussian distributions vary over time in order to focus
the search around the best-so-far solutions. For categorical parameters, the configuration
generation procedure samples from a discrete distribution that gives the highest probability
to the values that are found in the best configurations. The process is described in detail
in (Birattari et al., 2010; López-Ibáñez et al., 2011).

Tuning Setup

While tuning, problem instances are usually fed into iterated F-Race as a stream. At
each step of F-Race, all surviving candidate configurations are evaluated on one additional
problem instance. Once each surviving candidate configuration has been evaluated, a sta-
tistical test is applied in order to determine whether there are configurations that have,
up to that point, performed significantly worse than others. First, the Friedman test is
applied and, if its null hypothesis of equal performance of all surviving candidate configu-
rations is rejected, Friedman post-tests are used to eliminate configurations that perform
worse than the best one (Birattari et al., 2002; Birattari, 2009). In our case, we have a
limited set of 19 benchmark functions. Additionally, the set of benchmark functions may
result in very different performances because they include very easy functions, such as
Sphere (F1) but also much more difficult ones, such as Rastrigin (F4) and hybrid functions
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Table 4.9: Free parameters in IPSOLS (all
versions)

Parameter Range/Domain
w [0, 1]
ϕ1 [0, 4]
ϕ2 [0, 4]

Init. pop. size [1, 100]
Particle addition schedule, k [1, 10]

Topology1 {FC,R}
FTol [−13,−1]
ρstart2 [1, 50]
s3 [ε, 100]

MaxFES2 [22, 210]
MaxITER3 [1, 10]

MaxFailures [1, 20]
MaxStagIter [2, 30]

1 FC stands for fully connected, R for ring.
2 Used with BOBYQA (see Section 4.5.2).
3 Used with Powell’s conjugate directions

method.

(F12–F19). Therefore, we used a modified version of F-race. We define a block evaluation
as running all (surviving) candidate configurations once on each benchmark function in a
block (Chiarandini et al., 2006); a block consists of all 19 benchmark functions. After each
block evaluation, the usual statistical tests in F-race are applied, and inferior candidate
configurations are eliminated. Throughout a run of iterated F-race, a cumulative average
solution value is computed for each surviving solution. This value is used as a rough in-
dicator of their quality, which is in turn used to select the prototypes that serve as guides
for the next iteration of iterated F-race.

Tuning was performed on low dimensionality (n = 10) versions of the benchmark
functions, using the hypothesis that some structure of the problems is maintained across
versions of different dimensionality. Testing was carried out on versions of medium size
(n = 100). Thus, we distinguish between a training set used for tuning and a test set
for evaluation. The scalability study of the final design was carried out on the versions of
higher dimensionality (n = {50, 100, 200, 500, 1000}). To have a higher chance of selecting
a good candidate configuration, we launched 10 independent runs of the iterated F-Race
algorithm and finally selected the one with the lowest average objective function value as
the tuned configuration.

To use iterated F-Race, one needs to select the parameters to be tuned, such as their
range or domain, and the set of instances on which tuning is performed. The list of free
parameters and their corresponding range or domain as used with iterated F-Race is given
in Table 4.9. A description of the meaning and effect of these parameters is given in the
sections where a variant of IPSOLS is described.

Other parameter settings for IPSOLS, for both tuned and non-tuned versions, remained
fixed. A list of them with their settings is shown in Table 4.10.

Table 4.10: Fixed parameters in IPSOLS
Parameter Value

Max. pop. size 1000

Vmax,j , 1 ≤ j ≤ n Xmax,j

Bound constraint handling (PSO part) Fix on the bound, set velocity to zero

ε 0-threshold (see Section 4.5.2).

Finally, iterated F-Race itself has a number of parameters that need to be set before it
can be used. These parameters and the values used are listed in Table 4.11.

In iterated F-Race, the number of iterations L is equal to 2 + round(log2(d)), where
d is the number of parameters to tune. In iterated F-Race, each iteration has a different
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Table 4.11: Iterated F-Race parameter settings
Parameter Value

Max. Evaluations (B) 5e+04
µl 76+l

maximum number of evaluations. This number, denoted by Bl, is equal to (B−Bused)/(L−
l + 1), where l is the iteration counter, B is the overall maximum number of evaluations,
and Bused is the number of evaluations used until iteration l− 1. The number of candidate
configurations tested during iteration l is equal to bBl/µlc. For more information on the
parameters of iterated F-Race and their effect, please consult (Balaprakash et al., 2007;
Birattari et al., 2010).

4.5.2 Stage I: Choosing a Local Search Method

In this section, we explore the impact of the local search method on the performance
of IPSOLS. As an alternative to Powell’s conjugate directions set method, we consider
Powell’s BOBYQA method (Powell, 2009), which is described below. To ease the naming
of intermediate variants of IPSOLS we use the following convention: the variant introduced
at stage X, is labeled as IPSOLS-Stage-X.

The acronym BOBYQA stands for bound constrained optimization by quadratic approx-
imation. The algorithm that it represents was proposed by Powell (2009). BOBYQA is
a derivative-free optimization algorithm based on the trust-region paradigm (Conn et al.,
2000). BOBYQA is an extension of the NEWUOA (Powell, 2006) algorithm that is able
to deal with bound constraints. At each iteration, BOBYQA computes and minimizes a
quadratic model that interpolates m points in the current trust region. These points are
automatically generated by the algorithm starting from an initial guess provided by the
user. Then, either the best-so-far solution or the trust-region radius is updated. The rec-
ommended number of points to compute the quadratic model is m = 2n+1 (Powell, 2009),
where n is the dimensionality of the search space. We decided to study the performance of
IPSOLS with BOBYQA as its local search method because the number of points BOBYQA
needs to compute the model is linear with respect to the dimensionality of the search space.
In fact, BOBYQA’s author proposed it as a method for tackling large-scale optimization
problems (Powell, 2009). NEWUOA, and by extension BOBYQA, are considered to be
state-of-the-art continuous optimization techniques (More and Wild, 2009; Auger et al.,
2009).

We used the implementation that comes with NLopt, a library for nonlinear optimi-
zation (Johnson, 2008). The main parameter that controls this method in NLopt is the
initial trust-region radius, ρstart. The stopping condition depends on the values assigned to
FTol, defined in the same way as in Powell’s conjugate directions method, and to MaxFES,
which is the maximum number of function evaluations allocated for the method.

Conjugate Directions vs. BOBYQA

To measure the performance differences due to the local search methods, we compared the
default and tuned versions of IPSOLS-Stage-I with Powell’s conjugate directions method
and BOBYQA. The default and the best parameter settings found through iterated F-Race
are shown in Table 4.12.3

For the default configuration of IPSOLS-Stage-I as well as of the subsequent config-
urations, we use the inertia weight, w, instead of the constriction factor, χ. The two
acceleration coefficients, ϕ1 and ϕ2, were set according to Clerc and Kennedy’s analytical
analysis of the PSO algorithm (Clerc and Kennedy, 2002). For other parameters, values
have been set by the designers of the algorithms based on experience and on commonly

3For conciseness, we present here only the most relevant results. The complete set of results can be
found in this dissertation’s companion website Montes de Oca (2011).
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Figure 4.8: Box-plot of the median objective function values obtained by the four con-
figurations listed in Table 4.12. In all cases, we used the 100-dimensional versions of the
benchmark functions proposed for this special issue. The line at the bottom represents the
0-threshold.

used parameter settings found in the PSO literature. The range for the parameters ρstart

and s is expressed as a percentage of the size of the search range [xmin, xmax] in each di-
mension. For example, if xmin = −100, xmax = 100, and ρstart = 20, then the real value
that BOBYQA will use as the initial trust-region radius will be 0.2 · 200 = 40. Before
calling either local search method, the value of the parameter FTol is also transformed.
The real value sent to the routine is 10−Ftol.

The four configurations shown in Table 4.12 were run on the 100-dimensional version
of the 19 benchmark functions suite. In Figure 4.8, we show the distribution of the median
objective function value obtained by the resulting four configurations.

The default as well as the tuned configurations of IPSOLS-Stage-I using Powell’s con-
jugate directions method perform better than their BOBYQA-based counterparts. The
differences between the two default and two tuned versions were found to be statistically
significant at the 5% level using a Wilcoxon test (p = 0.0008, and p = 0.01, respectively).
This result and the best parameter setting found for IPSOLS using Powell’s conjugate
directions method suggest that line searches and a strong bias towards the best solutions
(due to the setting w = ϕ1 = 0) are well suited for optimizing the considered benchmark
functions. In fact, these insights are exploited in the next section, where a new strategy
for calling and controlling Powell’s conjugate directions method is proposed.

4.5.3 Stage II: Changing the Strategy for Calling and Controlling
the Local Search Method

The results of the tuning process presented in the previous section are very interesting
because they are counterintuitive at first sight. The parameter w in Eq. 2.3 controls the
influence of the velocity of particles in the computation of new candidate solutions. Thus,
setting w = 0 removes all influence of the particles’ previous moves on the generation of
new solutions. The parameter ϕ1 in Eq. 2.3 controls the strength of the attraction of a
particle toward the best solution it has ever found. Thus, setting ϕ1 = 0 removes all
influence of the particles’ memory on the generation of new solutions. Setting ϕ2 > 0,
as was the case in the experiments of the previous section, accelerates particles toward
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Table 4.13: Default and best configuration obtained through iterated F-Race for

IPSOLS-Stage-II in 10-dimensional instances†

Configuration w ϕ1 ϕ2 Init. pop. size k Topology FTol MaxITER
Default 0.72 1.49 1.49 1 1 FC -1 10
Tuned 0.02 2.51 1.38 85 9 FC -11.85 10

† FC stands for fully connected, R for ring. FTol and MaxITER are parameters that
determine the stopping condition of the local search method.
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Figure 4.9: Box-plot of the median objective function values obtained by the two configu-
rations listed in Table 4.12 of IPSOLS-Stage-I using Powell’s conjugate directions method,
and the two configurations listed in Table 4.13 of IPSOLS-Stage-II. In all cases, we used
the 100-dimensional versions of the benchmark functions proposed for this special issue.
The line at the bottom represents the 0-threshold.

their best neighbor’s position. It seems that a ring topology provided the necessary search
diversification to avoid the premature convergence that a fully-connected topology would
have induced in this case.

In this second stage of the redesign process, we integrate some of these insights into
the algorithm itself by changing the strategy for calling and controlling the local search
method. This new strategy seeks to enhance the search around the best-so-far-solution.
Two changes with respect to the original version are introduced. First, the local search
procedure is no longer called from each particle’s previous best position. Instead, the
local search procedure is only called from the best-so-far solution. Second, the step size
that controls the granularity of the local search procedure is no longer fixed; it changes
according to the state of the search. This “adaptive” step size control is implemented as
follows: a particle, different from the best particle, is picked at random. The maximum
norm (|| · ||∞) of the vector that separates this random particle from the best particle is
used as the local search step size. At the beginning, if the swarm size is equal to one, the
step size is a random number in the range [0, |X|), where |X| = xmax − xmin, xmin and
xmax are the minimum and maximum limits of the search range. With these changes, we
focus the search around the best-so-far solution with a further local search enhancement
through step sizes that tend to decrease over time due to the swarm’s convergence.

In Table 4.13, we show the default and best configurations for IPSOLS-Stage-II, as
described above.
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Table 4.14: Default and best configuration obtained through iterated F-Race for

IPSOLS-Stage-III in 10-dimensional instances†

Configuration w ϕ1 ϕ2 Init. pop. size k Topology FTol MaxITER
Default 0.72 1.49 1.49 1 1 FC -1 10
Tuned 0.0 0.0 2.34 45 10 FC -1 5

† FC stands for fully connected, R for ring. FTol and MaxITER are parameters that
determine the stopping condition of the local search method.

A comparison of the results obtained with IPSOLS-Stage-I and IPSOLS-Stage-II is
shown in Figure 4.9. Statistically significant differences between the results obtained with
IPSOLS-Stage-I and IPSOLS-Stage-II are detected through the application of Wilcoxon’s
test. The default and tuned configurations of IPSOLS-Stage-II are better than those of
IPSOLS-Stage-I (p = 0.0006 and p = 0.01, respectively).

The parameter values that correspond to the tuned configuration of IPSOLS-Stage-II
are now different from those found for IPSOLS-Stage-I. The inertia weight is still very small,
but the acceleration coefficient ϕ1 is not. Moreover, the initial population size increased
from three to 85. This is interesting because, given that local search is only applied to the
best particle, increasing the initial population size increases the chances of selecting a good
initial solution from which to call the local search method. The increment of the particle
addition schedule, k, seems to indicate that IPSOLS-Stage-II needs a greater number of
iterations with a constant population size than the previous version. This phenomenon
may be due to the fact that the step size now depends on the spatial spread of the swarm.
By having a slower particle addition schedule, particles have more time to converge, which
allows the local search step size to decrease to levels that allow further progress. The fact
that the parameter FTol decreased to a value of -11.85 is also interesting; however, it is not
clear whether the local search method actually reaches such small tolerance values, given
the fact that the setting for the parameter MaxITER is the same as the default.

4.5.4 Stage III: Vectorial PSO Rules

IPSOLS-Stage-III is the same as IPSOLS-Stage-II except for a modification of Eq. 2.3.
In the original PSO algorithm and in most, if not all, variants proposed so far, particles
move independently in each dimension of the search space. In contrast, IPSOLS-Stage-
III uses a modification of Eq. 2.3 so that particles accelerate along the attraction vectors
toward their own personal best position and their neighbor’s personal best position. This
modification is straightforward and consists of using the same pseudorandom numbers on all
dimensions instead of generating different numbers for each dimension. This modification is
inspired by Powell’s conjugate directions method. Once a good direction of improvement is
detected, the algorithm searches along that direction. Since the vectorial PSO rules helps
the algorithm search along fruitful directions, and Powell’s conjugate directions method
always starts searching along the original coordinate system, we conjectured that their
combination would work well on both separable and nonseparable problems.

Table 4.14 lists the default and the tuned configurations of IPSOLS-Stage-III. The
distributions of the median objective function values obtained with IPSOLS-Stage-II and
IPSOLS-Stage-III are shown in Figure 4.10.

Through the use of Wilcoxon’s test, it is possible to reject the null hypothesis of equal
performance when comparing the default configurations (p = 0.004). However, it is not
possible to reject the null hypothesis in the case of the tuned configurations (p = 0.06).
The addition of the vectorial update rules does not return a significant improvement over
IPSOLS-Stage-II when both versions are tuned; however, with default settings it does.
Therefore, we keep the vectorial update rules because they make the IPSOLS-Stage-III
less sensitive to different parameter values.
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Figure 4.10: Box-plot of the median objective function values obtained by the two con-
figurations listed in Table 4.13 of IPSOLS-Stage-II, and the two configurations listed in
Table 4.14 of IPSOLS-Stage-III. In all cases, we used the 100-dimensional versions of the
benchmark functions proposed for this special issue. The line at the bottom represents the
0-threshold.

4.5.5 Stage IV: Penalizing Bound Constraints Violation

One advantage of BOBYQA over Powell’s conjugate directions method is that is has a
built-in mechanism for dealing with bound constraints. In tests with IPSOLS-Stage-III,
we observed that Powell’s conjugate directions method would make some excursions outside
the bounds.

Hence, we opted for including a mechanism into IPSOLS-Stage-III that would help to
enforce bound constraints. These constraints are enforced because it is known that some
benchmark functions give the impression that very good solutions are outside the defined
bounds. A well-known example of this phenomenon is Schwefel’s sine root function. In
initial experiments, we noted that simply setting solutions to the bound deteriorated the
performance of the algorithm significantly. IPSOLS-Stage-IV tries to include a mechanism
to enforce boundary constraints using the penalty function

P (x) = fes ·
n∑
i=1

B(xi) , (4.14)

where B(xi) is defined as

B(xi) =


0, if xmin ≤ xi ≤ xmax

(xmin − xi)2, if xi < xmin

(xmax − xi)2, if xi > xmax ,

(4.15)

where n is the dimensionality of the problem, xmin and xmax are the minimum and maxi-
mum limits of the search range, respectively, and fes is the number of function evaluations
that have been used so far. The goal with this penalty function is to discourage long
and far excursions outside the bounds. Strictly speaking, Eq. 4.14 does not change the
algorithm but the objective function. Nevertheless, we describe it as if it was part of the
algorithm because bound constraints handling mechanisms are important components of
any algorithm.
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Table 4.15: Default and best configuration obtained through iterated F-Race for IPSOLS-

Stage-IV in 10-dimensional instances†

Configuration w ϕ1 ϕ2 Init. pop. size k Topology FTol MaxITER
Default 0.72 1.49 1.49 1 1 FC -1 10
Tuned 0.0 0.0 2.32 64 5 FC -1.32 4

† FC stands for fully connected, R for ring. FTol and MaxITER are parameters that
determine the stopping condition of the local search method.

Table 4.15 shows the default and tuned configurations of IPSOLS-Stage-IV. As may be
expected, not many changes in the tuned configuration can be found with respect to the
tuned configuration of IPSOLS-Stage-III.
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Figure 4.11: Box-plot of the median objective function values obtained by the two con-
figurations listed in Table 4.14 of IPSOLS-Stage-III, and the two configurations listed in
Table 4.15 of IPSOLS-Stage-IV. In all cases, we used the 100-dimensional versions of the
benchmark functions proposed for this special issue. The line at the bottom represents the
0-threshold.

Figure 4.11 shows the box-plots of the median objective function values obtained with
IPSOLS-Stage-III and IPSOLS-Stage-IV. IPSOLS-Stage-III and IPSOLS-Stage-IV differ
slightly, and consequently, we expect that their performance is slightly different. Our
expectation is confirmed through the application of Wilcoxon’s test on the samples of
results. The default and tuned versions can be considered equivalent (p = 0.87 and p =
0.81, respectively). Therefore, mainly motivated by the potential importance of being able
to enforce bound constraints, we kept the design of IPSOLS-Stage-IV.

4.5.6 Stage V: Fighting Stagnation by Modifying the Local Search
Call Strategy

We noticed in preliminary experiments that IPSOLS-Stage-IV stagnated in functions in
which IPSOLS-Stage-I had very good results (e.g., F5). A common approach to deal
with stagnation is to add diversification strategies (Hoos and Stützle, 2004). The first
diversification strategy that we added to IPSOLS-Stage-IV is based on the way IPSOLS-
Stage-I operates. (The second strategy is described in the next section.) Specifically, in
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Table 4.16: Default and best configuration obtained through iterated F-Race for

IPSOLS-Stage-V in 10-dimensional instances†

Configuration w ϕ1 ϕ2 Init. pop. size k Topology FTol MaxITER MaxFailures
Default 0.72 1.49 1.49 1 1 FC -1 10 2
Tuned 0.0 0.0 2.6 3 1 FC -1 7 20

† FC stands for fully connected, R for ring. FTol and MaxITER are parameters that determine the
stopping condition of the local search method.

IPSOLS-Stage-I, all particles call the local search method, but in IPSOLS-Stage-IV, only
the best particle does. In IPSOLS-Stage-V, we sporadically let other particles call the local
search method. We introduce a parameter, MaxFailures, which determines the maximum
number of repeated calls to the local search method from the same initial solution that
does not result in a solution improvement. Each particle maintains a failures counter and
when that counter reaches the value MaxFailures, the local search procedure cannot be
called again from that particle’s personal best position. In that situation, local search is
applied from a random particle’s personal best position as long as this random particle’s
failures counter is less than MaxFailures. If the random particle’s failures counter is equal
to MaxFailures, the algorithm continues sampling particles at random until it finds one
that satisfies the requirements, or until all particles are tried. This last situation is not
likely to happen because new particles are periodically added to the population. When a
particle’s personal best position improves thanks to a PSO move, the failures counter is
reset so that the local search procedure can be called again from that newly discovered
solution.

In Table 4.16, the default and tuned configurations of IPSOLS-Stage-V are listed. The
distributions of the median objective function values of the default and tuned configurations
of IPSOLS-Stage-IV and IPSOLS-Stage-V are shown in Figure 4.12.
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Figure 4.12: Box-plot of the median objective function values obtained by the two con-
figurations listed in Table 4.15 of IPSOLS-Stage-IV, and the two configurations listed in
Table 4.16 of IPSOLS-Stage-V. In all cases, we used the 100-dimensional versions of the
benchmark functions proposed for this special issue. The line at the bottom represents the
0-threshold.

So far, we have been able to accept all modifications based on the analysis of the
distributions of median objective function values. In this case, the introduced modification
with default parameter settings is worse than the unmodified version with default settings
(p = 0.03). After tuning, the null hypothesis that assumes that both samples are drawn
from the same population cannot be rejected (p = 0.36). It would seem clear that the
proposed modification could be safely rejected. However, if we look at the distribution
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Table 4.17: Default and best configuration obtained through iterated F-Race for IPSOLS-

Stage-VI in 10-dimensional instances†

Configuration w ϕ1 ϕ2 Init. pop. size k Topology FTol MaxITER MaxFailures MaxStagIter
Default 0.72 1.49 1.49 1 1 FC -1 10 2 10
Tuned 0.0 0.84 1.85 1 1 FC -1 87 13 27

† FC stands for fully connected, R for ring. FTol and MaxITER are parameters that determine the stopping
condition of the local search method.
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Figure 4.13: Box-plot of the median objective function values obtained by the two con-
figurations listed in Table 4.16 of IPSOLS-Stage-V, and the two configurations listed in
Table 4.17 of IPSOLS-Stage-VI. In all cases, we used the 100-dimensional versions of the
benchmark functions proposed for this special issue. The line at the bottom represents the
0-threshold.

of the mean objective function values instead of the median4, the situation is completely
different. In this case, the default and the tuned configurations of IPSOLS-Stage-V are
better than the one of IPSOLS-Stage-IV (p = 0.002 and p = 0.01, respectively). This
result indicates that the introduced modification indeed reduces the likelihood of IPSOLS-
Stage-IV stagnating, but this is seen only in the upper quartiles of the solution quality
distributions generated by the algorithm, that is, the worst results are improved but not
necessarily the best results. In fact, the lower quartiles of these distributions (i.e., the
best solutions) either deteriorated, as with the default configuration, or are not affected,
as seems to be the case with the tuned configuration.

4.5.7 Stage VI: Fighting Stagnation with Restarts

In IPSOLS-Stage-VI, we included an algorithm-level diversification strategy. This strategy
consists in restarting the algorithm but keeping the best-so-far solution in the population of
particles across restarts. In particular, the best-so-far solution becomes the new first par-
ticle’s current and previous best position. The restart criterion is the number of PSO-level
consecutive iterations with a relative solution improvement lower than a certain thresh-
old ε. In our experiments, we set ε = 0-threshold. The number of consecutive iterations
without significant improvement is a parameter of IPSOLS-Stage-VI, MaxStagIter.

The list of default and tuned parameter settings for IPSOLS-Stage-VI is shown in
Table 4.17. The distributions of the median objective function values obtained by the
default and tuned configurations for IPSOLS-Stage-V and IPSOLS-Stage-VI are shown in
Figure 4.13.

When comparing the aggregated data of IPSOLS-Stage-V and IPSOLS-Stage-VI using

4We remind the reader that the complete set of results can be found in (Montes de Oca, 2011).
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Figure 4.14: Box-plot of the median objective function values obtained by the two configu-
rations listed in Table 4.12 of IPSOLS-Stage-I using Powell’s conjugate directions method,
and the two configurations listed in Table 4.17 of IPSOLS-Stage-VI. In all cases, we used
the 100-dimensional versions of the benchmark functions proposed for this special issue.
The line at the bottom represents the 0-threshold.

a Wilcoxon test, the null hypothesis cannot be rejected with medians or with means.
While the actual performance of IPSOLS-Stage-VI is statistically equivalent to that of
IPSOLS-Stage-V with the 100-dimensional versions of the benchmark functions, we prefer
to keep the extra diversification layer that a strong restart offers. During scalability tests,
which will be presented later, we will see that this extra diversification layer does not hurt
performance and does provide extra flexibility that can be exploited in certain application
scenarios, such as when a larger number of function evaluations can be used.

With IPSOLS-Stage-VI, we conclude the redesign cycle of IPSOLS. In Figure 4.14 we
can clearly see the improvement with respect to the original algorithm that we were able
to obtain through a tuning-in-the-loop redesign process.

It is interesting to see the positive effects that tuning had on most of the tested variants
of IPSOLS. It should not be forgotten that the tuning process was performed with instances
whose size was only 10% the size of the instances over which we tested the effectiveness of
tuning. In the following section, we will see that the effectiveness of tuning also extends to
instances that are up to 100 times larger than the ones seen during tuning.

4.5.8 Performance Scalability Study

In this section, we study the performance of IPSOLS-Stage-VI, which we refer to as IP-
SOLS+, on the 50-, 100-, 200-, 500-, and 1000-dimensional versions of the 19 benchmark
functions shown in Table 4.8.

Reference Algorithms

The performance of the tuned version of IPSOLS+ was compared to that of 15 other
algorithms, which were recently proposed in a special issue of the Soft Computing jour-
nal (Lozano et al., 2011). These algorithms include differential evolution (DE) (Storn and
Price, 1997), the CHC algorithm (Eshelman and Schaffer, 1993), and a CMA-ES algo-
rithm with increasing population size (G-CMA-ES) (Auger and Hansen, 2005). In recent
years, DE and G-CMA-ES have been widely considered as representatives of the state-of-
the-art of heuristic continuous optimization problems. In particular, G-CMA-ES was the
best-ranked algorithm of a special session organized for the 2005 IEEE Congress on Evolu-
tionary Computation (Smit and Eiben, 2010). The parameter settings used with DE, CHC,
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and G-CMA-ES were proposed by Lozano and Herrera (2010a). The parameter settings
for the other algorithms were set by their respective authors. Moreover, these algorithms’
source code and summary statistics of their performance on the 19 benchmark functions
listed in Table 4.8 are available at Lozano and Herrera (2010b). For more information
about these algorithms, we refer the reader to (Lozano et al., 2011) and the papers in
which they were proposed.

Solution Quality Scalability

We use box-plots to show the distribution of the average objective function values obtained
by each algorithm on the 19 benchmark functions suite (19 values per box-plot). These
box-plots are shown in Figure 4.15.

The first striking result of this comparison is that the performance of G-CMA-ES is
very poor in comparison to that of the other 15 algorithms including IPSOLS+. The
performance of IPSOLS+ improves with the dimensionality of the benchmark functions
used for this comparison as can be seen by the ranking of IPSOLS+ based on the median
value of the distribution of the 19 average objective function values. We tested the null
hypothesis with a multiple pairwise Wilcoxon’s test with a 0.95 confidence level. Except
for the comparisons of IPSOLS+ to CHC, EvoPROpt, and G-CMA-ES, it is not possible to
reject the null hypothesis of IPSOLS+ with any other algorithm. Thus, we can confidently
say that IPSOLS+ obtains results that are not distinguishable from those obtained with
state-of-the-art algorithms for small and large-scale continuous optimization problems.

Execution Time Scalability

The results presented so far have focused on the solution quality obtained after some com-
putational budget (in our case, the maximum number of function evaluations) has expired.
While those results are important, it is still unclear whether the proposed algorithms are
really suitable for tackling large-scale continuous optimization problems. This ambiguity
is due to the fact that, in some cases, the execution time can grow so fast with the problem
size that an otherwise good algorithm may become impractical. For example, the execution
time of G-CMA-ES was so high that its results on 1000-dimensional problems were not
even reported in the special issue of the Soft Computing journal (Lozano et al., 2011).

In this section, we study the execution time scalability of IPSOLS+. During each
run of the algorithm, we recorded the number of function evaluations and the CPU time
used, when the best-so-far solution was improved. With this information, we can estimate
the solution quality distribution (SQD) (Hoos and Stützle, 2004) of the algorithm at, for
example, the maximum number of function evalutions. To conduct the scalability study,
we use the 0.9-quantile of the SQDs of IPSOLS+ on each benchmark function. We chose
the 0.9-quantile as a conservative measure of the achievable solution quality. We focus on
two measures: the median number of function evaluations (FES) and the median time (in
seconds) needed by IPSOLS+ (in its default configuration) to find a solution that is at least
as good as the 0.9-quantile of the SQD after up to 5000n function evaluations, where n is
the dimensionality of the function tackled. Since the scalability behavior of any algorithm
is problem-dependent, we show only three examples in Figure 4.16. The rest of the results
can be found in (Montes de Oca, 2011).

We first focus on the behavior of the algorithm with respect to the number of function
evaluations consumed. For function F1, the linear model fes = 18.08n−424.96 fits the data
with an adjusted r2 score of 0.9957. The variable fes is the number of function evaluations
needed by IPSOLS+ to find a solution at least as good as the 0.9-quantile of the SQD,
and n is the dimensionality of the function. It is clear that the time execution scalability
of IPSOLS+ with function F1 is quite good as a consequence of the fact that Powell’s
conjugate directions method exploits the separability of the function. In the case of function
F8, the linear model fes = 4699.85n + 16261.51 fits the data with an adjusted r2 score of
0.9999. The slope of this model is almost the same as the slope of the computational
budget limit, which means that IPSOLS+ would most likely continue making progress
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(a) n = 50, IPSOLS+ ranking: 8
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(b) n = 100, IPSOLS+ ranking: 7
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(c) n = 200, IPSOLS+ ranking: 7
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(d) n = 500, IPSOLS+ ranking: 7
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(e) n = 1000, IPSOLS+ ranking: 5

Figure 4.15: Distribution of the 19 average objective function values obtained by each of the
16 compared algorithms. The boxplots are sorted in ascending order based on the median
value of the distribution. In the plot that corresponds to 1000 dimensions, the results
obtained with G-CMA-ES are missing due to this algorithm’s excessive computation time
for this dimensionality. The line at the bottom of each plot represents the 0-threshold.
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(c) FES scalability with F8
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(d) Time scalability with F8
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(e) FES scalability with F17
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(f) Time scalability with F17

Figure 4.16: Median number of function evaluations (FES) and median number of seconds
needed by IPSOLS+ to find a solution at least as good as the 0.9-quantile of the solution
quality distribution after up to 5000n FES (i.e., the maximum computational budget rep-
resented by the thin dotted line) on functions F1, F8, and F17. The result of a regression
analysis over the observed data is shown with a dotted line.

toward better solutions if more function evaluations were allowed. This result is due to
the Powell’s conjugate directions method, which in the case of F8 would align the search
directions, one by one, with the axes of the hyperellipsoid that F8 generates. Finally, we
show the execution time of IPSOLS+ with function F17, which scales quadratically with
the size of the problem. In this case, the model is fes = 5.14n2−1643.03n+182300 with an
adjusted r2 score of 0.998. The extra complexity that this function represents for IPSOLS+
is evident.

In terms of CPU time, the scalability of IPSOLS+ seems to follow the form time =
AeBn. For F1, the parameters of the fitted model are A = 0.0031 and B = 0.0056 with an
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adjusted r2 score equal to 0.949. For F8, the parameters are A = 3.1598 and B = 0.0042
with an adjusted r2 score equal to 0.902. Finally, for F17, the parameters are A = 2.0851
and B = 0.0075 with an adjusted r2 score equal to 0.936. Even though the fitted model
is exponential, the scalability of IPSOLS+ in seconds is very good because the coefficient
B is rather small (in the order of 1e−03) for all the 19 functions studied. We ran our
experiments on Intel Xeon E5410 quad core 2.33GHz computers with 2×6MB L2 cache
and 8GB of RAM. All computers used Linux (kernel 2.6.9-78.0.22) as operating system,
and IPSOLS+ was compiled with GCC 4.1.0.

4.6 Related Work

IPSO, IPSOLS, and IPSOLS+ are PSO-based algorithms in which the population size
changes during the optimization process. IPSOLS and IPSOLS+ are also hybrid algorithms
in which PSO and a local search procedure are combined. In this section, we briefly review
related work on both of these topics. We highlight the differences that exist between
previous approaches and IPSO, IPSOLS, and IPSOLS+.

4.6.1 PSO Algorithms with Time-Varying Population Size

Population sizing has been studied within the field of evolutionary computation for many
years. From that experience, it is now generally accepted that the population size in
evolutionary algorithms should be proportional to the problem’s difficulty (Lobo and Lima,
2007). The issue is that it is not uncommon to know little about a problem’s difficulty a
priori. As a result, evolutionary algorithms with time-varying population size have been
proposed (see e.g. Arabas et al. (1994); Harik and Lobo (1999); Bäck et al. (2000); Eiben
et al. (2004); Auger and Hansen (2005); Eiben et al. (2006); Fernandes and Rosa (2006) ).
This research issue has just recently been addressed by the PSO community, and thus not
many research contributions exist. Coelho and de Oliveira (2008) adapt the population
resizing mechanisms used in APGA (Bäck et al., 2000) and PRoFIGA (Eiben et al., 2004)
for their use in PSO algorithms. Lanzarini et al. (2008) proposed a method for varying
the size of the population by assigning a maximum lifetime to groups of particles based on
their performance and spatial distribution. A time-varying population size approach has
been adopted by Leong and Yen (2008) for tackling multiobjective optimization problems
with PSO algorithms. In the work of Chen and Zhao (2009), the optimization process is
divided into a number of periods at the end of which the population size changes. The
decision of whether the population size should increase or decrease depends on a diversity
measure. Finally, Hsieh et al. (2009) adapt the swarm size based on the ability of the
particles to improve their personal best solutions and the best-so-far solution.

All these proposals share a common problem: they eliminate the population size pa-
rameter, but introduce many others. For example, many proposals require the user to set
a particle’s maximum lifetime, to select the number of iterations without improvement so
that a particle is added or removed, to choose particle recombination operators, etc. In
contrast, our approach introduces only two parameters: the rate at which the population
size should grow and how new particles should be initialized. Additionally, our approach
is simple to understand and implement.

In contrast to practically all previously studied strategies, our approach, in its current
form, does not consider the possibility of reducing the size of the population during an
algorithm’s run. The rationale behind previous approaches is that large populations require
more function evaluations per iteration and thus, if the particles have converged, they can
result in a waste of function evaluations. However, in at least another algorithm the
population size is not decreased. Such an algorithm is G-CMA-ES (Auger and Hansen,
2005), in which the population size is doubled each time it is restarted. As we have seen, not
decreasing the population size does not negatively affect the performance of G-CMA-ES,
IPSO, IPSOLS, and IPSOLS+.
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4.6.2 PSO Algorithms Hybridized with Local Search Procedures

The idea of combining local search techniques with PSO algorithms comes partly from the
observation that particles are attracted to their own and their neighbors’ previous best
positions. The underlying idea is that the better the attractors of a particle are, the higher
the chances that a particle finds even better solutions. The goal of most hybrid algorithms,
IPSOLS and IPSOLS+ included, is thus to accelerate the placement of the particles’ previ-
ous best positions in good locations. For example, Chen et al. (2005) combined a particle
swarm algorithm with a hill-climbing local search procedure. Liang and Suganthan (2005)
used a quasi-Newton method to improve a subset of the solutions found by a multi-swarm
algorithm. Gimmler et al. (2006) experimented with PSO-based hybrids using Nelder and
Mead’s simplex method and Powell’s conjugate directions set method. In their results, the
hybrid algorithm that uses the Powell’s conjugate directions set method obtained better
results than the algorithm that uses Nelder and Mead’s simplex method. Das et al. (2006)
also used Nelder and Mead’s simplex method and proposed the inclusion of an estimate of
the local gradient into the particles’ velocity update rule. In (Coelho and Mariani, 2006),
a two-phase approach is described where a PSO algorithm is used first to find a good so-
lution and, in a second phase, a quasi-Newton method is used to refine it. Petalas et al.
(2007) report experiments with several local search-particle swarm combination schemes.
Müller et al. (2009) describe in their work a hybrid PSO–CMA-ES algorithm in which a
full-fledged population-based algorithm (CMA-ES Hansen et al. (2003); Hansen and Kern
(2004)) is used as a local search procedure. Other PSO-local search hybrids are reported
in Hao and Hu (2009) and Chen et al. (2010). Our proposal is not different from the
above-mentioned approaches in the sense that it uses a local search procedure. In all cases,
the goal is to accelerate the discovery of good solutions. However, our work is the first
to explore the possible benefits of combining a variable population size with local search
procedures in the context of PSO algorithms. We have seen that this combination allows
IPSOLS and IPSOLS+ to “adapt” to the features of the objective function as discussed in
Section 4.4.2.

4.7 Conclusions and Future Work

In this chapter, we have shown how the ISL framework can be used for enhancing the
performance of PSO algorithms. We analyzed and empirically evaluated three algorithms
that are the result of applying ISL to PSO. The first one, IPSO, is a PSO algorithm
with a growing population size, in which new particles are initialized biasing their initial
position toward the best-so-far solution. The second algorithm, IPSOLS, is an extension
of IPSO, which implements “individual learning” through a local search procedure. The
third algorithm, called IPSOLS+, resulted from a redesign process in which an automatic
tuning system, iterated F-Race, was used at each design stage. IPSOLS+ is the most
competitive of the three algorithms proposed. In IPSOLS+, a local search procedure is
almost always invoked from the best-so-far solution. However, when this strategy is not
successful, local search is invoked from the position of a randomly chosen particle. The
local search procedure and the PSO algorithm are tightly coupled because the initial step
size used in the local search procedure depends on the interparticle distance. Thus, the
local search is naturally more focused toward the end of the optimization process. A restart
mechanism is used in order to increase the chances of the algorithm of finding good quality
solutions. Despite their differences, all of these three algorithms keep the two basic elements
of the ISL framework: (i) incremental growth of the population and (ii) social learning at
the moment a particle is added. We showed that the effects of the social learning rule are
positive on a very wide range of problems.

We are not the first to use automatic parameter configuration methods in the con-
text of heuristic algorithms for continuous optimization. Earlier approaches designed to
tune numerical parameters of algorithms for continuous optimization include SPO (Bartz-
Beielstein, 2006), SPO+ (Hutter et al., 2009), and REVAC (Nannen and Eiben, 2007). A
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comparison of such methods has been presented in (Smit and Eiben, 2009). In all these
approaches, however, the algorithm was tuned on the very same benchmark function on
which it was later tested; thus, all these examples are prone to over-tuning. Only rather
recently, an experimental comparison of tuning algorithms for calibrating numerical algo-
rithm parameters in numerical optimization that does not incur the problems of over-tuning
has been presented (Yuan et al., 2010). In this chapter, we also avoid over-tuning by ap-
plying iterated F-race to problems of much smaller dimension than the ones on which the
algorithms are later tested. In addition, in contrast with previous work, we make extensive
usage of automatic tuning during the design process of a high-performing algorithm; others
have so far focused on the fine-tuning of an already developed, final algorithmic scheme.

There are a number of promising avenues for future research. First, an important issue
that needs to be addressed in the future is the applicability of ISL to other population-
based optimization techniques. In principle, ISL can be used with any population-based
optimization algorithm. However, it is not always evident how to apply ISL to a cer-
tain algorithm. For example, it is not straightforward that one may apply ISL to ACO
algorithms (Dorigo and Stützle, 2004), which have a centralized memory structure that
already allows agents (in this case artificial ants) to share their search experience with
others. Nevertheless, Liao et al. (2011) have recently shown that it is possible to apply ISL
to ACOR (Socha and Dorigo, 2008), which is an ACO variant for continuous optimization
problems. Second, it is important to extend automatic algorithm configuration techniques
to very large-scale problems in order to better deal with the scaling behavior of algorithm
parameters. In fact, our algorithm tuning was done on 10-dimensional versions of the high-
dimensional benchmark functions and, maybe luckily, the found parameter settings turned
out to result in very high performance even on benchmark functions that had 100 times
larger dimension. Further research is needed to explore better ways to find well-scaling
algorithm parameters. Third, we need to further investigate methods for automatic al-
gorithm configuration for tackling continuous optimization problems. Some approaches
exist, but often these suffer from over-tuning since tuning is done on single benchmark
functions. Finally, another promising direction for future work is to apply our tuning-in-
the-loop algorithm engineering methodology to other algorithms for continuous function
optimization. In fact, the DE algorithm proposed as a baseline for the competition would
be an interesting candidate for such an undertaking.
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Chapter 5

Incremental Social Learning Applied
to Robot Swarms

In this chapter, we describe the application of ISL to a collective decision-making mech-
anism for robot swarms. This mechanism is also a contribution of this dissertation as
mentioned in Section 1.3. First, we describe the collective decision-making mechanism
(Sections 5.1 and 5.2). Then, in Section 5.3, we describe the integration of such a mecha-
nism with ISL and report the results obtained. Related work is described in Section 5.4.
Opportunities for future work and conclusions are presented in Section 5.5.

5.1 Majority-Rule Opinion Formation Models

When a person is immersed in a social context, her decisions are influenced by those of
others. The effects of social influence on the collective-level behavior of groups of people
have been studied by economists and sociologists since at least the 1970s (Schelling, 1978;
Granovetter, 1978). More recently, statistical physicists have developed models to quanti-
tatively describe social and economic phenomena that involve large numbers of interacting
people (Chakrabarti et al., 2006; Castellano et al., 2009; Helbing, 2010). Some of the
models that have emerged from these efforts are referred to as opinion formation models.

Krapivsky and Redner (2003) proposed a binary opinion formation model in which a
population of agents reaches a consensus with high probability on the opinion initially
favored by more than 50% of the population. The process that drives the system to
consensus is based on the repeated application of the majority rule at a local level on small
teams of agents (see Section 5.1.1). This model is interesting from a swarm intelligence
perspective because the resulting opinion dynamics can be seen as a decentralized collective
decision-making process. However, to be of practical use, the opinion dynamics induced
by the majority rule need to make an initially unbiased population reach consensus on the
opinion associated with the “best” alternative. In this chapter, we demonstrate how to
achieve this goal in a swarm robotics context by making opinions represent actions robots
need to choose from while executing a task (see Section 5.1.2). The criterion used to
evaluate alternative actions is the time needed to execute them. Thus, an action that has
the same effect as another one but that takes less time to perform is preferred.

We introduce a number of modifications to the majority-rule opinion formation model
that capture elements of the interaction of real robots with a physical environment. One of
these modifications builds on the concept of latency, which is a period of time of stochastic
duration during which an agent cannot be influenced by other agents, and thus cannot
change opinion (Lambiotte et al., 2009). In our model, we call this modification differential
latency because the duration of a latency period is different for different opinions. We
demonstrate, in simulation, that with the introduced modifications, a population of agents
reaches consensus on the opinion associated with the shortest average latency even if that
opinion is initially favored by a slight minority of the population. In Section 5.2, we propose
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Figure 5.1: Majority-rule opinion dynamics. Initially, three agents have opinion A (rep-
resented in black) and three others have opinion B (represented in gray). After applying
three times the majority rule on randomly-formed teams of three agents each (marked with
squares), the population reaches consensus on one of the two opinions.

a collective decision-making mechanism for robot swarms that exploits the dynamics of the
majority-rule opinion formation model with differential latency.

5.1.1 Majority-Rule Opinion Formation With and Without La-
tency

The majority rule as an element of opinion formation models was first used by Galam
(1986) to study voting in hierarchical structures. Krapivsky and Redner (2003) studied the
dynamics induced by the majority rule in a well-mixed population case, that is, a situation
where everyone can interact with the same probability with everyone else (Nowak, 2006).
In Krapivsky and Redner’s model, a population of agents, each of which can assume one of
two states, called opinions (A or B)1, evolves as follows: First, a team of three randomly
chosen agents is formed. Then, the team members adopt the opinion held by the majority
within the team. Finally, the team members are put back in the population and the process
is repeated. Figure 5.1 shows an example of the process just described.

An important aspect of the system’s dynamics is the probability of reaching consensus
on one opinion, say A, as a function of the initial fraction of the population favoring it (see
Figure 5.2(a)). In Krapivsky and Redner’s model, the value of this probability abruptly
increases at a critical initial fraction equal to 0.5. If the initial fraction of the population
in favor of opinion A is greater than 0.5, then the population reaches consensus on opinion
A with a higher probability than on opinion B. If the initial fraction is exactly 0.5, then
the probability of reaching consensus on opinion A is also 0.5. For large populations, this
probability approximates a unit step function with a discontinuity at the critical initial
fraction. For small populations, the probability is a step-wise function. The number of
team formations required to reach consensus in the majority-rule opinion formation model
also depends on both the initial fraction of the population favoring one opinion and the
population size. At the critical initial fraction, the system takes the longest to reach
consensus (see Figure 5.2(b)).

Lambiotte et al. (2009) incorporated latency to Krapivsky and Redner’s model. In
Lambiotte et al.’s model, a team is formed with three randomly picked agents that can be
either latent or non-latent. The team’s majority opinion is adopted only by the team’s non-
latent agents. If the team’s non-latent agents switch opinion as a result of the majority
rule, then they become latent. Otherwise, they remain non-latent. The team’s latent

1Throughout this chapter, we use letters A and B to label the two available opinions.
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Figure 5.2: Dynamics of Krapivsky and Redner’s model. Figure (a) shows the probability
of reaching consensus on one opinion (labeled A) as a function of the initial fraction of
agents in its favor. Figure (b) shows the average number of team formations needed to
reach consensus on one opinion. N is the size of the population. These plots are based on
results obtained through 1,000 independent runs of a Monte Carlo simulation.
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Figure 5.3: Dynamics of Lambiotte et al.’s model. Depending on the value of the parameter
α, consensus may or may not be the only stable state of the system. When α = 1/2
(Figure (a)) consensus is always achieved (we plot the probability of reaching consensus
on opinion A). By contrast, when α = 1/20 (Figure (b)), the population does not always
achieve consensus because a third stable state, in which the fraction of agents favoring one
opinion fluctuates around 0.5, arises. Thus, in this case, we plot the average fraction of
agents with opinion A after 100,000 team formations. These plots are based on results
obtained through 1,000 independent runs of a Monte Carlo simulation.

agents become non-latent with probability α, which is a parameter of the model. In this
model, consensus may be reached for any value of α; however, for α < 1/4, a third state in
which the fraction of agents favoring one opinion fluctuates around 0.5, is also stable. The
characteristic dynamics of Lambiotte et al.’s model are shown in Figure 5.3.

5.1.2 Majority-Rule Opinion Formation With Differential Latency

We introduce an opinion formation model based on Krapivsky and Redner’s and Lambiotte
et al.’s models. The proposed model captures some properties of real-world swarm robotics
systems. Our goal is to exploit the resulting system’s dynamics as a collective decision-
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making mechanism. In order to meet our goal, we need to interpret agents as robots, and
opinions as actions or sequences of actions that robots have to choose from while solving
a task. For example, an opinion can model a robot’s decision whether or not to establish
a physical connection with another robot—cf. Ampatzis et al. (2009). An example of an
opinion representing a sequence of actions is whether to follow the rules for assembling one
morphology or another for a specific task—cf. O’Grady et al. (2010a).

The modifications we introduce to Krapivsky and Redner’s and Lambiotte et al.’s mod-
els are the following:

1. Robots in a swarm can operate in parallel. This property is translated into k inde-
pendent teams being formed instead of just one as in the original formulations.

2. Robot actions may induce physical displacement. Thus, robots executing an action
cannot simultaneously be part of two teams. As a result, robots executing an action
cannot be influenced by other robots, and crucially, cannot influence other robots,
unless they are in their immediate vicinity. This phenomenon is partially captured by
the concept of latency as defined by Lambiotte et al.. However, in Lambiotte et al.’s
model, latent agents can still influence other agents. Thus, we restrict agents to be
non-latent at the moment of forming a team. This change prevents latent agents
from influencing other agents.

3. Robot actions take time to perform. Moreover, the duration of an action is stochastic
because there are physical interactions between robots and the environment. In
addition, different actions may have different average duration. This is translated
into differential latency, that is, the average duration of the latency period depends
on the agents’ adopted opinion. In contrast with Lambiotte et al.’s model in which
agents become latent only if they switch opinions, in our case, agents become latent
regardless of whether they switch opinion or not.

A system governed by the proposed model evolves as follows: k teams of three randomly
chosen agents are formed. The majority rule is used within each team in order to update
its members’ opinions. Agents that belong to a team enter a latent state whose duration
depends on the team’s adopted opinion. When a team’s latency period finishes, its members
become non-latent and eligible to form a new team. When a new team is formed, its
members are picked from the population of non-latent agents. The process is repeated
until the population reaches a consensus. Algorithm 6 shows a pseudo-code version of the
process just described.

5.2 Majority-Rule Opinion Dynamics With Differen-
tial Latency as a Collective Decision-Making Mech-
anism for Robot Swarms

In this section, we study the opinion dynamics induced by the majority-rule opinion for-
mation model with differential latency. The study is performed in two stages. In the first
stage, we use Monte Carlo simulation in order to study the effects of a broad range of pa-
rameters on the system’s dynamics. In the second stage, we use a physics-based simulator
that accurately simulates robots and their interactions with an environment in order to
validate the proposed collective decision-making mechanism.

5.2.1 Monte Carlo Simulation Study

Our simulation study is performed in three steps. First, we explore the effects of different
parameters on the system’s dynamics. In particular, we focus on the effects of different
durations of the latency periods associated with each opinion and the number of teams.
Next, we study the system’s dynamics when the number of teams k is equal, or very close
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Algorithm 6 Majority-rule opinion formation with differential latency

Input: Number of agents N , number of teams k, initial fraction of the population with opinion
A.
/* Initialization */
t← 0
Initialize population of agents X.
/* Initial team formations */
for i = 1 to k do

Form team i by selecting at random three non-latent agents from X.
Apply the majority rule on team i, updating all team members’ opinions.
Team i becomes latent for a period of time whose duration depends on the adopted opinion.

end for
repeat

for i = 1 to k do
if Team i becomes non-latent then

Form new team i by selecting at random three non-latent agents from X.
Apply the majority rule on team i, updating all team members’ opinions.
Team i becomes latent for a period of time whose duration depends on the adopted
opinion.

end if
end for
t← t+ 1

until Consensus is reached

to the limit N/3. This case is interesting because, in the continous case, the probability
of two teams becoming non-latent at exaclty the same time is zero. Thus, we expect that
when k = N/3 the system will behave differently than when k < N/3. However, since in
our simulations we use discretization of the normal distribution, the actual probability of
two teams becoming non-latent at exaclty the same time is not zero. To compensate for
this difference between the continuous model and its discrete implementation, we do not
allow teams that happen to finish at the same time to exchange team members. Finally,
we study the system’s dynamics when the durations of the latency periods are such that
opinions may be difficult to distinguish.

Our simulations are based on the fact that robot actions may have a typical duration
with some deviation. For example, going from one place to another cannot happen in-
stantaneously, and, depending on the number of obstacles present in the environment, one
trip may take more or less time than another. Thus, as a first approximation of such a
scenario, we study the system’s dynamics with normally distributed latency periods using
Monte Carlo simulation.

The durations of latency periods associated with opinions A and B are modeled as two
normally distributed random variables with means µA and µB , and standard deviations
σA and σB , respectively. The latency period duration ratio is defined as r = µB/µA. The
simulation proceeds as follows: Teams are formed at random, the majority rule is applied
within each team, and the resulting opinions are adopted by the involved agents. The
execution times for each team are drawn from a normal distribution with the appropriate
parameters and the resulting number is rounded to the nearest integer. The time steps
counter runs until a team’s execution time expires. At that point, a new team is formed
and the process is repeated until the maximum number of time steps is reached. In our
simulations, we use populations of N ∈ {9, 90, 900} agents. For each population size, we
vary the number of teams: k ∈ {1, 2, 3}, when N = 9, k ∈ {1, 10, 20, 30}, when N = 90, and
k ∈ {1, 100, 200, 300}, when N = 900. We also vary r by changing the value of µB . The
explored values of r are 1, 2, 3, and 4. The reference mean µA is fixed to a value of 100 time
steps. We set σA = σB = 20 time steps. With these settings, the two distributions do not
significantly overlap, which allows us to see the dynamics in the absence of high levels of
interference. Later in this section, we study the system’s dynamics when the distributions
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of the latency periods overlap.

Dynamics

Figure 5.4 shows the dynamics of the proposed model with a population of 900 agents.2

The relation between the initial configuration of the population and the probability of
reaching consensus on one of the alternative opinions follows the same nonlinear pattern
observed in Figure 5.2(a). However, when latency periods have a different mean duration,
it is more likely that the system achieves consensus on the opinion associated with the
shortest latency period. This fact is reflected by a lower critical initial fraction. In Figure
5.4(a), for example, the critical initial fraction is approximately equal to 0.35 when r = 4
whereas it is approximately equal to 0.42 when r = 2. In every case, the peak on the
number of team formations needed to reach consensus occurs at the critical initial fraction
(see Figure 5.4(b)). Additionally, at the critical initial fraction, the larger the latency
period duration ratio, the more team formations are needed to reach consensus.

A second aspect that we study in this experiment is the effect of the number of teams
on the system’s dynamics. An example of the obtained results is shown in Figures 5.4(c)
and 5.4(d). For a latency period duration ratio greater than one, increasing the number of
teams reduces the critical initial fraction. In terms of the number of team formations to
achieve consensus, the results are similar to the ones observed in Figure 5.2, that is, the
maximum number of team formations occurs at the critical initial fraction. As expected,
when k approaches N/3, the system exhibits different dynamics and stops obeying the
aforementioned tendencies. Except for cases in which consensus is reached after the first
team formations (e.g., with very small populations and very low or large initial densities),
when N = 3k the system does not reach consensus (see Figure 5.4(e)). Next, we study in
detail the dynamics of the system when k approaches the value N/3.

Consensus and Critical Initial Fractions

We tracked over time the proportion of latent and non-latent agents with the opinion asso-
ciated with the shortest latency period (opinion A) in order to explain two phenomena: i)
why the system does not always reach consensus when k = N/3 and ii) why, for different
latency duration ratios or different number of teams, there are different critical initial frac-
tions. Figure 5.5 shows the development of these proportions over time for three different
cases: N ∈ {900, 901, 902}. To produce these plots, we fixed r = 4, k = 300, and the initial
fraction of the population in favor of opinion A was set to 0.5.

When N = 3k (see Figure 5.5(a)), every time a team is destroyed and formed anew, it is
composed of exactly the same members. This means that when N = 3k there is no change
in the number of agents with one or another opinion after the initial team formations.
When N = 3k+1 (see Figure 5.5(b)) consensus is not reached as in the previous case. This
phenomenon occurs because three of the four non-latent agents available at the moment of
forming a new team have the same opinion. Thus, while there may be a different agent in
a new team, the team’s opinion does not change, eliminating the possibility of an eventual
consensus. When N = 3k+ 2 (see Figure 5.5(c)) the population always reaches consensus.
Two non-latent agents are enough to possibly change the opinion of one agent that just
switched from a latent to a non-latent state. Thus, a non-latent population of at least two
non-latent agents guarantees consensus.

The “waves” depicted in Figure 5.5 are caused by the existence of two different latency
periods. The valleys of the waves concur with multiples of the mean of the slowest latency
period, that is, the period of these waves is µB . In our example, µB = 400 because r = 4
and µA = 100. The amplitude of these waves is proportional to the number of teams.
These wave-like variations help explain the existence of critical initial fractions. A latency
duration ratio greater than one gives, on average, more time to teams with agents with
opinion A than to teams with opinion B to accumulate agents with that same opinion in the

2In Montes de Oca (2011), the reader can find the complete set of results.
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Figure 5.4: Dynamics of the majority-rule opinion formation model with normally dis-
tributed latency periods on a population of 900 agents. Figure (a) and (b) show, re-
spectively, the probability of reaching consensus on opinion A, and the number of team
formations to reach consensus for different latency period duration ratios and a fixed num-
ber of teams (k = 200). Figures (c) and (d) show, respectively, the probability of reaching
consensus on opinion A, and the number of team formations to reach consensus for different
number of teams and a fixed latency period duration ratio (r = 4). The plot in Figure (e)
shows the case k = N/3 in which the system does not reach consensus. These plots are
based on results obtained through 1,000 independent runs of a Monte Carlo simulation.

non-latent subpopulation. Given that µB = rµA, by the time the first teams with opinion
B become non-latent, teams with opinion A will have done so approximately r times. This
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Figure 5.5: Development of the total proportion of agents with opinion A, and the pro-
portion of non-latent agents with opinion A. Opinion A is associated with the shortest
latency period. These plots are based on results obtained through 1,000 independent runs
of a Monte Carlo simulation.

imbalance makes the population reach consensus on opinion A with higher probability than
on opinion B. If the initial fraction of the population favors opinion B, that is, the initial
fraction is lower than 0.5, then it is possible to balance the system. In such a situation,
consensus is reached on either of the two opinions due to random fluctuations. Thus, the
initial fraction that balances the opinion update process in the non-latent population is
the initial critical fraction. A similar reasoning explains why the initial critical fraction
decreases when the number of teams increases.

Distributions Overlap and the Discrimination Ability of the System

If the distributions of the duration of latency periods significantly overlap, we expect that
the population of agents will not be able to consistently reach consensus on the opinion
associated with the shortest latency period. Thus, it is important to assess the ability of
the system to discriminate between the two distributions if the system’s dynamics are to
be used as a decision-making mechanism.

The following experiment is aimed at measuring the extent to which the population can
still reach consensus on the opinion associated with the shortest latency period when the
two latency duration distributions overlap. We assume that there is no a priori information
about which opinion is associated with the shortest latency period. Thus, the initial fraction
of agents in favor of one opinion or the other is equal to 0.5. We fix the parameters of
the distribution associated with the shortest latency period (µA, σA). We vary both the
mean and standard deviation of the distribution associated with the longest latency period
(µB , σB). The explored ranges are: µB = rµA with r ∈ [1.0, 2.0] in increments of 0.1, and
σB = sσA with s ∈ [1.0, 3.0] in increments of 0.5. The parameters used for the distribution
associated with the shortest latency period are µA = 100, and σA = 10. Other values were
explored but the system does not exhibit different dynamics as long as the relations between
the distributions’ coefficients of variation remain the same. As discussed in Section 5.2.1,
two extra non-latent agents are needed to ensure consensus. Thus, in these experiments, we
increase the population size with respect to the previous experiments. The results obtained
with 902 agents are shown in Figure 5.6.

The probability of reaching consensus on the opinion associated with the shortest la-
tency period grows more rapidly when a large number of teams and, consequently, a large
population is used. For example, with 11 agents the system has great difficulties in de-
tecting the opinion associated with the shortest latency period (results shown in (Montes
de Oca, 2011)). With 11 agents, the maximum probability of reaching consensus on the
opinion associated with the shortest latency period is approximately 0.8. In contrast, in
the example shown in Figure 5.6, the system is able to discriminate latency periods un-
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Figure 5.6: Probability of reaching consensus on the opinion associated with the shortest
latency period and the average number of team formations needed to do it as a function of
different levels of overlap between latency period duration distributions. These plots are
based on results obtained through 1,000 independent runs of a Monte Carlo simulation.

der a wide range of combinations of means and standard deviation ratios. With 100 and
200 teams (Figures 5.6(a) and 5.6(b)), the system is mostly affected by the ratio between
means. When using 200 teams, the system reaches a probability of 1 for achieving consen-
sus on the opinion associated with the shortest latency period already from r ≥ 1.3. At
the same time, the number of team formations needed to reach consensus decreases as r
increases (Figures 5.6(d) and 5.6(e)). With 300 teams (Figure 5.6(c)), the system exhibits
a good discrimination ability (although not as good as with 200 teams) but at a much
higher cost in terms of team formations (Figure 5.6(f)).

Irrespective of the size of the population, the standard deviation ratio does not have a
significant impact on the probability of the system discriminating between the two distri-
butions. We believe that this phenomenon is the result of an “averaging” effect due to the
large number of team formations needed to reach a consensus. The effects of short-term
fluctuations due to the high variability of one of the distributions become negligible in the
long run.

5.2.2 Physics-Based Simulation Study

In the experiments described in this section, the interaction between robots and their
environment determines the duration of latency periods. Moreover, the physical dimensions
of the environment determines the maximum number of teams that can be used to perform
a certain task. We use a scenario that resembles the well-known double bridge experiment
designed by Goss et al. (1989) (see Figure 5.7(a)). The task of the robots is to transport
objects from a starting location (at the bottom of the figure) to a target location (at the top
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Starting Location

Target Location

(a) Environment (b) Team

Figure 5.7: Task Scenario. The arena is a bridge-like environment with two branches of
different lengths (see Figure (a)). Teams of robots carry objects (see Figure (b)) from one
end of the arena to the other. Robots must choose to take either the left or the right path.

of the figure). The objects that need to be transported weigh more than what a single robot
can carry. Thus, robots need to team up in order to move the objects. An assembled team
ready to transport an object is shown in Figure 5.7(b). While performing this task, robots
must choose to take either the left or right path to reach the target location. These two
options represent the robots’ “opinions.” The time needed by robots to go from the starting
point to the target location and back is the duration of the latency period associated with
the chosen path. Robots traversing a path are latent with respect to the decision-making
process because they can neither change opinion nor influence other robots to do so. On
the contrary, robots that are waiting in the starting location are non-latent because they
can form new teams, and thus can change or spread their opinion. Like the ants in Goss
et al.’s experiment, robots do not have any knowledge about the length of the paths and
do not measure distances or travel times.

Experimental Setup

We used ARGoS (Pinciroli et al., 2010), a simulator developed as part of the SWAR-
MANOID project.3 ARGoS accurately simulates physical interactions between robots and
their environment. The robot models are based on the physical and electronic designs of
the actual SWARMANOID foot-bots (Bonani et al., 2010).

In all our simulations, non-active robots are not placed inside the arena; only active
robots are. The size of the environment does not allow a parallel deployment of teams.
Thus, a sequential deployment strategy is adopted. From the set of non-active robots, three
robots are chosen at random and placed in the starting location together with the object
to be carried. These robots attach to the object using their gripper actuator. Then, the
robots determine the team’s majority opinion by exchanging messages using their range
and bearing communication device, which allows robots to communicate locally with other
robots (Roberts et al., 2009). Only robots that are located within a short range and that
are in line of sight receive messages. Each robot sends its own opinion to the other two
robots of the team, and once a robot receives the opinions of the others, it locally applies
the majority rule to determine the opinion to adopt. Upon agreement on the path to
follow, the robots start moving toward the target location. Two LEDs are placed at the
bifurcations to let robot teams know in which direction they should turn. Robots detect

3http://www.swarmanoid.org/
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Figure 5.8: Estimated action execution time distributions for the two available actions
when there are two (a) and ten (b) teams in the environment. Each density plot is based
on 10,000 round trips (100 runs of 100 trips each) of a robot between the starting and goal
locations in the environment shown in Figure 5.7(a).

LEDs using their omni-directional camera. When robots reach the goal area, they detach
from the object they were transporting and go back, as single robots, through the same
path they used when they were part of a team. On their way to the target location, robots
use the collective transport controller designed by Ferrante et al. (2010). This controller
allows robots to transport the object to the goal location while avoiding obstacles (walls
and single robots on the way back to the starting location). Obstacles are detected using
a rotating infra-red emitter and receiver. The target location is indicated by a light source
located above it, which the robots perceive through their light sensors. To go back to
the starting location, robots use the light source that identifies the target location as a
landmark and then move away from it. To coordinate the heading direction, robots again
use the range and bearing device as described by Ferrante et al. (2010). New teams are
deployed every 40 simulated seconds until a specific number of teams is reached or the
environment reaches its maximum capacity. The shortest branch of this environment can
hold up to to ten teams.

Estimation of the Action Execution Time Distributions

In the analysis presented in Section 5.2.1, we assumed that the distributions of the latency
periods are independent of the number of agents with a particular opinion. However, in
a swarm robotics scenario, this assumption does not generally hold because interference
between robots is likely to dynamically change the latency distributions and their ratio.
In our environment, for instance, a branch could become congested if a large number of
robots choose it. This increased congestion translates into longer and more variable path
traversal times. To measure the effects of interference in our environment, we deploy from
two to ten robot teams and make them traverse several times the environment using only
one of the two branches. The estimated action execution time distributions when there are
two and ten teams in the environment are shown in Figure 5.8.

The results of this experiment show that both the mean and the standard deviation
of the action execution time distributions change as a result of the number of teams that
choose each branch. When there are only two teams in the environment, the average
time needed to traverse the left and right branches of the environment is 408.5 and 699.8
seconds, respectively. Similarly, the standard deviation is 59.3 seconds for the left path
and 15.7 seconds for the right path. When there are ten teams, the average time needed to
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(a) In progress (b) Consensus

Figure 5.9: Shortest path selection process. Figure (a) shows a swarm of robots in the
process of transporting objects from the starting point to the target location. Note that the
robots use both branches of the environment. Figure (b) shows the state of the environment
when the swarm of robots has reached consensus. The path selected by the swarm of robots
is the shortest one.

traverse the left and right branches of the environment becomes 419.2 and 724.0 seconds,
respectively. The standard deviation in that case becomes 29.0 seconds for the left path
and 35.9 seconds for the right path. In our simulations with two agents choosing the
left path, there were a few rare cases in which the time needed by a robot to perform
a round trip between the starting and the target location was very long. These outliers
affected the computation of the standard deviations (note that the standard deviation
actually decreased when using ten teams). In our experiment, the action execution time
ratio and standard deviation ratio for the two cases shown in Figure 5.8 are (1.71,0.26)
for the two teams case, and (1.72, 1.23) for the ten-teams case. From two to ten teams,
the mean execution ratio remained approximately the same, but the standard deviation
ratio increased about five times. Additionally, the action execution distributions are right-
skewed because robots that have reached the target location have to avoid collisions with
incoming teams. This phenomenon occurs more frequently when the number of teams in
the environment increases.

Collective Decision-Making

We now test the ability of a swarm of robots to choose the shortest path between the starting
and target locations in the environment shown in Figure 5.7(a). In this experiment, the
robots’ decisions are governed by the dynamics of the model described in Section 5.3. We
use a total of 32 robots (30 of which are executing the task at the same time plus two
extra ones that are used in order to ensure consensus). The initial fraction of robots with
the opinion associated with the shortest path is 0.5, that is, 16 robots initially favor the
shortest path and 16 favor the longest one. In Figure 5.9, we show two snapshots of a
simulation that finishes with the swarm selecting the shortest path. In the accompanying
supplementary information webpage (Montes de Oca, 2011), the reader can find a video
that shows the system in action.

Figure 5.10 shows two example plots of the evolution over time of the proportion of
robots with the opinion associated with the shortest path. Consensus is the final state of
all individual runs; however, the swarm does not reach consensus on the shortest path in all
runs. The probability of reaching consensus on the shortest path depends on the number
of teams deployed. In Table 5.1, we list the estimated probabilities of reaching consensus
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Figure 5.10: Proportion of robots with the opinion associated with the shortest path.
The evolution of the system with five and ten teams are shown in Figures (a) and (b)
respectively. Single run results are shown in gray lines. The average over 100 runs is
marked with a thick black line.

Table 5.1: Probability of choosing the shortest branch of the environment as a function
of the number of teams k. The population size N is equal to 32 robots. The highest
probability is highlighted in boldface. These results are based on statistics taken from 100
independent simulations.

Physics-Based Simulation Monte Carlo Simulation
k Probability Avg. Team Formations Probability Avg. Team Formations
1 0.48 74.29 0.54 70.66
2 0.52 72.67 0.62 74.62
3 0.69 72.75 0.58 74.39
4 0.71 70.28 0.68 71.87
5 0.75 71.60 0.74 70.17
6 0.74 75.22 0.72 71.18
7 0.79 76.20 0.83 80.84
8 0.86 77.73 0.82 85.58
9 0.83 81.29 0.86 98.43
10 0.81 109.95 0.69 248.25

on the shortest path. We also include results obtained with the Monte Carlo simulator
used in Section 5.2.1 for validation purposes. The simulation setup uses the data gathered
in the experiment described in Section 5.2.2. Specifically, we set the mean and standard
deviation of the latency period associated with the shortest path to 100 and 20 time steps,
respectively. The mean of the latency period associated with the longest path was set to
1.72 × 100 = 172 time steps, and its standard deviation is set to d1.23 × 20e = 25 time
steps.

The probability of choosing the shortest path increases with the number of teams and
reaches its maximum value with eight teams when using the physics-based simulator and
with nine teams when using the Monte Carlo simulator. In both cases, the maximum prob-
ability is 0.86. The average team formations needed to reach consensus oscillates within the
range [70, 75] for most cases and grows substantially when the number of teams approaches
the limit N/3, where N is the number of robots. These results are the consequence of three
factors. First, small swarms (our 32-robot swarm can still be considered small) have diffi-
culties in discriminating latency duration distributions whose ratio is lower than two (see
Section 5.2.1). Second, as the number of teams approaches the limit N/3, the size of the
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non-latent subpopulation starts playing a role in both the quality of the decision eventually
made by the swarm (lowering its quality) and the time it takes to reach consensus (increas-
ing the number of needed team formations). Finally, the sequential deployment of teams
seems to reduce the number of team formations needed to reach consensus. This phe-
nomenon may occur because the time delay between deployments enables a better mixture
of opinions in the non-latent population of robots before a new team formation.

5.3 Integration with the Incremental Social Learning
Framework

The collective decision-making mechanism described in Section 5.2 potentially maximizes
the amount of work performed by a swarm of robots in a given amount of time by allowing
robots to select the fastest-to-execute action. However, reaching consensus on the fastest-
to-execute action is a necessary but not a sufficient condition to maximize the swarm’s
efficiency. To maximize its efficiency, the robot swarm should also reach consensus as fast
as possible. Unfortunately, the time necessary for the swarm to reach a consensus increases
with the size of the population if the number of teams concurrently executing actions
remains constant (see Figure 5.11). Such a situation would not be rare in environments
that can hold only a certain number of teams executing a task in parallel (e.g., when the
robots must travel through a corridor).

With 92 agents, the probability of reaching consensus on the opinion associated with
the shortest latency period reaches the value 1.0 only with r = 4 and r = 8, and with 10 to
15 active teams. The number of team formations needed to reach consensus remains ap-
proximately the same at a value of approximately 300 team formations with up to 10 active
teams. With more active teams, more team formations are needed. This number increases
more rapidly with higher latency period duration ratios. For our purposes, however, the
most important measure is the actual time needed to reach consensus. The number of time
steps needed to reach consensus decreases rapidly as the number of active teams increases.
However, past a certain value that depends on the latency period duration ratio, this time
increases again. With 902 agents, the trends are similar to the ones observed with 92
agents. It is important to note that the same quality vs. time trade-off observed in the
PSO algorithms (see Chapter 4) is observed with this system: Higher quality results, that
is, reaching with high probability consensus on the opinion associated with the shortest
latency period are obtained with large populations but at a higher cost in terms of the
time needed to reach consensus. This characteristic trade-off makes the system suitable
to be combined with the ISL framework as discussed in Chapter 3. The integration of
this collective decision-making mechanism with ISL is described and evaluated in the next
section.

5.3.1 Incremental Social Learning Implementation

In our ISL implementation, we start with a population size N = 6, which means that we
start with k = 2 teams. The reason for this choice is that the system needs at least two
teams in order to detect any difference between the duration of latency periods. One team
would make the population reach consensus, as demonstrated by Krapivsky and Redner
(2003), but the consensus would be on a random opinion.

The agent addition schedule used is the fastest possible, that is, we add an agent to
the population every time step until the maximum population size is reached. With this
schedule, newly added agents are ready to form a team by the time the first team becomes
non-latent. If the number of teams to build is greater than two, a new team is created as
soon as there are enough free agents. Once the maximum number of teams is reached, no
new teams are created even if the population is still growing.

The social learning rule is implemented as follows. When a new agent is added to the
population, its initial opinion is copied from one random agent chosen from the set of non-
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Figure 5.11: Probability of reaching consensus on the opinion associated with the shortest
latency period (Figures (a) and (b)), the average number of team formations (Figures (c)
and (d)), and time steps (Figures (e) and (f)) needed to reach consensus as a function of
the population size and number of active teams. Figures (a), (c), and (e) correspond to
the case with 92 agents. Figures (b), (d), and (f) correspond to the case with 902 agents.
The data used to produce these plots were obtained through 1,000 independent runs of the
Monte Carlo simulator described in Section 5.2.1. In these plots, we used three latency
period duration ratios r = 2, 4, 8.

latent agents. If such an agent does not exist, for example, when all agents are latent, the
new agent is initialized at random. A pseudo-code description of the integrated system is
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Algorithm 7 Collective decision-making with incremental social learning

/* Initialization */
t← 0
Initialize swarm S with six agents /* Two teams */

/* Main loop */
while Stopping criteria not met do

/* Agents are added according to a schedule */
if Agent-addition criterion is not met then

/* Execute collective decision-making mechanism as in Algorithm 6 */
else

Create new agent anew
anew adopts the opinion of a randomly picked non-latent agent /* Social learning */
St+1 ← St ∪ {anew}

end if
t← t+ 1

end while

shown in Algorithm 7.

Evaluation Setup

Our evaluation setup is designed in order to meet the following two goals: (i) to deter-
mine whether ISL improves the performance of the collective decision-making mechanism
described in Section 5.2, and if improvement is indeed achieved, (ii) to measure the magni-
tude of the improvement and to determine the conditions under which such an improvement
occurs.

We measure the performance of the collective decision-making mechanism as the number
of times agents become latent, which is equivalent to the number of times actions are
executed in a given amount of time. Thus, we emphasize the amount of useful work
performed by the system. Given two system settings, the one that lets agents execute
more actions in the same amount of time is preferred. Additionally, we also look at the
average number of times each agent in the population executes each of the two available
actions. This measure allows us to observe whether ISL reduces the time agents spend
trying the available alternative actions.

We use Monte Carlo simulation to carry out our experiments. As in Section 5.2.1,
the durations of latency periods are modeled as two normally distributed random variables
with means µA and µA, and standard deviations σA and σB , respectively. We also associate
opinion A with the shortest latency period. We study the system’s behavior as a function
of the latency period duration ratio. Different action execution time ratios are obtained
by varying µB . The standard deviations σA and σB are kept constant.

Two maximum population sizes are used in our simulations: N ∈ {100, 1000}. Different
numbers of teams for each population size are used: k100 ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30},
and k1000 ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, . . . , 90, 100, 200, 300}. The initial opinion of each
agent is set at random. Three different values for the latency period duration ratio are
tried (r ∈ {2, 4, 8}). The means and standard deviations of the action execution times are
set as follows: µA = 10, µB ∈ {20, 40, 80}, and σA = σB = 2. This value is chosen in
order to allow a clear separation of execution times between the alternative actions. Each
simulation runs for 10,000 time steps. 500 simulations are run for each combination of
parameters.

5.3.2 Results

The results of our simulations are reported in this section. First, we look at the relative
difference of the number of times agents become latent in a given number of time steps.

84



CHAPTER 5. INCREMENTAL SOCIAL LEARNING APPLIED TO ROBOT
SWARMS

Then, we look at the exploration time savings due to the use of ISL.

Amount of Work Performed

In each experiment, we count the number of times agents become latent in the original
and the ISL-based system. We denote these quantities by wISL and wOriginal, respectively.
Since these quantities are in fact random variables, we use their medians, denoted by ŵISL

and ŵOriginal, for our analysis. We then compute the medians relative difference with a
normalizing factor that is equal to the expected number of times agents would become latent
if the opinion associated with the shortest latency period was known from the beginning
of the simulation. This number is estimated as kt/µA, where k is the number of active
teams, t is the number of time steps (in our case, the maximum value that t can take is
T = 10000), and µA is the mean of the shortest latency period. Our performance measure
as a function of time is thus:

RISL−Original(t) =
µA(ŵISL − ŵOriginal)

kt
. (5.1)

If RISL−Original(t) > 0, then the difference is in favor of the system that uses ISL. If
RISL−Original(t) < 0, then the difference is in favor of the original system. No difference
would be detected if RISL−Original(t) = 0. The results obtained as a function of the number
of active teams and latency period duration ratios are shown in Figure 5.12. We analyze
the results along the following influencing factors:

• Latency period duration ratio. A general trend is that the greater the latency
period duration ratio, the stronger the effects of ISL are on the performance of the
system. This phenomenon may be due to the small population size with which
the system begins. Contrary to what would happen with a constant population
size system where many teams would adopt the opinion associated with the longest
latency period, with ISL only one team (on average) would. If the latency period
duration ratio is large, a team that adopts the opinion associated with the longest
latency period does not have many chances to influence other agents once it finishes.
The result is thus an accelerated convergence toward a consensus on the opinion
associated with the shortest latency period.

• Number of active teams. The effects of ISL diminish as the number of active
teams increases. In fact, the differences due to different latency period duration ratios
disappear when many teams are active in the environment. This result may be the
consequence of the fact that increasing the number of teams in a constant population
size system speeds up consensus building as seen in Figure 5.11. Nevertheless, the
performance obtained by the ISL-based system is comparable to the performance of
the original system.

• Maximum population size. The effects of ISL increase as the size of the population
increases. Small populations converge rapidly as a result of the rapid amplification of
fluctuations in the opinions of the population due to team formations. For example,
if N = 10, a single team can alter the opinion of 1/10 of the population, whereas if
N = 1000, a team can only alter the opinion of 1/1000 of the population.

• Available time. The accelerated convergence that results from the application of
ISL proves more useful if time constraints exist. In other words, if the time allocated
for the system to perform the foraging task is limited, using the ISL framework
provides benefits. This result is true even with medium-sized populations and a
relatively large number of active teams.
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Figure 5.12: Performance differences between the original collective decision-making mech-
anism and its combination with ISL. The normalizing factor used is the expected number
of times agents would become latent if the opinion associated with the shortest latency
period was chosen from the beginning of a run.

Exploration Time

As explained in Chapter 2, it is usually assumed that social learning allows agents to save
time that would have otherwise been spent learning to accomplish tasks individually (La-
land, 2004). As a result, social learning agents can spend more time performing more
rewarding actions.

To see whether ISL allows agents to save the time otherwise needed to try the different
available alternatives (that is, to learn individually), we proceed as follows. During each
simulation run, we count the number of times each agent adopts each of the two available
opinions. The sum of these “experiences” at the end of the simulation is then divided by
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Figure 5.13: Exploration vs. exploitation behavior. Each plot shows the ratio between
the average individual experience obtained with ISL and the average individual experience
obtained with a constant population size. The size of the gap between the ratios for the
shortest and longest latency period is a measure of the time agents saved exploring the
available opinions thanks to ISL. The solid line at ratio 1 represents the same measure but
for constant population size systems.

the maximum population size. The resulting quantities can be interpreted as the average
individual experience on each action, that is, the average number of times each action is
tried by an agent. The difference between these quantities serve as a measure of the balance
between exploration and exploitation.

To have a direct comparison between the original system and the one based on ISL,
we compute the ratio of the median average individual experiences for each action and for
each latency period duration ratio. The results are shown in Figure 5.13.

We conclude that ISL reduces the time spent by agents exploring the available opinions.
The actual reduction depends on a number of factors including the maximum population
size, the number of active teams, and the latency period duration ratio. In some cases,
the reduction is substantial. For example, with a constant population size of 1000 agents
and 10 active teams, agents choose the opinion associated with the longest latency period
about 100 times more than agents in an ISL-based system. However, as the number of
active teams increases, the advantage of using ISL is reduced.

5.4 Related Work

5.4.1 Models

In biological sciences, self-organization models have been proposed to explain the coor-
dination of large groups of animals (Camazine et al., 2001; Couzin and Krause, 2003).
Self-organization is itself the result of the interaction between several elements that in-
clude multiple direct or indirect interactions among the system’s components, positive and
negative feedback, and random fluctuations (Camazine et al., 2001). These models are
particularly relevant for our proposal because the mechanism described in the previous
section can be seen as an example of self-organization. In fact, the double-bridge experi-
ment proposed by Goss et al. (1989) is reproduced here with the goal of pinpointing the
self-organized nature of the collective decision-making mechanism introduced in this chap-
ter. Some of the reasons that lead us to affirm this are the following: First, a large-scale
spatio-temporal pattern, consensus on one branch of the environment, emerges as a result
of local interactions among robots. Second, the majority rule used to control the interac-
tions among robots does not make any reference to the pattern that emerges. Third, no
single robot is capable of supervising or controlling the evolution of the system. Fourth,
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positive feedback occurs because robots that use the shortest path go back to the starting
location before others. Thus, the probability that a new team has a majority in favor of
the shortest path increases. Fifth, negative feedback is the result of the increased difficulty
with which teams that adopt the opinion associated with the longest path are formed.
Finally, randomness plays an important role in breaking symmetries and producing the
fluctuations that are amplified by the processes described above.

In a recent study, Scheidler (2011) analyzes a simplified version of our model in which
the fraction of non-latent agents is assumed to be negligible. Scheidler determines the
probability of reaching consensus on the opinion associated with the shortest latency as
well as the time needed to reach consensus in finite systems using Fokker-Planck equations.
Moreover, an asymptotical characterization of the time to consensus is also presented.

5.4.2 Collective Decision-Making in Artificial Swarms

Many collective decision-making mechanisms in swarm robotics are based on the simulation
of pheromones. Approaches range from the use of real chemicals (Russell, 1999; Fujisawa
et al., 2008a,b), to the use of digital video projectors to cast images of pheromone trails
on the ground (Sugawara et al., 2004; Garnier et al., 2007b; Hamman et al., 2007). There
are also works in which the environment is enhanced so that it may store information. For
example, Mamei and Zambonelli (2005), Herianto and Kurabayashi (2009) and Johansson
and Saffiotti (2009) deploy RFID tags in the environment so that robots can read from or
write in them. Mayet et al. (2010) use an environment in which the floor is covered with
a paint that glows if robots activate ultraviolet LEDs. Another variant of the pheromone-
inspired approach is to use actual robots as markers to form trails. Some works that use this
approach are the ones by Werger and Matarić (1996); Payton et al. (2001); Nouyan et al.
(2008, 2009) and Ducatelle et al. (2010). As performed to date, simulating pheromones
has important limitations. For example, dealing with chemicals is problematic because
very specialized sensors are needed. The level of sophistication is such that some authors
have used real insects antennae (Kuwana et al., 1995; Nagasawa et al., 1999). Using
video projectors is an approach that can be adopted only indoors and under controlled
conditions. Furthermore, the use of video projectors requires the use of tracking cameras
and a central computer to generate the images to be projected. The existence of such a
central information processing unit gives the approach a single point of failure. Modifying
the environment with special floors or with RFID tags is a cheap and interesting approach.
However, the applicability of such an approach is limited to situations in which it is possible
to design and build an environment where it is known a priori that robots are going to
be deployed. Finally, using robots as markers allows a swarm to operate in unknown
environments without central control. However, complex robot controllers are needed
in order to allow individual robots to play different roles in the swarm. Although this
approach is promising, the development of complex robot control software for swarms is in
its infancy, since we are still trying to understand the connection between individual-level
and collective-level behaviors.

Other insect behaviors have also served as sources of inspiration. For example, trophal-
laxis, the exchange of liquid food between insects, was first used in swarm robotics by
Schmickl and Crailsheim (2008) to generate gradients through robot-to-robot communi-
cation to allow robots to find the shortest path between two locations. Gutiérrez et al.
(2010) also used trophallaxis as source of inspiration for a method through which a swarm
of robots can locate and navigate to the closest location of interest from a particular origin.
In both of these methods, robots implicitly know that the goal is to find the shortest path
between two locations. In Schmickl and Crailsheim’s work, robots decrease a numerical
value at a certain rate as they move. This value is communicated when there are encoun-
ters with other robots. Thus, the exchanged information gives a rough indication of the
distance traveled. In Gutiérrez et al.’s work, robots actually measure the distance they
have traveled and communicate this information to other robots in order to reduce the un-
certainty of each robot’s estimate of the location of a target. In our work, robots measure
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neither travel times nor distances, and still, the swarm finds the shortest path between two
locations.

The aggregation behavior of cockroaches has been the source of inspiration for a site-
selection mechanism with robots (Garnier et al., 2009). The nest-selection mechanism used
by ants, which is based on detecting a quorum in favor of one option, has inspired the work
of Parker and Zhang (2009, 2010). In these works, robots need to know whether there
are enough committed robots for one of the competing options. In both cases, the more
committed robots there are for one of the options, the more likely it is for a robot to
commit to that option. In Garnier et al.’s work, the decision is probabilistic, and in Parker
and Zhang’s work, the decision depends on whether the number of committed robots is
larger than a threshold. Deciding the value of this threshold or the rate at which the
commitment probability increases is a critical issue because the first alternative that is
identified as dominant will be the alternative chosen by the swarm. In our work, there are
no thresholds or probabilities that depend on the number of robots with a specific opinion.
Thus, decision-making is a continuous process that ends when the whole population reaches
a consensus.

In the work of Wessnitzer and Melhuish (2003), robots use the majority rule to decide
which of two “prey” to chase and immobilize. Robots capture one prey after the other.
Although the decision is collective, the majority rule is used simply to break the symmetry
of the decision problem.

5.4.3 Social Learning and Incremental Deployment with Robots

Work related to the integration of ISL with swarm robotics belongs to one of two categories:
(i) social learning with robots, and (ii) incremental deployment of robots.

The first category has been the most productive of the two and it has been dominated
by researchers interested in endowing robots with social learning capabilities so that they
can naturally interact with humans. For example, in this category we can find the work of
Kuniyoshi et al. (1994), Dautenhahn (1995), Billard and Dautenhahn (1999), Breazeal and
Scassellati (2000), Breazeal and Scassellati (2002), Saunders et al. (2006), and Thomaz
and Cakmak (2009). This kind of work is now an important aspect of the subfield of
robotics research called human-robot interaction (Goodrich and Schultz, 2007). There
is also work aimed at understanding how social learning can be exploited in multi-robot
systems; however, it comprises only a small percentage of the body of literature about social
learning in robotics. Matarić (1997) studied three kinds of “social reinforcement” with the
goal of allowing a group of robots to learn interaction rules that reduced interference (see
Chapter 3) in a foraging task. Acerbi et al. (2007) studied the influence of exploiting social
cues into the effectiveness of individual and genetic (through an evolutionary computation
algorithm) learning. In Acerbi et al.’s experiments, robots biased their individual learning
strategy in order to induce a conformist behavior that made robots copy the behavior
of other robots. This strategy proved successful in a site selection task. Pini and Tuci
(2008) used artificial evolution to synthesize a neural network controller that allows a
robot to use both individual and social learning in a foraging task. In their experiments,
robots with the same controller can perform two different learning tasks. One of these
robots learns socially from another robot that has previously learnt a task individually.
Recent work has explored the relationship between a learner robot and a teacher robot.
Cakmak et al. (2010) study different social learning mechanisms (see Section 2.2.1) in a
two-robot scenario. The learner robot uses stimulus enhancement, mimicking, imitation,
and emulation as mechanisms to exploit the information given by a demonstrator robot.
In their experiments, the performance of the learner robot depends on the nature of the
learning task. Thus, Cakmak et al. conclude that it might be advantageous to devise a
mechanism that allows a learner robot to choose which social learning mechanism to use.
One important problem that is often avoided is choosing from whom to learn. Normally,
the decision is made by the experimenter. Recently, however, Kaipa et al. (2010) have
tackled this problem through a self-other matching algorithm that allows a robot to choose
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the teacher robot based on how similar the learner and the teacher appear to be. Our
work is much simpler than the ones we just mentioned. In our case, the teacher robot is a
random robot. We can use this simple strategy thanks to the fact that all robots have the
same capabilities and goals. Moreover, our robots copy opinions, which is equivalent to
copying an observed behavior. However, copying occurs through the transfer of only one
bit of information. In summary, we do not study social learning mechanisms. Instead, we
exploit the effects of social learning.

Works that belong to the second category, that is, of incremental deployment of robots,
are even less common than the ones dealing with social learning between robots. Howard
et al. (2002) developed an incremental deployment algorithm that allowed a group of robots
to cover a two-dimensional space while keeping line-of-sight contact. In a recent work,
Stirling et al. (2010) show that an incremental deployment of aerial robots increases the
system’s energy efficiency. Both sets of authors, Howard et al. and Stirling et al., use
communication between robots in order to guide the newly added robot toward its position
in the environment. Their work is similar to ours in the sense that robots are deployed
one at a time, and every time a new robot is deployed, information gathered by already
deployed robots is exploited by the newly deployed robot.

5.5 Conclusions and Future Work

In this chapter, we introduced a collective decision-making mechanism for robot swarms
that is based on the opinion dynamics induced by the majority-rule opinion formation
model with differential latency. We first introduced a number of modifications to Krapivsky
and Redner’s and Lambiotte et al.’s majority-rule opinion formation models in order to
capture some properties of real-world swarm robotics systems. Agents represent robots
and opinions represent actions or sequences of actions that robots have to choose from
while solving a task. One of the main modifications that we introduced is called differen-
tial latency. This concept models the fact that different actions that robots can perform
take different amounts of time to be completed. With the proposed modifications, the
population of agents reaches a consensus on the opinion associated with the shortest la-
tency period. We demonstrated that this is the case when the duration of latency periods
are normally distributed as well as when latency period distributions are the result of the
interaction of the agents with their environment.

The opinion dynamics of the majority-rule opinion formation model with differential
latency can be exploited in the field of swarm robotics as a self-organized collective decision-
making mechanism. We believe that the proposed mechanism is promising because it
enables a swarm of robots to make a decision that from an observer’s point of view is
intelligent without requiring intelligent individual decision makers. As an example of the
potential of the new approach, we tested it on a scenario based on the well-known double-
bridge experiment. The results of this experiment clearly show that through the proposed
mechanism, a swarm of robots is able to find the shortest path between two locations
without simulating pheromones or requiring robots to measure distance or time.

We observed that when large populations are involved, the time necessary for the system
to reach consensus may make it impractical for some applications. We tackled this problem
by integrating the proposed collective decision-making mechanism with ISL. By starting
with a small population and increasing its size over time, the system converges faster.
The social learning rule allows new agents to learn from more experienced ones, thus
saving exploration time. Our simulation results show that through the application of
ISL, the performance of the decision-making mechanism can be substantially improved in
situations where a small fraction of the population concurrently tries the different available
alternatives and when time constraints exist. This result is very positive because in many
situations, reducing the number of active agents without sacrificing the amount of work
performed may allow the spared agents to perform other tasks.

We believe future work should focus on the improvement of the collective decision-
making mechanism in order to facilitate its use on real robotics tasks and its combination
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with other approaches. Some of the challenges and opportunities that the proposed mech-
anism offers are:

• In the proposed scenario, robots know exactly when they need to form teams and
make local decisions. However, in many situations the environment is unknown to
the robots. Thus, it is difficult for a robot to know its position and therefore, when
it should form a team. In our experiments, teams are deployed in the team assembly
area in order to avoid this problem. Additionally, we used an LED to mark the
decision point. Future work should address these shortcomings.

• In the proposed scenario, robots know the number of available alternatives. We tested
only the case of two opinions, but cases in which there are more than two opinions
should definitely be explored. An even more flexible approach would be to let robots
discover the number of available actions they can choose from as they interact with
the environment.

• An interesting research direction could be the integration of opinion dynamics with
task allocation methods in order to tackle problems for which consensus is a subop-
timal solution.

• If the environment changes after the system has reached a consensus, the population
cannot adapt. This problem could be tackled if some fixed number of robots do not
change opinion. We are exploring this direction in ongoing work.

• In our work, the opinion dynamics that allow the swarm to reach consensus on one
opinion are based on time-related “rewards.” Thus, the proposed approach is useful
when the desired collective decision is the one associated with the shortest execution
time. However, there are problems for which the best collective decision is based
on more qualitative aspects. Translating these qualitative aspects into latencies of
different duration would be a first approach toward a more general collective decision-
making mechanism. For example, if an object is more interesting than another, robots
that prefer the more interesting object should spend less time in a non-latent state
than the other robots. Consequently, a positive feedback process could favor that
option.

• The decision quality depends on the population size. Large populations usually make
better decisions. While such a property is desirable in swarm robotics systems, it
also hinders its use in real robotics systems because the promise of having thousands
of cheap robots has not been met yet. Thus, research is needed in order to improve
the decision quality when the size of the swarm is relatively small. An option, that
we are currently studying, is to simulate large swarms by making robots remember
their past over long time horizons (not of just one action execution as it is currently
done) and make a decision based on the opinion that has been observed more often
during that period.

• The proposed approach requires robots to form teams and execute actions together.
However, in some situations (e.g., when the physical dimensions of the environment
does not allow robots to move together), forming teams might not be possible. Thus,
a collective decision-making mechanism that works with single robots is desirable. A
first attempt toward this goal is reported in (Montes de Oca et al., 2009a).

To conclude, we believe that collective decision-making in swarms based on opinion
formation models is a new and exciting research direction with the potential of cross-
pollinating the fields of swarm intelligence and statistical physics. On the one hand, the
field of swarm intelligence may greatly benefit from ideas and tools developed in statistical
physics literature. On the other hand, physicists may regard swarm intelligence as a rich
source of interesting problems waiting to be modeled and solved.
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Chapter 6

Conclusions and Future Work

In this chapter, we summarize the results and contributions presented in this dissertation.
We also offer some ideas for future work that we believe can contribute to the further
development of the swarm intelligence field.

6.1 Swarm Intelligence Systems and Interference

Swarm intelligence is the problem-solving behavior of large groups of simple entities capable
of autonomous perception and action (called agents) that collectively are referred to as a
swarm. The term swarm intelligence evokes a mental image in which a large group of insect-
like entities congregates and exhibits a purposeful behavior without a central authority to
supervise the actions of each individual or issue commands to govern the group’s behavior.
Despite its name, which makes us recall science fiction works, swarm intelligence exists
in nature. Bees form swarms to collectively find and choose the best location to build
a new home. Ant colonies, which can be composed of millions of ants, build complex
nests, search and retrieve food, maintain the young, etc. In each case, a swarm intelligence
system performs a particular task without any single individual supervising or directing
the actions of other members of the swarm. Swarm intelligence can also be the product of
engineering efforts. Powerful optimization techniques and control mechanisms for groups
of mobile robots have been designed exploiting swarm intelligence principles.

Artificial swarm intelligence systems are composed of numerous agents that interact
locally with one another and with their environment. Through different mechanisms, but
predominantly through self-organization and decentralized control, these kinds of systems
exhibit a collective intelligence that allows them to solve problems that their constituent
agents cannot solve individually. As in any system whose constituent agents interact with
each other, there are interactions among the agents that form a swarm that reduce the
efficiency of the system. These interactions are collectively referred to as interference. One
of the most visible effects of interference in a swarm intelligence system is the reduction
of the system’s efficiency; that is, the time required by the system to reach a desired
state is increased. Interference increases with the size of the population of agents. Thus,
interference is a major problem in swarm intelligence systems since many of them require
large populations to perform their tasks satisfactorily. Interference is thus a fundamental
problem inherent to systems composed of many agents because it negatively affects the
viability of the swarm intelligence approach when solving important practical problems.

6.2 Incremental Social Learning as a Mechanism for
Reducing the Effects of Interference

In this dissertation, an original framework called incremental social learning (ISL) was
proposed in Chapter 3. This framework aims to reduce the negative effects of interference
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in swarm intelligence systems. Two components form the core of the ISL framework.
The first component directly manipulates one of the factors that causes interference: the
number of agents that compose a swarm. A swarm intelligence system under the control
of ISL starts with a small population. Gradually, the population grows until the system
performs as desired or a maximum number of agents is reached. The second component
of ISL is social learning. ISL exploits the fact that learning socially is less costly, in terms
of trial-and-error trials for an individual, than asocial learning. Through social learning,
newly added agents acquire knowledge from agents that have been part of the swarm for
some time. As a result of the combination of these two components, a growing population
size, and social learning, the effects of interference is reduced. Consequently, the swarm
reaches a desired state more rapidly than without using ISL.

6.2.1 Incremental Social Learning in Particle Swarms

We demonstrated the effectiveness of ISL through two case studies. In the first case study,
presented in Chapter 4, we applied ISL to particle swarm optimization (PSO) algorithms.
These algorithms are commonly used to tackle continuous optimization problems and are
composed of a population of searching agents called particles. PSO algorithms with a con-
stant population size exhibit a trade-off between solution quality and number of objective
function evaluations amenable to the application of ISL. With a small population size,
the solution quality improves rapidly during the first objective function evaluations until
it reaches a stable value. With large populations, the same solution quality reached by
a small population is reached after many more objective function evaluations. However,
if more evaluations are allowed, a better solution quality may be reached. The hypothe-
sis that supports the application of ISL to PSO algorithms is that the trade-off between
solution quality and number of objective function evaluations is due, at least partially,
to interference among particles. Interference in PSO algorithms is the result of particles
being attracted toward the best solutions found by other particles. Interference is large
in big swarms because at the beginning of the optimization process too much information
flows through the network of particles. This phenomenon makes particles spend objective
function evaluations in regions that do not contain the optimal solution.

As a result of the application of ISL to PSO algorithms, three new PSO variants were
designed. The first one, which serves as a basis for the other two, is an incremental particle
swarm optimization algorithm that we call IPSO. In IPSO, the population of particles grows
over time until the optimization process returns a solution of acceptable quality or until a
maximum population size is reached. The rate at which particles are added to the system
is scheduled and controlled through a parameter. Each time a new particle is added, its
position in the objective function’s domain (usually a subset of Rn) is generated through a
rule that biases the placement of the new particle toward the best-so-far solution. Through
a thorough experimental evaluation, we could show how IPSO, with the appropriate setting
of the population growth, could return solutions that are comparable to those that would
be returned if multiple PSO algorithms with different constant population sizes were run
in parallel and only the best solution found by any of those algorithms was returned. The
other two algorithms that result from the use of ISL on PSO algorithms, called IPSOLS and
IPSOLS+, repeatedly call a local search procedure from a particle’s best found position
in order to intensify the search. Each call of the local search procedure could be seen as
simulating the individual learning of a particle. IPSOLS works in the same way as IPSO
with an added step that consists in calling a local search procedure from each particle’s
best found position. IPSOLS+ is a further refinement of IPSOLS in which the local search
is called more frequently from the particle’s position that represents the best-so-far solution
and in which the PSO rules are modified. IPSOLS’s performance is comparable with state-
of-the-art PSO algorithms. IPSOLS+’s performance is comparable with state-of-the-art
algorithms for large-scale continuous optimization problems.
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6.2.2 Incremental Social Learning in Robot Swarms

In the second case study, presented in Chapter 5, we applied ISL to a collective decision-
making mechanism for swarms of mobile robots. Two contributions are presented in that
chapter. First, the collective decision-making itself, and second, the application of ISL
to that mechanism. For this case study, we chose a foraging task that involves group
transport in an arena that consists of two locations connected by two paths. During the
execution of the task, which is to transport objects from one location to the other, a
swarm of robots must choose one of the two paths. In one of the two locations, robots form
teams to transport the objects, which cannot be transported by single robots. From that
location, teams of robots transport objects to the other location. Robots have a preferred
branch (encoded as an “opinion”) and whenever they form a team, they advocate for
their preferred path. The final team’s decision is that of the local majority. Robots not
only choose that path, but they also change their preference if it is different from the
one they had before forming a team. After making a decision, a team moves from one
location to the other using the chosen path. Once a team arrives at the target location, it
disassembles and its component robots return as individuals using again the chosen path.
Once they arrive at the initial location, robots can form new teams, repeating the process
until the task is performed. The length of the paths induce a latency period during which
robots can neither change opinion nor influence other robots. Thus, each opinion has a
latency period whose duration depends on the length of the paths and on the number of
robots in the environment. We showed through Monte Carlo and physics-based simulations
that the dynamics of the system makes a swarm of robots reach a consensus. If the initial
distribution of opinions in the swarm is such that half of the swarm prefers one opinion and
the other half prefers the other opinion, the proposed collective decision-making mechanism
makes the swarm reach consensus with high probability on the opinion associated with the
shortest latency period. In the robotics setting described in Chapter 5, this means that a
swarm reaches consensus on the opinion associated with the shortest path.

The aforementioned swarm robotics system shows a trade-off between performance and
population size similar to the one observed in PSO algorithms. In this case, however,
it is the population of “idle” robots, that is, those robots that are not engaged in the
transportation task, that affects the system’s performance. Our implementation of ISL
manipulates this population. We start the process with only six robots (two teams). At
each time step, we add a robot and let it copy the opinion of a randomly picked “idle”
robot. If there are no robots to copy from, the opinion of the new robot is initialized
at random. Because of the dynamics of the system, it is more likely for a new robot to
copy the opinion associated with the shortest path. As a result, the population reaches
a consensus on the opinion associated with the shortest path in fewer time steps than it
would without ISL. The effectiveness of ISL, however, depends on the number of active
robots in the environment. With more active teams, there are fewer “idle” robots, and
thus, the effects of ISL diminish to the point at which there is practically no difference
between the system that is using ISL and the system that is no using ISL.

6.2.3 Impact

One of the major challenges in swarm intelligence research is to design agent-level behav-
iors in order to obtain a certain desired behavior at the collective-level. Since a general
methodology for achieving this goal has been elusive, most researchers in the field concen-
trate their efforts on specific applications. In doing so, a number of assumptions are made.
One of these assumptions is that the size of a swarm of agents remains constant over time.
In many cases, this assumption may not be well justified.

The framework proposed in this dissertation challenges the constant population size
assumption. In the ISL framework, the population size changes over time and we have
demonstrated that some benefits can be obtained with such an approach. As seen in
Chapter 5, we are not the only ones to realize that an incremental deployment of agents
(robots) can bring benefits and can even simplify the design of the agent-level behaviors. In
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fact, in many practical applications of swarm intelligence systems, in particular in swarm
robotics and affine fields, such as sensor networks, it is actually more difficult to deploy
hundreds of robots at once, than to deploy a few robots at different points in time. For
example, consider the deployment of the 30 Galileo satellites (European Space Agency,
2010). It is not reasonable to assume that tens of satellites can be deployed at once. Rather,
the deployment is painfully slow, with one or two satellites being deployed at a time. If
these satellites were part of a swarm of satellites with specific tasks such as maintaining a
formation in space, the rules needed to fulfill that task would be quite complex. Instead,
with an incremental deployment, each satellite could take its position without disturbing
the behavior of other satellites. In other words, the interference between satellites would
be greatly reduced.

With our proposal, we hope that researchers in the swarm intelligence field will con-
sider the possibility of an incremental deployment of agents in the design of new swarm
intelligence systems.

The other aspect of our proposal, the use of some form of social learning, can potentially
have a bigger impact in the field. Social learning can be the mechanism that enables the
appearance of a form of cumulative “culture” in a swarm that passes from one “generation”
of agents to another. A continuous process of addition and elimination of agents can make
this process possible as long as the knowledge acquired during the lifetime of one agent is
not lost, but is instead transmitted to a new agent. This new agent in turn would have
time to accumulate more knowledge to pass on to another agent, and so on. Perhaps the
biggest impact of this idea will be in the field of swarm robotics, in which each robot has a
lifetime determined by the capacity of its batteries. Before running out of power, a robot
could pass on its knowledge to another fully charged robot, which will have more time to
refine and accumulate more information.

6.3 Future Work

We believe that the work presented in this dissertation opens a number of potentially
fruitful research avenues. In the remainder of this section, we will briefly describe some of
them. Our presentation is divided in two parts. In the first, we describe future work that
is directly related to the ISL framework. In the second part, future work derived from the
two case studies presented in this dissertation is proposed.

6.3.1 Future Work Related to the Incremental Social Learning
Framework

Theory

Interference has been identified by some authors, notably Matarić (1997); Helbing and
Vicsek (1999) and Gershenson (2007), as an influence that we need to control in order to
be able to design large multiagent and self-organizing systems. Unfortunately, very little
theoretical work that could help us understand how to do that has been performed. Future
work in this area, we believe, could significantly impact swarm intelligence, self-organizing
systems, complex systems, and other related fields.

Throughout this dissertation, we have given empirical evidence of the effectiveness of the
ISL framework. However, we have not determined analytically the conditions under which
the ISL framework is guaranteed to reduce interference. Future work should be directed
toward achieving this goal as this would increase the impact of the proposed approach.

More Applications

The performance of the optimization algorithms presented in Chapter 4 suggests that the
ISL framework can improve the performance of other swarm intelligence-based optimization
algorithms. In fact, in a recent paper, we explored the application of the ISL framework to
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an ant colony optimization algorithm for continuous optimization problems and obtained
promising results (Liao et al., 2011). Another related and potentially fruitful research direc-
tion is the application of the ISL framework to evolutionary algorithms such as differential
evolution (Storn and Price, 1997) or CMA-ES (Hansen et al., 1995). However, it should
be noted that these algorithms’ search dynamics are different from the search dynamics
of swarm intelligence algorithms. Thus, even though it is straightforward to apply ISL to
these algorithms, and that the two classes of algorithms share some common features, such
as a population of candidate solutions, the results of the application of ISL to evolutionary
algorithms may be different from the results obtained with swarm intelligence algorithms.

In swarm robotics, more studies about the possible use and benefits of using the ISL
framework should be undertaken. In particular, it would be interesting to follow and build
on the work of Winfield and Griffiths (2010) who are investigating how a “robotic culture”
could emerge. The ISL framework could play the role of a knowledge transfer facilitator
between “generations” of robots in those settings.

6.3.2 Future Work Related to the Case Studies

Tuning-in-the-loop Design of Optimization Algorithms

In Chapter 4, we described the redesign process of IPSOLS that led to IPSOLS+. This
process relied on a parameter tuning tool, iterated F-Race, as a way to measure the impact
of each important design decision. The result of this process was a highly competitive
algorithm in the field of large-scale continuous optimization. We believe that a methodology
that integrates parameter tuning tools as part of the optimization algorithm design process
can have an important role in the emerging field of engineering stochastic local search
algorithms (Stützle et al., 2007, 2009).

Collective Decision-Making Mechanisms based on Opinion Formation Models

The majority-rule opinion formation model which is at the basis of the collective decision-
making mechanism introduced in Chapter 5 is only one of a large number of opinion-
formation models that have been proposed in the statistical physics literature (Castellano
et al., 2009). Considering the promising results that we were able to obtain, we believe
that the swarm intelligence field could greatly benefit if more researchers consider using
similar methods to address scenarios in which agents must choose among multiple choices.
Also of interest is the study of the resulting systems’ dynamics in changing environments.
Domains in which the agents agree on a continuous quantity instead of on a discrete one
should also be explored.

6.4 Concluding Statement

In this dissertation, we have introduced the incremental social learning framework. Its
design is aimed at reducing interference in systems composed of many interacting agents.
To show its potential, we instantiated the framework in the context of particle swarm
optimization algorithms and swarm robotics. The results obtained represent evidence that
the framework indeed reduces interference, which in turn makes the systems have a better
performance.

We hope that these results motivate other researchers interested in multiagent systems,
swarm intelligence, and other affine fields, to integrate the incremental social framework
into a set of agent deployment strategies. Such a set of strategies can indeed simplify the
agent design process because, as we demonstrated, by reducing the levels of interference,
it is possible to simplify the rules that govern agent interactions.
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Appendix A

Frankenstein’s PSO: A Composite
Particle Swarm Optimization
Algorithm

Since the first PSO algorithm was introduced, many variants have been proposed. In many
cases, the difference between two variants can be seen as an algorithmic component being
present in one variant but not in the other. In the first part of this appendix, we present
the results and insights obtained from a detailed empirical study of several PSO variants
from a component difference point of view. We then describe a new PSO algorithm that
combines a number of algorithmic components that showed distinct advantages in the
experimental study concerning optimization speed and reliability. We call this composite
algorithm Frankenstein’s PSO in an analogy to the popular character of Mary Shelley’s
novel. Frankenstein’s PSO performance evaluation shows that by integrating components
in novel ways effective optimizers can be designed.

A.1 Compared PSO Algorithms

In this section, we describe the variants that were selected to be part of our study. For
practical reasons, many variants had to be left out; however, the selection allows the study
of a number of different PSO algorithmic components including those that, for us, are
among the most influential or promising ones. In the description of the algorithms, we use
the notation used in Chapters 2 and 4.

A.1.1 Time-Varying Inertia Weight Particle Swarm Optimizers

Shi and Eberhart (1998a, 1999) noticed that the first term of the right hand side of Eq. 2.3
plays the role of a particle’s “inertia” and they introduced the idea of an inertia weight.
The velocity-update rule was modified to

v t+1
i,j = w tv ti,j + ϕ1U1(pb ti,j − x ti,j) + ϕ2U2(lb ti,j − x ti,j) , (A.1)

where w t is the time-dependent inertia weight. Shi and Eberhart proposed to set the
inertia weight according to a time-decreasing function so as to have an algorithm that
initially explores the search space and only later focuses on the most promising regions.
Experimental results showed that this approach is effective (Shi and Eberhart, 1998b,a,
1999). The function used to schedule the inertia weight is defined as follows:

w t =
wtmax − t
wtmax

(wmax − wmin) + wmin , (A.2)

where wtmax marks the time at which w t = wmin; wmax and wmin are the maximum
and minimum values the inertia weight can take, respectively. Normally, wtmax coincides
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with the maximum time allocated for the optimization process. We identify this variant
as decreasing-IW PSO. The constricted PSO is a special case of this variant but with
a constant inertia weight. We treat them as different variants because of their different
behavior and for historical reasons.

Zheng et al. (2003b,a) experimented with a time-increasing inertia weight function
obtaining, in some cases, better results than the decreasing-IW variant. Concerning the
schedule of the inertia weight, Zheng et al. also used Eq. A.2, except that the values of
wmax and wmin were interchanged. This variant is referred to as increasing-IW PSO.

Eberhart and Shi (2001) proposed a variant in which an inertia weight vector is ran-
domly generated according to a uniform distribution in the range [0.5,1.0) with a different
inertia weight for each dimension. This range was inspired by Clerc and Kennedy’s constric-
tion factor because the expected value of the inertia weight in this case is 0.75 ≈ 0.729 (see
Section 4.4). Accordingly, in this stochastic-IW PSO algorithm, acceleration coefficients
are set to the product of χ · ϕi with i ∈ {1, 2}.

A.1.2 Fully Informed Particle Swarm Optimizer

Mendes et al. (2004) proposed the fully informed particle swarm (FIPS), in which a particle
uses information from all its topological neighbors. Clerc and Kennedy’s constriction factor
is also adopted in FIPS; however, the value ϕ (i.e., the sum of the acceleration coefficients)
is equally distributed among all the neighbors of a particle.

For a given particle i, ϕ is decomposed as ϕk = ϕ/|Ni| , ∀k ∈ Ni. The velocity-update
equation becomes

v t+1
i,j = χ

[
v ti,j +

∑
k∈Ni

ϕkUk(pb tk,j − x ti,j)

]
. (A.3)

A.1.3 Self-Organizing Hierarchical Particle Swarm Optimizer with
Time-varying Acceleration Coefficients

Ratnaweera et al. (2004) proposed the self-organizing hierarchical particle swarm optimizer
with time-varying acceleration coefficients (HPSOTVAC), in which the inertia term in the
velocity-update rule is eliminated. Additionally, if any component of a particle’s velocity
vector becomes zero (or very close to zero), it is reinitialized to a value proportional to
Vmax, the maximum velocity allowed. These changes give the algorithm a local search
behavior that is amplified by linearly adapting the value of the acceleration coefficients ϕ1

and ϕ2. The coefficient ϕ1 is decreased from 2.5 to 0.5 and the coefficient ϕ2 is increased
from 0.5 to 2.5. In HPSOTVAC, the maximum velocity is linearly decreased during a run
so as to reach one tenth of its value at the end of a run. A low reinitialization velocity
near the end of a run allows particles to move slowly near the best region they have found.
The resulting PSO variant is a kind of local search algorithm with occasional magnitude-
decreasing unidimensional restarts.

A.1.4 Adaptive Hierarchical Particle Swarm Optimizer

The adaptive hierarchical PSO (AHPSO) (Janson and Middendorf, 2005) modifies the
neighborhood topology at run time. This algorithm uses a tree-like topology structure in
which particles with better objective function evaluations are located in the upper nodes
of the tree. At each iteration, a child particle updates its velocity considering its own
previous best performance and the previous best performance of its parent. Before the
velocity-update process takes place, the previous best objective function value of a particle
is compared with the previous best objective function value of its parent. If the comparison
is favorable to the child particle, child and parent swap their positions in the hierarchy.
Additionally, AHPSO adapts the branching degree of the tree while solving a problem in
order to balance the exploration-exploitation behavior of the algorithm: a hierarchy with
a low branching degree has a more exploratory behavior than a hierarchy with a high
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Table A.1: Benchmark Functions
Name Definition Search Range

Ackley −20e−0.2
√

1/n
∑n
i=1 x

2
i − e1/n

∑n
i=1 cos(2πxi) + 20 + e [−32.0, 32.0]n

Griewank 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos( xi√

i
) + 1 [−600.0, 600.0]n

Rastrigin 10n+
∑n
i=1(x2

i − 10 cos(2πxi)) [−5.12, 5.12]n

Salomon 1− cos(2π
√∑n

i=1 x
2
i ) + 0.1

√∑n
i=1 x

2
i [−100.0, 100.0]n

Schwefel (sine root) 418.9829n+
∑n
i=1−xi sin(

√
|xi|) [−512.0, 512.0]n

Step 6n+
∑n
i=1bxic [−5.12, 5.12]n

Rosenbrock
∑n−1
i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
[−30.0, 30.0]n

Sphere
∑n
i=1 x

2
i [−100.0, 100.0]n

branching degree. In AHPSO, the branching degree is decreased by kadapt degrees (one at
a time) until a certain minimum degree dmin is reached. This process takes place every
fadapt number of iterations. For more details, see (Janson and Middendorf, 2005).

A.2 Experimental Setup

The complete experimental design examines five factors:

1. PSO algorithm. This factor considers the differences between PSO variants. Specif-
ically, we focused on (i) different strategies for updating inertia weights, (ii) the use
of static and time-varying population topologies, and (iii) different strategies for up-
dating a particle’s velocity.

2. Problem. We selected some of the most commonly used benchmark functions in
experimental evolutionary computation. Since most of these functions have their
global optimum located at the origin, we shifted it to avoid any possible search bias
as suggested by Liang et al. (2005). In most cases, we used the shift values proposed
in the set of benchmark functions used for the special session on real parameter
optimization of the IEEE CEC 2005 (Suganthan et al., 2005). Table A.1 lists the
benchmark functions used in our study. In all cases, we used their 30-dimensional
versions, that is, n = 30. All algorithms were run 100 times on each problem.

3. Population topology. We use three of the most commonly used population topolo-
gies: The fully connected topology, in which every particle is a neighbor of any other
particle in the swarm; the von Neumann topology, in which each particle is a neigh-
bor of 4 other particles; and the ring topology, in which each particle is a neighbor of
another 2 particles. In our setup, all particles are also neighbors to themselves. These
three topologies are tested with all variants except in the case of AHPSO which uses
a time-varying topology. The selected topologies provide different degrees of connec-
tivity between particles. The goal is to favor exploration in different degrees: The
less connected is a topology, the more it delays the propagation of the best-so-far
solution. Thus, low connected topologies result in more exploratory behavior than
highly connected ones (Mendes, 2004). Although recent research suggests that ran-
dom topologies can be competitive with predefined ones (Mohais et al., 2005), they
are not included in our setup in order not to have an unmanageable number of free
variables.

4. Population size. We considered three population sizes: 20, 40 and 60 particles.
With low connected topologies and large populations, the propagation of informa-
tion is slower and thus it is expected that a more “parallel” search takes place. The
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Table A.2: Parameter settings
Algorithm Settings
Constricted Acceleration coefficients ϕ1 = ϕ2 = 2.05. Constriction

factor χ = 0.729. Maximum velocity Vmax = ±Xmax,
where Xmax is the maximum of the search range.

Decreasing-IW Acceleration coefficients ϕ1 = ϕ2 = 2.0. Linearly-
decreasing inertia weight from 0.9 to 0.4. The final
value is reached at the end of the run. Maximum ve-
locity Vmax = ±Xmax.

Increasing-IW Acceleration coefficients ϕ1 = ϕ2 = 2.0. Linearly-
increasing inertia weight from 0.4 to 0.9. The final
value is reached at the end of the run. Maximum ve-
locity Vmax = ±Xmax.

Stochastic-IW Acceleration coefficients ϕ1 = ϕ2 = 1.494. Uni-
formly distributed random inertia weight in the range
[0.5, 1.0]. Maximum velocity Vmax = ±Xmax.

FIPS Acceleration parameter ϕ = 4.1. Constriction factor
χ = 0.729. Maximum velocity Vmax = ±Xmax.

HPSOTVAC Acceleration coefficient ϕ1 linearly decreased from 2.5
to 0.5 and coefficient ϕ2 linearly increased from 0.5 to
2.5. Linearly decreased reinitialization velocity from
Vmax to 0.1·Vmax. Maximum velocity Vmax = ±Xmax.

AHPSO Acceleration coefficients ϕ1 = ϕ2 = 2.05. Constriction
factor χ = 0.729. Initial branching factor is set to 20,
dmin, fadapt, and kadapt were set to 2, 1000 ·m, and 3
respectively, where m is the number of particles.

configurations of the von Neumann topologies for 20, 40 and 60 particles were, re-
spectively, 5× 4, 5× 8 and 6× 10 particles. The population is initialized uniformly
at random over the ranges specified in Table A.1. Since the problems’ optima were
shifted, the initialization range is asymmetric with respect to them.

5. Maximum number of function evaluations. This factor determined the stopping
criterion. The limit was set to 106 function evaluations. However, data were collected
during a run to determine relative performances for shorter runs. The goal was to
find variants that are well suited for different application scenarios. The first two
cases (103 and 104 function evaluations) model scenarios in which there are scarce
resources and the best possible solution is sought given a restrictive time limit. The
other two cases (105 and 106 function evaluations) model scenarios in which the main
concern is to find high quality solutions without paying too much attention to the
time it takes to find them.

In our experimental setup, each algorithm was run with the same parameter settings
across all benchmark problems. When possible, we use the most commonly used parameter
settings found in the literature. These parameter settings are listed in Table A.2.

In our experimental analysis, we examined the algorithms’ performance at different
levels of aggregation. At a detailed level, we analyze the algorithms’ qualified run-length
distributions (RLDs, for short). At a more aggregate level, we use the median solution
quality reached by the algorithms at different stopping criteria. The most important ele-
ments of the RLD methodology are explained below (for a detailed exposition, see (Hoos
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and Stützle, 2004)).
The number of function evaluations a stochastic optimization algorithm needs to find a

solution of a certain quality on a given problem can be modeled as a random variable. Its
associated cumulative probability distribution RLq(l) is the algorithm’s RLD, defined as

RLq(l) = P (Lq ≤ l) , (A.4)

where Lq is the random variable representing the number of function evaluations needed
to find a solution of quality q, and P (Lq ≤ l) is the probability that Lq takes a value less
than or equal to l function evaluations. Theoretical RLDs can be estimated empirically
using multiple independent runs of an algorithm.

An empirical RLD provides a graphical view of the development of the probability of
finding a solution of a certain quality as a function of time. When this probability does
not increase or it does but very slowly, the algorithm is said to stagnate. In this appendix
we use the word “stagnation” to refer to the phenomenon of slow or no increment of the
probability of finding a solution of a specific quality. Note that no reference to the state of
the optimization algorithm is implied (e.g. in active search or otherwise).

In stagnation cases, the probability of finding a solution of a certain quality may be
increased by restarting the algorithm at fixed cut-off times without carrying over informa-
tion from the previous runs (Hoos and Stützle, 2004). These independent restarts entail
re-running the algorithm using a different random seed. However, the output of the algo-
rithm with restarts is always the overall best-so-far solution across all independent runs.

The RLD of the algorithm with periodic restarts will approximate, in the long run,
an exponential distribution. However, independent restarts can be detrimental if an algo-
rithm’s original RLD grows faster than an exponential distribution. Given an algorithms
RLD, it is possible to estimate the number of function evaluations needed for finding a
solution of required quality with a probability greater than or equal to z supposing an
optimal restart policy. This estimation is sometimes called computational effort (Niehaus
and Banzhaf, 2003) and is defined as

effort = min
l

{
l · ln(1− z)
ln(1−RLq(l))

}
. (A.5)

We use this measure to account for the possibility of restarting the compared algorithms
with optimal restart policies.

Another measure that will be used in the description of the results is the first hitting
time Hq for a specific solution quality q. Hq is an estimation of the minimum number of
evaluations that an algorithm needs for finding a solution of a quality level q. It is defined
as

Hq = min{l ≥ 0;RLq(l) > 0} . (A.6)

A.3 Performance Comparison of Particle Swarm Opti-
mization Algorithms

The comparison is carried out in three phases. In the first one, a problem-dependent
run-time behavior comparison based on RLDs is performed. In the second phase, data
from all the problems of our benchmark suite are aggregated and analyzed. In the third
phase, we study the effects of using different inertia weight schedules on the performance
of the concerned variants. Results that are valid for all the tested problems are explicitly
summarized.

A.3.1 Results: Run-Length Distributions

The graphs presented in this section show a curve for each of the compared algorithms
corresponding to a particular combination of a population topology and a population size.
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Since AHPSO does not use a fixed topology, its RLDs are the same across topologies and
its results can therefore be used as a reference across plots for a same problem. The RLDs
we present here were obtained using swarms of 20 and 60 particles.

We present only one representative example of the results we obtained. Fig. A.1 shows
some of the algorithms’ RLDs when solving Griewank’s function.1 These plots are given
with respect to a bound of 0.001% above the optimum value, corresponding to an absolute
error of 0.0018. The smallest first hitting times for the same algorithm across different
population size and topology settings are obtained with a population size of 20 and the
fully connected topology. Conversely, the largest ones are obtained with a population size
of 60 and the ring topology. With 20 particles, the right tails of the RLDs show a slowly-
increasing or a non-increasing slope. This means that, for the Griewank’s function, all the
PSO variants included in our study, when using 20 particles and the parameter settings
shown in Table II, have a strong stagnation tendency. In fact, no variant is capable of
finding a solution of the required quality with probability 1.0 with this population size.
With 60 particles and a ring topology, only FIPS finds the required solution quality with
probability 1.0, while the constricted PSO and HPSOTVAC reach a solution of the required
quality with probability 0.99.

Result 1: Depending on the problem and required solution quality, PSO algorithms
exhibit a stagnation tendency with different degrees of severity. This tendency is smaller
when using large population sizes and/or low connected topologies than it is when using
small population sizes and/or highly connected topologies; however, even though the prob-
ability of solving the problem increases, first hitting times are normally delayed.

An interesting fact is the strong influence of the topology on the algorithms’ perfor-
mance. For example, FIPS with a fully connected topology does not find a single solution
of the required quality; however, with a ring topology, it is among the fastest algorithms (in
terms of first hitting time). AHPSO seems to profit from a highly connected topology at
the beginning of a run. It is also among the fastest variants when the rest of the algorithms
use a von Neumann or ring topology. However, it is unable to solve the problem with a
high probability.

Result 2: PSO algorithms are sensitive to changes in the population topology in
different degrees. Among those tested, FIPS is the most sensitive variant to a change of
this nature. On the contrary, HPSOTVAC and the decreasing inertia weight PSO algorithm
are quite robust to topology changes.

As a best-case analysis, we now consider the possibility of restarting the algorithms with
an optimal cut-off period. In Table A.3, we show the best configuration of each algorithm
to solve Griewank’s problem (at 0.001% above the global optimum) with probability 0.99.
The best performing configurations of FIPS and the constricted PSO, both with 60 particles
and the ring topology, do not benefit from restarts under these conditions, and they are
the two best variants for the considered goal. In this case, the joint effect of choosing the
right algorithm, with an appropriate population size and with the right topology, cannot
be outperformed by configurations that benefit the most from restarts (i.e., those that
stagnate). Similar analyses were performed on all the problems of our benchmark suite
but different results were obtained in each case.

Result 3: Independent restarts can improve the performance of various PSO algo-
rithms. In some cases, configurations that favor an exploitative behavior can outperform
those that favor an exploratory one if optimal restart policies are used. However, the op-
timal restart policy is algorithm- and problem-dependent and therefore cannot be defined a
priori.

1The complete set of results can be found at Montes de Oca et al. (2007).
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Figure A.1: RLDs on the Griewank function. The solution quality bound is set to 0.001%
above the global optimum (equivalent to an absolute error of 0.0018). Plots (a), (c), and
(e) in the left column show the RLDs obtained with 20 particles. Plots (b), (d), and (f) in
the right column show the RLDs obtained with 60 particles. The effect of using different
population topologies can be seen by comparing plots in different rows. The effect of using
a different number of particles can be seen by comparing columns.

107



APPENDIX A. FRANKENSTEIN’S PSO: A COMPOSITE PARTICLE SWARM
OPTIMIZATION ALGORITHM

Table A.3: Best performing configurations of each
algorithm using independent restarts on Griewank’s
function1, 2

Algorithm Pop. Size Topology Cut-off Effort Restarts
FIPS 60 Ring 46440 46440 0

Constricted 60 Ring 71880 71880 0
Sto-IW 40 Ring 52160 131075 2
Inc-IW 20 Ring 24040 138644 5

HPSOTVAC 40 Ring 132080 155482 1
AHPSO 40 Dynamic 17360 207295 11
Dec-IW 60 Ring 663000 1326000 1

1 Probabilities taken from the RLDs.
2 Cut-off and effort measured in function evaluations. The effort

is computed using Eq. A.5.

A.3.2 Results: Aggregated Data

The analysis that follows is based on the median solution quality achieved by an algorithm
after some specific number of function evaluations. This analysis considers only the 40
particles case, which represents the intermediate case in terms of population size in our
experimental setup. For each problem, we ranked 19 configurations (6 PSO algorithms ×
3 topologies + AHPSO) and selected only those that were ranked in the first three places
(what we call the top-three group). For this analysis, we assume that the algorithms are
neither restarted nor fine-tuned for any specific problem.

Table A.5 shows the distribution of appearances of the compared PSO algorithms in the
top-three group. The table shows configurations ranked among the three best algorithms
for different numbers of function evaluations (FES). The topology used by a particular
configuration is shown in parenthesis. If two or more configurations found solutions with
the same quality level (differences smaller than 10−15 are not considered) and they were
among the three best solution qualities, these configurations were considered to be part
of the top-three group. In fact, we observed that, as the number of function evaluations
increases, more and more algorithms appear in the top-three group. This indicates that
the difference in the solution quality achieved by different algorithms decreases and that
many algorithms find solutions of the same quality level.

Table A.4 shows the algorithms that most often appear in the top-three group in Ta-
ble A.5 for different termination criteria. The column labeled “Σ” shows the total number
of times each algorithm appeared in the top-three group. The rightmost column shows the
distribution of appearances in the top-three group between multi- and unimodal functions.

Table A.4: Best PSO variants for different termination criteria
Budget (in FES) Algorithm(Topology) Σ multi/unimodal

103 Inc-IW(F), FIPS(F,vN) 6 5/1
104 Inc-IW(F) 7 6/1
105 Constricted(vN) 5 4/1
106 Dec-IW(vN), FIPS(R) 6 5/1

Note that the connectivity of the topology used by the best ranked variants decreases
as the maximum number of function evaluations increases. Note also that FIPS is among
the best ranked variants: for the shortest runs, using a fully-connected or a von Neumann
topology and, for the longest runs, using a ring topology. Even though these results
may seem counterintuitive at first inspection, they can be understood by looking at the
convergence behavior of the algorithm when topologies of different connectivity degree are
used. In FIPS, highly connected topologies induce a strongly convergent behavior that,
depending on the features of the objective function, can result in a very fast solution
improvement during the first iterations (Montes de Oca and Stützle, 2008a). Indeed, it
has been shown that under stagnation, the moments of the sampling distribution of FIPS
become more and more stable (over time) as the topology connectivity increases (Poli,
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2007). This means that in FIPS the more connected the population topology, the lower
the stochasticity in the behavior of a particle. By observing the behavior of FIPS over
different run lengths, our results extend those of Mendes (2004) who studied the behavior
of FIPS using only a fixed number of function evaluations as stopping criterion.

Result 4: When a limited number of function evaluations are allowed, configurations
that favor an exploitative behavior (i.e., those with highly connected topologies and/or low
inertia weights) obtain the best results. When solution quality is the most important aspect,
algorithms with exploratory properties are the best performing.

A.3.3 Results: Different Inertia Weight Schedules

With very few exceptions, e.g., (Wang and Wang, 2004), the change of the inertia weight
value in the time-decreasing/increasing inertia weight variants is normally scheduled over
the whole optimization process. Here we present a study on the effects of using different
schedules on both the time-decreasing and time increasing inertia weight variants. To do
so, we modified the inertia weight schedule, which is based on Eq. A.2, so that whenever
the inertia weight reaches its limit value, it remains there. We experimented with five
inertia weight schedules of wtmax ∈ {102, 103, 104, 105, 106} function evaluations each. The
remaining parameters were set as shown in Table A.2.

As an example of the effects of different inertia weight schedules, consider Fig. A.2,
which shows the development of the solution quality over time (using both the time-
decreasing and time-increasing inertia weight variants) for different inertia weight schedules
on the Rastrigin function.
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(a) Decreasing inertia weight
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(b) Increasing inertia weight

Figure A.2: Solution quality and inertia weight development over time for different inertia
weight schedules on the Rastrigin function. The solution quality development plots are
based on the medians of the algorithms’ RLDs. The first and third quartiles are shown
at selected points. These results correspond to configurations of 20 particles in a fully
connected topology. The results obtained with the schedules of 105 and 103 function
evaluations (not shown) are intermediate with respect to the results obtained with the
other schedules.

In the case of the time-decreasing inertia weight variant, slow schedules (wtmax = 105

or 106 function evaluations) perform poorly during the first phase of the optimization
process; however, they are the ones that are capable of finding the best quality solutions.
On the other hand, fast schedules (wtmax = 102 or 103 function evaluations) produce rapid
improvement but at the cost of stagnation later in the optimization process.

With the time-increasing inertia weight variant, slow schedules provide the best perfor-
mance. Fast schedules make the time-increasing inertia weight variant strongly stagnant.
For both variants, the severity of the stagnation tendency induced by different schedules
is alleviated by both an increase in the number of particles and the use of a low connected
topology.
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Result 5: By varying the inertia weight schedule, it is possible to control the conver-
gence speed of the time-varying inertia weight variants. In the case of the time-decreasing
inertia weight variant, faster schedules induce a faster convergence speed, albeit at the cost
of increasing the algorithm’s stagnation tendencies. In the time-increasing inertia weight
variant, slow schedules provide the best performance both in terms of speed and quality.

A.3.4 Summary

The goal of the comparison presented in this section was to identify algorithmic components
that provide good performance under different operating conditions (specially run-lengths).
The five main results give insight into what factors should be taken into account when trying
to solve effectively a problem using a PSO algorithm.

Among other results, we have seen that the stagnation tendency of PSO algorithms
can be alleviated by using a large population and/or a low connected topology. Another
approach to reduce stagnation in some cases is to use restarts. However, optimal restart
schedules are algorithm- and problem-dependent and determining them requires previous
experimentation. We have also seen how different inertia weight schedules affect the per-
formance of the time-decreasing/increasing inertia weight variants.

A.4 Frankenstein’s Particle Swarm Optimization Algo-
rithm

Insights gained from experimental studies ideally guide toward the definition of new, better
performing algorithms. In this section, a composite algorithm called Frankenstein’s PSO
is assembled from algorithmic components that are taken from the PSO algorithms that
we have examined or that are derived from the analysis of the comparison results.

A.4.1 The Algorithm

Frankenstein’s PSO is composed of three main algorithmic components, namely (i) a time-
varying population topology that reduces its connectivity over time, (ii) FIPS’s mechanism
for updating a particle’s velocity, and (iii) a decreasing inertia weight. These components
are taken from AHPSO, FIPS and the time-decreasing inertia weight variant, respectively.
The first component is included as a mechanism for improving the trade-off between speed
and quality associated with topologies of different connectivity degrees. The second com-
ponent is used because the analysis showed that FIPS is the only algorithm that can
outperform the others using topologies of different connectivity degree (see Table A.4).
Finally, the decreasing inertia weight component is included as a mean to balance the
exploration-exploitation behavior of the algorithm.

The time-varying topology starts as a fully connected one and, as the optimization
process evolves, decreases its connectivity until it ends up being a ring topology. Interest-
ingly, it is the opposite approach than the one taken by Suganthan (1999). Note, however,
that our approach is entirely based on the results of the empirical analysis presented in
the previous section. Specifically, our choice is based on the fact that a highly connected
topology during the first iterations gives an algorithm the opportunity to find good quality
solutions early in a run (see Table A.4 and Results 1 and 4 in Section A.3). The topology
connectivity is then decreased, so that the risk of getting trapped somewhere in the search
space is reduced and, hence, exploration is enhanced. Including this component into the
algorithm allows it to achieve good performance across a wider range of run lengths as it
will be shown later. As we said before, this component is taken from AHPSO. Information
flow in AHPSO is very fast during the first iterations because the topology connectivity is
high. As the optimization process evolves, its connectivity decreases.

In Frankenstein’s PSO, we do not use a hierarchical topology as it is not clear from
our results how it contributes to a good performance. Instead, the topology is changed
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(a) t = 0 (b) t = 4

(c) t = 8 (d) t = 12

Figure A.3: Topology change process. Suppose n = 6 and k = 12. Then, every d12/(6 −
3)e = 4 iterations we remove some edges from the graph. In 6−3 = 3 steps, the elimination
process will be finished. (a). At t = 0 a fully connected topology is used. (b). At t = 4 the
6− 2 = 4 edges to be removed are shown in dashed lines. (c). At t = 8 the 6− 3 = 3 edges
to be removed are shown in dashed lines. (d). At t = 12 the remaining 6− 4 = 2 edges to
be removed are shown in dashed lines. From t = 12 on, the algorithm uses a ring topology.

as follows. Suppose we have a particle swarm composed of n particles. We schedule the
change of the topology so that in k iterations (with k ≥ n), we transform a fully connected
topology with n(n − 1)/2 edges into a ring topology with n edges. The total number of
edges that have to be eliminated is n(n− 3)/2. Every dk/(n− 3)e iterations we remove m
edges, where m follows an arithmetic regression pattern of the form n− 2, n− 3, . . . , 2. We
sweep m nodes removing one edge per node. The edge to be removed is chosen uniformly
at random from the edges that do not belong to the exterior ring, which is predefined in
advance (just as it is done when using the normal ring topology). The transformation from
the initially fully connected to the final ring topology is performed in n − 3 elimination
steps. Fig. A.3 shows a graphical example of how the process just described is carried out.

Changes in the population topology must be exploited by the underlying particles’
velocity-update mechanism. In Frankenstein’s PSO we included the mechanism used by
FIPS. The reason for this is that we need a component that offers good performance
across different topology connectivities. According to Table A.4, the only velocity-update
mechanism that is ranked among the best variants when using different topologies is the one
used by FIPS. For short runs, FIPS’s best performance is obtained with the fully connected
topology (the way Frankenstein’s PSO topology starts); for long runs, FIPS reaches very
high performance with a low connected topology (the way Frankenstein’s PSO topology
ends).

The constriction factor originally used in FIPS is substituted by a decreasing inertia
weight. A decreasing inertia weight was chosen because it is a parameter that can be
used to control the algorithm’s exploration/exploitation capabilities. In Section A.3.3, we
saw that a proper selection of the inertia weight schedule can dramatically change the
performance of a PSO algorithm. A decreasing inertia weight would counterbalance the
exploratory behavior that the chosen topology change scheme could induce.
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The pseudocode of Frankenstein’s PSO is shown in Algorithm A.4.1. The main loop
cycles through the three algorithmic components: topology update, inertia weight update,
and the particles’ velocity and position updates. The topology update mechanism is only
executed while the algorithm’s current number of iterations is lower than or equal to a
parameter k, which specifies the topology update schedule. Since it is guaranteed that the
ring topology is reached after iteration k, there is no need to call this procedure thereafter.
In Algorithm 1, a variable esteps is used to ensure that the number of eliminated edges in
the topology follows an arithmetic regression pattern. Note that the elimination of neigh-
borhood relations is symmetrical, that is, if particle r is removed from the neighborhood
of particle i, particle i is also removed from the neighborhood of particle r. The inertia
weight is then updated, and finally, the velocity-update mechanism is applied in the same
way as in FIPS.

A.4.2 Parameterization Effects

We studied the impact of using different schedules for the topology and inertia weight
updates on the algorithm’s performance. The remaining parameters were set as follows:
the maximum velocity Vmax is set to ±Xmax (the maximum of the search range), the
linearly-decreasing inertia weight is varied from 0.9 to 0.4, and the sum of the acceleration
coefficients, ϕ, is set to 4.0.

The experimental conditions described in Section A.2 are used. Three swarm sizes (n =
20, 40, 60), four schedules of the topology update (measured in iterations; k = n, 2n, 3n,
4n) and four schedules of the inertia weight (measured in function evaluations; wtmax = n2,
2n2, 3n2, 4n2) were tried. Note that the values of k and wtmax are independent of each
other.

As an illustrative example of the results, consider Fig. A.4. It shows the RLDs obtained
by Frankenstein’s PSO algorithm on Griewank’s function. These distributions correspond,
as before, to a solution quality 0.001% above the optimum value. Only the results obtained
with 4 out of the 12 possible combinations of topology schedules and population sizes are
shown.

A combination of a slow topology update schedule (3n or 4n) and a fast inertia weight
schedule (n2 or 2n2) promotes the stagnation of the algorithm. This can be explained if we
recall that FIPS has a strong stagnation tendency when using a highly connected topology:
A slow topology update schedule maintains a high topology connectivity for more iterations
and a fast inertia weight schedule quickly reduces the exploration capabilities of the particle
swarm. These two effects also increase the algorithm’s stagnation tendency. To counteract
a fast stagnation tendency, the two possibilities are to slow down the inertia weight schedule
or to speed up the change of the topology.

Increasing the number of particles increases the amount of information available to the
algorithm during the first iterations. The exploitation of this information depends on the
topology update and inertia weight schedules. The configurations that appear to better
exploit it are those in which these two schedules are slow.

To compare the configurations’ relative performance across problems that have different
scales, we look at the average (over the 8 benchmark problems of the experimental setup)
of the standardized median solution quality (i.e., for each group, the mean is equal to
zero and the standard deviation is equal to one) as a function of the topology update and
the inertia weight schedules for different termination criteria. The results are shown in
Fig. A.5. Since we work with minimization problems, a lower average standard solution
quality means that the specific configuration found better solutions.

According to Fig. A.5, the algorithm needs more exploratory configurations (i.e., fast
topology update schedules and slow inertia weight schedules) for long runs. For short runs,
configurations with slow topology update schedules and fast inertia weight schedules yield
the best results. For runs of 104 and 105 function evaluations, the best configurations
are intermediate ones (i.e., fast or slow schedules for both the topology and inertia weight
updates).
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Algorithm 8 Frankenstein’s particle swarm optimization algorithm

/* Initialization */
for i = 1 to n do

Create particle i and add it to the set of particles P
Initialize its vectors xi and vi to random values within the search range and maximum allowed
velocities
Set pbi = xi
Set Ni = P

end for

/* Main Loop */
Set t = 0
Set esteps = 0
repeat

/* Evaluation Loop */
for i = 1 to n do

if f(xi) is better than f(pbi) then
Set pbi = xi

end if
end for
/* Topology Update */
if t > 0 ∧ t <= k ∧ tmod dk/(n− 3)e = 0 then

/* t > 0 ensures that a fully connected topology is used first */
/* t <= k ensures that the topology update process is not called after iteration k */
/* tmod dk/(n− 3)e = 0 ensures the correct scheduling of the topology update process */
for i = 1 to n− (2 + esteps) do

/* n− (2 + esteps) ensures the arithmetic regression pattern */
if |Ni| > 2 then

/* |Ni| > 2 ensures proper node selection */
Select at random particle r from Ni such that r is not adjacent to i
Eliminate particle r from Ni
Eliminate particle i from Nr

end if
end for
Set esteps = esteps+ 1

end if
/* Inertia Weight Update */
if t ≤ wtmax then

Set w(t) = wtmax−t
wtmax

(wmax − wmin) + wmin
else

Set w(t) = wmin
end if
/* Velocity and Position Update */
for i = 1 to n do

Generate Um ∀m ∈ Ni
Set ϕm = ϕ/|Ni| ∀m ∈ Ni
Set v t+1

i = w tv ti +
∑
m∈Ni

ϕkUk(pb tk − x ti )

Set x t+1
i = x ti + v t+1

i
end for
Set t = t+ 1
Set sol = argmin

i∈P
f(pb ti )

until f(sol) value is good enough or t = tmax

The more exploratory behavior that a large population provides needs to be counter-
balanced by the chosen configuration. For example, at 103 function evaluations, the best
configuration tends to have faster inertia weight schedules for larger swarms. With 20
particles, the best configuration is at point (4, 3) while with 40 and 60 particles, the best
configurations are at (4, 2) and (4, 1), respectively. These results are consistent with those
of the experimental comparison.

Like any other algorithm, Frankenstein’s PSO has its own set of parameters that need
to be set by the practitioner before trying to solve a problem. The final parameter settings
will depend on the class of problems one is trying to solve and on the application scenario
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(d) 60 particles, 4× n iterations

Figure A.4: RLDs obtained by Frankenstein’s PSO algorithm on the Griewank function.
The solution quality demanded is 0.001% above the global optimum. Each graph shows
four RLDs that correspond to different inertia weight schedules.
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(d) 60 particles, 106 evaluations

Figure A.5: Average standard solution quality as a function of the topology update and
the inertia weight schedules for different termination criteria. In each case, the best con-
figuration is pointed by an arrow.

requirements. Based on the results presented in this section we can derive the following
guidelines for choosing the topology and the inertia weight schedules. If the number of
function evaluations is restricted, a configuration with 20 particles, a slow topology change
schedule (≈ 4n) and an intermediate inertia weight schedule (≈ 3n2) would be the first
one to try. If solution quality is the main concern, a configuration with 60 particles, a fast
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topology update schedule (≈ n), and a slow inertia weight (≈ 4n2) should be preferred.

A.5 Performance Evaluation

The performance of Frankenstein’s PSO is evaluated by comparing its best configurations
with those of the PSO algorithms described in Section A.3. The best configurations of
each variant were selected using the same ranking scheme as in Section A.3.2. The list of
selected configurations is available at Montes de Oca et al. (2007).

Table A.6 shows the standardized median solution quality obtained by each configura-
tion (identified only by the algorithm’s name) for each termination criterion.

For runs of 103, 105 and 106 function evaluations, the best overall configuration is
the one of Frankenstein’s PSO. For runs of 104 function evaluations, the configuration of
Frankenstein’s PSO is ranked in the fourth place. However, with this same number of
function evaluations, the configuration of Frankenstein’s PSO is the best configuration in 6
of the 8 benchmark problems. The average rank of Frankenstein’s PSO after 104 function
evaluations can be explained with the results on Schwefel’s function: FIPS (of which a
component is used in Frankenstein’s PSO) is the worst algorithm for this termination
criterion (and also for the one of 103 function evaluations) on Schwefel’s function.

The performance of Frankenstein’s PSO suggests that indeed it is possible and profitable
to integrate different existing algorithmic components into a single PSO variant. The
results show that by composing existing algorithmic components, new high-performance
variants can be built. At the same time, it is possible to gain insights into the effects of
the interactions of different components on the algorithm’s final performance. Of course,
just as it is possible to take advantage of the strengths of different components, it is also
possible that their weaknesses are passed on: the performance of Frankenstein’s PSO on
Schwefel’s function is an example of this.

A.6 Conclusions and Future Work

Many PSO variants are proposed in the current literature. This is a consequence of the
great attention that PSO has received since its introduction. However, it is also a sign of
the lack of knowledge about which algorithmic components provide good performance on
particular types of problems and under different operating conditions.

In an attempt to gain insight into the performance advantages that different algorithmic
components provide, we compared what we consider to be some of the most influential or
promising PSO variants. For practical reasons, many variants were left out of this study.
Future studies should consider other variants as well as other components that are not
necessarily present in existing PSO algorithms. In fact, some works are already exploring
these issues (Mendes and Kennedy, 2007; Jordan et al., 2008; Yisu et al., 2008; Ramana
Murthy et al., 2009; Garćıa-Villoria and Pastor, 2009). Recently, an alternative way of
composing algorithmic components has been proposed by Montes de Oca et al. (2009b)
and Engelbrecht (2010). The approach consists in shifting the integration of components
from the particle level to the swarm level by creating heterogeneous swarms, that is, swarms
composed of particles that move using different rules (i.e., algorithmic components). An
avenue of research that seems promising is to experiment with random topologies that
satisfy some constraints (e.g., a desired average connection degree). These works would help
in improving our understanding of the interactions among PSO algorithmic components.

As it may have been expected, the results of our experimental comparison showed that
no variant dominates all the others on all the problems of our benchmark suite over different
run lengths. Nevertheless, we were able to identify general trends on the influence that
various PSO algorithmic components and their parameters have on performance.

Based on these insights, we explored the possible advantages of combining algorithmic
components that provided good performance into a single PSO variant by assembling a com-
posite algorithm that we call Frankenstein’s PSO. This new PSO algorithm is composed of
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APPENDIX A. FRANKENSTEIN’S PSO: A COMPOSITE PARTICLE SWARM
OPTIMIZATION ALGORITHM

three main algorithmic components: (i) a time-varying population topology that decreases
its connectivity as the optimization process evolves; (ii) a particles’ velocity-update mech-
anism that exploits every stage of the topology change process, and (iii) a time-decreasing
inertia weight that allows the user to tune the algorithm’s exploration/exploitation capabil-
ities. In many cases, Frankenstein’s PSO is capable of performing better than the variants
from which its components were taken.

As a methodological approach, in-depth experimental studies can help in identifying
positive and negative (in terms of performance) interactions among algorithmic compo-
nents and provide strong guidance for the informed design of new composite algorithms.
Another selection of PSO variants would have probably ended up in a different Franken-
stein’s PSO algorithm. For this reason, further research is needed to understand which
components are better suited for particular classes of problems and operating conditions
and whether some components can be integrated into the same composite algorithm or not.
Methods to quantify the contribution of each component on the composite algorithms’ final
performance are also needed to achieve this goal.
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Latané, B. (1981). The psychology of social impact. American Psychologist, 36(4):343–356.

Leong, W.-F. and Yen, G. G. (2008). PSO-based multiobjective optimization with dynamic
population size and adaptive local archives. IEEE Transactions on Systems, Man, and
Cybernetics. Part B: Cybernetics, 38(5):1270–1293.

Liang, J. J. and Suganthan, P. N. (2005). Dynamic multi-swarm particle swarm optimizer
with local search. In Proceedings of the IEEE Congress on Evolutionary Computation
(CEC 2005), pages 522–528. IEEE Press, Piscataway, NJ.

Liang, J. J., Suganthan, P. N., and Deb, K. (2005). Novel composition test functions for
numerical global optimization. In Proceedings of IEEE Swarm Intelligence Symposium
(SIS 2005), pages 68–75. IEEE Press, Piscataway, NJ.

Liao, T., Montes de Oca, M. A., Aydın, D., Stützle, T., and Dorigo, M. (2011). An
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IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.
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Montes de Oca, M. A. and Stützle, T. (2008b). Towards incremental social learning in opti-
mization and multiagent systems. In Rand, W. et al., editors, Workshop on Evolutionary
Computation and Multiagent Systems Simulation of the Genetic and Evolutionary Com-
putation Conference (GECCO 2008), pages 1939–1944. ACM Press, New York.
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L.-M., and Dorigo, M. (2010). ARGoS: a pluggable, multi-physics engine simulator for
heterogeneous swarm roboticsAn integrated, cooperative development framework for het-
erogeneous swarm robotics. Technical Report TR/IRIDIA/2010-026, IRIDIA, Université
Libre de Bruxelles, Brussels, Belgium.

Pini, G. and Tuci, E. (2008). On the design of neuro-controllers for individual and so-
cial learning behaviour in autonomous robots: an evolutionary approach. Connection
Science, 20(2–3):211–230.

Poli, R. (2007). On the moments of the sampling distribution of particle swarm optimisers.
In Workshop on Particle Swarm Optimization: The Second Decade of the Genetic and
Evolutionary Computation Conference (GECCO 2007), pages 2907–2914. ACM Press,
New York.

Poli, R. (2009). Mean and variance of the sampling distribution of particle swarm optimizers
during stagnation. IEEE Transactions on Evolutionary Computation, 13(4):712–721.

Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle swarm optimization. An overview.
Swarm Intelligence, 1(1):33–57.

Portugali, J. (2000). Self-organization and the city. Springer, Berlin, Germany.

Powell, M. J. D. (2006). Large-Scale Nonlinear Optimization, volume 83 of Nonconvex
Optimization and Its Applications, chapter The NEWUOA software for unconstrained
optimization, pages 255–297. Springer, Berlin, Germany.

Powell, M. J. D. (2009). The BOBYQA algorithm for bound constrained optimization
without derivatives. Technical Report NA2009/06, Department of Applied Mathematics
and Theoretical Physics, University of Cambridge.

135



BIBLIOGRAPHY

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical
Recipes in C. The Art of Scientific Computing. Cambridge University Press, New York,
second edition.

Priesterjahn, S. and Eberling, M. (2008). Imitation learning in uncertain environments. In
Rudolph, G., Jansen, T., Lucas, S., Poloni, C., and Beume, N., editors, LNCS 5199. Pro-
ceedings of the 10th International Conference on Parallel Problem Solving from Nature
(PPSN X), pages 950–960. Springer, Berlin, Germany.

Ramana Murthy, G., Senthil Arumugam, M., and Loo, C. K. (2009). Hybrid particle swarm
optimization algorithm with fine tuning operators. International Journal of Bio-Inspired
Computation, 1(1/2):14–31.

Ratnaweera, A., Halgamuge, S. K., and Watson, H. C. (2004). Self-organizing hierarchical
particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions
on Evolutionary Computation, 8(3):240–255.

Reeves, W. T. (1983). Particle systems–a technique for modeling a class of fuzzy objects.
ACM Transactions on Graphics, 2(2):91–108.

Rendell, L., Boyd, R., Cownden, D., Enquist, M., Eriksson, K., Feldman, M. W., Fogarty,
L., Ghirlanda, S., Lillicrap, T., and Laland, K. N. (2010a). Why copy others? Insights
from the social learning strategies tournament. Science, 328(5975):208 – 213.

Rendell, L., Fogarty, L., Hoppit, W. J. E., Morgan, T. J. H., Webster, M. M., and Laland,
K. N. (2011). Cognitive culture: theoretical and empirical insights into social learning
strategies. Trends in Cognitive Sciences, 15(2):68–76.

Rendell, L., Fogarty, L., and Laland, K. N. (2010b). Rogers’ paradox recast and resolved:
Population structure and the evolution of social learning strategies. Evolution, 64(2):534–
548.

Rescorla, R. A. (1988). Behavioral studies of pavlovian conditioning. Annual Review of
Neuroscience, 11(1):329–352.

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. ACM
Computer Graphics, 21(4):25–34.

Roberts, J., Stirling, T., Zufferey, J., and Floreano, D. (2009). 2.5D infrared range and
bearing system for collective robotics. In Hamel, W. R., editor, IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3659–3664. IEEE Press, Piscataway,
NJ.

Rogers, A. R. (1988). Does biology constrain culture? American Anthropologist, 90(4):819–
831.

Russell, R. A. (1999). Ant trails – An example for robots to follow? In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA 1999), pages
2968–2703. IEEE Press, Piscataway, NJ.

Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application.
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Stützle, T. and Hoos, H. H. (1996). Improving the Ant System: A detailed report on the
MAX–MIN Ant System. Technical Report AIDA–96–12, FG Intellektik, FB Infor-
matik, TU Darmstadt, Germany.
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