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Abstract

Research in swarm robotics focuses mostly on how robots interact and
cooperate to perform tasks, rather than on the details of task execu-
tion. As a consequence, researchers often consider abstract tasks in
their experimental work. For example, foraging is often studied with-
out physically handling objects: the retrieval of an object from a source
to a destination is abstracted into a trip between the two locations—
no object is physically transported. Despite being commonly used, so
far task abstraction has only been implemented in an ad hoc fashion.
In this dissertation, I propose a collection of tools for flexible and

reproducible task abstraction. At the core of this collection is a phys-
ical device that serves as an abstraction of a single-robot task to be
performed by an e-puck robot. I call this device the TAM, an acronym
for task abstraction module. A complex multi-robot task can be ab-
stracted using a group of TAMs by first modeling the task as the set of
its constituent single-robot subtasks and then representing each sub-
task with a TAM. I propose a novel approach to modeling complex
tasks and a framework for controlling a group of TAMs such that the
behavior of the group implements the model of the complex task.
The combination of the TAM, the modeling approach, and the con-

trol framework forms a collection of tools for conducting research in
swarm robotics. These tools enable research on cooperative behav-
iors and complex tasks with simple, cost-effective robots such as the
e-puck—research that would be difficult and costly to conduct using
specialized robots or ad hoc solutions to task abstraction. I present
proof-of-concept experiments and several studies that use the TAM
for task abstraction in order to illustrate the variety of tasks that can
be studied with the proposed tools.
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Chapter 1
Introduction

Robotic systems have been traditionally designed following engineer-
ing principles established during the industrial revolution: a robot is
treated as a single monolithic machine that possesses all the capabili-
ties necessary to address the tasks it faces. Traditional methods from
the field of artificial intelligence, devised for controlling such robots,
also follow a monolithic approach: a robot possesses a single “brain”,
for which the yardstick of intelligence is, of course, human intelligence.
Collective robotics is an extension of this traditional approach to

groups of robots. Essentially, collective robotics faces similar problems
as cooperating humans; it has therefore traditionally been approached
with solutions similar to the ones used to coordinate groups of hu-
mans. Today, centralized control, planning, and external support-
infrastructure are prevalent for controlling groups of robots. Unfor-
tunately, systems designed using monolithic approaches to artificial
intelligence and centralized approaches to coordination have several
issues, mostly related to their lack of flexibility and robustness.
An alternative approach to the design of robot systems is swarm

robotics (Dorigo et al., 2014). Swarm robotics is a relatively recent ap-
proach that employs large groups of robots, called swarms, to address
the mission at hand. Contrary to traditional approaches, swarm robo-
tics does not rely on centralized control or planning (Beni, 2005). In-
stead, the collective behavior of the robot swarm results from the local
interactions between the individuals of the swarm and between these
individuals and the surrounding environment (Dorigo et al., 2014).
Consequently, the behavior of the group is not monolithic but emerges
from the behavior of the many individuals of the swarm. The design
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Chapter 1 Introduction

of robot swarms follows the principles of swarm intelligence (Beni and
Wang, 1989), which promote the creation of systems that are fault
tolerant, scalable, and flexible (Dorigo and Birattari, 2007).
Swarm robotics appears to be a viable approach to applications

that benefit from the attributes listed above. Moreover, applications
that benefit are those that require the execution of a large number
of concurrent activities or develop in environments in which the es-
tablishment of the infrastructure required to centrally control a large
number of robots is extremely difficult. Accordingly, it is considered
advantageous to apply swarm robotics systems to tasks that are poten-
tially hazardous, cover a large area, or develop in highly time-variant
environments. Examples of this kind of tasks are search and rescue
missions, surveillance, de-contamination and de-mining, as well as ex-
ploration of hazardous environments such as outer space or the deep
sea.
Regardless to its many benefits, to date, there are no known real-

world applications of swarm robotics, that is, applications outside of
the highly abstracted environments used in research laboratories. This
lack is mostly due to the following two issues.
The first issue is related to the design of such systems: current

methods to design a swarm are based on bottom-up techniques driven
by a trial-and-error approach (Brambilla et al., 2013). The drawback
of these methods is that they rely heavily on the experience of the
designer and therefore lack in repeatability. Proponents of swarm en-
gineering contend that swarm robotics lacks an engineering method-
ology for robot swarms (Kazadi, 2000; Dorigo et al., 2014). Hence,
such methodologies are the object of recent and ongoing research (e.g.,
Brambilla et al., 2014; Francesca et al., 2014b).
The second issue is related to the materials available for studying

swarm robotics systems. Today’s robotic platforms are unreliable,
expensive, and rather limited in their capabilities (Cao et al., 1997).
Conducting experiments considering large groups of robots is therefore
very costly—both monetary and otherwise. Furthermore, the com-
plexity of the task considered in a study strongly influences this cost
as well: studying complex tasks consisting of many, interrelated sub-
tasks increases costs as resources have to be spent on implementing
details specific to the execution of each subtask.
In this dissertation, I conjecture that costs strongly influence the

complexity of the problems studied in robotics: researchers consider
problems that can be studied using experiments of reasonable cost, and
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Chapter 1 Introduction

omit other problems that are too costly to study. This effect is espe-
cially pronounced in swarm robotics, where large swarms increase the
cost of an experiment to the point that considering anything other than
simple problems becomes quickly prohibitive (Carlson et al., 2004). As
a result, most studies in swarm robotics consider problems of low com-
plexity.
One solution to this issue is to provide robots that are more reliable

and capable, while at the same time being cheaper. Unfortunately,
trade-offs make it impossible to provide robots that satisfy all three
requirements—for example, the Kilobot is cheap and reliable (Ruben-
stein et al., 2012), but does so at the expense of its capabilities.
An alternative solution is to provide researchers with the means to

reduce the cost of studying complex problems using today’s robots.
In this dissertation, I pursue this solution: I propose conceptual and
practical tools that reduce the cost of engineering-oriented studies that
consider complex tasks. These novel and unique tools enable research
on problems that concern tasks with various types of complex inter-
relationships; problems that were, to date, confined to simulation by
the fact that they were too costly to be studied using real robots.

The motivation for creating novel tools for swarm robotics research
stems from my first experiments in task allocation: At the beginning of
my doctoral studies, I realized that the vast majority of works in the
swarm robotics literature consider tasks of low complexity. In fact,
most studies consider only simple tasks that do not exhibit interre-
lationships. Simple tasks without interrelationships can be executed
independently of other tasks—examples include picking up an object
or disabling an alarm.
I set out to fill this gap in the literature by conducting an experiment

that considered several interrelated tasks (Brutschy et al., 2014c). In
the experiment, robots had to harvest objects from a source and store
them in a nest—see Figure 1.1 for a snapshot of the experiment that
explains the tasks and their interrelationships. The focus of the study
was on how robots interact and cooperate to address these tasks, rather
than on the details of task execution. In particular, the focus was on a
novel method for self-organized task allocation and not on the behav-
iors required to recognize, manipulate and transport objects. However,
I quickly had to realize that developing and conducting experiments
that included these details of task execution, which were inessential
to the study, was extremely time-consuming. In fact, performing ex-
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objects

robot harvesting
from the source

robot storing
in the nest

robot approaching
for object transfer

robot waiting
to transfer
object

objects

Figure 1.1: A snapshot of an experiment in which the swarm has to
perform several interrelated tasks (Brutschy et al., 2014c). The overall
task of the robots is to harvest objects from the source (left) and store
them in the nest (right). The task is partitioned into two subtasks:
harvest and store. Robots working on the harvest subtask can trans-
fer objects to the robots working on the store subtask using the area
located at the center. Each subtask consists itself of two subtasks:
harvesting/transferring and receiving/storing an object, respectively.
All interrelationships between these subtasks are of a sequential na-
ture: subtasks have to be executed in a given sequence in order to
complete the overall task once.

periments using real robots was so time-consuming that we could not
conduct more than a single proof-of-concept experiment. As a result,
the majority of the experiments had to be conducted in simulation.
From this experience, I realized that most research in swarm robo-

tics faces similar issues: if the focus of a study is to develop coordi-
nation mechanisms that allow robots to tackle tasks with a certain
kind of logical relationship, it might be desirable to isolate the logical
relationship from the details of task execution and focus on it, rather
than spending resources on inessential aspects of the implementation.
Examples of interrelated tasks are tasks that have to be executed in
a specific order, for instance, first harvesting, then transporting, and
finally storing food items. I call task abstraction the process by which
one focuses on the logical relationship between tasks and omits the de-
tails on their execution. Research in swarm robotics is likely to benefit
from task abstraction, as it commonly focuses on how robots interact
and cooperate to perform tasks, rather than on the details of their
execution (Brambilla et al., 2013).
Task abstraction is not a novel concept in swarm robotics research;

in fact, it has been used implicitly in numerous studies—for a compre-
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hensive review of the swarm robotics literature, see Brambilla et al.
(2013). However, up to now, task abstraction was either i) confined to
simulation or ii) conducted using some sort of ad hoc solution. Simula-
tion has the advantage of being inexpensive, but approaches developed
solely in simulation may suffer from the so called “reality gap” (Jakobi
et al., 1995; Francesca et al., 2014b). This is particularly relevant in
complex systems, where small but unavoidable differences between
simulation and reality could lead to widely diverging behaviors.
Ad hoc solutions are specific abstractions that are tightly connected

to the nature of the experiment at hand. They cannot be easily and
directly exploited in other experiments. For example, ad hoc solutions
were used to abstract the act of physically transporting objects with
a trip between two locations (e.g. Kernbach et al., 2012; Acerbi et al.,
2007; Francesca et al., 2014b,a); to abstract manipulation tasks with
tailor-made inanimate physical objects (e.g., Ijspeert et al., 2001; Tuci
et al., 2006); and to abstract tasks with some dynamic property using
electronic devices (e.g. Matarić et al., 2003). Ad hoc solutions are suit-
able only for simple tasks that can be tackled by a single robot without
any relations to other robots or tasks. Indeed, tasks that require mul-
tiple robots are much harder to abstract due to the interrelationships
between the constituent single-robot subtasks and the actions of the
robots. Additionally, experiments that use ad hoc solutions are costly
and difficult to replicate by other researchers—a fact that effectively
limits the complexity of the tasks studied in the literature.
In this dissertation, I propose a collection of tools for task abstrac-

tion. At the core of this collection is a physical device that serves as an
abstraction of single-robot tasks to be performed by an e-puck robot.
I call this device the TAM, an acronym for task abstraction module. In
abstract terms, I say that a robot performs a single-robot task if it is
busy for a given amount of time at a specific location and at a specific
moment in time. A TAM represents such an abstracted single-robot
task in real-robot experiments.
Complex multi-robot tasks can be abstracted and represented as

follows. First, a complex task is modeled as the set of its constituent
single-robot subtasks and their interrelationships. Second, each single-
robot subtask is represented by a single TAM and the behavior of the
TAMs is coordinated such that it reflects the interrelationships iden-
tified by the model. I propose a novel approach to modeling complex
tasks and a framework for controlling a group of TAMs such that the
behavior of the group implements the model of the complex task.
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The combination of the TAM, the modeling approach, and the con-
trol framework enable research on cooperative behaviors and complex
tasks with simple, cost-effective robots such as the e-puck (Mondada
et al., 2009)—research that would be prohibitively difficult and costly
to conduct using specialized robots or ad hoc solutions to task abstrac-
tion. I present proof-of-concept experiments and several studies that
use the TAM for task abstraction in order to illustrate the variety of
tasks that can be studied with the proposed tools.

Goals of this dissertation
The goal of this dissertation is to provide the conceptual and practical
tools for modeling and representing complex task in swarm robotics
studies. Furthermore, the dissertation aims to provide a framework
for conducting experiments involving complex tasks and large swarms
of robots.

Scientific contributions
In this section, I present the contributions to the scientific literature
that I made over the course of my doctoral studies. See Page 197 for
a detailed list of all publications referenced below.

Scientific contributions of this dissertation
In the following, I enumerate the scientific contributions of this disser-
tation and list the publications that resulted.

1. A definition of complex tasks, subtasks and task interrelation-
ships. Based on these definitions, a novel approach to model
complex multi-robot tasks (Brutschy et al., 2014a).

2. A review of the swarm robotics literature from the perspective of
the tasks studied and abstractions used (Brutschy et al., 2014a).

3. A systematic approach to task abstraction, unique in the lit-
erature (Brutschy et al., 2014a). This approach is based on the
TAM, a novel device that serves as an abstraction of single-robot
tasks to be performed by an e-puck robot.
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4. A verification of the concept of the TAM and the proposed ap-
proach to modeling complex tasks in a proof-of-concept experi-
ment using a swarm of e-puck robots (Brutschy et al., 2014a).

5. A study of the costs and benefits of behavioral specialization in
a swarm of robots (Brutschy et al., 2012c, 2011). The study uses
the TAM for task abstraction.

6. A novel top-down design method based on prescriptive modeling
and model checking (Brambilla et al., 2014). The study uses the
TAM for task abstraction.

7. An approach to self-organized task allocation in environments
that exhibit periodic properties (Castillo-Cagigal et al., 2014).
The study uses the TAM for task abstraction.

8. An adaptive algorithm for strategy selection in a task partition-
ing scenario (Frison et al., 2010; Pini et al., 2013b) and a com-
parison of this algorithm to established multi-armed bandit al-
gorithms (Pini et al., 2012, 2013b). The study uses the TAM for
task abstraction.

9. A new method for self-organized allocation of a swarm of robots
to a complex task (Brutschy et al., 2014c). This work provided
the inspiration for the novel tools proposed in this dissertation.

Other scientific contributions
In addition to the contributions made in this dissertation, I contributed
to various other scientific studies on a diverse range of topics. In the
following, I enumerate these contributions grouped by their topic and
list the publications that resulted.

1. Self-organized task allocation:
a) An approach to self-organized decision-making based on the

k-unanimity rule (Scheidler et al., 2014). In the accompany-
ing study, robots have to collectively decide on the shorter
of two paths. A peer-reviewed video that illustrates the
approach (Brutschy et al., 2012b).

b) Several ant-inspired organic computing algorithms, inspired
by the house-hunting strategies of the ant Temnothorax
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albipennis (Scheidler et al., 2011; Brutschy et al., 2008).
One of the studies won the “Best paper” award at ANTS
2012 (Brutschy et al., 2008).

2. Autonomous task partitioning:
a) A method for autonomous task partitioning in a foraging

scenario (Pini et al., 2013a, 2014). The method is based
on cost estimations of the available choices: robots rely
on these estimates to autonomously partition the foraging
task.

b) A method for reducing physical interference between robots
that occurs at shared resources (Pini et al., 2009, 2011a).
The method is based on task partitioning.

3. Automatic design of robot controllers:
a) A novel approach to the automatic design of control soft-

ware for robot swarms, called AutoMoDe (Francesca et al.,
2014b). AutoMoDe is based on injecting bias in the design
process by selecting, instantiating and combining preexist-
ing parametric modules.

b) An objective comparison of multiple design methods: two
automatic methods—AutoMoDe and a method based on
evolutionary robotics—are compared with swarms manu-
ally designed by human experts (Francesca et al., 2014a).

4. The Swarmanoid project:
a) The Swarmanoid itself, a novel distributed robotic system

made up of heterogeneous, dynamically connected, small
autonomous robots (Dorigo et al., 2013). Additionally, a
video demonstrating the Swarmanoid, which won the “Best
video” award of the AAAI video competition (Dorigo et al.,
2011).

b) The ARGoS simulation framework, a novel simulator for
heterogeneous swarms (Pinciroli et al., 2011, 2012). The
focus of ARGoS is to provide a framework for simulating
large-scale, heterogeneous swarm robotics systems while be-
ing accurate, efficient and flexible.
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5. Spatially targeted communication:
a) A novel communication protocol for spatially targeted com-

munication in robot swarms (Mathews et al., 2014). The
protocol relies on cameras and LEDs to provide spatially
targeted communication links. It is distributed and scal-
able, while being independent of external tracking infras-
tructure and global information.

Publication summary

13 Journal papers (3 as first author – F, 3 under review – †)

– Systems, Man, and Cybernetics, Part B: Cybernetics, 2014 (†)

– Swarm Intelligence, 2014 (F, †)

– Autonomous Robots, 2014 (†)

– Swarm Intelligence, 2014

– ACM Transactions on Autonomous and Adaptive Systems, 2014

– Autonomous Agents and Multi-Agent Systems, 2014 (F)

– Artificial Life, 2014

– Robotics and Autonomous Systems, 2014 (F)

– IEEE Robotics & Automation Magazine, 2013

– Adaptive Behavior, 2013

– Swarm Intelligence, 2013

– Swarm Intelligence, 2012

– Swarm Intelligence, 2011
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2 Book chapters

– “Organic Computing – A Paradigm Shift for Complex Systems”,

2011, Springer, Germany.

– “Informatics in Control, Automation and Robotics”,

2011, Springer, Germany.

8 Peer-reviewed conference papers (2 as first author – F)

– ANTS 2014 9th International Conference on Swarm Intelligence

– ANTS 2014 9th International Conference on Swarm Intelligence

– ANTS 2012 8th International Conference on Swarm Intelligence

– TAROS 2011 12th Conference Towards Autonomous Robotic
Systems (F)

– IROS 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems

– ANTS 2010 7th International Conference on Swarm Intelligence

– ICINCO 2009 9th International Conference on Informatics in
Control, Automation and Robotics

– ANTS 2008 6th International Conference on Swarm Intelligence
(F, “Best paper” award)

2 Video proceedings (1 as first author – F)

– IROS 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems (F)

– AAAI 2011 25th Conference on Artificial Intelligence (“Best
video” award)
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Structure of the dissertation
The main part of this dissertation is structured into seven chapters.
Please note that, due to the diversity of the topics of these chapters,
rather than discussing the state of the art in a separate chapter, I do
so at the beginning of Chapter 3, 4, and 5.
In Chapter , I present some general reflections on the role of ab-

straction in swarm robotics. Furthermore, I discuss the role of robot
experiments for engineering-oriented research in swarm robotics.
In Chapter 3, I present the core concepts of this dissertation and dis-

cuss why abstracting tasks in laboratory experiments is advantageous
over simply simulating them.
In Chapter 4, I provide a definition of complex tasks and their in-

terrelationships. I use this definition as a basis for my approach to
modeling complex tasks.
In Chapter 5, I present the design and implementation of the TAM.

I discuss the design goals of the TAM and detail how I attained these
goals in the implementation of the TAM.
In Chapter 6, I verify the concept of the TAM and the proposed ap-

proach to modeling complex tasks on the basis of two proof-of-concept
experiments.
In Chapter 7, I present four examples of scientific studies that are

based on the TAM: 1) a study of the costs and benefits of behavioral
specialization in swarms of robots, 2) a study on property-driven de-
sign for robot swarms, 3) a study on self-organized task allocation,
and 4) a study on collective decision-making in the context of task
partitioning.
In Chapter 8, I summarize the contributions of this dissertation and

discuss possible directions for future research.

Several appendices cover the technical aspects of this dissertation.
In Appendix A, I describe the materials I rely on in this dissertation:
the robot platform employed and the simulation framework used. In
Appendix B, I present the technical details of the TAM.

11





Chapter 2
Empirical investigation in
swarm robotics research

Swarm robotics is a promising approach to applications that benefit
from massive parallel task execution by fault-tolerant, flexible, and
scalable systems. As stated in Chapter 1, applications that fall into
this category are manifold; swarm robotics is therefore expected to
become an applied technology in the future. However, at the cur-
rent stage of the field, its application is hindered by the lack of ma-
ture technologies in many areas—for example, robust robot platforms
and reliable engineering principles. Swarm robotics is therefore facing
a typical “chicken-and-egg” problem: progress in any of these areas
generally depends on the other areas being fully developed. For ex-
ample, the development of engineering principles and group behaviors
depend—in theory—on the availability of the final robot platform for a
given application. In order to circumvent this problem and to progress
in these areas today, researchers use abstractions: experiments are
conducted with abstract representations instead of the final robots,
environments, and applications.
Abstraction allows researchers to study tomorrow’s problems with

today’s technologies; it is therefore one of the key elements in swarm
robotics research. In this chapter, I explore the role of empirical in-
vestigation in swarm robotics research and its dependence on abstrac-
tion—as we will see, a dependence that affects the type of problems
considered in swarm robotics. Furthermore, I discuss the role of robot
experiments in swarm robotics research, and relate this role to that of
simulation experiments.

13



Chapter 2 Empirical investigation in swarm robotics

By discussing these aspects of empirical investigation in swarm ro-
botics, I wish to show why swarm robotics research should also be
conducted with robots rather than solely in simulation. This is espe-
cially relevant if one considers that, due to the aforementioned lack of
mature technologies at this stage of the field, robot experiments might
be just as abstract as their simulated counterparts. In the context of
this dissertation, this leads to the following question: why should we
use physical representations of abstract tasks if we can simply simulate
everything?
The reasoning that I present in this chapter builds on the “scientific

vs. engineering” dichotomy proposed by Dorigo and Birattari (2007).
Swarm robotics research can be conveniently classified on the basis
of the goals that are pursued: some research is of a scientific and
speculative nature, while other research is engineering-oriented and
has a marked pragmatical nature.
Speculative research considers questions out of scientific interest

rather than practical necessity. As such, speculative research is driven
by scientific curiosity—while its results might find application in the
long-term, applicability is not its main purpose. An example of specu-
lative research is the work presented by Ferrante et al. (2013b), which
considers the question of how many informed robots are required to
guide a flock of uninformed ones. While this question is certainly in-
teresting, it is not tied to a given application, practical necessity, or
robotic platform.
Engineering-oriented research has the goal to develop fundamental

approaches to design and engineer artificial systems—systems that
will be employed in some, possibly future, application. As such,
engineering-oriented research is markedly pragmatic and goal-oriented.
In the context of swarm robotics, engineering-oriented research aims
to find approaches to design and engineer future swarms of robots (see,
e.g. Hamann and Wörn, 2008; Kazadi et al., 2009; Berman et al., 2011;
Brambilla et al., 2014; Francesca et al., 2014b). As stated in Chap-
ter 1, this dissertation positions itself within the engineering-oriented
research stream of swarm robotics. Accordingly, the reasoning pre-
sented in this chapter is to be considered in this context.
The topics that I discuss in this chapter are of a somewhat philo-

sophical nature as I try to isolate and denominate processes that are,
at least in the case of abstraction, rarely discussed explicitly in the
swarm robotics literature. Additionally, regarding the topic of sim-
ulation experiments versus robot experiments, I touch upon a long-
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standing debate between researchers. As a result, the positions that
I take on these topics are—at least partly—my personal views rather
than the scientific consensus.
This chapter is structured as follows. In Section 2.1, I present

some general reflections on the role of abstraction in swarm robotics
research—reflections that provide a basis for the discussion of task
abstraction in Chapter 3. In Section 2.2, I discuss the role of robot
experiments for engineering-oriented research in swarm robotics. In
Section 2.3, I provide a summary of this chapter.

2.1 Abstraction in swarm robotics research
Abstraction serves two main purposes in swarm robotics research:
First, it allows researchers to study future applications with today’s
technologies. To date, swarm robotics is practically fundamental re-
search: swarm robotics systems have not yet been successfully applied
to real-world scenarios. As stated above, this is partly due to the lim-
itations of today’s technologies; as a result, researchers are forced to
consider abstract versions of these problems. The rationale behind this
is that studying an abstract version of a given problem contributes to
developing technologies for related real-world applications. Hence, ab-
straction of future applications of swarm robotics is especially relevant
in engineering-oriented research. For example, consider de-mining:
even though robot swarms that are capable of neutralizing a mine do
not exist yet, some of the problems presented by collective de-mining
have already been studied in abstract experiments (e.g., Cassinis et al.,
1999; Kopacek, 2004; Zafar et al., 2006).
Second, abstraction allows researchers to isolate a generic problem

from a specific application. In particular, by studying an abstract
problem, researchers can ensure that an approach is sufficiently generic
to be applicable to other instances of the same problem. For example,
consider the following applications: a swarm of robots has to load a
truck with sacks of cement; and a swarm of robots has to retrieve
human casualties from a disaster site. A problem that arises in both
cases is to collectively transport objects from one location to another.
By considering an abstract version of this problem, researchers can
ensure that their proposed approach can be applied to either of these
applications.
Note that abstraction takes places whether the experiments are con-

15



Chapter 2 Empirical investigation in swarm robotics

ducted using robots or in simulation. The following therefore applies
to both types of experiments—see Section 2.2 for a discussion of the
relation between robot experiments and simulation experiments.

2.1.1 Definition, usage, and implications
Engineering-oriented research intends to find solutions to problems
that occur in some real-world application, commonly by abstracting
from these applications. But what exactly does abstraction mean in
this context?
In general terms, abstraction is “the process of considering some-

thing independently of its associations or aspects” (Stevenson, 2010,
def. 4). In the context of research, abstracting a problem means that
researchers isolate the problem from the real-world application where
it occurs. Abstraction is achieved by identifying certain aspects of the
application that are essential to the problem and retaining these in
an abstract description of the problem. Consequently, any aspects of
the application that are inessential to the problem are omitted in the
description.
Real-world applications present instances of one or multiple prob-

lems. Accordingly, they possess the essential aspects of these problems
as well as many inessential aspects. On the other hand, laboratory
experiments consider problem instances that are typically abstract in-
sofar as they possess few inessential aspects. This allows researchers
to focus on the problem of interest without having to consider many
inessential and possibly confounding aspects. In other words, abstrac-
tion allows researchers to work on a “distilled” version of the problem.
Figure 2.1 illustrates the relationship between abstract problems, in-
stances, and aspects.
Ideally, studying an abstract instance of a given problem allows

researchers to draw conclusions about all instances of that problem.
However, the validity of these conclusions depend on the steps of ab-
straction and instantiation having been performed properly. Conse-
quently, this step is critical to the design of a study; it lies within the
responsibilities of the researcher to identify and report the essential
aspects considered in a study.
In the context of swarm robotics, some aspects of a given problem

might be properties of the robots or of the environment in which the
robots operate. For example, a collective transport problem might re-
quire the robots to be equipped with a manipulator capable of lifting
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Figure 2.1: Illustration of the process of abstraction as employed in
swarm robotics research. Problem instances and abstract problems
are represented as boxes with full and dashed borders, respectively.
Instances and problems alike possess various aspects, represented as
small circles with different colors/patterns. Abstract problems possess
only aspects essential to them. Instances such as real-world applica-
tions typically possess inessential aspects in addition to the essential
aspects of the abstract problems they instantiate. Laboratory exper-
iments are abstract instances in the sense that they typically posses
all the essential and only few inessential aspects.

a certain type of object and the environment to contain such objects.
In abstract instances such as those studied in laboratory experiments,
abstract representations of robots and environment might be used.1
For example, the aforementioned problem might be studied using an
abstract representation of the manipulator-object interaction by us-
ing a robot platform equipped with a simplified magnetic gripper and
matching objects. In such an experiment, the specific robot platform is
considered in lieu of a whole class of robots that share the same aspects
(i.e., being able to lift a certain type of object). I discuss representa-
tions commonly used in the literature for the robots in Section 2.1.2
and for the environment in Section 2.1.3.

1 I adopt the view that these are two separate but interrelated dynamical sys-
tems (see Beer, 1995; Smithers, 1997).
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Figure 2.2: Example of an abstraction of a real-world application for
study in laboratory experiments. The problem selected for study re-
quires the robots to collectively move the plane wreck (on the left side).
The abstract problem is commonly called collective transportation (in
the middle). An abstract instance of this problem might employ of a
swarm of e-puck robots and a heavy cylinder (on the right side). The
e-pucks and the cylinder are abstract representations of some physical
aspects of the real-world application.

Example

Let us consider an example to illustrate the relationship between real-
world applications, problems, and abstract representations. Suppose
that the real-world application is a disaster scenario—a plane crash. In
the scenario, a swarm of autonomous robot bulldozers has been tasked
to clear the crash site of the plane wreck, as illustrated in Figure 2.2.
In order to address this mission, a large number of problems have to
be solved, for example: how to extinguish the burning plane, how
to control a robot bulldozer, how to manipulate a plane such that
it does not break apart, how to collectively push the heavy plane in
order to move it, how to navigate when smoke clouds the sensors, etc.
Typically, researchers focus on a subset of the problems that have to be
solved for a given application; which problem to study depends on the
focus of the researcher and the technologies available for representing
the physical aspects of the problem considered in an experiment.
Assume that the problem of choice is a collective behavior to move

the plane wreck—a problem commonly called collective transportation.
The essential aspects of this problem might be that robots can per-
ceive and push an object, and that the object can only be moved by
a certain number of robots. Aspects inessential to the problem might
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be that a robot bulldozer has a variety of shovel configurations or that
there is smoke emitting from the plane. In order to study this problem
in a laboratory experiment, researchers would employ abstract repre-
sentations of the physical aspects considered: the yet-to-be-invented
robot bulldozers might be represented with a swarm of e-puck ro-
bots (Mondada et al., 2009) and the object might be represented with
a cylinder of a specific weight—see Figure 2.2. Exemplary studies that
consider problems of this class have been proposed by Kube and Zhang
(1993), Campo et al. (2006), Chin et al. (2009), Ferrante et al. (2010),
and Rubenstein et al. (2013).
Another problem that arises in the same scenario might be related

to how robots manipulate the object to be transported. In this case,
the essential aspects of the problem are different from the collective
transportation problem: the manipulator of the robots and the ge-
ometry of the object in question might be the essential aspects of the
problem. Consequently, the abstract representations required to study
this problem in the laboratory also differ from the ones used for the
collective transportation problem. Exemplary studies that consider
problems of this class have been proposed by Donald et al. (1997),
Baldassarre et al. (2006), Baldassarre et al. (2007), and Groß and Do-
rigo (2009).

Impact of representations and their availability

As the example scenario shows, the study of different problems might
require different representations for robots and environments. Conse-
quently, the availability of abstract representations for robots and en-
vironments defines the problems that can be studied by the researcher.
In other words, there exists a process opposite to the process of ab-
straction described in Figures 2.1 and 2.2: the availability of certain
representations dictates the set of problems that can be studied.
One important effect of this constraining process is that researchers

often study the same kind of problems. This is due to the fact that
studying problems outside of the aforementioned restricted set of prob-
lems is costly as it requires different, possibly custom-made representa-
tions. This effect is well-known in case of robots and their capabilities:

It is clear that technological constraints have limited the
scope of implementations and task domains attempted in
multiple-robot research systems.

(Cao et al., 1997)
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However, it is less known in the case of environments where the same
effect can be observed: ad hoc representations available define the
environments—and hence problems—that can be considered in a cost-
efficient manner.
This effect creates an issue for the whole of swarm robotics research:

the frequency at which a given problem is considered in the literature
is strongly influenced by the availability of the required representa-
tions rather than by its relevance to any real-world application. For
example, foraging and flocking are often referred to as “canonical prob-
lems” in the literature (e.g., Østergaard et al., 2001; Martinoli et al.,
2004; Campo et al., 2006; Lein, 2010), a term that implies that these
problems are of great importance to many real-world applications.
However, I speculate that these problems became “canonical” due to
the fact that they can be conveniently studied rather than due to their
relevance to any real-world application.

2.1.2 Abstract robots
Robot platforms used in the swarm robotics literature can be con-
sidered abstract representations of classes of future robots. Strictly
speaking, researchers do not abstract existing robots as, to date, no
robot swarms exist that have been applied to real-world scenarios.
Instead, researchers anticipate which aspects of a robot might be re-
quired for a given problem and use available robots that possess said
aspects—a process that is very close to abstracting an existing robot.
In an experiment, the robot platform employed possesses certain

aspects essential to the problem considered. Conclusions drawn on
an approach to this problem using this specific robot platform there-
fore apply to any other existing or future platform that shares these
aspects. In other words, by studying an approach to a problem us-
ing a specific platform, researchers can demonstrate that the proposed
approach works on a whole class of robot platforms.
Unfortunately, which aspects of the employed robot platform are es-

sential to a study is rarely discussed explicitly in the literature. Excep-
tions include works that consider automatic generation of controllers
such as evolutionary robotics. For example, Jakobi (1997) identified a
base set of robot-environment interactions relevant to the problem at
hand, which he uses to develop minimal simulations of robots. Simi-
larly, Francesca et al. (2014b; 2014a) recently proposed to use a refer-
ence model to specify the aspects of the e-puck platform essential to
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Sensors/Actuators Variables
Proximity prox i ∈ [0, 1], ∠qi, with i ∈ {1, 2, . . . , 8}
Light lighti ∈ [0, 1], ∠qi, with i ∈ {1, 2, . . . , 8}
Ground gnd i ∈ {0, 0.5, 1}, with i ∈ {1, 2, 3}
Range and bearing n ∈ N and rm,∠bm, with m ∈ {1, 2, . . . , n}
Wheels vl, vr ∈ [−v̄, v̄], with v̄ = 0.16 m/s

Table 2.1: Aspects of the e-puck platform essential to the problem
considered by Francesca et al. (2014b), formally specified in form of a
reference model: prox i is the reading of the i-th proximity sensor and
∠qi is the angle at which the i-th proximity sensor is positioned with
respect to the head of the robot; lighti is the reading of the i-th light
sensor and ∠qi is the angle at which the i-th light sensor is positioned
with respect to the head of the robot; gnd i is the reading of the i-th
ground sensor; n is the number of robots in the neighborhood; rm and
∠bm are respectively the range and bearing of the m-th neighbor; vl

and vr are respectively the speed of the left and right wheel; and v̄ is
the maximum speed of the robot. Sensors and actuators are updated
with a period of 100ms. For further details on the reference model see
Francesca et al. (2014b).

the problem at hand. The proposed reference model formally defines
the required capabilities of a robot in order to generalize the proposed
approach and compare it to other approaches—Table 2.1 reproduces
their reference model.
However, despite the prevalence of using abstract robots for empir-

ical investigation, little work has been devoted to the standardization
of robot capabilities and to the creation of tools that provide standard-
ized abstractions (Pinciroli, 2014). Instead, researchers employ widely
available platforms such as the e-puck (see Appendix A), which is
becoming a de facto standard in the robotics community.
Unfortunately, the usage of de facto standards for robot platforms

has several issues. For one, in absence of a reference model as used
by Francesca et al. (2014b), the definition of the aspects essential to
the study is implicit and cannot be easily discerned from the techni-
cal description of the platform. Another issue is the previously men-
tioned bias when selecting problems to study: researchers consider
problems and approaches that can be studied with robot platforms
already available in the laboratory, omitting problems that might re-
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quire other robot platforms. Still another issue stems from the fact
that ideally, researchers should use different robot platforms that sup-
port the same set of aspects in the evaluation of an approach. Studies
that omit this step might obtain results that depend also on inessential
aspects of the chosen platform rather than exclusively on the essential
aspects. This, in turn, might render the proposed approach less trans-
ferable to other robot platforms where these inessential aspects are
not present (e.g., robots employed in a real-world application). This
issue is closely related to the difference observed between simulation
and reality, commonly called the “reality gap”—see Section 2.2.

2.1.3 Abstract environments
Environments used for laboratory experiments in swarm robotics must
satisfy several constraints. First, as discussed above, they must retain
the essential aspects of the original problem that they are supposed to
abstract. For example, the environment might be required to contain
a hill with a certain inclination or a trough that cannot be crossed by
a single robot (see, e.g., Christensen et al., 2007; O’Grady et al., 2010;
Mathews et al., 2012).
Second, environments must allow for empirical investigation with

an available robot platform. In particular, a given environment must
accommodate for the limitations of sensors and actuators of the robot
platform employed in the experiment. For example, the environment
might be required to contain areas with a special floor color or other
visual cues to accommodate for the image processing capabilities of the
robots (see, e.g., Tuci et al., 2004; Campo et al., 2011; Werfel et al.,
2014).
Third, environments must be realizable with the technologies and

resources available to the researcher. For example, consider artifi-
cial pheromones: even though a large body of works in biology and
computer science document the utility of indirect communication by
pheromones, few studies investigate their utility for robotic systems.
This is most likely due to the fact that the environments and robots
required are complex and costly to implement (see, e.g., Payton et al.,
2001; Purnamadjaja and Russell, 2007; Garnier et al., 2013; Fujisawa
et al., 2014).
Due to these constraints, researchers commonly conduct experi-

ments in highly abstract environments that are tailor-made for a spe-
cific study. In other words, environments are abstracted on an ad hoc,
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Figure 2.3: Base set of as-
pects of an environment, de-
fined as those aspects that
have interactions with the
relevant parts of the sys-
tem. Reproduced from
Jakobi (1998).

per-experiment basis—contrarily to robots, which typically persist in
the literature for a few years. As a result, the process of abstracting
environments is usually even less structured than the one for abstract-
ing robots.
Notwithstanding this lack of structure, the abstraction of environ-

ments has been discussed in the context of simulation (Jakobi, 1993;
Pinciroli, 2014). As with any abstraction, the issue lies with the se-
lection of those aspects of the original environment that must be re-
tained in the abstract simulation environment. Again, studies of au-
tomated controller generation address this issue more explicitly than
other studies—most likely due to the fact that they depend heavily on
simulation experiments and thus suffer from the “reality gap” (see Sec-
tion 2.2). For example, Jakobi (1993, 1998) discussed abstraction and
selection of an environment’s essential aspects explicitly by proposing
an approach for identifying what he calls a “base set” of environmental
aspects that must be retained—see Figure 2.3.
In some cases, robots interact with the environment purely by ar-

ranging themselves in space, for example, in spatially organizing be-
haviors such as flocking and navigation behaviors. In other cases,
robots interact with the environment through physical objects. For
example, in the previously mentioned plane-crash scenario, the robots
have to interact with the plane in order to perform the collective trans-
port task. If the physical object is an essential aspect of the problem,
the abstract representation used for this object in an experiment is a
critical part of the experimental design.
Abstraction and representation of physical objects is related to task

abstraction as considered in this dissertation. Task abstraction in gen-
eral is the process of considering a task independently of those of its
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aspects that are not relevant for the study at hand. Task abstraction as
considered in this dissertation concerns tasks that involve interactions
of the robot swarm with physical objects or their abstract representa-
tions. In Chapter 3, I define task abstraction in more detail, discuss
the state of the art, and present a novel approach to abstracting and
representing tasks in a generic way.

2.2 Robot experiments vs.
simulation experiments

Since the creation of computer-based simulations of robot systems,
researchers have been discussing whether simulations of robot systems
are sufficiently accurate to predict the behavior of their counterparts
in reality. This discussion is becoming even more relevant due to the
fact that today’s simulators are significantly more accurate than those
available in the nineties when researchers became first aware of the
issue. As a result, simulation experiments are not only an integral part
of swarm robotics research, but are also starting to replace experiments
involving robots entirely. After all, if the studied system is highly
abstract as discussed in Section 2.1, why not simulate everything? In
this section, I propose my answer to this question, first by discussing
simulation experiments and the “reality gap”, then by discussing the
role of experiments involving robots.

2.2.1 Simulation and the “reality gap”
Simulations not only reduce the cost of developing new approaches but
can also help to minimize the risk of harming humans and damaging
robots (Pinciroli, 2014). As a result, studies of approaches that re-
quire many iterations (e.g., automatic controller generation) or large
groups of robots depend heavily on simulation experiments. Conse-
quently, simulations are an essential tool for developing swarm robotics
systems.
However, notwithstanding all their advantages, simulations have

long been criticized for their potential of producing systems that are
overly simplified (Brooks, 1987, 1991; Smithers, 1994). Critics com-
monly question the usefulness of simulations with the argument that
systems developed in simulation often do not translate to real-world
systems:
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There is a real danger (in fact, a near certainty) that pro-
grams which work well on simulated robots will completely
fail on real robots because of the differences in real world
sensing and actuation—it is very hard to simulate the ac-
tual dynamics of the real world.

(Brooks, 1992)

Indeed, systems developed in simulation often exhibit bad performance
when transferred to reality (Brooks, 1992; Jakobi et al., 1995).
The “reality gap” refers to the difference between simulation and

reality (Jakobi, 1998; Francesca et al., 2014b); accordingly, transfer-
ring a system developed in simulation to reality is commonly called
“crossing” the reality gap. Systems that are developed exclusively
in simulation are sensitive to the reality gap—for example, systems
developed using approaches based on artificial evolution such as evo-
lutionary robotics (Jakobi et al., 1995; Nolfi and Floreano, 2000). The
effect of the reality gap is particularly relevant in complex systems,
where small but unavoidable differences between simulation and real-
ity could lead to widely diverging behaviors. Swarm robotics systems
are an example of complex systems that are highly sensitive to the re-
ality gap—a sensitivity that, depending on the goals of the researcher,
might be a critical factor when evaluating approaches.

2.2.2 The role of robot experiments
Arguably, the reality gap is shrinking due to the aforementioned in-
crease in accuracy of today’s simulators. For example, modern simu-
lators such as ARGoS (see Pinciroli et al., 2012, and Appendix A) are
able to simulate motion dynamics, sensor noise, and other aspects with
reasonable accuracy. Thus, considering the capabilities of today’s sim-
ulators, what is the justification for experiments with robots? More-
over, if—as stated in Section 2.1—all experiments in swarm robotics
consider only highly abstract versions of the original problem, why not
simulate everything?
The answer to this question is of a philosophical nature, and might

be answered differently by different roboticists. In my opinion, there
are two main reasons for conducting experiments with robots, both
related to the transferability of approaches between simulated and
real systems.
The first reason is that conducting both simulation and robot ex-

periments allows researchers to draw conclusions about the transfer-
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ability of their approach between robot platforms. This is due to the
fact that simulated robots always differs from their real-world counter-
parts (Brooks, 1992; Pinciroli, 2014). In other words, simulated robots
are essentially another robot platform that shares some aspects with
the real-world robot platform. As discussed in Section 2.1.2, by study-
ing an approach on two different robot platforms that share a certain
set of aspects, researchers can draw conclusions on the applicability of
the approach to all platforms with this particular set of aspects. In this
context, researchers can not only draw conclusions about the trans-
ferability of their approach between simulation and physical systems,
but also about its transferability to any robot platform that shares the
same set of aspects—existing or future. This process is illustrated by
the vertical arrow on the left side of Figure 2.4. Consequently, using
both types of experiments for studying the same system has the poten-
tial to alleviate the problem mentioned in Section 2.1.2: approaches
that are evaluated exclusively on a single robot platform might yield
results that depend on inessential aspects of this platform rather than
on the essential aspects of the problem.
The second reason is related to the motivation of the research con-

sidered. As previously mentioned, speculative research is not tied to a
given application, practical necessity, or even robotic system. Conse-
quently, speculative research can, in most cases, be conducted solely
in simulation—experiments with robots are typically not a strict re-
quirement. Engineering-oriented research, on the other hand, aims
at developing fundamental approaches for designing and engineering
artificial systems—systems that will be adopted in (possibly future)
applications. I expect that future robot swarms will be engineered
following the same principles used in most areas of engineering today:
systems are developed using computer-aided simulations and subse-
quently transferred to the real world—this process is illustrated by
the vertical arrow on the right side of Figure 2.4. Another reason to
assume that simulations will play a major role in the development of
future robot swarms is due to the complexity of robot swarms—it is
not to be expected that they could ever be developed using only an-
alytical methods. By following the same engineering principles today,
researchers can assess whether an approach can be successfully trans-
ferred between simulation and robots (i.e., cross the reality gap). I
speculate that approaches robust enough to sustain this transfer are
more likely to be transferable to future real-world applications—this
process is illustrated by horizontal arrows in Figure 2.4. Accordingly,
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Figure 2.4: Relationship between experiments involving real and sim-
ulated versions of today’s abstract and future real-world systems. Re-
searchers abstract future systems to ones based on today’s technolo-
gies. Approaches that are transferable between abstract simulated and
real-world systems can be transferred to future systems, provided that
the initial abstraction faithfully captured the essential aspects of the
problem.

I propose that robot experiments are, together with simulation ex-
periments, a requirement for engineering-oriented research in swarm
robotics.

For these two reasons, I consider the assessment of a system using
robot experiments essential to any engineering-oriented research in
swarm robotics. As a result of the discussion in this section, I can
make two conclusions: First, speculative research is free to chose any
system that retains the essential aspects of the problem considered,
be it simulated or real. Second, simulation experiments are just as
essential for engineering-oriented research in swarm robotics as robot
experiments.
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2.3 Summary
In the first part of this chapter, I established that all experiments
conducted to date in swarm robotics are heavily abstracted and that
the process of defining this abstraction is a crucial but often implicit
step in the design of an experiment. I reviewed the few explicit ap-
proaches to abstraction found in the literature and discussed their
common trait: isolating the aspects of a system that are essential to
the problem studied.
The key finding of this chapter is that, to date, little effort has been

made to systematically abstract the experimental environment. This
is especially relevant considering the fact that the available represen-
tations strongly influence the type of problems that can be studied
by researchers. In other words, the lack of a systematic approach to
abstraction limits the variety of problems studied in swarm robotics.
Furthermore, the ad hoc representations used to date threaten the ce-
teris paribus2 assumption: the reproducibility of studies is generally
low in swarm robotics.
In the second part of this chapter, I argued that experiments involv-

ing robots are essential to any engineering-oriented research in swarm
robotics. This also has implications for the type of problems that can
be studied: robot experiments are even more constrained in the va-
riety of problems than simulation experiments due to the fact that
creating the required physical representations of the environment is
difficult and costly.
In the following Chapter 3, I introduce a novel set of tools to alle-

viate these issues: a generic abstract representation for tasks in robot
experiments and a modeling approach that allows researchers to ab-
stract tasks of various complexity.

2 lat., with other things being the same
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Chapter 3
Task abstraction
and the TAM

Task abstraction is prevalent in the swarm robotics literature: as es-
tablished in Chapter 2, almost every study is conducted in abstract
laboratory environments where robots perform highly idealized tasks.
While this fact is well understood, to date no effort has been made
in the literature to formalize the concept of task abstraction. In this
chapter, I introduce a novel set of tools to abstract and represent tasks
of various complexity in robot experiments.
This chapter is structured as follows. In Section 3.1, I define task

abstraction as used in the context of this dissertation. In Section 3.2,
I review the state of the art in task abstraction. More specifically,
I discuss the various types of ad hoc solutions used for task abstrac-
tion in the literature. In Section 3.3, I outline the novel tools for
task abstraction that are the main contributions of this dissertation.
More specifically, I introduce the TAM: a device that can represent a
single-robot stationary task in laboratory experiments. I outline how
to abstract complex multi-robot tasks so that a group of TAMs can
be used to represent them. Furthermore, I discuss the advantages and
limitations of the TAM and describe which problem classes can po-
tentially benefit from it. In Section 3.4, I provide a summary of this
chapter.
Note that the terms introduced in this chapter are closely related

to further terms introduced in Chapter 4. In order to facilitate un-
derstanding, I summarize the key terms used in this dissertation in
Table 3.1.
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Term Definition Section

task A unit of work that has to be per-
formed by the robots.

3.1.1

stationary task Tasks that require robots to be busy
for a given duration at a specific lo-
cation and at a specific moment in
time.

3.1.1

single-robot task A task that can be performed by a
single robot in a defined time win-
dow.

3.3.1

stationary single-
robot task

A task that is both single-robot and
stationary.

3.3.1

atomic task A task that cannot be decomposed
into subtasks. In the context of this
dissertation, atomic task are always
stationary single-robot tasks.

4.2.2

complex task A task that can be decomposed into
atomic subtasks that have interrela-
tionships between them.

3.3.1,
4.2.2

interrelationship A mutual relationship between two
atomic tasks that defines the condi-
tions of their execution.

3.3.1,
4.2.2

sequential inter-
relationship

An interrelationship between sub-
tasks that requires that these sub-
tasks are executed in a given order.

4.2.2

concurrent inter-
relationship

An interrelationship between sub-
tasks that requires that these sub-
tasks are executed at the same time.

4.2.2

Table 3.1: Glossary of key terms used in this dissertation. “Section”
indicates the section number in which the respective term is defined.
Note that I indicate two section numbers for “complex task” and “in-
terrelationship” as these terms are redefined more precisely in Chap-
ter 4.
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3.1 Task abstraction
As mentioned in Chapter 2, I define task abstraction as the process of
considering a task independently of those of its aspects that are not
relevant for the study at hand.
In this dissertation, I consider abstraction of tasks that involve in-

teractions of the robot swarm with physical objects. The abstraction
and representation of the involved physical objects in an experiment is
central to the study of any problem that concerns tasks of this kind—
for example, studies of task allocation and task partitioning.

3.1.1 Stationary tasks
In the context of this dissertation, a task is a unit of work that has
to be performed by the robot swarm. A stationary task is a task that
involves interactions of the robot swarm with some stationary physical
objects: in order to address a stationary task, robots have to interact
with these objects. More precisely, stationary tasks are tasks that
require robots to be busy for a given duration at a specific location
and at a specific moment in time.
Stationary tasks can be abstracted by isolating and reproducing the

aspects that are relevant to the problem to be studied, while disre-
garding all irrelevant aspects. More specifically, stationary tasks can
be studied in an experiment using abstract representations of these
tasks that retain the relevant aspects of the tasks at hand (cf. Chap-
ter 2). The specification of these essential aspects is highly domain-
dependent; it is therefore the obligation of the researcher to identify
and describe these aspects.
Commonly, the essential aspects of a stationary task include, but

are not limited to:

• the capabilities of the robots required to perform it,

• the location at which robots have to interact with the stationary
task,

• the time at which the task becomes available, and

• the duration of performing the task.

For example, assume two buttons in the environment that can be
pressed by the robots. The task of pressing a button can be represented
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in an experiment with an abstract object, a specially demarcated area,
or a real button—basically anything that retains the essential aspects
of the task: capabilities, location, time, and duration. Other essential
aspects of a single task can be envisioned, for instance, that it can only
be performed by a specific robot or a subset of the available robots.

3.1.2 Interrelationships
Continuing with the same example, assume further that the buttons
must be pressed at the same moment in time in order to achieve some
higher-level goal. Accordingly, the abstract tasks must be executed
concurrently—that is to say, there exists an interrelationship between
those tasks. This interrelationship is an essential aspect to the higher-
level goal, which can be seen as a task that includes the two stationary
tasks (the buttons) and their interrelationship (concurrency).
For example, consider an extension of the plane-crash scenario of

Chapter 2 in which robots first have to dump remaining fuel from
the plane, then rescue the remaining victims, and eventually push the
wreckage away. The logical relationship between the tasks is that they
have to be executed one after the other—an aspect of the problem that
must be retained in an experiment if this relationship is essential to
the problem.
For further examples, consider a hypothetical swarm-operated as-

sembly line where one group of robots drills holes through several
parts and another group subsequently bolts them together; or imag-
ine a swarm of nano-bots that extirpate cancer cells: one group of
robots identifies and marks tumors; another group subsequently de-
stroys them.
While task execution is completely different in these examples, the

logical relationship between the tasks is the same: the tasks have to
be executed one after the other. If the focus of the research is to
develop coordination mechanisms that allow a swarm to tackle tasks
with this kind of logical relationships, it might be desirable to isolate
the logical relationship from the details of task execution and focus
on it, rather than spending resources on inessential aspects of the
implementation. Consequently, the essential aspects of the problem,
and thereby the tasks and their representation in the physical space,
include this interrelationship.
Conventionally, stationary tasks without interrelationships are rep-

resented in an experimental environment by using special objects or
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other robots—see Section 3.2 for a review of the state of the art. How-
ever, representing interrelationships between tasks is not trivial due to
the fact that the interrelationships do not have readily available rep-
resentations that lend themselves to experimentation. As a result,
researchers either ignore interrelationships or study those that can be
represented with little effort in an experiment. This is one of the rea-
sons for the effect discussed in Chapter 2: the task representations
available to a researcher limit the problems that this researcher can
study.

3.2 State of the art
In this section, I discuss the different types of ad hoc solutions used in
the literature for task abstraction. Furthermore, I discuss the advan-
tages and disadvantages of each type, which provides me with impor-
tant insights for the conceptual design of the TAM in Section 3.3 and
its implementation, discussed in Chapter 5.

3.2.1 Classification of the literature by task
abstraction used

In the following, I classify the literature depending on the type of
ad hoc solution used to abstract tasks. I distinguish between these
solutions:

• virtual (simulated and/or disembodied tasks);

• passive objects (inanimate physical objects);

• active objects (some form of sensing and/or actuation present);

• robots (a powerful form of active object).

For the sake of brevity, I refer in the following to a given ad hoc solution
for task abstraction simply as solution. Note that not all solutions used
in the literature fit this rigid classification scheme and might possess
elements of several of the solutions identified by me.
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Virtual

Virtual solutions to task abstraction represent a stationary task in a
virtual way: task execution is simulated in the robot’s controller rather
than leaving an impression on the environment. As such, experiments
using this type of solution “blur the line” between robot experiments
and simulated experiments—the environments using virtual solutions
can be considered an “augmented” reality.
An example for a task abstracted using a virtual solution is an object

retrieval task where objects are not physically present. Instead, objects
are simulated using a special logic internal to the controller of each
robot. In this case, retrieval and deposit of objects are possible when
the robot is at specific locations, commonly designated with some
environmental cue (e.g., different ground colors for the source and
nest). This type of virtual solution is commonly used when studying
foraging tasks with robots that do not possess advanced manipulation
capabilities, such as works using the Jasmine robot3 (Kernbach et al.,
2012), the e-puck4 (Acerbi et al., 2007; Alers et al., 2011; Francesca
et al., 2014b; Brambilla et al., 2014), or the Kilobot5 (Rubenstein et al.,
2011).
Other works represent the problem of distinguishing between op-

tions of different quality using paths between two locations. In such
a scenario, the quality of a path is the cost associated with taking
this path and different qualities can be modeled by varying the rela-
tive lengths of the paths. For example, Scheidler et al. (2014) used
an experimental setup similar to the famous “double bridge” exper-
iment (Goss et al., 1989; Deneubourg et al., 1990) to abstract two
tasks of differing duration. A similar task has been studied by Campo
et al. (2010b), with the difference that the swarm uses pre-established
chains of robots between the two locations rather than moving in the
environment.

Passive objects

Passive objects are inanimate physical objects that can be transported
or otherwise manipulated by the robots. Passive objects are commonly
used in foraging experiments as they evidently retain the essential as-
3 http://www.swarmrobot.org/
4 Mondada et al. (2009)
5 Rubenstein et al. (2012)
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pects of various object transportation problems. However, some form
of abstraction is commonly present, for example in form of specific col-
ors or shapes to accommodate the limited sensing and manipulation
capabilities of the robots (see Brutschy et al., 2012a; Pini et al., 2013a,
for an example of objects that have been designed for a specific robot
platform).
Most studies that use passive objects consider single-robot forag-

ing tasks (e.g., Parker, 1998; Krieger and Billeter, 2000; Labella et al.,
2006) or bucket-brigading tasks (e.g., Fontan and Matarić, 1996; Gold-
berg and Matarić, 2002; Pini et al., 2013a). In both type of tasks, the
manipulation capabilities required are limited to the pickup and de-
posit of the object. The Swarmanoid project (Dorigo et al., 2013)
studied an object retrieval task using a book as the passive object.
Here, an essential aspect of the task is that it cannot be executed by
all robots of the swarm. Instead, only robots of a certain type are
equipped to perform the task by gripping the object.
Similarly to foraging tasks, collective transport tasks have been ab-

stracted with passive objects that have to be transported by the ro-
bots (Donald et al., 1997; Kube and Bonabeau, 2000; Groß and Dorigo,
2009). In these works, an essential aspect of the task is that the ob-
ject cannot be moved by a single robot—the representation used is
designed such that a specific number of robots is required to move it,
typically by ensuring a specific weight of the representation.
In their seminal stick-pulling experiment, Ijspeert et al. (2001) used

passive objects to study a problem where two robots have to collabo-
rate to extract a stick from a hole in the ground. The length of the
stick requires robots to act sequentially: first one robot pulls the stick
from the hole to approximately half its length; then another robot
continues to pull the stick so that it can be fully extracted from the
hole. The essential aspect of the problem, other than the sequential
interrelationship, is that the overall task fails if the first robot aborts
before the second arrives (a “blocking” sequential interrelationship).
This aspect is represented by the fact that the stick falls back into the
hole if released.

Active objects

Active objects are (usually custom-built) devices that possess some
form of sensing or actuation. Using tailor-made active objects for task
abstraction is less common in the literature, most likely due to the
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cost of building a custom device.
Matarić et al. (2003) used active objects to represent alarms that

have to be attended by the robots. In the study, objects are essen-
tially speakers that sound an alarm that can be sensed by the robots.
Additionally, objects are marked with passive color patches for visual
recognition. The essential aspect of the problem was that alarms can
sound at random times. The use of active objects allowed the authors
to represent this aspect—something that would not be possible with
passive objects.
Tuci et al. (2006), Nouyan et al. (2009), and Baldassarre et al. (2007)

used an active device to study a collaborative transport task. The
device, called “s-toy”, is designed to work in conjunction with the s-bot
robot: it is equipped with LEDs for signaling different task types and
a special ring that allows it to be gripped by the s-bot. The essential
aspect of the problem retained by this representation is the fact that
the object’s weight forces the robots to collaborate in order to move
it. To this end, the experimenter can regulate the weight of the object
so that varying numbers of robots are required for the task. The fact
that the objects possess a special ring grippable by the s-bot represents
another aspect of the problem: robots can pull objects.
Kube and Bonabeau (2000) used similar, robot-specific objects to

represent a collaborative transport task, although with the restriction
that robots can only push the object. The problem considered by
Kube and Bonabeau (2000) is therefore different from the one studied
by Tuci et al. (2006) and Baldassarre et al. (2007).
A class of active objects that is commonly used for task abstraction

are research robots. In this case, a subset of the available robots act
as tasks (e.g., objects to be acted upon), while the rest of the robots
are available for experimentation.
Several works focusing on collective transport used robots for task

representation (Ferrante et al., 2013a; Dorigo et al., 2013). Similar
to the collective transport tasks discussed above, the essential aspect
retained is that a robot can only be moved by several others, either
by pushing and pulling.
Brutschy et al. (2014c) used s-bot robots to represent “prey” objects

to be harvested and transported by a swarm of s-bot robots. The ro-
bots used as prey objects are actively controlled to change the colors
of their LEDs, which facilitates sensing by the robots. Furthermore,
robots representing objects were mounted on sliding platforms to ac-
count for the aspect that objects can be transported by a single robot.
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Another essential aspect of the problem is that transfer of objects be-
tween two robots is blocking, that is, both robots must grip the object
together in order to transfer it. This aspect was represented changing
the LEDs of the prey object when both robots gripped the object.

3.2.2 Discussion
In the following, I discuss the advantages and disadvantages of the
different solutions used in the literature.
Virtual solutions possess the convenience and flexibility of simu-

lated experiments: all parameters are internal to the robot and can
be changed with little effort. Furthermore, the development of an ab-
stract task representation can happen alongside with the development
of the robot’s control software. As a result, researchers using virtual
solutions can control the experimental setting in a convenient manner.
Unfortunately, there are many disadvantages of virtual solutions.

First, a clear separation between the logic that controls the robot and
the logic that controls the tasks is difficult to achieve and can lead to
mistakes that threaten the rigor of the experiment. Second, certain as-
pects of a given task such as congestion or resource limitations cannot
be easily represented. Third, task representation is dependent on the
hardware of the robots and a malfunction might threaten the integrity
of the experimental records. Fourth, some problems might possess
task-related aspects that are difficult to implement in a decentralized
manner—for example, consider a problem in which the availability of
tasks follows complex temporal patters.
The advantage of passive objects is that they are perfectly suitable

for simple foraging tasks, as illustrated by the review of the literature.
Furthermore, passive objects are widely available and cheap to obtain.
However, representing task interrelationships with passive objects

is limited to simple sequential interrelationships as in foraging. More
complex foraging tasks can theoretically be conceived, but the com-
plexities of the manipulation behaviors and the resulting cost of the
experiment effectively prevent researchers from studying foraging tasks
with complex interrelationships. Additionally, the robots have to be
equipped to manipulate the passive objects, which is not the case for
the vast majority of robots employed in swarm robotics research. Fi-
nally, passive objects can neither represent essential aspects of a task
such as its duration nor can they represent tasks that require disparate
robot capabilities.
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Active objects combine the flexibility of virtual solutions with the
physical tangibility of passive objects—their advantage is that they
allow for the flexible definition of a task’s essential aspects while being
a tangible object in the physical space. The disadvantages of tailor-
made active objects are their cost and the effort required in order to
create them. Reusable, generic active objects would solve the problem
of cost, but would require even more effort to create. As a result,
to date, all custom-built active objects are highly specialized and can
only be used for certain limited problems.
Begin active objects themselves, robots share the advantages of

tailor-made active objects with the difference that robots are readily
available. However, depending on the robot platform employed, this
choice has several drawbacks. First, many simple robots such as the
e-puck have only single-color LEDs and thus cannot represent tasks
of different types. Second, robots often lack scalable wireless commu-
nication capabilities6 and therefore can be used neither to represent
tasks with complex interrelationships nor to collect reliable statistics
in a large experiment. Third, when conducting swarm robotics exper-
iments, robots are typically a scarce resource: swarms are required to
be large in order to observe the desired group dynamics. Using some
of the available robots to represent tasks in an experiment reduces the
size of the swarm that can be studied, and therefore limits the type of
studies that can be undertaken with the swarm.
Note that the first and second drawback depend on the capabilities

of the robots employed, and might therefore be alleviated by using
more complex robots. Unfortunately, this aggravates the third draw-
back, making this solution only viable if cost is not a limiting factor
for the experiment at hand.
In comparison with the other solutions mentioned, robots have the

advantage that they possess sensors that can be readily employed to
record experimental data. However, robots suffer from some noise and
uncertainty in their perception of the environment, caused by imper-
fect sensors. If the experimental framework relies on the same sensors,

6 Even though the great majority of robots possess some means of wireless com-
munication, these robots are commonly not suitable for representing a task
due to the limited scalability and range of their communication means. For
example, Bluetooth is limited to a maximum of 8 short-range, point-to-point
serial connections; wireless Ethernet is not well-suited due to scalability issues
beyond tens of clients as it uses a centralized network topology rather than a
meshed network topology.
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and thus suffers the same noise and uncertainty as the robots them-
selves, the accuracy of the experimental records might be undermined.

3.3 The TAM: A novel approach to task
abstraction and representation

In this section, I introduce the main contribution of this dissertation: a
structured approach to abstracting and representing tasks that enables
researchers to represent the logical interrelationships between tasks in
a generic and flexible manner. I begin by defining stationary single-
robot tasks and continue by describing how to represent such tasks in
laboratory experiments using a special device that I call the TAM. I
then outline how this device can be used to represent more than just
single-robot tasks; more specifically, how the TAM can be used to rep-
resent tasks that consist of many interrelated subtasks. Furthermore,
I discuss the advantages and limitations of the TAM.

3.3.1 Task abstraction and representation
As stated in Section 3.1, I only consider the abstraction of stationary
tasks in this dissertation, that is, tasks that involve interactions of the
robot swarm with physical objects at a specific location. In the follow-
ing, I define two types of abstractions that act as the basic “building
blocks” for modeling tasks of various complexity.

Stationary single-robot tasks

In the context of this dissertation, I call a single-robot task a task
that can be performed by a single robot in a defined time window.
Furthermore, I call a stationary single-robot task a task that is both
single-robot and stationary. In other words, a stationary single-robot
task is an abstraction of any task that requires a robot to be busy for a
given amount of time at a specific location and at a specific moment in
time. Examples of stationary single-robot tasks are “push a button”,
“hold a door open for a given amount of time”, and “guard a specific
location”.
Conceptually, the TAM is a device that can represent single-robot

stationary tasks, that is, their presence in the physical space. Task
representation by the TAM is preceded by a step of task abstraction:
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Figure 3.1: A picture of an implementation of the TAM concept for the
e-puck robot. The TAM is an abstract representation of a stationary
single-robot task. The behavior of multiple TAMs can be coordinated
to implement interrelationships between the complex tasks they rep-
resent.

the original task is abstracted to those of its aspects essential to the
study at hand (see Section 3.1). The TAM can also represent variable
aspects of a task, for example, duration and availability in time. In
this section, I present the general concept of the TAM. See Chapter 5
for an implementation of this concept intended for use with the e-puck
robot (see Appendix A for more information on the e-puck).
Physically, the TAM is an object of roughly cubical shape that can

be conveniently placed in an experimental environment. Each TAM
represents an instance of a stationary single-robot task. See Figure 3.1
for a picture of an implementation of the TAM for the e-puck robot.
The TAM can announce the presence and availability of the task

it represents, for example, by using visual communication. Different
types of tasks can be represented by using different signals. The signal
emitted by a TAM can be perceived by the robots: if a robot detects
a TAM in its proximity, it can decide to work on the associated task
by moving to the location of the TAM. Once a robot has moved to the
location of the TAM, it is considered to be working on the stationary
single-robot task represented by the TAM. The robot has to remain
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at the location of the TAM for the duration of the task in order to
successfully complete the task.

Complex tasks and interrelationships

I call a complex task a task that can be abstracted by decomposing
it into a collection of stationary single-robot tasks, referred to as sub-
tasks. These single-robot subtasks might require to be performed in a
given order or concurrently. I call the logical and hierarchical structure
of the subtasks the interrelationship between subtasks. The essential
aspects of a complex task is the sum of the essential aspects of its
subtasks, plus the interrelationships between these subtasks.
Stationary single-robot subtasks might be contiguous in space or

might take place at different locations. In the latter case, robots might
need to travel from one location to another in order to carry out the
complex task. This implies that a complex task that is composed of
stationary single-robot subtasks could be non-stationary.
Examples of complex tasks are “harvest an object and store it at a

given location”, “open a faucet while holding a bucket under it”, and
“push two buttons at the same time at different locations”.
Note that complex tasks are not necessarily multi-robot tasks. For

example, a complex task might require a single robot to execute several
single-robot subtasks, one after the other. However, due to the nature
of the TAM, it is not possible for a single robot to execute two tasks
at the same moment in time.
In Chapter 4, I present a novel approach to modeling complex tasks

as a set of single-robot subtasks and their interrelationships. In the
resulting model, the complexity of the original task lies in the inter-
relationships between its single-robot subtasks. In order to represent
these interrelationships, the behavior of the TAMs representing the
single-robot tasks must be coordinated. To this end, I also propose a
centralized framework for controlling a group of TAMs such that the
behavior of the group implements the model of the complex task.

3.3.2 Relation to simulation
As discussed in Chapter 2, simulation is a cost-effective tool for study-
ing robotic systems that runs the risk of over-simplifying said systems.
Robot experiments, on the other hand, are costly but essential in or-
der to be able to draw conclusions about the transferability of a given
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approach between robot platforms.
The TAM is a device that operates at an intermediate level of ab-

straction between the task representations as used simulation and
robot experiments. The TAM achieves this by mimicking the essen-
tial aspects of the task that it abstracts. As such, the TAM can be
considered a task emulation similarly to hardware emulators used in
integrated circuit design. Accordingly, the advantages of emulating a
task through the TAM as opposed to simulating it are similar to those
gained by emulating a circuit with special hardware emulators: an ap-
proach can be studied in situ, that is, in the environment in which it
is intended to be used. In the case of the TAM, this means that tasks
can be studied in laboratory experiments that use robots rather than
in fully abstracted simulations.

3.3.3 Advantages of the TAM
The TAM has many advantages for swarm robotics research. First, the
TAM facilitates research on complex tasks. To date, the complexity
of tasks studied in the literature is primarily limited by two factors:
the capabilities of the robots employed, and the type of ad hoc task
abstraction used—see Section 3.2. The TAM is capable of abstracting
and representing tasks of various complexity, which can be studied
with relatively simple robots. The TAM therefore enables research on
complex tasks that was prohibitively costly before.
Second, the TAM allows researchers to study complex tasks using

relatively simple and inexpensive robots. Performing a complex task
with robots as simple as the e-puck often requires adding task-specific
hardware capabilities (e.g., by adding a specialized gripper). The TAM
allows researchers to use generic robots for studying complex tasks,
thereby reducing the cost of hardware.
Third, the TAM allows researchers to focus on the aspects that are

relevant to a study when designing the software that governs the be-
havior of the robots. Hence, the TAM enables the development of
strategies that are generic, portable and reusable, as it is not encum-
bered by task-specific details.
Fourth, the TAM provides infrastructure essential for conducting

experiments with large swarms. The TAM helps researchers to record,
analyze and correlate data of real-robot experiments; activities that
are essential to conducting rigorous experiments. This becomes espe-
cially valuable when conducting experiments involving large swarms:
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while a few robots are easily handled, the cost of handling large swarms
becomes quickly prohibitive with an increasing number of robots (Carl-
son et al., 2004). In order to alleviate this problem, one has to provide
automated infrastructure that supports the researcher in conducting
experiments (McLurkin et al., 2006).
Fifth, the TAM provides a general and unified approach to task

abstraction, which alleviates the problem of reproducibility in robotic
experiments.
In summary, the TAM allows researchers to avoid aspects of a study

that are:

• very expensive in terms of hardware,

• time consuming to perform,

• problem specific and thus not transferable,

• outside the goals of swarm robotics research.

Note that none of these advantages are exclusive to the TAM. For
example, one could devise problem-specific ad hoc abstractions rep-
resenting complex tasks (e.g., Ijspeert et al., 2001), build or extend
robots so that they possess the required capabilities (Magnenat et al.,
2012), use software development strategies for separating generic be-
haviors from task-specific ones (e.g., Brooks, 1986), or employ a swarm
of graduate students to track every robot’s movements. However, all
of these solutions incur a cost, often to the point where cost becomes
the decisive factor in the design of a study. Furthermore, none of these
solutions are generic in the sense that they cannot be easily applied
to different problems.
As a result, all of the advantages discussed above can be conceived

as a reduction in cost. This leads to the following succinct observation
of the TAM’s advantages:

The advantage of the TAM is cost reduction.

While this observation is rather humble, one has to realize that cost,
monetary or other, is the main limitation when studying artificial sys-
tems in general and swarm robotics systems in particular.
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3.3.4 Limitations of the TAM

As previously mentioned, the TAM is limited to stationary tasks, that
is, tasks that concern objects with a fixed location in the environment.
The TAM is therefore of little use for tasks that evolve in space, for
example, spatially organizing behaviors or navigation behaviors.

Even though the TAM is limited to stationary tasks, object trans-
portation tasks can be represented using the TAM as long as transport
occurs from one fixed location to another fixed location. An example
of this type of task is a typical foraging scenario where objects are
harvested from a source and transported to nest.7 In such a scenario,
the source and the nest can be modeled as a collection of stationary
single-robot tasks represented by a group of TAMs, and parameters
such as capacity of the central place can be regulated by the number
of TAMs used.

Certain object transportation tasks, on the other hand, are not
suited to be represented by the TAM. An example is a collective trans-
port task in which robots implicitly communicate their goal direction
by analyzing the forces that occur when physically manipulating the
object to transport (see, for example, Donald et al., 1997; Baldassarre
et al., 2006, 2007).

Arguably, the TAM might suffer from a discrepancy between exper-
iment and application similarly to the reality gap discussed in Chap-
ter 2: in case the TAM does not properly reflect the essential aspects
of the problem at hand, conclusions drawn in the experiment might
not be valid for the final application. However, this is the case for
all abstract task representations—it remains the responsibility of the
researcher to identify the essential aspects of a task and to decide if
employing the TAM (or any other representation) is justifiable. Swarm
robotics usually focuses on group dynamics and collective processes;
as stated in Chapter 2, I believe that it is always advantageous to
conduct experiments in reality and abstract from inessential aspects
of the environment rather than to conduct the entire experiment in
simulation.

7 In the literature, this is often referred to as source/sink setup or central-place
foraging (Orians and Pearson, 1979).
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3.3.5 Classes of problems that benefit from the TAM
In this section, I discuss classes of problems whose study potentially
benefits from the TAM. Complementary to this high-level discussion,
I discuss concrete examples of tasks studied in the literature that can
be represented with the TAM in Chapter 4, Section 4.5.
The TAM is a task representation that is highly abstracted; its in-

tended purpose is to represent tasks in studies where the details of
task execution are inessential to the result (see Section 3.3). Further-
more, the TAM allows researchers to conduct experiments using real
robots for studies that would otherwise be confined to simulation (see
Section 2.2). As a result, the primary beneficiaries of the TAM are
studies that:

• focus on group dynamics and collective processes rather than the
specifics of task execution,

• involve large numbers of relatively simple robots,

• consider stationary tasks,

• are difficult to conduct using the original task due to the com-
plexity of the task and/or the limitations of the robots.

Generally speaking, studies that benefit from the TAM are all swarm
robotics studies that consider stationary tasks that have to be per-
formed by the robots. More specifically speaking, studies that con-
sider collective decision-making behaviors such as self-organized task
allocation and task partitioning benefit most from the TAM.

3.4 Summary
In this chapter, I discussed task abstraction and my contribution to
it. After defining task abstraction and its role in swarm robotics, I
reviewed abstract task representations commonly used in the litera-
ture and discussed their advantages and drawbacks. I then introduced
the TAM: a special device for task representation that is sufficiently
generic and flexible to represent tasks of various complexity.
The TAM lies at the core of a novel set of tools for task abstraction

that are the main contribution of this dissertation. Alone, the TAM
can represent single-robot stationary tasks. In order to represent more
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complex tasks, a preceding abstraction-step is required in order to
model said tasks as a set of interrelated single-robot stationary tasks—
in the following Chapter 4, I present a novel approach to this end.
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Chapter 4
Abstracting and representing
complex tasks

In this chapter, I present a novel approach to abstract complex tasks.
The primary goal of the approach is to enable uniform physical rep-
resentations for complex tasks. More specifically, its goal is to enable
the representation of a large variety of complex tasks using the same
object—the TAM. As such, the approach aims to abstract and model
complex tasks as a set of interrelated single-robot subtasks, which can
then be represented in an experiment with a group of TAMs.
I propose a two-level approach to abstract complex tasks. The goal

of the high-level model is to describe the hierarchical structure of a
complex task without having to consider all the details of the interre-
lationships between its subtasks. The high-level model is a convenient
high-level description of complex tasks and serves as a basis for clas-
sifying and comparing them. The goal of the low-level model is to
describe the details of the interrelationships between the subtasks of
a complex task. The low-level model serves as a “blueprint” for the
software that coordinates a group of TAMs so that their behavior
replicates these interrelationships.
I use well-known visual modeling languages for both levels; more

specifically, I use UML 2.x activity diagrams for the high-level (see
Rumbaugh et al., 2004, for an overview) and Petri nets for the low-
level (see Petri and Reisig, 2008, for an overview). UML 2.x activity
diagrams are appropriate for the high-level model as they are intuitive
and convenient to use (Rumbaugh et al., 2004). Petri nets are appro-
priate for the low-level model because they have well-defined execution
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semantics that allows one to simulate them (Störrle, 2000).
This chapter is structured as follows. In Section 4.1, I discuss the

state of the art in task modeling and decomposition. In Section 4.2,
I present how to model complex tasks at a high level of abstraction:
how to decompose tasks into a set of subtasks and how to identify the
hierarchical structure of these subtasks in the form of various inter-
relationships. In Section 4.3, I present how to model complex tasks
at a low level of abstraction in order to describe these interrelation-
ships such that they can be represented using a group of TAMs. In
Section 4.4, I present a centralized control framework for implement-
ing the coordination software derived from the low-level model. In
Section 4.5, I review the swarm robotics literature and apply the pro-
posed modeling approach to the various tasks considered in order to
demonstrate its flexibility. In Section 4.6, I provide a summary of this
chapter.

4.1 State of the art
The modeling approach presented in this chapter is based on task
decomposition, a technique frequently used to describe and model
tasks (Anderson et al., 2001a; Korsah et al., 2013). Task decompo-
sition typically entails that tasks are broken down into parts that can
then be considered separately. In this section, I discuss the state of
the art in modeling and classifying tasks by using task decomposition.
There are two different types of approaches that use decomposi-

tion for modeling tasks: descriptive approaches, used for classifying
and describing existing systems; and prescriptive approaches, used for
designing artificial systems. The distinction between those two ap-
proaches is not precise; whether an approach is considered descriptive
or prescriptive depends on the context in which it is used rather than
on intrinsic differences. Consequently, most approaches can be used
in both ways. For example, consider the approach presented in this
chapter: I construct abstract models of complex tasks (see Section 4.2
to 4.4) and describe, classify and compare complex tasks found in the
literature (see Section 4.5) using the same approach. In the following, I
will first discuss descriptive approaches, then prescriptive approaches.
Several descriptive approaches use taxonomies based on task decom-

position to classify tasks, for example, by complexity. Anderson et al.
(2001a) presented a taxonomy for the classification of tasks found in
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colonies of social insects such as ants. In their taxonomy, the authors
describe tasks using a hierarchical structure of nested tasks that can
be of four types: individual, group, partitioned and team tasks. The
authors assign a numeric value to each of these task types; the sum
of the values of all subtasks is used to measure the complexity of the
original task. The authors use the proposed metric to classify studies
of insect societies.
In the domain of robotics, Gerkey and Matarić (2004) proposed

a taxonomy to classify tasks of multi-robot task allocation problems
(MRTA). In their work, the authors classify tasks along three axes:
task type (single-robot versus multi-robot), robot capabilities (single-
task versus multi-task), and allocation type (time-extended versus in-
stantaneous). The work is limited to what I refer to as orchestrated
approaches, that is, approaches that rely heavily on communication
to negotiate allocations (e.g., market- and auction-based approaches
such as those proposed by Goldberg et al., 2003; Kalra and Martinoli,
2006; Dias et al., 2006).
An extension of the work of Gerkey and Matarić has recently been

proposed by Korsah et al. (2013). In their work, Korsah et al. present
a two-level taxonomy: the first level is used to classify tasks by their
interrelationships, and the second level is used to classify tasks as in
the taxonomy proposed by Gerkey and Matarić (2004). On the first
level, Korsah et al. use task decomposition to identify tasks and their
interrelationships, called constraints. Task decomposition is used in a
purely descriptive way—contrarily to the work presented in this dis-
sertation, the proposed approach does not yield models that can be
simulated, formally analyzed, or implemented in the form of abstract
task representations. Analogously to the work proposed by Gerkey
and Matarić (2004), the work focuses exclusively on orchestrated ap-
proaches to MRTA problems.
In terms of prescriptive approaches, task decomposition is commonly

used as a strategy to partition work, following the principle of divide
et impera:8 a complex task can be addressed in a more efficient way if
it is decomposed into smaller units of work (Jeanne, 1986; Pini, 2013).
See Chapter 7, Section 7.3 for a study on task partitioning using the
TAM.
In the following, I discuss some exemplary descriptive approaches

used for the design of artificial systems. Parallel computing, for ex-

8 lat., divide and rule
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ample, commonly uses task decomposition to distribute tasks between
multiple processors (Grama et al., 2002). More precisely, a program
can be divided into smaller units that are executed in parallel on differ-
ent processors of the same system (Cormen et al., 2001). Similarly, an
operating system capable of multi-tasking executes several processes
in a pseudo-concurrent manner by allocating them to a processor for
short periods of time (Tanenbaum, 2007). Task decomposition is also
the basis of the common programming pattern of recursive algorithms:
a recursive algorithm decomposes a problem into smaller units and ex-
ecutes itself for each of these units, thereby possible decomposing the
problem further (Knuth, 1997).
In robotics, there are few works that explicitly use prescriptive

approaches—most works are limited to describing and classifying tasks,
rather than employing task decomposition for designing systems (for
an example, see Korsah, 2011). Zlot (2006) is one of the few that
considers task decomposition as an integral part of his approach to
planning for multi-robot teams. In the work, the author contends
that considering task decomposition concurrently with task allocation
can result in more efficient solutions.

4.2 High-level model

In order to model the hierarchical structure of a complex task, I em-
ploy task decomposition. More specifically, I propose to decompose
complex tasks into their constituent subtasks and their interrelation-
ships. In other words, the proposed approach to model tasks is a
hierarchical-deconstructionist approach similar to the approach pre-
sented by Anderson et al. (2001b). I describe the resulting hierarchical
structure visually using UML 2.x activity diagrams.
In Section 4.2.1, I briefly introduce UML 2.x activity diagrams. In

Section 4.2.2, I define the basic concepts that are used by the high-level
model: the definition of tasks and subtasks as well as different types of
interrelationships between tasks. In Section 4.2.3, I discuss the process
of task decomposition used to model a complex task in detail. Lastly,
I discuss the advantages and limitations of the high-level model in
Section 4.2.4.
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4.2.1 UML 2.x activity diagrams

The Unified Modeling Language (UML) is a graphical general-purpose
modeling language (OMG, 2011; Rumbaugh et al., 2004). UML can be
used to visually describe process flows. Initially intended for object-
oriented software engineering, the language has been extended to var-
ious other domains such as business and data modeling. UML defines
14 different diagram types; the current major version of the language
is 2.x (OMG, 2011).
In this dissertation, I use the UML 2.x diagram type activity di-

agrams to visually model tasks. Activity diagrams represent a view
on the elementary actions of a given workflow. An elementary action
is a single step within the workflow; it is visually represented using
ovals. Elementary actions can be combined to activities, which define
interrelationships between these actions. Activities are visually repre-
sented using rectangles with rounded corners. Arrows represent the
work flow between the actions of a given activity. Activity diagrams
support concurrency: actions that must be performed concurrently
are enclosed by two black bars. Note that the specification of UML
2.x activity diagrams includes further elements such as conditionals
or decisions (OMG, 2011). As the high-level model presented in this
section does not support conditionals, I do not use these elements.
The semantic of UML 2.x activity diagrams is loosely based on Petri

nets; as a result, UML 2.x activity diagrams can intuitively be trans-
formed into Petri nets (Spiteri Staines, 2010). Contrarily to Petri nets,
activity diagrams cannot be simulated and analyzed formally.9 Note
that the semantics of UML 1.x activity diagrams differ significantly
from those of UML 2.x activity diagrams; I therefore do not consider
UML 1.x activity diagrams in this dissertation.
The main reason for using UML 2.x activity diagrams for the high-

level model is convenience: activity diagrams can be understood intu-
itively and are therefore easy to handle. Additionally, a vast body of
tools and resources exists due to the fact that activity diagrams are
commonly used in various engineering disciplines.

9 It should be noted that, although the semantics of activity diagrams is loosely
based on Petri nets, activity diagrams are unsuitable for simulation because
“the rules for activity execution are not clearly explained and defined in the
UML specification” (Spiteri Staines, 2010).
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4.2.2 Definitions
In the following, I define the basic concepts used by the high-level
model. Most of these definitions extend on the definitions brought
forward in Chapter 3, most notably the concept of complex tasks. I will
rely on the following definitions throughout the rest of the dissertation.

Tasks and subtasks

As introduced in Chapter 3, a task is a unit of work that has to be
performed by the swarm. Furthermore, a complex task can be decom-
posed into several subtasks. A subtask concerns therefore a fraction of
the work of its complex supertask. I use UML 2.x activities to model
complex tasks visually—see Figure 4.1b and 4.1c for an example UML
2.x activity diagram of a complex task.
Tasks that cannot be decomposed are called atomic tasks. Atomic

tasks are single-robot tasks, that is, tasks that require only a single
robot for their completion and allow only a single robot to work on
them at a given moment in time. Accordingly, stationary single robot
tasks as introduced in Chapter 3 can be modeled as atomic tasks. For
example, the task of deactivating an alarm in the environment is an
atomic task, if this alarm can be deactivated by a single robot. I use
UML 2.x actions to model atomic tasks visually. Figure 4.1a shows
the UML 2.x activity diagram of an atomic task.
I consider a complex task to be completed once all of its constituent

subtasks have been completed. Hence, I re-define a subtask as a unit
of work that contributes to its complex supertask upon its completion.
Note that a subtask can either be an atomic task or a complex task,
that is, a subtask of a task can potentially consist of subtasks as well.
Therefore, I use the letter τ to reference tasks and subtasks alike.
As mentioned in Chapter 3, the stationary atomic subtasks of a

complex task might be contiguous in space or might take place at
different locations. In the latter case, robots might need to travel from
one location to the other in order to carry out the complex task; travel
between tasks is not modeled explicitly. Hence, a complex task that
is composed of stationary atomic subtasks could be non-stationary.
Lastly, I define a task instance as a specific realization of a given

task. Commonly, the swarm faces many instances of the same type of
task, for example, several objects scattered throughout the environ-
ment represent each an instance of the same complex task.
Note that the subtasks of a complex task can either be addressed by
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Figure 4.1: High-level models of the basic task types, expressed us-
ing UML 2.x activity diagrams. a) An atomic task does not consist
of subtasks, b) A complex task that consists of two subtasks with a
sequential interrelationship. c) A complex task that consists of two
subtasks with a concurrent interrelationship, Atomic tasks are mod-
eled as UML actions; complex tasks are modeled as UML activities.

separate robots or by the same robot—the model imposes no restric-
tion on the robot-to-subtask mapping. For example, assume a complex
foraging task whose subtasks are harvesting an object and storing it
in the nest. Each of these subtasks could either be performed by the
same robot or by a group of collaborating robots.10

Interrelationships

Subtasks of a complex task have interrelationships with other subtasks.
The hierarchical structure formed by these interrelationships defines
the flow of execution of the subtasks. A task that is not a subtask
10 In the second case, another subtask of transferring the harvested objects be-

tween robots would be required.
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of a complex task does not have interrelationships with other tasks or
subtasks. In the context of this dissertation, I distinguish between two
types: sequential interrelationships and concurrent interrelationships.
A sequential interrelationship between subtasks requires that these

subtasks are executed in a given order. An example is the “stick-
pulling” experiment presented by Ijspeert et al. (2001). In the ex-
periment, robots face a task that consists of two subtasks: the first
subtask is to pull a stick from a hole in the ground to approximately
half its length. The second subtask is to continue the pulling motion
so that the stick is fully extracted from the hole. The subtasks have
a sequential interrelationship: the first must be completed before the
second can start, and both subtasks have to be completed successfully
in order to complete the original task. Figure 4.1b shows the UML
2.x activity diagram of a complex task whose two subtasks have a
sequential interrelationship.
A concurrent interrelationship between subtasks requires that these

subtasks are executed at the same time. An example is an area cover-
age task as presented by Berman et al. (2009). In the work, the task
of the robots is to occupy pre-defined spatially distributed positions
in the environment. In order to complete this task, the robots need to
occupy the positions at a given moment in time for a given duration.
Figure 4.1c shows the UML 2.x activity diagram of a complex task
whose two subtasks have a concurrent interrelationship.

4.2.3 Task decomposition
As previously mentioned, task decomposition refers to the process of
subdividing a task into several units of work which can be subsequently
tackled separately. Task decomposition is commonly found in the do-
mains of, among others, artificial intelligence (Durfee and Lesser, 1989)
and robotics (Korsah et al., 2013). Task decomposition in robotics is
commonly studied in the context of autonomous decomposition strate-
gies for a swarm of robots (e.g., Lein and Vaughan, 2008; Parker and
Zhang, 2010; Pini et al., 2014). In this dissertation, I employ task
decomposition solely to model complex tasks; as such the act of de-
composing a task is part of the experimental design by the researcher
rather than a strategy for the robots.
The result of decomposing a complex task is a model consisting of a

set of subtasks and the interrelations between them. In the resulting
model, the complexity of the original task resides in these interrelation-
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ships. The interrelationships are defined by the hierarchical structure
of the subtasks, as identified by task decomposition. Decomposition
is recursive, that is, subtasks can potentially be decomposed further;
a subtask of a task can therefore consist of subtasks as well. Decom-
position stops once all decomposable subtasks have been decomposed.

I call the hierarchical structure formed by the subtasks of a com-
plex task its task relationship graph. A task relationship graph is a
directed acyclic graph: there is a direction in which the graph has to
be traversed in order to execute the original task. The nodes of the
task relationship graph of a given complex task represent its subtasks.
Each of these nodes may be a task relationship graph in itself, that
is, the graph may be nested due to the recursive application of task
decomposition as explained above.

I refer to the complex task at the top of the task relationship graph
as the overall task; all nodes of the task relationship graph are subtasks
of this overall task. I refer to the maximum number of nested complex
tasks as the nestedness of a task relationship graph. Furthermore, I
refer to the number of recursive decomposition steps required to reach
a particular node as its depth. In other words, the depth of a task
indicates the number of complex task it is nested in. The overall task,
lacking a supertask, has a depth of zero. By definition, the nodes with
the highest depth of a given task relationship graph are atomic tasks,
as any complex task has subtasks with a higher depth. Consequently,
the nestedness of a task relationship graph equals the highest depth
among its nodes. Note that the concept of depth as used in the context
of this dissertation differs considerably from the concept of depth and
level as used in non-nested tree data structures (Knuth, 1997)

The simplest task relationship graph is the graph of an atomic task,
which has a nestedness of 0 (see Figure 4.1a). Complex tasks that
consist only of atomic subtasks have a nestedness of 1 (see Figure 4.1b
and 4.1c). As an example, Figure 4.2 shows the high-level model of a
complex task with a nestedness of 3.

Note that there might be several ways to decompose a given complex
task, that is, a given decomposition is to a certain extent arbitrary.
It is the researcher’s obligation to pick a decomposition that suits the
application.
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Figure 4.2: High-level model of a complex task with a nestedness of
3. The overall task τa consists of two subtasks, τb and τ4, that have a
concurrent interrelationship. τb has two subtasks, τc and τ3, that have
a sequential interrelationship. τc has two subtasks as well, τ1 and τ2,
that have a concurrent interrelationship. Tasks indexed with a letter
are complex tasks, tasks indexed with a number are atomic tasks.

4.2.4 Discussion: Advantages and Limitations

Recursive task decomposition used in conjunction with the described
types of task interrelationships yields a powerful yet simple approach
for modelling various complex tasks. The distinction between sequen-
tial and concurrent interrelationships is commonly used for the de-
composition of tasks, for example in parallel computing (Grama et al.,
2002). I am therefore confident that the proposed high-level model
allows me to describe the majority of tasks that occur in real-world
scenarios and that are of interest in swarm robotics research. More
specifically, the model is capable of describing all task types identified
in the seminal classification of task types and complexities presented
by Anderson et al. (2001a). Considering the domain of multi-robot
task allocation, the model can be used to describe all classes of task
allocation problems covered by the taxonomies proposed by Gerkey
and Matarić (2004) and Korsah et al. (2013).
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Nevertheless, the presented approach has certain limitations. For
example, conditional execution of tasks is not covered by the high-
level model as presented. Note that this limitation is imposed by me
(rather than being a restriction of UML 2.x) in order to be able to
quickly and conveniently model complex tasks. However, the choice of
UML 2.x as a modeling language does restrict the utility of the model:
it can neither be simulated, nor formally analyzed.
More importantly, the high-level model as presented abstracts from

the details of specific task interrelationships. Again, this is a restric-
tion imposed by me for the above-mentioned reason. For example,
consider subtasks with a sequential interrelationship: the interrela-
tionship might either be blocking (e.g., Ijspeert et al., 2001) or non-
blocking (e.g. Pini et al., 2014), but the high-level model does not
differentiate between those two cases. Other examples of interrela-
tionships not captured by the high-level model are subtasks that must
be executed by the same robot or subtasks that have to start and/or
stop at the same moment in time.
In order to model such aspects of task interrelationships, I propose

the Petri net-based low-level model.

4.3 Low-level model
The high-level model is convenient to use, but cannot capture all the
details of task interrelationships. In order to properly model these
details, I propose an approach based on Petri nets.
In the following, I first give a summary of Petri nets in Section 4.3.1.

I then present an approach for creating detailed low-level, Petri net-
based models of a given high-level model. The approach is a “bottom-
up” approach: one starts from the bottom of the nested task relation-
ship graph, that is, with the “deepest” atomic tasks with the maximum
depth, iteratively adding interrelationships of complex supertasks and
atomic tasks at each depth until reaching depth zero of the graph. In
order to explain this “bottom-up” approach, I present in the following
models for tasks with increasingly complex task relationship graphs.
In Section 4.3.2, I present a basic low-level model for atomic tasks.

In Section 4.3.3, I extend this basic model and use it as a basis to
model complex tasks with a nestedness of 1. I present detailed mod-
els of atomic tasks with variations of the interrelationships identified
in Section 4.2, namely sequential and concurrent interrelationships.
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In Section 4.3.4, I generalize these models for tasks whose relationship
graph has an arbitrary nestedness. In Section 4.3.5, I propose a generic
model for atomic tasks that is based on the results presented in the
previous sections. This model serves as a basis for the firmware of the
TAM, that is, for the software that controls the behavior of a single
TAM—see Section 4.4. In Section 4.3.6, I consider two examples that
require modelling of not only the tasks themselves but also of the in-
teraction between these tasks and the swarm. I demonstrate how the
low-level model can be extended to describe and analyze these exam-
ples. Finally, in Section 4.3.7, I discuss the advantages and limitations
of the low-level model.

4.3.1 Petri nets
I use Petri nets to describe the subtasks of complex tasks and their
interrelationships. In the following, I will give a summary of Petri nets
and the specific variant used in this dissertation. For more information,
I refer the reader to Petri and Reisig (2008) as well as Reisig (2013).
Petri nets are a mathematical modeling language for the descrip-

tion of discrete distributed systems (Petri and Reisig, 2008). Petri
nets offer, just as UML 2.x activity diagrams, a graphical notation
for stepwise processes that include sequential and concurrent execu-
tion (Störrle, 2000)—in fact, Petri nets inspired the semantic of UML
activity diagrams when redesigned for version 2.x. Contrary to UML
2.x activity diagrams, the flow of execution in a Petri net can be simu-
lated and analyzed, which allows researchers to test the model before
implementing it (see Section 4.2.1 for a brief discussion of the simula-
tion of UML 2.x activity diagrams).
A Petri net is a directed bipartite graph whose nodes are either tran-

sitions or places. Commonly, transitions represent events and places
represent conditions for these events to occur. Visually, transitions are
represented with rectangles and places are represented with circles. Di-
rected arcs connect pre- and post-conditions to a given transition; arcs
never connect a place to a place or a transition to a transition.
Places may contain tokens. A mapping of tokens to places is called

marking of the net. Tokens are modified by transitions: when a tran-
sition occurs, which is called firing, it consumes tokens from its pre-
conditions and produces tokens in its post-condition. A transition can
only fire when its pre-condition contains sufficient tokens to consume.
Transition that can fire are enabled; firing is nondeterministic, that
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Figure 4.3: Basic low-level Petri net model of an atomic task τbasic
with three states. The state of the task changes depending on external
events.

is, if multiple transitions are enabled at the same time, any may fire.
The amount of tokens produced or consumed is signified by the weight
of the connecting arc; weights omitted in the description of a net are
assumed to be 1.
I use a variant of Petri nets that is bounded: contrarily to the base

version of Petri nets, the places of a bounded Petri net are limited in
the number of tokens they can hold. This limit is called the capacity
of a place. If the capacity of a place is reached, a transition that would
produce a token in this place cannot fire. Similarly to the weight of
arcs, capacities omitted in the description of the net are assumed to
be 1.

4.3.2 Atomic tasks
I model an atomic task using a type of bounded Petri net called state
machine. In a state machine, every transition has exactly one pre-
condition and one post-condition. Furthermore, all markings only have
a single token; there is always a single place that defines the state
of the net. Consequently, the state of the resulting Petri net is not
distributed; it cannot model concurrency. I refer to a given place of
the model as state. Modeling an atomic task as a state machine has
the distinct advantage that the model can be directly transferred to a
TAM—see Section 4.4.
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Figure 4.3 shows the basic low-level model of an atomic task, which
consists of three states:

1. in the available state, the task is available and a robot can ap-
proach and enter into it;

2. in the working state, the task is busy as a robot is currently
working on it;

3. in the wait leave state, the task has been completed and the robot
has to leave.

An atomic task transitions between its states depending on external
events, for example, a robot arrives to work on the task or t seconds
have passed since the robot started to work on it.
The model shown in Figure 4.3 is basic insofar that there are only few

states; other states can be added as needed. For example, a task could
become available only some time after a robot has left—which could
be modeled by adding a new state between wait leave and available. In
the next section, I will show how to model interrelationships between
tasks by extending this basic model.

4.3.3 Complex tasks consisting only of atomic
subtasks

Following the high-level model presented in Section 4.2, I model a com-
plex task as a set of subtasks with interrelationships. In this section,
I consider only complex tasks with nestedness 1, that is, tasks that
consist exclusively of atomic subtasks. I model the interrelationships
between these atomic tasks by adding places between their transitions.
The places are additional conditions to the state transitions of a given
subtask; I therefore refer to them as conditions.
Adding conditions to the state transitions of an atomic task implies

that more than one token can be in a given marking. This effec-
tively makes the state machines of the atomic tasks part of a bigger,
unrestricted Petri net which has a distributed state and can model
concurrency.
By keeping the atomic tasks as distinct subnets of the overall Petri

net, one can easily distinguish between atomic subtasks and their in-
terrelationships. Furthermore, this allows one to maintain the state
machines for the atomic tasks, which helps implement the model to
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control a group of TAMs. Note that I extend the basic model of the
atomic task presented above with additional states in order model the
interrelationships between subtasks.
Without any loss of generality, I assume two atomic subtasks for all

following complex tasks. Hence, the marking of the low-level model of
a complex task with two atomic subtasks has at least two tokens, one
for the state of each atomic task. Additional tokens in the marking are
used for modeling the specific interrelationship between the subtasks.
In the following, I refer to the two subtasks as τ1 and τ2, respectively.

Sequential interrelationships

A sequential interrelationship between tasks indicates that these tasks
have to be executed in sequence—see Section 4.2.2. The high-level
model for complex tasks with this type of interrelationship is shown
in Figure 4.1b. The model does not capture the various details of se-
quential interrelationships commonly found in the literature. In the
following, I model two common varieties of sequential interrelation-
ships, namely non-blocking and blocking ones.

Non-blocking: The simplest form of sequential interrelationship is
non-blocking. Robots working on tasks with a non-blocking sequential
interrelationship do not have to wait for each other. More specifically,
if τ1 and τ2 have a non-blocking sequential interrelationship, a robot
that finished working on τ1 can leave after completing its task without
having to wait for another robot to start working on τ2.
In order to model this form of interrelationship, I extend the basic

model of the atomic task with a new state called wait available. The
task τ2 has to remain in this state until new work is available, modeled
by a new condition work available. Figure 4.4 shows the resulting
model.
Examples of non-blocking sequential interrelationships are foraging

tasks where robots can deposit objects on the ground instead of hand-
ing them over directly. As a result, multiple executions of τ1 are possi-
ble before an execution of τ2 is mandatory. Object deposits can either
happen at a dedicated cache site (Pini et al., 2011b, 2013b) or dis-
tributed throughout the environment (Pini et al., 2011b, 2013b; Shell
and Matarić, 2006; Lein and Vaughan, 2008). In such a scenario, the
condition work available effectively represents the cache site. Accord-
ingly, the condition can have a capacity higher than one in order to
model the size of the cache site.
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Figure 4.4: Low-level model of a complex task with a non-blocking se-
quential interrelationship between its atomic subtasks τ1 and τ2. Note
that the model of the subtasks have been extended differently with
respect to the basic model of atomic tasks. The additional condition
work available represents the non-blocking sequential interrelationship
that links the subtasks. Dashed lines designate the subnets that model
subtasks.

Blocking: Blocking sequential interrelationships are more complex
than non-blocking ones and thus require a more complex model. Ro-
bots working on tasks with a blocking sequential interrelationships
have to wait for each other. More specifically, if τ1 and τ2 have a
blocking sequential interrelationship, a robot that finished working on
τ1 must wait after completing its task until another robot starts to
work on τ2.
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Figure 4.5: Low-level model of a complex task with a blocking sequen-
tial interrelationship between its atomic subtasks τ1 and τ2. Note that
the model of the subtasks have been extended differently with respect
to the basic model of atomic tasks. The additional conditions t1 done,
r2 arrived, and r1 left model the blocking sequential interrelationship
that links the two atomic subtasks. Dashed lines designate the subnets
that model subtasks.

In order to model blocking sequential interrelationships between two
atomic tasks, I extend the basic model of the atomic task differently
for τ1 and τ2. I add a new state called wait end to τ1, in which the
task remains until τ2 is ready. Regarding τ2, I add a state called wait
start, in which the task remains until τ1 is ready. Furthermore, I add
the following conditions that link the two atomic subtasks:

1. t1 done, which is enabled after τ1 has been completed;
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2. r2 arrived, which is enabled after a robot arrived to work on τ2;

3. r1 left, which is enabled after the robot that completed τ1 has
left.

Note that condition r1 left is optional and can be omitted if desired.
Figure 4.5 shows the resulting model.
A possible extension of this model is a condition that allows τ1

to become available anew only after the robot in τ2 has left. This
condition effectively removes any concurrency between two executions
of the complex task. More specifically, a new execution of the overall
task cannot start before the previous one finished completely.
An example of a blocking sequential interrelationship is a forag-

ing task where robots have to hand over objects without depositing
them on the ground (Brutschy et al., 2014c).11 Another example of
a blocking sequential interrelationship is the stick-pulling experiment
presented by Ijspeert et al. (2001).

Concurrent interrelationships

A concurrent interrelationship between tasks indicates that these tasks
have to be executed at the same time—see Section 4.2.2. The high-
level model for complex tasks with this type of interrelationship is
shown in Figure 4.1c. In the following, I model an exemplary con-
current interrelationship in detail: the interrelationship is such that
subtasks are synchronized, that is, work must start on both subtasks
concurrently. Furthermore, neither subtask can become available anew
before all robots have left.
Again, I extend the basic model of atomic subtasks to allow the

tasks to synchronize—in this case, I extend the basic model in the
same way for both subtasks. In the state wait start, subtasks require
robots to wait before starting to work on a task. In the state wait
available, subtasks wait until both robots have left before becoming
available anew. Additionally, I add four conditions to implement the
interrelationships described above:

1. r1 arrived, which is enabled after a robot arrived to work on τ1;

2. r2 arrived, which is enabled after a robot arrived to work on τ2;
11 Blocking handovers are sometimes also described as “direct transfer”, or, if

handover coincides with a physical location, as “direct interface” (Pini, 2013).
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Figure 4.6: Low-level model of a complex task with a concurrent in-
terrelationship among its atomic subtasks τ1 and τ2. Note that the
model of the subtasks has been extended with respect to the basic
model. Dashed lines designate the subnets that model subtasks.

3. r1 left, which is enabled after the robot that completed τ1 has
left;

4. r2 left, which is enabled after the robot that completed τ2 has
left.

Figure 4.6 shows the resulting model.

4.3.4 Nested complex tasks
In this section, I demonstrate how to model complex tasks that consist
of subtasks that are themselves complex tasks, that is, the overall task
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consists of nested complex subtasks. Accordingly, the nestedness of
the associated task relationship graph is higher than 1. Note that, as
tasks can be arbitrarily nested, the high-level model of such a task can
have various shapes.
In general, in order to model a nested complex task one has to fol-

low a “bottom-up” approach starting from the “deepest”, most nested
tasks of a given task relationship graph identified by the high-level
model. More specifically, one starts modeling the atomic tasks at the
maximum depth and adds the complex supertask at the next-higher
level by modeling the necessary interrelationships. This process is
repeated until one reaches the overall supertask at depth zero.
As an example, I model the nested complex task whose high-level

model is shown in Figure 4.2. The resulting low-level model is shown
in Figure 4.7. In the figure, tasks indexed with a letter are complex
whereas tasks indexed with a number are atomic. Arcs denoted using
Latin letters model concurrent interrelationships whereas arcs denoted
using Greek letters model sequential interrelationships.
The two atomic tasks τ1 and τ2 are subtasks of the complex task

τc and have a concurrent interrelationship. This interrelationship is
modeled as discussed in Section 4.3.3: work on the τ1 and τ2 can only
start when both robots are present and each robot can leave only after
both robots completed their work. In Figure 4.7, I denote the arcs
modeling this interrelationship as follows: a, a′ = robots arrived to
work on τ1 and τ2, respectively; b, b′ = robots of τ1 and τ2 have left,
respectively.
The complex task τc and the atomic task τ3 have a sequential inter-

relationship, which forms the complex task τb. For simplicity, I assume
a non-blocking interrelationship, that is, the robots that completed τc
do not have to wait for a robot to arrive for τ3. This interrelationship
can be modeled by adding a single condition α that is enabled if τc
is completed, that is, the tasks τ1 and τ2 are both completed. Note
that α has a weight of 2:1 in order to fully consume the output of the
concurrent task.
Finally, τb and the atomic subtask τ4 form the overall task τa by

having a concurrent interrelationship. Accordingly, τb and τ4 cannot
start before they are both ready (condition denoted with c and c′ in
Figure 4.7, 2:1). Furthermore, τb and τ4 cannot become available anew
before the previous execution of τa has been completed by completing
τ3 (condition denoted with d in Figure 4.7, 3:1).
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Figure 4.7: Low-level model of a nested complex task with a nestedness
of 3 (reduced version without places).11 This model is the low-level
counterpart of the high-level model shown in Figure 4.2. Transitions
enabled at the start of the experiment are marked with a bold border.
Arcs denoted using Latin letters model concurrent interrelationships
and arcs denoted using Greek letters model sequential interrelation-
ships. Tasks indexed with a letter are complex, tasks indexed with a
number are atomic. Dotted/dashed lines indicate task boundaries.

Note that Figure 4.7 shows the reduced version of this Petri net.11
As the initial marking cannot be visualized in the reduced version,
I highlight transitions enabled at the start of the experiment with a
bold border.

11 By convention, the places of a Petri net can be omitted in order to better
visualize the structure of the net (Petri and Reisig, 2008).
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Figure 4.8: Generic low-level model for atomic tasks with six states.
This model is an extension of the basic model presented in Sec-
tion 4.3.2. It incorporates all additional states required to model the
interrelationships discussed in Sections 4.3.3 and 4.3.4.

4.3.5 A generic model of atomic tasks
In the previous sections, I extended the basic model for atomic tasks
several times in order to model the various interrelationships. In the
following, I propose a generic model for atomic tasks that incorporates
all these extensions—the resulting model is generic in the sense that
it can be used to model all the interrelationships discussed in Sec-
tions 4.3.3 and 4.3.4. Figure 4.8 shows the generic low-level model.
Compared with the basic model, the generic model possesses three
additional states:

1. in the wait start state, the task has to wait for the start or com-
pletion of an interrelated task before its robot can begin to work;

2. in the wait end state, the task has been completed but the robot
has to wait before it can leave;

3. in the wait available state, the task has to wait before it can
become available anew.

All three states can be used to implement the necessary conditions to
model interrelationships with other tasks. As the generic model is a
superset of all atomic task models discussed in the previous sections,
it can be used without modification when modeling any complex task.
Note that this might result in superfluous states through which the
task will transition immediately. The generic model serves as basis for
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a generic software component that controls the behavior of a single
TAMs. Given this software, a researcher has to implement only the
necessary interrelationships by adding conditions between the afore-
mentioned states of this generic software, which greatly simplifies the
implementation of a complex task’s control software—see Section 4.4.

4.3.6 Extensions

The low-level model can be extended in order to model various other
processes or aspects. The resulting models can be used for simulating
and analyzing more complex interactions such as deadlocks or resource
contention. However, if these models incorporate other entities than
the TAM, they might not be transferable to the physical device.
In the following, I present two example tasks that require modelling

of not only the tasks themselves, but also of the interactions between
these tasks and the swarm. In the first example, the same robot is re-
quired to execute both subtasks of a sequence. In the second example,
tasks might not be executable due to a lack of robots.

Identity

I assume a complex task with two atomic subtasks that have a non-
blocking sequential interrelationship. Additionally, the interrelation-
ship requires the same robot to execute both subtasks of the sequence.
I model this interrelationship using two additional conditions:

1. The condition swarm models the swarm; its capacity reflects the
number of robots available. It models that a robot is removed
from the swarm upon the start of τ1 and returned to the swarm
only after the same robot completed τ2.

2. The condition t1 started models that τ2 can only be started by
the robot that completed τ1.

Figure 4.9 shows the extended low-level model for a three-robot swarm,
that is, the condition swarm is initially marked with three tokens.
Furthermore, the condition work available has a capacity of one: each
execution of τ1 must be directly followed by an execution of τ2.
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Figure 4.9: Low-level model of a complex task with a “same-robot”
sequential interrelationship between its subtasks: the same robot is
required to execute both subtasks of the sequence. The number of to-
kens initially in condition swarm reflects the size of the swarm. Dashed
lines designate the subnets that model subtasks.

Resource contention

I assume three atomic tasks without a sequential or concurrent inter-
relationship, that is, tasks can be executed in arbitrary order and at
any time. Accordingly, task executions might overlap in time. I model
the swarm as a condition swarm with a capacity that reflects the num-
ber of robots available in the swarm. The condition is initially marked
with two tokens, representing the individual robots. Figure 4.10 shows
the resulting low-level model.
Upon the execution of a task, a robot is removed from the swarm. It

is returned only after the task has been completed. As there are more
tasks than robots, this model only allows the concurrent execution of
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Figure 4.10: Low-level model of three atomic tasks that are not inter-
related. The swarm consists of two robots, which means that only two
atomic tasks can be executed at a given time. The number of tokens
initially in place swarm reflects swarm size. Dashed lines designate the
subnets that model the different atomic task.

two tasks. In other words, the model describes resource contention in
form of a lack of robots: more tasks could be executed if more robots
were available. Models of this kind can help to simulate and formally
analyze deadlock situations for more complex tasks and larger swarms.

These examples demonstrate that the presented approach to model-
ing is sufficiently powerful to express various additional processes and
aspects.

4.3.7 Discussion: Advantages and Limitations
The previous sections demonstrate that the low-level model is suffi-
ciently powerful to describe a large variety of interrelationships. How-
ever, the resulting models are often complex and hard to maintain.
The choice of Petri nets for visually describing a complex task on a
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low-level has certain advantages regarding the analysis of the model.
First, there are plenty of existing software frameworks for the simula-
tion of Petri nets, which allows researchers to simulate models of com-
plex tasks before implementing them. Second, given the boundedness
of the Petri nets, there is only a finite number of possible markings.
This makes is possible to prove the liveness of the net, thereby ensuring
that the net is deadlock free. Furthermore, one can trivially decide the
reachability of a given marking, which can be used to decide whether
a given complex task can be completed or not.
The choice of modeling all atomic tasks in a generic way also has

certain advantages: maintaining these generic models as a subset in
a larger model of a complex task simplifies modeling and analysis.
Furthermore, as previously mentioned, the generic model can directly
serve as basis for the software that controls the behavior of a single
TAM—see Section 4.4.

4.4 Control framework
In this section, I present a framework for controlling a group of TAMs
in an experiment. More specifically, the framework provides the basis
for implementing the low-level model of a task on one or more TAMs.
Conducting experiments that involve solely atomic tasks without

interrelationships is relatively easy: each atomic task is represented
using a TAM and the behavior of each TAM replicates the state-
machine described by the respective low-level model of each task. In
other words, the low-level model serves as a direct “blueprint” for the
software that controls the behavior of the individual TAM.
Unfortunately, conducting experiments that involve complex tasks

is more complicated due to two reasons. First, the low-level model of
a complex task possesses a distributed state, that is, its global state
depends on the state of all of its atomic subtasks. In the case of sim-
ulation experiments, this would not cause any problems as all TAMs
live in the same place—the simulator. In case of robot experiments,
however, the TAMs are separated in space. Consequently, the state
of the complex task is distributed over several, physically separate de-
vices. Second, interrelationships between a set of atomic tasks cannot
be attributed to a single TAM, but always involve two TAMs or more.
However, the control software that implements these interrelationships
has to be implemented on some device.
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Arguably, it would be possible to develop a distributed control soft-
ware that implements a given low-level model on multiple devices.
This approach has several drawbacks: a) the required effort for devel-
oping such a distributed control software is high, b) each TAM would
need to be accessed and programmed individually, and c) each TAM
would possibly require a unique control software.

In order to address these difficulties, I propose a framework that al-
lows researchers to implement a given low-level model as a centralized
control software. The control framework consists of two main com-
ponents: the central coordinator and the firmware running on each
TAM—see Figure 4.11 for a graphical representation. The coordina-
tor, which implements the low-level model of the complex task, consists
of several components itself (see Chapter 5, Section 5.4 for a detailed
discussion of the implementation). State changes of the associated
low-level model are triggered by events that happen at the individual
TAMs, which may result in commands that change the behavior of one
or multiple TAMs. For example, if a TAM reports to the coordinator
that its task has been completed, the model switches state, which in
turn causes the TAM in question to switch off and other TAMs to be-
come available. Note that the coordinator does not control the robots
of the swarm, which remains a fully distributed system.

Events and commands are relayed using a wireless mesh network—
see Chapter 5, Section 5.5 for an illustration of an example network
topology and the flow of commands and data. The firmware of the
TAM reports all events and changes in sensory data to the coordinator,
and executes all commands that it receives in return.

The control framework that I propose has several advantages. First,
it makes setting up and conducting experiments with TAMs relatively
effortless, as changing the behavior of all TAMs requires only modifi-
cations at a central point rather than on many devices that are possi-
bly distributed in space. Second, the central design allows for accurate
statistics-keeping during experiments: all events can be recorded using
a central time, which is required for the consistency of the experimen-
tal records. This, in turn, allows researchers to fuse data from multiple
TAMs with external sensor data (e.g., from a tracking system).
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Figure 4.11: The control framework and its components. The coordina-
tor implements the low-level model of a complex task. State changes
of this model are triggered by events that happen at the individual
TAMs, which may result in commands that change the behavior of
one or multiple TAMs. Events and commands are relayed by a wire-
less mesh network that connects all TAMs and the coordinator.

4.5 Tasks studied in the literature
In this section, I review the swarm robotics literature with respect
to the tasks considered, which I describe using the high-level model
presented in Section 4.2. Furthermore, I group works according to
similarities in their high-level model. This review serves two purposes.
First, it allows me to substantiate my claim of Chapter 1: the use

of ad hoc solutions for task abstraction and representation limits the
complexity of the tasks that are addressed in the literature. As I will
show, the hierarchical structure of the majority of tasks studied in
the literature is relatively simple: tasks are either atomic or consist
of a single complex task. However, real-world tasks commonly exhibit
a higher complexity as demonstrated by, for example, Dorigo et al.
(2013).
Second, by modeling each task using the high-level model, I demon-

strate how to use the presented modeling approach to abstract various
complex tasks. This, in turn, outlines how these tasks could be rep-
resented using the TAM. In the discussion, I refrain from detailing
how to represent each single task with the TAM—see Chapter 6 for
an example of how to abstract a task using the modeling approach
presented and represent the abstract task in an experiment with the
TAM.
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Third, having a clear classification allows researchers to identify the
class of problem they are dealing with, and reuse solutions that have
proved to be effective.
Note that I focus on works that consider atomic or complex tasks

that can be represented with the TAM. This excludes, for example,
many spatially organizing behaviors and navigation behaviors.

4.5.1 A note on task complexity
Examining the structure of the component subtasks of a given task
can give insights into the group behaviors required to address these
tasks (Anderson et al., 2001b). The underlying assumption is that
with increasing complexity of this structure—that is, with an increas-
ing number of subtasks and interrelationships—the complexity of the
group behavior required to address the task also increases. A metric
for measuring task complexity might therefore be a good indicator for
the complexity of the required behavior.
Accordingly, several complexity metrics have been proposed in the

literature, as previously mentioned in the discussion of the state of the
art in Section 4.1. Authors commonly assign “complexity points” to
different task topologies (Anderson et al., 2001b) or rate the “degree
of interrelatedness” of the tasks by measuring some other quality (Ko-
rsah et al., 2013). However, it is difficult to propose a metric that
is objective and consistent for the large variety of task types and in-
terrelationships that exist. Furthermore, tasks might have a varying
complexity depending on the group behavior used to address them.
Therefore, any complexity metric is—to a certain point—subjective
and reflects the designer’s viewpoint.
In the context of this dissertation, for example, an intuitive choice

for a complexity metric is to measure some property of a task’s high-
level model, such as the nestedness of its task relationship graph. Un-
fortunately, as such a metric would be based on the high-level model, it
could not reflect differences between tasks that can only be described
with the low-level model. As a consequence, the metric would be un-
able to distinguish between, for example, blocking and non-blocking
sequential interrelationships—see Section 4.3.3. Using properties of
the low-level model for measuring task complexity, on the other hand,
poses a different kind of problem: the possibly infinite number of Petri
net topologies and interrelationships makes it difficult to find an ob-
jective and consistent metric.
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Accordingly, I refrain from proposing a complexity metric in the
context of this dissertation. Instead, I group works according to sim-
ilarities in their high-level model without imposing a strict order on
their complexity.

4.5.2 Atomic tasks
There are several works that study atomic tasks. Atomic tasks cannot
be decomposed into subtasks (i.e., the nestedness of their task rela-
tionship graph is zero). Atomic tasks can be readily represented using
a single TAM. See Figure 4.1a for the high-level model of an atomic
task.
Matarić et al. (2003) studied the problem of emergency handling.

In their work, robots have to patrol an area and attend to alarms that
appear in the environment. Alarms can be attended independently
from each other by a single robot and can therefore be modeled as
atomic tasks.
Brutschy et al. (2012c) studied behavioral specialization in a swarm

of robots. In the work, two types of atomic tasks appear in the environ-
ment with a varying distribution. Individual robots have to specialize
in one of the tasks by adapting their behavior. On the level of the
swarm, the robots have to match the distribution of task types in the
environment.

4.5.3 Complex tasks consisting only of atomic
subtasks

Several works consider complex tasks that consist exclusively of atomic
subtasks (i.e., the nestedness of their task relationship graph is 1).
Complex tasks of this type can be distinguished according to the in-
terrelationship among their subtasks; tasks that have the same type
of interrelationship differ only in the number of these subtasks. Note
that, while the exemplary high-level models that I reference in the
following have two subtasks, they can be easily extended to a higher
number of subtasks.

A complex task whose subtasks have a sequential interrelationship
requires that subtasks are executed in a given order—see Figure 4.1b
for the high-level model of such a task.
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A commonly studied problem that involves complex tasks of this
type is foraging for food or energy. In a simple version of this prob-
lem, hereunder called simple foraging, robots must balance energy con-
sumed by the process of foraging with the energy provided by the
collected food items (Krieger and Billeter, 2000; Li et al., 2004; La-
bella et al., 2006). The subtasks of the simple foraging task exhibit
a sequential interrelationship which lies in the fact that robots first
have to locate an item in the environment and then transport it to a
predefined drop-off location. The same type of complex task has been
studied in the form of a “waste cleanup” scenario (see, e.g., Parker,
1998). Note that in simple foraging, robots do not need to collaborate
in order to complete a single task instance—instead, a single robot
performs all the subtasks in sequence.
Contrary to the various works considering foraging, Ijspeert et al.

(2001) studied a non-transportation task with a sequential interrela-
tionship. The goal of the robots is to pull sticks from the ground. The
length of the sticks is such that a robot cannot pull it from the ground
in a single motion; instead, a second robot has to continue the pulling
motion in order to complete the task. Hence, the subtasks have a
blocking sequential interrelationship: contrarily to the simple forag-
ing tasks discussed above, this task requires that robots cooperate to
complete it.
Parker (1998) studied a hazardous waste cleanup task using real

robots. The task of the robots is to collect objects at two “spill” lo-
cations, and transport them subsequently to a final destination. This
task is essentially a simple foraging task as discussed above, but with-
out the requirement to balance the energy level of the swarm.

A complex task whose subtasks have a concurrent interrelation-
ship requires that subtasks are executed at the same time—see Fig-
ure 4.1c for the high-level model of such a task. Commonly studied
complex tasks with this type of interrelationship among their atomic
subtasks are collective transport tasks (Donald et al., 1997; Kube and
Bonabeau, 2000; Groß and Dorigo, 2009).

4.5.4 Nested complex tasks
Nested complex tasks are tasks that consist of subtasks that are com-
plex tasks on their own. Examples are the complex task shown in
Figure 4.2 and the disaster response task considered in the proof-of-
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Figure 4.12: Generic high-level model of bucket-brigading tasks with
a nestedness of 2: The overall task τbucket of transporting an object
is partitioned into a sequence of N complex tasks. Each complex
task consists of two atomic subtasks for retrieving and depositing the
object.

concept experiment presented in Chapter 6. Note that, as tasks can
be arbitrarily nested, the task relationship graphs of a nested task can
take various shapes and its nestedness is higher than 1.
The majority of the works that study nested complex tasks consider

the same type of task: “bucket brigading”. Bucket brigading is a
special case of the simple foraging task: robots divide the original
task into multiple smaller subtasks. Bucket brigading is an instance
of the task partitioning problem (Pini, 2013).
Each subtask consists of transporting an object for a limited dis-

tance and subsequently transferring it to a robot working on the next
subtask. Hence, the overall task is a sequence of foraging tasks, and
each foraging task consists of a sequence of two atomic tasks (i.e.,
the nestedness of the task relationship graph is 2). Figure 4.12 shows
the high-level model of a bucket-brigading task. Most works studying
bucket brigading consider fixed partition sizes (Fontan and Matarić,
1996; Goldberg and Matarić, 2002). Pini et al. (2013b) studied this
problem using TAMs, albeit only in a simulated setup with fixed par-
tition sizes. Brutschy et al. (2014c) studied self-organized allocation
to such tasks with two partitions of fixed size. The work published by
Pini et al. (2014) is, to the best of my knowledge, the only one that
studied a bucket-brigading task with dynamic partition sizes.

Different from bucket-brigading tasks, complex tasks that consist of
several nested complex tasks are rarely studied in the literature, most
likely due to the complexity and cost of the experiments needed to
study them. In the following, I outline two exemplary studies that
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considered tasks with several nested complex tasks. I refer the reader
to the respective publication for details on each task.
In the context of the Swarm-bots project,12 Nouyan et al. (2009)

studied allocation to a collective transportation task—see Figure 4.13a
for the high-level model of this task. The complexity of the task lies
in the fact that robots first establish a chain of landmarks between
source and nest; subsequently, other robots use this chain to navigate
while collectively transporting an object from the source to the nest.
The nestedness of the task relationship graph is 3.
One of the most complex tasks found in the swarm robotics lit-

erature has been presented by the Swarmanoid project:13 a swarm
collectively explores an environment, identifies an object to retrieve,
and uses self-assembly and collective transport to retrieve it (Dorigo
et al., 2013)—see Figure 4.13b for the high-level model of this task.14
The nestedness of the task relationship graph is also 3.

4.5.5 Discussion
The review of the literature shows that the vast majority of works
consider tasks without or with a limited number of interrelated sub-
tasks. Moreover, to the best of my knowledge, most of the works that
consider nested complex tasks tackle tasks that exhibit only one type
of interrelationship, namely sequential bucket-brigading tasks. I spec-
ulate that the restriction to tasks with a low number of interrelated
subtasks is due to the costs involved in studying such tasks: perform-
ing real-robot experiments for these tasks requires considerable effort
and resources, as illustrated by the two studies that consider multiple
nested complex tasks. As a result, swarm robotics systems are to date
incapable of tackling complex tasks that consist of a large number of
interrelated subtasks—a fact that limits the possible application of
swarm robotics to real-world problems.
From this insight, two directions for future research are discernible:

one, the development of group behaviors and collective decision pro-
cesses that allow a swarm to tackle tasks of this kind, and two, the
development of robotics hardware that is sufficiently capable, cost-
effective, and robust to apply a swarm of robots to such tasks. The
12 http://www.swarm-bots.org/
13 http://www.swarmanoid.org/
14 See http://youtu.be/M2nn1X9Xlps for a video describing the swarm and its

task in detail (Dorigo et al., 2011).
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Figure 4.13: High-level UML model of two tasks with multiple nested
complex tasks: a) Task studied by Nouyan et al. (2009) in the con-
text of the Swarm-bots project;12 b) Task studied by the Swarmanoid
project (Dorigo et al., 2013).13 Atomic tasks with dashed lines rep-
resent tasks where the number of tasks with the same depth is more
than three or can vary. Both tasks have a nestedness of 3.
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tools presented in this dissertation enable researchers to work towards
the first direction.

4.6 Summary
In this chapter, I presented a novel two-level approach to modeling
complex tasks. I presented how to use UML 2.x activity diagrams
to conveniently model complex tasks at a high level, which permits
researchers to isolate the hierarchical structure of the subtasks and
to define the type of their interrelationships. Once the hierarchical
structure of the subtasks and their interrelations has been isolated,
researchers can model the details of these interactions using a low-level
model based on Petri nets. The low-level model allows researchers to
simulate and analyze a task if desired.
The modeling approach presented is generic and powerful, which I

demonstrated by modeling a large variety of different tasks and interre-
lationships as well as using the approach to describe and classify tasks
studied in the swarm robotics literature. The approach is therefore
an essential contribution towards the study of complex tasks in swarm
robotics research: researchers can abstract tasks of various complexity,
which can then be conveniently represented in laboratory experiments
using the TAM.
In the following Chapter 5, I describe the design and implementation

of the TAM device in detail.
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Chapter 5
Design and implementation
of the TAM

In this chapter, I present the design and implementation of the TAM,
a custom-built device intended for uniform task representation. In
particular, I discuss the design requirements of the TAM that are
a consequence of the preceding chapters: the TAM is an active de-
vice that represents stationary single-robot tasks in laboratory exper-
iments. Furthermore, a group of TAMs must be able to represent
complex tasks that consist of several interrelated subtasks—a require-
ment that is the primary cause for complexity in the design of the
TAM.
This chapter is structured as follows. In Section 5.1, I review the

state of the art in robot docking, a problem related to the TAM inso-
far that similar hardware designs have been proposed in its context.
In Section 5.2, I discuss the requirements for the design of the TAM
and how I attained them in the implementation. In Section 5.3, I
present the hardware implementation of the TAM, explaining the dif-
ferent choices that I made during the design and discussing details
such as the type of electronic components employed. In Section 5.4, I
present the software implementation of the TAM and its surrounding
infrastructure such as the control framework. In Section 5.5, I dis-
cuss the mesh network that connects the TAMs used in an experiment
with each other and with the researcher’s workstation. In Section 5.6,
I present two experiments in order to evaluate the reliability of the
TAM’s hardware and software. In Section 5.7, I outline how the TAM
can be reproduced, adapted, and extended by other research groups.
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In Section 5.8, I provide a summary of this chapter.

5.1 State of the art
Designs similar to the TAM have been proposed in the context of
robot docking. Robot docking refers to the problem of perceiving, ap-
proaching, and connecting to a stationary object, commonly referred
to as the docking station. A typical application is the autonomous
recharging of a robot: the robot has to locate the recharging station
in the environment, approach it, enter into it, and establish an electri-
cal connection to the charger. Due to the requirement of establishing
a connection, much of the literature attributed to robot docking fo-
cuses on mechanical connectors between the robot and the recharging
station.
In the following, I discuss several approaches to robot docking pro-

posed in the literature. In particular, I focus on aspects relevant to the
TAM such as the infrastructure provided to allow robots to perceive
the docking station.
Hada and Yuta (2001) were among the first to propose automatic

recharging stations for autonomous mobile robots. The authors used
a charging station equipped with spring contacts for electrical con-
nectivity. The robot detected and navigated to the station using its
ground sensors and environmental cues in the form of reflective tape
on the ground.
Silverman et al. (2002) proposed a docking station for recharging a

Pioneer 2DX robot. In the work, the authors focused on the design of a
docking mechanism that provides a mechanical and electrical connec-
tion between the station and the robot. Similar to the TAM’s case, a
robot perceives the position of the docking station using a camera; con-
trarily to the TAM’s case, the authors relied on passive colors rather
than using LEDs—a choice made possible by the fact that robots to
not have to discern between docking stations of different types, which
means that a single passive color is sufficient to identify a station. The
authors tested the proposed solution using only a single station and a
single robot.
Cassinis et al. (2005) also presented a charging station for a Pioneer

2DX robot, but focused on the detection of the station and navigation
towards it. Similar to the TAM’s case, a robot uses its camera to
detect and approach the station: the authors proposed a vision-based
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system depending on “range lights” as commonly used in nautical
navigation to indicate a certain approach vector and distance from
the goal. Robots use this system for aligning to and approaching the
charging station.
In the field of swarm robotics, Bonani et al. (2010) proposed a

distinctly different approach to autonomous recharging: rather than
recharging the robot’s battery in situ, dead batteries can be exchanged
“on the fly” with a charged one. This is made possible by a super-
capacitor that powers the robot during the exchange. The authors
proposed an autonomous charging station for performing the exchange
that holds a reservoir of charged batteries and recharges dead batteries
in its care. This approach has the advantage that changing batteries
does not require an electrical connection and is significantly faster than
recharging in situ; its disadvantage is the mechanical complexity of the
station itself. In the work, the authors do not discuss sensing of and
navigation towards the charging station.
McLurkin et al. (2006) published a work on robot-human interaction

in large swarms. More precisely, the authors focused on the difficulty
of conducting experiments that involve large swarms of SwarmBots.15
In the work, the authors identify costs related to setup and operation
as one of the main difficulties when conducting experiments. Accord-
ingly, the authors proposed a comprehensive solution for conducting
experiments—a solution that includes autonomous charging stations
for the robots, a physical support infrastructure, and a centralized
utility software for development and debugging. The authors initially
planned to use global beacons for navigation, but stated that navi-
gation using local communication performs better without requiring
additional infrastructure.

5.2 Design requirements and overview
I designed the TAM following a number of requirements that I define
and discuss in this section. Moreover, I outline how I attained these
requirements in the implementation of the TAM.
The design requirements are a consequence of the discussions of

the previous chapters. More specifically, the design requirements are
15 Not to be confused with the swarm-bot, a composite entity formed by several

s-bot robots proposed by the Swarm-bots project (see Mondada et al., 2004).
http://www.swarm-bots.org/
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driven by the concept presented in Chapter 3 and fulfill the require-
ments mandated by the modeling approach presented in Chapter 4.
Furthermore, I formulated the design requirements under considera-
tion of the advantages and disadvantages of the various existing so-
lutions for task abstraction.The technical design requirements of the
TAM are as follows:

1. Atomic tasks: The TAM shall be be able to represent station-
ary single-robot tasks (i.e., atomic tasks).

2. Complex tasks: The TAM shall be able to represent complex
tasks described using the modeling approach presented in Chap-
ter 4.

3. Flexibility: The TAM shall be able to represent different tasks
without requiring physical reconfiguration.

4. Compatibility: The TAM shall be compatible with the e-puck
robot and its various extensions.

5. Visibility: The TAM shall be recognizable under difficult light
conditions.

6. Identification: The TAM shall be able to identify robots that
interact with it.

7. Communication: The TAM shall be able to exchange infor-
mation with a robot that has entered into it.

8. Data recording: The TAM shall be able to reliably record
experimental data.

9. Autonomy: The TAM shall be autonomous in the sense that
it should allow for several hours of consecutive operation and
should be relatively unrestricted in its placement in an experi-
mental setting.

10. Cost-effectiveness: The TAM shall be considerably cheaper
than the e-puck robot.

In the following, I outline how the design of the TAM meets these
requirements.
In the context of the discussion of existing solutions for task abstrac-

tion in Chapter 3, Section 3.2, the TAM can be classified as an active

86



Chapter 5 Design and implementation of the TAM

Figure 5.1: Schematic drawing of the TAM. The TAM is a booth with
a cubical shape, large enough that an e-puck robot can enter into it.
Different types of tasks and different states of task execution can be
signaled to the robot using the RGB LEDs of the TAM. By defining
interrelationships between multiple TAMs using wireless communica-
tion, the researcher can model a large number of tasks.

object: it is a dedicated, custom-built device that can be actively con-
trolled using its electronics. Furthermore, the TAM incorporates some
elements of virtual solutions, most notably the capability to freely con-
trol most of the parameters of a task it represents. Figure 5.1 shows
a schematic drawing of the TAM.
Physically, the TAM is a booth into which an e-puck can enter. In

particular, it is sufficiently large that it can accommodate an e-puck
equipped with various extensions. The TAM is equipped with RGB
LEDs, light barriers, and an infrared transceiver for communication.
The TAM can use its RGB LEDs to announce to robots the presence,
availability, and state of execution of the single-robot task it repre-
sents. The fact that the brightness and color of the RGB LEDs can
be individually controlled facilitates perception in various light condi-
tions. Different types of single-robot tasks can be signaled by using
different LED colors, which can be perceived by the e-puck robots
using their color camera. The light barriers allow the TAM to de-
tect the presence of a robot that entered into the TAM. The infrared
transceiver can be used to communicate with an e-puck robot inside
the TAM, as well as to identify this robot.
The TAM can be remotely operated from a central computer using

wireless communication, which allows a group of TAMs to implement
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the low-level model of a complex task described using a Petri net.
Furthermore, the TAM can report experimental data to the computer
using wireless communication. As it is equipped with a rechargeable
battery, the TAM can operate without being physically tethered to
the central computer. The TAM relies on cost-effective off-the-shelf
hardware components and uses existing infrastructure of the e-puck.
As a consequence, the TAM is considerably cheaper than the e-puck
robot.

5.3 Hardware
The hardware of the TAM consists of several parts that are either
active (i.e., electronics) or passive (i.e., plastic body). In the follow-
ing sections, I explain the implementation of these parts in detail.
Figure 5.2 provides an overview of the different parts in form of an
exploded view of the TAM.

5.3.1 Electronics

The electronic circuit of the TAM is distributed over three printed
circuit boards (PCBs). The main circuit board, on the back face of
the TAM, is flanked by two boards, forming a “U” shape. I refer to
the two boards at the side of the TAM as the left and right circuit
board.
The main circuit board is mechanically joined with the other circuit

boards at a 90◦ angle using two interlocking slots.16 This connection
provides the structural backbone of the TAM: all plastic body parts
are attached to one of the three circuit boards. Electrical connections
between the circuit boards are provided by solder joints at the point
where the circuit boards meet. The main circuit board contains the
majority of the circuit, while the left and right circuit boards contain
only the part of the circuit related to the sensors of the TAM. Fig-
ure 5.3 gives an overview of the functional components of the TAM
in form of a block diagram. Appendix B details the circuit schemat-
ics and the circuit board layouts in Section B.1.2 and Section B.1.3,
respectively.

16 Also known as a “halved joint”.
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Figure 5.2: Exploded view of the TAM showing its different parts and
their relative positioning. There are three electronic parts: the main
board and two boards on the left and right side (dark gray). All
other parts are passive plastic parts that constitute the body (light
gray/white).

The TAM is based on Arduino,17 an open-source embedded electron-
ics platform that uses an Atmel micro-controller of the AVR family as
a central processor. Arduino is widely available, supported by a large
community, and easier to use than other embedded electronics plat-
forms (Banzi, 2008).
The TAM adopts an 8-bit RISC processor (ATmega-1284p) run-

ning at 16MHz. The processor is equipped with 16KiB main memory
and 128KiB flash memory. It runs the firmware that controls all the
electronic components of the TAM, either directly or, in case of the
LEDs and the IEEE 802.15.4 mesh networking module, indirectly. The
firmware implements the behavior of the TAM—see Section 5.4.
The TAM features two infrared light barriers, one at the entry of

17 http://www.arduino.cc/
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Figure 5.3: Block diagram showing the functional components of the
TAM. The Atmel AVR 8-bit RISC processor directly controls the in-
frared light barriers and the infrared transceiver. The LEDs are con-
trolled indirectly using a separate PWM controller connected via I2C;
the mesh networking module is also controlled indirectly using a serial
connection.

the booth and one close to its rear wall (see Figure 5.1). Using two
light barriers has the advantage that the TAM can distinguish whether
a robot is entering or leaving the TAM. The light barriers are imple-
mented using 850 nm infrared emitters and matching photo transistors.
The light barriers use a pulsed signal in order to prevent false positives
due to noise and ambient light. Furthermore, the emitters and transis-
tors are mounted close to the ground in order to minimize interference
with the proximity sensors of the e-puck.
The TAM possesses four RGB LEDs: Three LEDs are mounted on

the main board at the rear wall of the booth, which makes them visible
to robots approaching the opening of the booth. The LEDs announce
available tasks to the robots; different colors signify different tasks or
task states. The LEDs are diffused by a sheet of semi-transparent
plastic to facilitate detection by the camera of the e-puck. As these
LEDs are not visible from every angle, a fourth LED mounted on
top of the TAM can provide feedback to the researcher. All LEDs
are controlled using pulse-width-modulation (PWM) via a dedicated
controller, which is connected to the central processor using an I2C
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Parameter Value Unit
Nominal supply voltage 1.8–5.5 V
Nominal battery voltage 2.7–4.2 V
Nominal operation voltage 3.3 V
Supply current at 2.7 3.3 4.2 V

maximum load 577.5 453.9 346.4 mA
normal load 148.4 124.6 94.5 mA
idle load 141.0 113.9 90.8 mA

Table 5.1: Electrical characteristics of the TAM. Supply currents re-
ported are averages of 10 measurements taken when running the de-
fault firmware. Maximum load: constantly communicating, all chan-
nels of all LEDs at maximum brightness; Normal load: occasionally
communicating, one channel of all LEDs at 19% of maximum bright-
ness (TAM announces task in a typical experimental setting18); Idle
load: occasionally communicating, all LEDs off (no task).

bus. PWM provides fine-grained control over the color and brightness
of every color-channel of each LED separately. As a result, the TAM
supports 24-bit colors that facilitate calibration under various light
conditions.
Communication between the TAM and the e-puck is implemented

using the IRcom protocol. The IRcom protocol has been proposed for
inter-robot communication using infrared transceivers—transceivers
that are present on most robots in the form of proximity sensors.
On the e-puck, a library called libIrcom provides IRcom support (see
Appendix A, Section A.1.4). The firmware of the TAM supports the
IRcom protocol using a reimplementation of libIrcom for the Atmel
AVR processor architecture—see Appendix B.2.1, Section B.2.1 for
details on this reimplementation. To ensure compatibility, the TAM
uses the same infrared transceiver as the e-puck robot.
The autonomy of the TAM is facilitated by a rechargeable lithium-

ion battery with a capacity of 5Wh. This battery is of the same type
as the one used for the e-puck robot, which significantly eases charging
and handling of the batteries during the course of an experiment. The
TAM uses a highly efficient boost/buck switching power supply when
powered with said battery. Table 5.1 reports the electrical character-
istics of this power supply. Based on the values reported in Table 5.1,

91



Chapter 5 Design and implementation of the TAM

the TAM consumes approximately 0.4W in a typical experimental set-
ting.18 As a result, a single battery lasts over 10 hours. Note that this
value depends predominantly on the LED brightness used as the power
consumption of the TAM’s other subsystems remains constant under
most experimental conditions.
The TAM possesses a battery protection circuit but no charging

circuit. Consequently, charging the TAM’s battery requires the same
external charger as required for the e-puck. Note that the TAM can
also be supplied via the serial connector using an external power supply
cable. However, this connector does not support many mating cycles
and is therefore not intended to be used on a regular basis.
The TAM is remotely controlled by the coordinator, a software pack-

age running on a central computer. The coordinator implements the
low-level model of the task represented by the TAM, explained in Sec-
tion 5.4. The communication between the TAM and the coordinator is
wireless, implemented using a 2.4GHz IEEE 802.15.4 mesh networking
module—see Section 5.5 for more information on the mesh network.
Figure 5.4 shows the electronics on the back face of the TAM, fea-

turing the IEEE 802.15.4 mesh networking module and the battery.

5.3.2 Body
The TAM has a cubical shape with a length of 12 cm in every dimen-
sion. Its body is composed of six parts:

• the left and right side walls, which are fastened to the left and
right circuit boards, respectively;

• the left and right bumpers, which act as a rail at the inside of
the booth in order to prevent robots from getting stuck on the
sensors of the light barriers;

• the LED diffuser, which diffuses the light from the RGB LEDs
for better perception by the robot’s cameras;

• the top bracket, which provides structural integrity to the whole
assembly.

18 I assume the proof-of-concept experiment presented in Chapter 6 to be a typical
experimental setting.
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Figure 5.4: Photo of the electronics on the back face of the TAM. At
the top right, the 2.4GHz IEEE 802.15.4 mesh networking module. At
the top left, the connector that provides an interface for extending the
TAM. At the bottom center, the lithium-ion battery, the same type of
battery that is used for the e-puck robot.

Figure 5.2 shows the relative positioning of all parts. In the original
design, all parts of the body consist of CNC-machined Polyoxymethy-
lene plastic (POM). However, simpler and cheaper alternatives such
as wood can be used if desired. Appendix B, Section B.1.4 provides an
overview of the whole assembly, including CAD models for each part
with detailed measurements.
I designed the body of the TAM so that an e-puck can enter into

the TAM without accidentally moving it. This is achieved by two
measures: first, the chosen material for the body (POM) is relatively
heavy, and second, I equipped the TAM with six rubber feet that
increase friction between the TAM and the floor.
The TAM is compatible with various extensions of the e-puck. Con-

sequently, it can be used with the basic model of the e-puck as shown
in Chapter 3, Figure 3.1, or with extended e-pucks such as shown in
Figure 5.5. The TAM is wide enough for an e-puck to enter without

93



Chapter 5 Design and implementation of the TAM

Figure 5.5: The TAM is compatible with various extensions of the
e-puck. The e-puck shown here is equipped with several extensions:
a range and bearing sensor, an embedded computer running Linux,
and an omni-directional camera. In case the omni-directional camera
is present, it is used to detect the TAM instead of the forward-facing
camera. See Appendix A, Section A.1 for detailed information on the
e-puck platform and the available extensions.

problems, while being narrow enough to provide directional informa-
tion to an approaching robot. This is especially helpful when using
the forward-facing color camera of the basic model of the e-puck, as
distances cannot be obtained from the captured images. On the other
hand, the directional information provided by the TAM is not required
if the e-pucks are equipped with an omni-directional camera extension,
as robots can compute distances and angles directly from the captured
images.

Experiments have shown that e-pucks can detect the TAM when
positioned in a conical area that extends up to a distance of 90 cm
from the TAM’s opening because they can only perceive a TAM’s
LEDs from an acute angle (see Figure 5.6).
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Figure 5.6: Area in which an e-puck is able to perceive the TAM when
using the omni-directional camera extension. To obtain this image, an
e-puck was placed on a 10 cm by 10 cm grid with random orientations.
The e-puck signalled that it was able to perceive the TAM at a given
location by setting its LEDs to red. The asymmetry in the perception
area results most likely from imperfections in the mirror of the omni-
directional camera.

As mentioned above, the TAM announces different task types by
using different LED colors. Hence, the number of different tasks that
the TAM can announce depends on the capability of the robots to dif-
ferentiate between LED colors. Experiments have shown that e-pucks
equipped with the omni-directional camera extension are able to differ-
entiate between to six tasks. See Appendix A, Section A.1 for detailed
information on the e-puck platform and the available extensions.

5.4 Software
In an experiment, the behavior of a group of TAMs is controlled by a
user-defined software that implements the low-level model of the task
at hand—see Chapter 4. In order to facilitate the development of this
software, I provide a control framework that abstracts from the low-
level details of the TAMs and the mesh network that connects them.
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Figure 5.7: Overview of the soft-
ware components for the TAM (gray
components are provided, white ones
user-defined). Task controllers can
transparently interface with a group
of TAMs using the common inter-
face, whether these TAMs are sim-
ulated or physical devices.

In the following, I focus on this control framework for conducting
experiments involving real robots.
The control framework consists of four components:

1. the firmware that locally controls all the TAMs involved in an
experiment;

2. the coordinator that handles the communication with the TAMs;

3. the common interface that provides an abstract interface for the
user-defined task controller;

4. the task controller that controls the behavior of the TAMs by
implementing the low-level model of a task.

Figure 5.7 shows the relationship between these components.
Simulation experiments are, as mentioned in Chapter 2, an essen-

tial tool for swarm robotics research. Accordingly, I also provide the
software necessary to simulate the TAM with the ARGoS simulation
framework. ARGoS is highly modular and extensible; I therefore pro-
vide the software required for simulating the TAM and the e-puck as
a set of plug-ins—see Appendix A for a details.
The common interface enables the transferability of task controllers

between the ARGoS simulation framework and the control framework
presented here. By using the common interface, researchers can de-
velop generic task controllers that can be ported without requiring
any changes from simulation experiments to robot experiments, and
vice versa. The first three components and plug-ins for simulating the
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TAM using ARGoS are readily provided in the context of this dis-
sertation (gray boxes in Figure 5.7). The task controller is the sole
component that must be implemented by the user.

5.4.1 Firmware
A TAM is controlled locally by its firmware, an embedded software
executed by the main processor of the TAM. The firmware is written
in the programming language used by Arduino (a dialect of the C
programming language) and programmed into the flash memory of the
main processor. Changing the firmware currently requires a physical
connection to the TAM, which is very time-consuming—especially in
experiments that involve a large number of TAMs, possibly scattered
throughout the environment. In order to alleviate this problem, I
designed the firmware so that researchers do not have to change it
during normal operation.
This is achieved by exposing all the functionality of the TAM via an

API that can be accessed using the wireless mesh network. This API
allows researchers to query and control the state of the TAM remotely:
it reports all events and changes in sensory data to the coordinator
and executes all commands that it receives in return. Control software
such as the user-defined task controller can therefore be implemented
on the central computer that runs the coordinator. Consequently, the
API allows researchers to implement any functionality without any
modification to the firmware of the TAM.
Note that the problem of requiring a physical connection to the TAM

in order to change the firmware could be solved as follows. Currently,
a so-called boot loader allows researchers to program the flash memory
of the main processor using a USB connection. Without such a boot
loader, programming the flash memory requires special programming
equipment. Similarly, using a more advanced type of boot loader would
allow researchers to program the main processor with data received
over the mesh network. However, this solution would require a TAM
to reboot and is therefore of little use during an ongoing experiment.

5.4.2 Coordinator
The coordinator is a centralized software component that handles the
interaction between the TAMs in an experiment and the user-specified

97



Chapter 5 Design and implementation of the TAM

task controller. In order to communicate with the TAMs, the coor-
dinator requires an IEEE 802.15.4 radio module. The coordinator
performs low-level operations required to query and control a large
number of TAMs, for example, node discovery in the mesh network,
handling packet loss, and polling the status of TAMs that have not
reported a change for a long time. Furthermore, it provides an inter-
face that exposes the state of each TAM and all of its functions—the
common interface, discussed below.
The coordinator is a library written in Java; it is therefore platform

independent. Internally, the coordinator uses an event-driven frame-
work for handling asynchronous communication with the TAMs. More
specifically, it executes two types of events: periodic ones and reactive
ones. Periodic events are management tasks such as node discovery
and polling. Reactive events are either triggered by incoming data
from a TAM (e.g., sensor data) or commands invoked by the task con-
troller (e.g., change LED color). Incoming sensor data is cached by
the coordinator; a task controller can therefore transparently access
the current state of all TAMs. Commands invoked by a task con-
troller are translated by the coordinator and executed remotely on the
respective TAMs using the aforementioned firmware API.

5.4.3 Common interface
The common interface provides an abstract interface to the TAMs
used in an experiment. It allows researchers to query and modify the
state of an individual TAM in an abstract fashion; all low-level op-
erations are handled by the coordinator. The interface is common in
the sense that the same interface is used for simulation experiments,
that is, the common interface is replicated by the plug-in that allows
researchers to simulate the TAM using ARGoS. Consequently, task
controllers written against the common interface are can be ported
from simulation to the robots without requiring an changes. See Ap-
pendix B, Section B.2.2 for the complete definition of the common
interface.

5.4.4 Task controller
The task controller is the only component of the control framework
that has to be implemented by the researcher. The task controller
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interfaces with the TAMs in an experiment though the common in-
terface exposed by the coordinator. The task controller is executed
on the central computer that runs the coordinator; in fact, the co-
ordinator is a library used by the task controller. This architecture
allows researchers to write task controllers in a very convenient fash-
ion: the researcher neither has to program a low-level device such as
the TAM, nor to wrestle with low-level network protocols as used by
the mesh network. This makes setting up and conducting experiments
with TAMs relatively effortless, as changing the behavior of all TAMs
involved in an experiment only requires researchers to change the task
controller at the central computer.

The task controller can govern the behavior of an individual TAM
as well as a group of TAMs. More specifically, there is a 1 : n mapping
between task controllers and TAMs. Typically, it implements the low-
level model of a complex task as described in Chapter 4, Section 4.3:
each state of an atomic task reflects the state of an individual TAM,
and the interrelationships between states are implemented as condi-
tions for state transitions in the controller.

Multiple task instances are supported by the coordinator by instan-
tiating multiple copies of the task controller. However, each TAM can
only be mapped to a single controller, that is, a given TAM can only
represent an atomic subtask of a single complex task. Note that the
coordinator is not limited to a single type of task controller: several
different task controllers can be used in the same experiment.

Together, the firmware, the central coordinator, and the common
interface provide a ready-made environment to implement the low-
level model of any complex task. The software package that I provide
includes a template controller that implements the generic model of
an atomic task as presented in Chapter 4, Section 4.3.5.

Apart from the implementation of controllers, the centralized na-
ture of the coordinator has an additional advantage: all events can
be recorded at a central point using the same clock, which enables
accurate and consistent statistics-keeping during experiments using a
single clock-source. Furthermore, this allows researchers to correlate
data from multiple TAMs with external sensor data, for example, data
of a tracking system—see Chapter 6 for a demonstration.
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5.5 Network

Communication between the TAMs and the central coordinator is im-
plemented using a mesh network. Mesh networks are a type of network
in which all nodes relay data; typically, mesh networks do not differ-
entiate between routers and clients. Consequently, communication
links can be established between any node of the network rather than
between a client-node and a router-node as in traditional networks.
The resulting network topology is closely meshed (hence the name),
approaching a fully connected network with increasing link density—
contrarily to networks following a client-router principle, which tradi-
tionally use a sparsely connected star or bus topology. See Chapter 4,
Figure 4.11 for an example topology of the mesh network between a
group of TAMs.

Wireless mesh networks have certain advantages over traditional
wireless networks, most importantly in terms of scalability and ro-
bustness when paired with a self-healing networking protocol. Due to
these advantages, mesh networking enables experiments with a many
TAMs scattered over a large area, while reducing the risk of commu-
nication failures caused by the broadcast nature of traditional wireless
networking.

The TAM uses a 2.4GHz IEEE 802.15.4 radio module for connect-
ing to the mesh network. The TAM can be configured to work on
4 different wireless channels, which allows up to four experiments to
be run in close proximity: TAMs involved in each experiment would
operate on the same channel and would not interfere with the TAMs
used in the other experiments. The TAM is compatible with IEEE
802.15.4 modules of various manufacturers. Furthermore, the TAM
and the coordinator support various mesh-networking protocols, most
notably ZigBee 2.0.

In the context of this dissertation, I use XBee Series 1 network
modules provided by Digi Inc. and the associated proprietary mesh-
networking protocol, called DigiMesh. DigiMesh is a self-healing, ad
hoc mesh networking protocol that does not require dedicated router
nodes. Furthermore, it can be used with the inexpensive XBee Series 1
network modules, whereas the ZigBee 2.0 protocol requires costly mod-
ules and is relatively complex to configure.
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Figure 5.8: Snapshot recorded during the first TAM reliability exper-
iment, where a single e-puck robot has to continuously perform two
stationary atomic tasks. In the situation shown, the e-puck has re-
cently completed the blue task represented by the TAM on the right
side. The TAM on the left side is now announcing a green task, which
is perceived by the e-puck.

5.6 Reliability experiments
I conduct two experiments in order to evaluate the reliability of the
TAM device, the mesh network, and the control framework. Both
experiments have been recorded using a video camera. Additionally,
I recorded all the available data from the TAMs using the coordi-
nator. Videos and data are available in the supplementary online
material (Brutschy et al., 2014b).
The goal of the first experiment is to measure the reliability and

battery life of the TAM. In the experiment, a single e-puck robot has
to continuously perform two stationary atomic tasks. The robot has to
alternate between tasks; each task is abstracted using a single TAM.
Figure 5.9 shows a snapshot that illustrates the arena and the position
of the TAMs. The experiment is terminated once the battery of the
robot is depleted. I conducted a single trial that terminated after
40min. During this time, the robot executed a total of 96 single-robot
tasks. No failures occurred during the runtime of the experiment.
The goal of the second experiment is to evaluate the mesh network

and the control framework in terms of scalability. In the experiment,
all 50 TAMs that I produced are used to abstract 50 atomic tasks.
Figure 5.9 shows a snapshot that illustrates the arena and the position
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Figure 5.9: Snapshot recorded during the second TAM reliability ex-
periment, where all 50 TAMs that I produced are used to abstract 50
atomic tasks. In the situation shown, the two e-pucks have already
completed about half of the tasks available.

of the TAMs. The tasks have to be performed by two e-puck robots.
The experiment terminates once each of 50 atomic tasks has been
performed exactly once. I conducted a single trial that terminated
after 17min. Again, no failures occurred during the runtime of the
experiment.
In addition to these experiments, we can consider the data recorded

during the proof-of-concept experiments presented in Chapter 6 in
terms of reliability. The data shows that during these demonstra-
tions, the robots performed 35 complex tasks successfully. Two tasks
failed because robots abandoned a task due to sensor noise or other
technical problems. No failures occurred because of the TAMs or the
coordinator.

5.7 Use for other research projects
I designed the TAM so that it can be easily reproduced by other re-
search groups and adapted to other robot platforms. The TAM is—
similarly to Arduino—easily extensible, which allows students and re-
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searchers to extend the capabilities of the TAM without requiring a
full redesign. In the following, I describe reproduction, adaptation,
and extension of the TAM in more detail.

5.7.1 Reproduction

The TAM is open source, including all its components in hardware
and software. All components, except the IRcom library, are licensed
under the Creative Commons Attribution-ShareAlike 3.0 Unported Li-
cense. The license allows others to modify and reuse the design as
long as it remains open source. Additionally, the license grants the
rights to anyone to produce the TAM commercially—see Appendix B,
Section B.3 for the full license.
The production of the TAM is possible for a moderately equipped

laboratory: all electronic components such as chips and discrete de-
vices are common and easily obtainable from distributors all over the
world. Furthermore, apart from the electronic components, the printed
circuit boards and the body can be produced in-house. However, I ad-
vise that the printed circuit boards and the plastic body be produced
by a professional service for consistency in quality (e.g., mechanical
tolerances).
Even if the printed circuit boards and the plastic body are pro-

duced by a professional service, the cost of the TAM is relatively low—
provided that the final assembly is done in-house. The total cost of a
single TAM is 140€ when producing a quantity of 50 TAMs. Table 5.2
details the cost of each component of the TAM. In the table, I also
indicate how costs change when increasing the quantity to produce in
moderate numbers, that is, numbers that can still be assembled in-
house.19 Note that, in case the required facilities are available, the
printed circuit boards as well as the plastic body can be produced in-
house, lowering the cost even further. For example, a 3D-printer can
be used to produce the plastic body, possibly even in a single piece.
See Appendix B, Section B.1 for all technical information required

to reproduce the hardware of the TAM: the bill-of-materials, circuit
schematics, and layouts of the printed circuit boards, as well as CAD
drawings of the plastic parts that compose the body of the TAM.

19 Commonly, electronic components benefit from price breaks only for large quan-
tities of 2000–3000 pieces, depending on the component.
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Table 5.2: Costs of the different components of the TAM, indicated for
a quantity of 50 TAMs, when produced using a professional service.
The column “cost change” indicates how costs change when increasing
the quantity to produce in moderate numbers (i.e., numbers that can
still be assembled in-house).

Component Approx. cost Cost changeper TAM
Plastic body 60 € strongly decreasing
PCB production 8 € decreasing
PCB assembly 12 € decreasing
Electronic components 60 € constant19

5.7.2 Adaptation to other robot platforms
Conceptually, the design of the TAM is generic: a booth into which
a robot can enter. Accordingly, the TAM can be adapted to work
with almost any mobile robot platform. In the following, I outline the
steps necessary to adapt the TAM to three exemplary robot platforms
common in swarm robotics research: the marXbot, the Khepera III
robot, and the Kilobot.

MarXbot

The marXbot (Bonani et al., 2010) has been proposed in the context of
the Swarmanoid project (Dorigo et al., 2013). The marXbot is similar
to the e-puck insofar that it is of round shape, uses the same proximity
sensors as the e-puck, and possesses a forward-facing camera as well an
omni-directional camera. It is still frequently used in swarm robotics
research and is the mobile robot platform of choice for several other
research projects.20,21
Due to its similarity to the e-puck robot, adapting the design of

the TAM to the marXbot would be relatively simple. For example, as
the marXbot uses the same proximity sensors as the e-puck, commu-
nication could be implemented using the IRcom protocol. Therefore,
adapting the TAM to the marXbot would primarily require redesign-
20 http://www.ascens-ist.eu/
21 http://www.e-swarm.org/
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ing the plastic body—as the marXbot has a diameter of 17 cm, the
body of the TAM would need to be considerably larger.
The marXbot possesses a gripper which can be used to connect to

other marXbots or objects with a specific ring. This gripper has also
been employed to perform foraging tasks using custom-designed pas-
sive objects (Brutschy et al., 2012a; Pini et al., 2013a, 2014). Further-
more, the marXbot has been extended with a magnetic gripper module
used for autonomous construction task (Magnenat et al., 2012). As
the marXbot can already execute a variety of tasks using its gripper,
it can be argued that adapting the TAM to it is of questionable utility.
However, the grippers are expensive, error prone, fragile, and require
behaviors that are not relevant to the core of swarm robotics research.
As such, I believe that adapting the TAM to the marXbot would be a
worthwhile endeavor.

Khepera III

The commercially available Khepera III robot22 is of roughly rectan-
gular shape. It is modular and can be extended with, for example,
an additional processor running Linux, a forward-facing camera, and
a gripper module.
Adapting the design of the TAM to the Khepera III is possible, even

though this poses a few more challenges than for the marXbot. For
example, it is unclear whether communication between the TAM and
the Khepera III can be implemented using the IRcom protocol due to
different proximity sensors. In general, building custom devices that
interact with the Khepera III is difficult as the underlying hardware
and software has not been released as open source.
Even though there exists a gripper module for the Khepera III,

I believe that the adaptation of the TAM for the Khepera III is a
worthwhile endeavor, mostly due to the limited availability and the
prohibitive pricing of the gripper module.

Kilobot

The most recent of the three robots discussed in this section, the Kilo-
bot (Rubenstein et al., 2011, 2012) is also the simplest. The robot
possesses a differential drive system consisting of three stiff legs, on
22 http://www.k-team.com/mobile-robotics-products/khepera-iii
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which it moves using vibration, following the principle of the com-
mon “bristlebots”.23 Additionally, the Kilobot features an infrared
transceiver for communication and inter-robot distance sensing.
Adapting the design of the TAM to the Kilobot would require that

the TAM announces task availability and type using infrared commu-
nication rather than LED color. The same system could also be used
for general-purpose bi-directional communication between the TAM
and the robot (currently implemented using the IRcom protocol).
Due to its simplicity, the Kilobot would benefit from the TAM in-

sofar that one could study a considerably wider range of tasks with
the Kilobot. However, as the governing design principle of the Kilobot
was cost reduction, the design of the TAM would need to be optimized
such that its cost is comparable to the cost of the Kilobot—currently
approximately 120€ when purchased in retail.

5.7.3 Extensions
The design of the TAM in terms of extensibility is inspired by Ar-
duino and the e-puck: it features an extension connector that allows
researchers and students to easily extend its capabilities without re-
quiring a redesign of the TAM itself. In addition to supplying power,
the extension connector provides 10 input/output channels: 2 channels
for PWM LED control, 4 digital channels and 4 analog channels. Ap-
pendix B, Section B.1.5 details the pinout schematic for the extension
connector.
The variety of channels enables a wide range of possible extensions.

An example of a possible extension is a light sensor that allows re-
searchers to model the day/night cycle of a colony of social insects by
changing the behavior of a group of TAMs depending on the ambient
light.

5.8 Summary
In this chapter, I presented the design and implementation of a generic
task representation: the TAM. A single TAM can represent station-
ary single-robot tasks in laboratory experiments. Used in conjunction
with the modeling approach presented in Chapter 4, the TAM enables
research on multi-robot tasks of various complexity.
23 http://en.wikipedia.org/wiki/Bristlebot
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I presented the design requirements of the TAM and how I attained
them in its implementation. To this end, I detailed the implementation
of the TAM in hardware and software. I evaluated the reliability of the
implementation in two experiments using real robots. Furthermore, I
discussed how the TAM can be reproduced, adapted, and extended by
other research groups.
In the following Chapter 6, I will demonstrate how to represent a

complex task with a group of TAMs after the task has been abstracted
using the modeling approach presented in Chapter 4.
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In this chapter, I present two proof-of-concept experiments that de-
monstrate the usage of the tools proposed in this dissertation. In
particular, I show how a complex task can be modeled and abstracted
using the approach presented in Chapter 4; how this task can be repre-
sented in an experiment using groups of TAMs; and how the proposed
control framework can be leveraged to conduct an experiment involv-
ing swarms of robots.
The experiments presented in the following serve as a demonstration

of the tools presented in this dissertation. As the intended application
of these tools are laboratory experiments, the demonstration replicates
the experimental setup commonly used in such experiments. For this
reason, I collect data of all TAMs in the experiment and report various
metrics such as the time a robot has to wait for an interrelated task.
Note that this does not serve any other purpose than demonstrating
the capabilities of the TAM and the centralized coordinator. In par-
ticular, as I do not attempt to study a specific algorithm or approach
to solve a specific collaboration problem, the collection of data and its
analysis is not meaningful beyond demonstrating how to perform these
activities when using the TAM. Accordingly, I only conduct three ex-
perimental runs for each experiment, being well-aware of the fact that
this would not allow me to make observations of statistical significance
if my goal were to empirically study the behavior of the robots and
assess their performance.
This chapter is structured as follows. In Section 6.1, I present the

task to be addressed by the robots in the experiments. The task is
a complex task whose subtasks have sequential and concurrent inter-
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relationships. I model the task following the approach presented in
Chapter 4, first by decomposing and describing it on a high level of
abstraction, then by modeling it on a low level of abstraction. The
low-level model serves as a basis for implementing the task controller
that governs the behavior of the TAMs in the experiments. In Sec-
tion 6.2, I present the experimental setup in terms of the arrangement
of a group of TAMs to represent the complex task, as well as the
robots and their controller. The first experiment, presented in Sec-
tion 6.3, demonstrates how the proposed control framework can be
leveraged to collect detailed data from each TAM. The second exper-
iment, presented in Section 6.4, demonstrates how the TAM can be
used for conducting experiments involving large swarms and several
task instances. In Section 6.5, I provide a summary of this chapter.

6.1 Task
For the following experiments, I assume a fictitious disaster response
task as it might occur after a nuclear accident. In particular, the
overall task of the robots is to repair something inside a nuclear reactor.
The task requires three robots to collaborate: two robots have to open
the reactor lock to allow the third robot to enter the reactor chamber
and perform the repair.

6.1.1 High-level model
In the following, I model the disaster response task on a high level
using the approach presented in Chapter 4, Section 4.2.
The overall disaster response task τresponse is a complex task that

consists of two subtasks with a sequential interrelationship: 1) τopen,
the task of opening the reactor airlock and 2) τrepair , the task of repair-
ing something inside the reactor. The task τopen requires two robots to
act concurrently on the airlock. To this end, each robot executes one of
two atomic subtasks τleft and τright . After the airlock has been opened,
it has to be kept open by the robots until a third robot has entered the
reactor chamber. Once the third robot is in the reactor chamber, the
robots of τopen must leave. Once these robots left, the third robot can
perform the repair, that is, work on τrepair . The disaster response task
τresponse is completed once the reactor has been repaired by completing
τrepair .
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start end

τopen

τrepair

τright

τresponse

τleft

Figure 6.1: High-level model of the example task τresponse. The model
shows the hierarchical relationship between the atomic subtasks and
defines the order of execution: τleft and τright have a concurrent inter-
relationship forming τopen; τopen and τrepair have a sequential interre-
lationship forming τresponse. Each of the three atomic tasks has to be
performed by a single robot. The task relationship graph of τresponse
has a nestedness of 2.

The task τopen is a complex task that consists exclusively of atomic
subtasks τleft and τright (i.e., it has a nestedness of 1). As τopen is
the sole complex subtask of τresponse, the nestedness of τresponse is 2.
Figure 6.1 gives a visual representation of its task relationship graph
described using UML 2.x activity diagrams.

6.1.2 Low-level model
In order to abstract τresponse using a group of TAMs, I have to trans-
form its high-level model into a low-level model. I visually describe
the low-level model using Petri nets as discussed in Chapter 4, Sec-
tion 4.3. I use the resulting low-level model subsequently as a basis
for implementing the task controller that governs the behavior of the
TAMs.
Figure 6.2 shows the low-level model for τresponse, visualized using

the reduced version of its Petri net.24 The transitions of the three
24 By convention, the places of a Petri net can be omitted in order to visualize

better the structure of the net (Petri and Reisig, 2008). The full version of the
Petri net and instructions for simulating it can be found in the supplementary
online material (Brutschy et al., 2014b).
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Figure 6.2: Low-level model of the example task τresponse (reduced ver-
sion without places).24 Please note that, as the initial marking cannot
be visualized in the reduced version, I denote transitions that can fire
at the start of the demonstration using a double border. The weight of
all edges is 1 unless indicated otherwise. Edges that are internal to the
functioning of an individual TAM are represented using dashed lines.
Edges labeled a and a′ model the concurrent interrelationship: a robot
that is ready to work on τleft can start working once a robot arrives
to work on τright (and vice versa). Edges labeled using Greek letters
model the sequential interrelationship: once τleft and τright have been
completed, τrepair becomes available (edge α); a robot that arrives to
work on τrepair allows the robots in τright and τleft to leave (edge β); once
these robots have left, work can start on τrepair (edge γ); once work on
τrepair finishes and the robot leaves, τright and τleft can become available
anew (edge δ). Dotted/dashed boxes indicate task boundaries.
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atomic tasks τleft , τright , and τrepair are described in Figure 6.2 (labeled
using Arabic numerals). Note that, even though I use the generic
model of an atomic task (cf. Chapter 4, Section 4.3.5) as the basis for
modeling the three atomic tasks, Figure 6.2 shows only the transitions
that possess interrelationships with other tasks.
I model the concurrent and sequential interrelationships identified

by the high-level model analogously to the models presented in Chap-
ter 4, Section 4.3.3: the two atomic tasks τleft and τright are subtasks of
the complex task τopen and have a concurrent interrelationship. In par-
ticular, I model this concurrent interrelationship so that work on τleft
and τright can only start when both robots are present, and each robot
can leave only after both robots completed their work (edges labeled
using Latin letters in Figure 6.2). Moreover, I model the sequential in-
terrelationship between the complex task τopen and the atomic subtask
τrepair such that the robots that completed τopen must wait for a robot
to arrive for τrepair before they can leave—in other words, I assume a
blocking sequential interrelationship (edges labeled using Greek letters
in Figure 6.2).
Note that the low-level model also describes a condition not previ-

ously mentioned: τleft and τright can only become available anew after
τrepair has been completed (edge labeled δ in Figure 6.2), that is, a
second execution of the overall task τresponse can only commence after
the first has been fully completed. While this condition does not re-
flect a mission objective of the particular disaster scenario described,
it allows me to study a scenario in which the swarm has to execute
many instances of τresponse.

6.2 Experimental setup
I conduct two experiments: in the first experiment, six e-puck robots
have to perform a single instance of τresponse; in the second experiment,
20 e-puck robots have to perform six instances of τresponse. I use more
robots than strictly necessary in order to observe the effect of multiple
robots competing for the same task.
In total, the task τresponse consists of three atomic subtasks. Accord-

ingly, I use three TAMs to abstract a single instance of τresponse, with
each TAM abstracting one of the three atomic subtasks. I use the
control framework described Chapter 4, Section 4.4 to implement a
task controller that reflects the behavior of the low-level model shown
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2

1 1

τrightτleft

τrepair

τopen

τresponse

Figure 6.3: I use three TAMs to
represent an instance of τresponse,
with each TAM representing one
of the three atomic subtasks τleft ,
τright , and τrepair . Dotted/dashed
lines indicate task boundaries;
white numbers in the black cir-
cles designate order of execution.

in Figure 6.2. The task controller governs the behavior of a single
instance of τresponse by exchanging data and commands with the three
TAMs that represent the three atomic subtasks of this particular in-
stance. In case of the second experiment, six instances of the task
controller are launched on the centralized coordinator (cf. Chapter 5,
Section 5.4) in order to represent the six instances of τresponse using
18 TAMs. Note that in the following I use the term “TAM τx” inter-
changeably with the term “task τx”.
Figure 6.3 illustrates how a single instance of τresponse is represented

using a group of three interrelated TAMs. Figure 6.4 shows a close-up
of the TAMs taken during one of the experiments. As Figure 6.4
shows, I use an extended version of the e-puck robot equipped with a
range and bearing sensor, an embedded computer running Linux, and
an omni-directional camera (see Appendix A, Figure A.1 for details).
Note that the range and bearing sensor extension is not used by the
robots in the following experiments, despite being mounted on the
robots. All robots use an instance of the same controller: by default,
robots perform a random walk. If a robot perceives a TAM with its
omni-directional camera, it tries to enter into the TAM in order to
start working on the task this TAM represents. The robots follow a
simple greedy strategy to select tasks, that is, every robot tries to work
on any available task it encounters. Upon completion of the task, the
robot leaves the TAM and starts to perform a random walk again.
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Figure 6.4: Close-up of the TAMs taken during one of the experiments.
At the left, a robot has already entered into the TAM that represents
task τleft ; the TAM signals the robot to wait by changing the color of
its LEDs to pink. At the right, the TAM representing τright signals
the approaching robot that its associated task is available by its green
LEDs. At the top, the third TAM, representing τrepair , is still idle as its
sequential interrelationship with the complex task τopen requires that
τleft and τright are completed before τrepair can become available.

Both experiments have been recorded using an overhead camera.
Additionally, I recorded all data available from the TAMs using the
coordinator. Videos and data are available in the supplementary online
material (Brutschy et al., 2014b).

6.3 Single-instance experiment
The first experiment illustrates how the centralized design of the con-
trol framework can be leveraged to collect detailed data from each
TAM. I record various task-related data such as which robot executed
which atomic task and the time a robot had to wait for an interrelated
task.
In this experiment, I use three TAMs, six e-puck robots, and a 4m2
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Figure 6.5: Snapshot recorded during the second run of the single-
instance experiment, taken with an overhead camera in the same sit-
uation as shown in Figure 6.3. The arena is a 4m2 square. A single
instance of τresponse, represented using three TAMs, is placed in the
center of the arena. I use six e-puck robots, randomly positioned in
the arena at the beginning of the experiment.

square arena. The three TAMs are configured as shown in Figure 6.3
and placed at the center of the arena. Figure 6.5 shows a snapshot that
illustrates the arena and the position of the TAMs. At the beginning
of the experiment, six e-puck robots are positioned arbitrarily in the
arena. The experiment terminates as soon as task τresponse has been
completed once. Accordingly, the duration of the experimental runs
can vary. Figure 6.6 illustrates how τresponse evolves over time.

6.3.1 Results
I performed three experimental runs. For each run, I recorded all
the events that occurred at the individual TAMs using the centralized
coordinator. An example for such an event is when a robot enters into
a TAM: the TAM communicates with the robot to obtain its identity
and reports it to the coordinator. The centralized recording of all
events allows researchers to conveniently analyze and report a large
variety of data.
For this experiment, I report the recorded data in the form of the
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Figure 6.6: Evolution of the task τresponse over time in terms of state
changes of its subtasks. The times shown are the result of an exem-
plary execution of a single instance of τresponse recorded by the coordi-
nator during the second run of the single-instance experiment.

following metrics: ax denotes the time from the moment the TAM τx

signals the availability of a task to the moment a robot is inside the
TAM τx; dx denotes the time the robot has to work on task τx; I set
dleft and dright to 10 s and drepair to 20 s.25 wx and w′x denote the time a
robot has to wait before and after working, respectively. tx denotes the
total time required to complete task τx, that is, tx = ax +wx +dx +w′x.
The time a robot has to wait before and after working on a task is a

result of the interrelationships between TAMs. More specifically, wleft
and wright are due to the concurrent interrelationship between τleft and
τright . For example, wleft measures the time a robot ready to work on
τleft has to wait for a robot to arrive for τright . Consequently, either
wleft = 0 or wright = 0 (or both, in the rare case that robots arrive for
both tasks at the same moment in time). Furthermore, w′left , w′right ,
and wrepair are due to the sequential interrelationship between τopen
and τrepair . More specifically, the robots working on τopen have to wait
for the arrival of a robot for τrepair . Therefore, w′left = w′right = arepair .
wrepair is due to the fact that a robot ready to work on τrepair has to
wait for the robots of τopen to leave before it can start working. w′repair
is always zero as the robot can leave immediately after the completion
of τrepair .
Table 6.1 reports the aforementioned metrics for each of the three

experimental runs.
25 Note that in this experiment, dx is constant and has been defined a priori.

Other ways of defining dx are possible, for example, it could follow a pre-defined
sequence of values or be a random variable drawn from a specific distribution.
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Table 6.1: Detailed results of the single-instance experiment: ax, time
from the moment the TAM τx signals the availability of a task to the
moment a robot is inside the TAM; wx and w′x, time a robot has to
wait before and after working on τx; dx, time the robot has to work
on task τx; tx, total time required to complete task τx. All times are
reported in seconds.

Run Task Robot ID ax wx dx w′
x tx

1
τleft 53 12 6 10 12 40
τright 54 18 0 10 12 40
τrepair 49 12 5 20 — 37

2
τleft 49 21 6 10 45 82
τright 33 27 0 10 45 82
τrepair 53 45 6 20 — 71

3
τleft 33 30 0 10 25 65
τright 56 30 0 10 25 65
τrepair 53 25 5 20 — 50

In case of the complex tasks τopen and τresponse, I measure only the
total duration of the task starting from the moment the task becomes
available and ending at the moment the task has been completed. Due
to the concurrent interrelationship of its subtasks, the total duration
of τopen equals tleft = tright (see Table 6.1). Due to the sequential
interrelationship of its subtasks, the total duration of τresponse equals
topen + wrepair + drepair . For the three experimental runs, the value of
tresponse is 65, 108, and 90 s, respectively.

6.3.2 Discussion
In terms of data collection, the experiment demonstrates how re-
searchers can record various task-related metrics using the centralized
coordinator. More precisely, the results show the level of detail that
can be obtained from an experiment. An example of these task-related
metrics is the amount of time a robot that is ready to work on a task
spends waiting for a partner. The ability to record such task-specific
data, which is not trivial to obtain when using ad hoc task abstractions,
enables the study of algorithms that leverage this data (see, for exam-
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ple, Brutschy et al., 2014c)—data that is not trivial to obtain when
using ad hoc task abstractions. Furthermore, the coordinator records
the identity of each robot that enters into a TAM. This feature is of
great utility when conducting experiments with large swarms.
In terms of experimental setup, the experiment demonstrates how

the TAM broadens the range of tasks that can be represented in labo-
ratory experiments. First, any task-related aspect can be closely con-
trolled and modified during an experiment. For example, the object
transport task studied by Pini et al. (2011b) can be completed by the
robots in two ways: individually, by traveling through a corridor, or
collectively, by partitioning the task and exchanging objects at a cache
site. By abstracting the cache site using a set of TAMs, Pini et al.
were able to vary the advantage of using the cache site over using the
corridor—see Chapter 7, Section 7.3 for an in-depth discussion of this
work. Without the TAM, this kind of study would require modifying
the length of the corridor, which might incur unintended changes in
the environmental parameters—for example, the robot density would
change.
Second, the TAM’s capability of identifying robots enables tasks

that are specific to robots. An example is the task studied by Brutschy
et al. (2012c): robots specialize in one of two possible task types. As
each robot has its individual level of specialization, the duration of a
task might be different for each robot—see Chapter 7, Section 7.1 for
an in-depth discussion of this work. A study of this type would not
be possible without the TAM’s capability of communicating with the
robots.
In summary, the experiment demonstrates that the tools for task

abstraction presented in this dissertation facilates research on com-
plex tasks in swarm robotics. In particular, the implementation of
the TAM and the proposed control framework enable researchers to
conduct experiments by allowing them to collect detailed data as well
as analyze and report this data in a convenient fashion.

6.4 Multi-instance experiment
Expanding on the single-instance experiment, the multi-instance ex-
periment demonstrates that the TAM can be used with several in-
stances of a given task and larger swarms. Again, I use the centralized
coordinator to record all events that occur during the experiment. I
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Figure 6.7: Snapshot recorded during the second run of the multi-
instance experiment, taken with an overhead camera. The arena has
dimensions of 2.7m×2.2m. Six instances of τresponse, represented by a
total of 18 TAMs, have been placed in the arena. I use a swarm of 20
e-puck robots, randomly positioned in the arena at the beginning of
the experiment. The black-and-white visual tags on top of the robots
are used by a ceiling-mounted tracking system to identify and track
individual robots.

use this data to report metrics such the number of successful task
executions per atomic subtask. Additionally, I use a ceiling-mounted
tracking system to track the trajectories of the robots (Stranieri et al.,
2013).

In this experiment, I use 18 TAMs, 20 e-puck robots, and a rectan-
gular arena with dimensions of 2.7m×2.2m. Six instances of τresponse
are placed in the arena, again configured in groups of three TAMs
as shown in Figure 6.3. At the beginning of an experimental run,
20 e-puck robots are randomly positioned in the arena. An experi-
mental run terminates after 5min. Figure 6.7 shows a snapshot that
illustrates the setup of the arena and the position of the TAMs.
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Table 6.2: Detailed results of the multi-instance experiment. In this
experiment multiple executions of the different instances of τresponse
are possible: sx, number of successful executions of τx; fx, number of
failed executions of τx.

Run τresponse τleft τright τrepair

sx fx sx fx sx fx sx fx

1 9 1 13 1 14 0 9 0
2 12 0 15 0 15 0 12 0
3 11 1 15 1 16 0 11 0

6.4.1 Results
I performed three experimental runs. Contrary to the first experiment,
multiple executions of the different instances of τresponse are possible
in this experiment. Accordingly, I report the following task-related
metrics of the recorded data: sx is the number of successful executions
of τx, whereas fx is the number of failed executions. Task failures
are due to robots abandoning a task because of sensor noise or other
technical problems. Table 6.2 reports these task-related metrics for
each of the three experimental runs. The discrepancy between the
number of successful tasks sleft and sright compared to srepair is due to
the fact that some executions of τrepair were prematurely terminated
by the end of the experiment. This effect would be less pronounced in
experiments with a longer duration.
Additionally to the metrics related to the success and failure of

task execution, I report some of the metrics considered in the single-
instance experiment. In particular, I report the metrics a, w, and w′
in Table 6.3. As the underlying distributions of these metrics are not
known, I report each metric using a non-parametric approach. More
precisely, I report the 1st, 25th, 50th, 75th, and 99th percentile of the
distribution of each metric, for all runs combined.
I also recorded the positions of the robots using a ceiling-mounted

tracking system (Stranieri et al., 2013). Figure 6.8 shows this data
correlated with the data from the TAMs recorded by the centralized
coordinator. In the figure, black semi-opaque dots represent robot po-
sitions at a given moment in time, whereas the resulting lines show
robot trajectories over time. Darker areas are caused by many overlaid
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Table 6.3: Detailed results of the multi-instance experiment in the form
of a non-parametric analysis of the following metrics: a, time from the
moment the TAM τx signals the availability of a task to the moment
a robot is inside the TAM; w and w′, time a robot has to wait before
and after working on τx. I report the 1st, 25th, 50th, 75th, and 99th
percentile of the distribution of each metric, for all runs combined.
All times are reported in seconds.

Task Metric 1% 25% 50% 75% 99%

τleft

a 2.7 14.7 30.0 44.2 112.4
w 1.0 5.0 16.0 28.0 64.2
w′ 4.7 12.0 21.0 39.0 70.7

τright

a 7.4 20.0 29.0 40.0 89.9
w 1.0 5.5 11.0 26.0 57.9
w′ 4.7 12.0 21.0 39.0 70.7

τrepair
a 4.7 12.0 21.0 39.0 70.7
w 4.4 5.0 6.0 11.0 20.8

dots, which represents areas frequently occupied by the robots. Com-
paring Figure 6.8 with Figure 6.7, we can observe a strong concentra-
tion of movement around the positions of the TAMs. Additionally, I
visually indicate the success and failure of task execution, as reported
by Table 6.2 (visualized using circles at the top and bottom of the
plot).

6.4.2 Discussion
Extending upon the single-instance experiment, the multi-instance ex-
periment demonstrates how the researcher can leverage the control
framework to conduct experiments involving larger swarms.
In terms of data collection, the experiment records the same data,

but for many robots and several task instances, thereby illustrating
how the researcher can record large amounts of data over several task
instances and/or experiments. The experiment also demonstrates how
the centralized recording of data allows researchers to correlate data
from the TAMs with the data of an external tracking system—if nec-
essary, in real time.
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Figure 6.8: Data of a ceiling-mounted tracking system (Stranieri et al.,
2013) correlated with data from the TAMs recorded by the centralized
coordinator during the first experimental run of the multi-instance ex-
periment. Black semi-opaque dots represent robot positions at a given
moment in time. Resulting lines show robot trajectories over time.
Darker areas represent areas frequently occupied by robots (e.g., the
areas close to the TAMs). Circles represent task executions: their color
corresponds to the task executed, while their diameter corresponds to
the number of tasks executed over the course of the experiment.
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In terms of experimental setup, the experiment demonstrates how
to deploy several instances of the same complex task. The exper-
iment also illustrates how the centralized coordinator can control a
large number of TAMs in parallel, using the scalable mesh network to
communicate with each TAM.
In summary, the experiment shows how the proposed tools for task

abstraction can be leveraged to conduct experiments involving larger
swarms and many interrelated tasks.

6.5 Summary
In this chapter, I demonstrated the usage of the tools proposed in
this dissertation. In particular, I showed how a complex task can be
modeled and abstracted using the approach presented in Chapter 4,
how this task can be represented in an experiment using groups of
TAMs, and how the control framework can be leveraged to conduct
an experiment involving larger swarms and many interrelated tasks.
The experiments presented were proof-of-concept experiments, that

is, I conducted them for the sole purpose of demonstrating the TAM
and its capabilities. In the following Chapter 7, I present four scientific
studies that rely on the TAM for task abstraction and representation.
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Exemplary studies
conducted using the TAM

In this chapter, I discuss four scientific studies that have been con-
ducted using the tools presented in this dissertation. All four studies
have been previously published; in the following description, I focus on
the role of the TAM in each study and provide only a summary of the
algorithms considered and results obtained. For further information,
I refer the reader to the respective publication.
The presented studies have been performed in collaboration with

other researchers; I therefore refer in the following to my collabora-
tors and myself using the first person plural. My contribution to these
publications ranges from providing the tools for task abstraction to de-
signing and implementing the algorithms, performing the experiments,
and writing the publication.
Note that of the four studies presented, the first and the third were

conducted during the design phase of the TAM. This provided me
with new insights into how tasks are studied in actual experiments—
invaluable when designing a novel tool for research involving robots.
As the physical TAM device did not exist in sufficient numbers at the
time of the experiments, both studies were conducted solely in simula-
tion. Furthermore, the TAM described in the associated publications
differs slightly from the version presented in this dissertation. These
differences are not significant in the context of the studies presented.
The second and the fourth study, on the other hand, were conducted

after design and production of the TAM had been completed. The sec-
ond study was conducted using physical TAM devices in robot exper-
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iments. The fourth study is, at the time of writing, rather recent—as
of yet, the experiments presented have been conducted solely in sim-
ulation. Robot experiments that involve physical TAM devices are in
preparation at the time of writing.
In Section 7.5, I provide a summary of this chapter.

7.1 Cost and benefits of behavioral
specialization

In this section, I present a study that considers atomic tasks of two
different types that appear stochastically in time and space. The focus
of the study is behavioral specialization: robots of a swarm have to
specialize in one of the two task types in order to work efficiently. The
study has been published (Brutschy et al., 2011, 2012c).

Division of labor is a concept that is common when considering the
organization of large groups of individuals such as humans or social
insects (Beshers and Fewell, 2001; Garnier et al., 2007). In division
of labor, as defined for social insects by Beshers and Fewell (2001),
“(a) each worker specializes in a subset of the complete repertoire of
task types performed by the colony, and (b) this subset varies across
individual workers in the colony”. In artificial systems, a common way
to obtain division of labor is to let individuals adapt their behavior
so that they predominantly work on a subset of the available task
types—this is called behavioral specialization (Nitschke et al., 2007).
Behavioral specialization is known to increase the overall performance
of an individual due to different reasons, one of them being learning.
In some types of learning, an individual can acquire experience by
repeatedly performing a task, which may improve the efficiency of the
individual for tasks of the same type (Ratnieks and Anderson, 1999).
The individual can exploit this increased efficiency by adapting its task
selection behavior, that is, by selecting with a higher probability tasks
of the type for which it has improved its performance.

7.1.1 Tasks and learning
We considered an environment in which robots can choose between two
task types: blue tasks and green tasks, denoted by τx with x ∈ {b, g}.
While performing task instances, robots learn. To implement learning,
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we used a simple model where a robot that repeatedly performs a task
of a certain type becomes more efficient in performing other tasks of
the same type. The improvement in task performance is a reduction
of the task completion time dx, that is, the time it takes to complete
a task of type τx:

dx(nx) =


dstd if nx = 0

dstd −
dstd

k (1 + e−nx+c) if 0 < nx ≤ nmax

. (7.1)

The meaning and effect of the parameter k and the constant c will
be explained in the following. The counter nx is incremented on the
completion of a task of type τx, while, at the same time, the opposing
counter ny for task type τy, with y 6= x, is decremented (this is a form
of forgetting; see below). Both counters are limited to the interval
[0, nmax]. For example, if a robot has exclusively worked on tasks of
type τb its counters are nb = nmax and ng = 0.
The factor k is used to vary the maximal time gain attainable

through learning. This gain of learning is reached after a robot has
successively completed nmax tasks of the same type. For convenience,
we refer to the resulting minimal task completion time attainable by
a fully learned robot as dmin = dx(nmax). Note that the parameter k
is independent of dstd, for example, k = 1.25 always results in a maxi-
mal time gain of 80%. The constant c = nmax/2 renders the function
dx(nx) point-symmetric on the median of the interval [0, nmax], that
is, a robot reaches 50% of the time gain attainable through learning
after performing nx = nmax/2 tasks of type τx.
The standard task completion time is denoted with dstd; it is the

time a robot takes to perform a task τx, when its nx = 0. Figure 7.1
shows an illustration of the learning model.
We also implemented a form of forgetting: if a robot has improved its

performance on a given task and then either starts to work on another
type of task or does not work on any task for some time, it loses part of
its performance improvement for the first task type. We implemented
forgetting as follows. First, when improving its performance on a
certain type of task τx due to learning, a robot forgets what it learned
previously about the other task type, that is, upon incrementing nx,
we decrement ny, with y 6= x. Second, a robot that keeps searching
for tasks of a certain type gradually decreases its performance for
both task types, that is, upon having travelled for a distance of 3m,
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Figure 7.1: The effect of learning on the task completion time dx for
different values of the parameter k. Learning takes effect when a robot
repeatedly works on the same type of task. The standard task comple-
tion time in the initial state dstd is 120 s. The parameter k influences
the time gain of learning. The values k = {1.25, 1.67, 2.5, 5} shown
correspond to 20%, 40%, 60% and 80% of dstd at nmax, respectively.

the counters nb and ng are both decremented by 1 (to a minimum
of 0). This mechanism causes the robots to return to their initial,
non-specialized state over time.

7.1.2 Environment and approach
The environment consists of an obstacle-free, hexagonal arena—see
Figure 7.2 for an illustration. We represented tasks with TAMs located
at the boundaries of the arena, with a total of 24 instances concurrently
available. Each TAM stochastically selected which type of task it
represents, that is, task instances of either type appeared stochastically
in time and space. Once a task instance has been completed, the
coordinator assigns a new task of random type to the respective TAM.
TAMs signalled the type of task they represented using their LEDs.
At the beginning of the experiment, 18 e-puck robots were randomly
positioned in the arena.
Robots are able to exploit learning by adapting their task selection

behavior, that is, by selecting tasks of the type on which they have
improved their performance with higher probability. This adaptation
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Figure 7.2: Illustration of the arena with e-pucks at random initial
positions. Tasks are represented by TAMs located at the boundaries
of the arena, with a total of 24 instances concurrently available. Each
TAM stochastically selects which type of task it represents, that is,
task instances of either type appear stochastically in time and space.

of behavior is called behavioral specialization. We employed a sim-
ple stochastic task allocation strategy, called selective strategy, which
allows a swarm of robots to specialize behaviorally. The selective strat-
egy is fully distributed and requires no communication between robots,
as it depends only on the robots’ memory of the previously completed
tasks. In order to evaluate the influence of learning, we compared the
selective strategy to a simple greedy strategy. The greedy strategy
causes robots to work on any task they encounter; robots using the
greedy strategy do not learn.

7.1.3 Results and discussion
We studied the influence of different environmental parameters on the
performance of the swarm and showed that the swarm can exploit
learning successfully (Brutschy et al., 2011, 2012c). In particular, we
compared the performance of a swarm using the selective strategy with
a swarm using the greedy strategy. Figure 7.3 shows the performance
of both strategies when varying two parameters: the minimal task
completion time, which affects the performance advantage attainable
through learning; and the search speed, which corresponds to changing
the size of the environment and therefore the distance between tasks.
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The results show that the selective strategy performs better in rela-
tively small environments where learning is advantageous. However,
the results also show that spatiality has a major influence on the costs
of specialization: robots specialized in a certain task are prone to los-
ing efficiency due to longer search times—an effect that is especially
pronounced in large environments. Behavioral specialization is there-
fore not to be considered in terms of benefits only, as it is affected by
external factors such as task availability and the spatial distribution
of the tasks, which might lower its benefits considerably.
The study demonstrates how to conduct experiments that involve

atomic tasks represented by the TAM. Task availability is stochastic
and follows a given distribution—the nature of the TAM allows re-
searchers to closely control and conveniently modify this distribution.
Furthermore, the study considers a problem that could not be stud-
ied with simple ad hoc abstractions: in order to study specialization,
tasks have to exhibit completion times that depend on the individual
robot. While this is trivial to represent in simulation, representing it
in robot experiments is considerably more difficult. Accordingly, the
study prompted me to include the required capabilities in the final
design of the TAM. Note that the study presented was conducted in
simulation only, as the physical TAM device did not exist in sufficient
numbers at the time of conducting the experiments.

7.2 Property-driven design
In this section, I present a study that considers a same-robot forag-
ing task with nestedness of 1, that is, the overall task is a complex
task that consists of two atomic subtasks with a sequential interre-
lationship. The focus of the study is property-driven design, a novel
top-down design method for robot swarms based on prescriptive mod-
eling and model checking. The study has been published (Brambilla
et al., 2014).

In swarm robotics, the developer needs to design the behavior of the
individual robots so that their interaction will result in the collective-
level behavior that is needed to accomplish a certain task. Unfor-
tunately, the design and development of individual-level behaviors to
obtain a desired swarm-level goal is, in general, very difficult, as it is
difficult to predict and thus design the non-linear interactions of tens
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Figure 7.3: Performance for different search speeds and task comple-
tion times when fully specialized, collected over 20 simulation runs. At
the top, the observed mean of the number of completed tasks for the
selective and greedy strategy (white and dark surface, respectively);
standard deviation < 5% for all tested cases (not shown). At the
bottom: difference in number of tasks completed by the two strate-
gies (shades of gray), with indication of which strategy is better and
whether the difference is statistically significant or not (see symbols in
the legend).
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or hundreds of individual robots that result in a desired collective be-
havior. The difficulty in predicting and designing such interactions and
the lack of a centralized controller make traditional system engineering
approaches ineffective (Wooldridge and Jennings, 1998; Banzhaf and
Pillay, 2007).
Existing approaches to the design of robot swarms present limita-

tions (Brambilla et al., 2013); to date, an effective approach to the
top-down design of robot swarms is still missing (Brambilla et al.,
2014). In Brambilla et al. (2014), we presented property-driven de-
sign, a novel top-down design method for robot swarms based on pre-
scriptive modeling and model checking. We evaluated the method in a
case study concerning a foraging task represented with TAMs in robot
experiments.

7.2.1 Model checking and property-driven design
In our approach, the developer creates a prescriptive model of the
desired robot swarm and uses it as a blueprint for the implementation
and improvement of the swarm. The use of model checking allows the
developer to formally verify properties directly on the model, reducing
the need for costly evaluations using simulation or robot experiments.
In property-driven design, different “views” of the system to be realized
are produced, from the most abstract (the properties of the system)
to the most concrete (the final robot swarm). This idea takes its
inspiration from model-driven design in software engineering, where
software is designed through a series of transformations from platform-
independent models to executable platform-specific models (Miller and
Mukerji, 2003).
Property-driven design addresses the shortcomings of the existing

approaches:

• it aims at providing a method that allows researchers to formally
specify the requirements of the desired robot swarm;

• it reduces the risk of developing the “wrong” robot swarm, that
is, a robot swarm that does not satisfy the requirements;

• it promotes the re-use of available models and tested solutions;

• it can be used to develop platform-independent models that help
in identifying the best robotic platform to use;
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• it helps to shift the focus of the development process from im-
plementation to design.

Property-driven design is intended to be a step forward in the develop-
ment of swarm engineering: the systematic application of scientific and
technical knowledge in order to specify requirements, design, realize,
verify, validate, operate and maintain an artificial swarm intelligence
system (Brambilla et al., 2013).
Practically, property-driven design is based on prescriptive modeling

and model checking. Model checking is a formal method that allows
researchers to formally prove that a model satisfies a given property.
The idea is that a system can be modeled using a formal mathematical
model and then checked against a property defined using a formal logic
language. We use Markov chains to define models and probabilistic
temporal logics to define properties (Konur et al., 2012; Brambilla
et al., 2012). Property-driven design is composed of four phases:

1. the requirements of the robot swarm are formally described in
the form of desired properties using probabilistic temporal logics;

2. a prescriptive model of the robot swarm is created using Markov
chains;

3. this prescriptive model is used as a blueprint to implement and
improve a simulated version of the desired robot swarm;

4. the final robot swarm is implemented.

A schema showing the different phases of property-driven design is
presented in Figure 7.4.

7.2.2 Case study
In order to evaluate our approach, we considered a case study in which
the swarm has to address a foraging task.26 In particular, we consid-
ered a same-robot foraging task: a single robot has to harvest and
object and store it in the nest. Figure 4.9 in Chapter 4 shows the
low-level model for this type of task.
26 In the original publication, we also conducted a case study that considers a

spatially organizing behavior. Behaviors of this kind cannot be studied using
the TAM (cf. Chapter 3); accordingly, this case study has not been included
in this dissertation.
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Figure 7.4: The four phases of property-driven design. In each phase,
a new layer is added to the system. Layers differ in their level of
abstraction: the Properties layer is the most abstract, in which only
the goal characteristics of the robot swarm are stated; the Robots layer
is the most concrete. The addition of a new layer brings the system
closer to its final state.

In the case study, a swarm of robots has to harvest objects from
sources and store them in the nest. The arena is comprised of 20
TAMs: 5 TAMs at the upper wall act as the nest, that is, each of these
TAMs is a storing location; 15 TAMs at the other walls act as sources,
that is, locations where objects can be harvested. The number of
available storing locations depends on the number of robots currently
storing an object: it can vary from 5, when no storing location is used
by any robot, to 0, when all are in use. At any given time, there are
O objects available in the arena, that is, a new object appears as soon
as one is harvested by a robot.
A TAM encodes its states using its LEDs: green, when it is available

for storage; blue, when it has an object available for harvesting; red,
when it is busy, that is, a robot is currently harvesting or storing an
object in it; off/black, when it is unavailable. The environment is a
2m× 2m square arena. Figure 7.5 shows a snapshot recorded during
the experiments that illustrates the layout of the arena.

7.2.3 Results and discussion
We applied the four-phase process illustrated in Figure 7.4 in order
to generate a controller for the robots. In phase one, we modeled the
desired property of the swarm. In foraging, the main requirement is
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Figure 7.5: Snapshot recorded during an experiment performed with
20 e-puck robots and O = 6 available objects. The snapshot was
taken with an overhead camera. Green colored TAMs signal storage
locations, blue colored TAMs signal objects to be taken, dark TAMs
are not available.

that the swarm retrieves at least a certain number of objects within
a fixed time. Accordingly, the desired property of the swarm is that
the expected number of objects retrieved in less than 600 s is greater
than or equal to k. The number k of objects that we wish to retrieve
depends on the number of robots composing the swarm and on the
number of objects O available in the environment at any given time.
In phase two, we modeled the swarm using continuous-time Markov
chains (Serfozo, 1979), which allowed us to model the duration of
actions such as harvesting and storing an object.
In phase three, we performed simulation experiments using a con-

troller that implemented the prescriptive model created in phase two.
We considered various swarm sizes N = 10, 20, 50, 100 and various
numbers O ∈ {2, 4, 6, 8, 10} of available objects, performing 100 exper-
imental runs for every experimental setting. The results show that the
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Figure 7.6: A graph showing the empirical cumulative distribution
Fn(x) of the number of object retrieved using robots (10 runs) and
in simulation (100 runs). Both experiments were performed using 20
e-puck robots and O = 6 available objects.

desired property described in phase one is satisfied in all cases (Bram-
billa et al., 2014). Furthermore, the correspondence between the re-
sults obtained from the prescriptive model and the ones obtained from
the experiments shows that the model captures the behavior of the
robot swarm qualitatively.
In phase four, we performed an experiment involving 20 e-puck ro-

bots and 20 TAM devices. We performed 10 experimental runs; see
Figure 7.5 for a snapshot taken with an overhead camera. The results
show that the robots satisfied the desired property as well. Figure 7.6
shows that the results obtained with real and simulated robots are
quite similar.
In summary, the study shows that using property-driven design pro-

vides a well-structured method to develop a swarm that satisfies the
desired properties. As such, property-driven design is an effective
method for the design and development of robot swarms.
With respect to the TAM, the study illustrates how the TAM can be

used to represent one of the most common tasks in the swarm robotics
literature: single-robot foraging. In particular, the study shows how
the LEDs of the TAM can be used to signal different task types and
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their various internal states to the e-puck robots in the environment.
Furthermore, the study demonstrates a case in which the coordinator
centrally dispatches tasks: as there are O objects in the environment
at any given moment, new objects are made available by the coordi-
nator at a random location once an object has been harvested. Of the
four studies presented in this chapter, this is the only one that was
performed using robot experiments involving physical TAM devices.

7.3 Autonomous task partitioning

In this section, I present a study that considers a bucket-brigading for-
aging task, that is, a complex task with a nestedness of 2. The focus
of the study is autonomous task partitioning in a swarm of robots.
The study has been published: a first version that focuses on an self-
organizing approach (Frison et al., 2010; Pini et al., 2011b), followed by
extensions that compare the this approach to established algorithms
for the multi-armed bandit problem (Pini et al., 2012) and evaluate
the influence of communication on algorithm performance (Pini et al.,
2013b).

In biology, the term task partitioning refers to situations in which
a given task is divided into two or more subtasks that can be per-
formed separately (Jeanne, 1986). As such, task partitioning amounts
to decomposing a task into smaller units of work that can be tackled
separately. Task partitioning is a subset of the techniques presented in
Chapter 4 insofar as the resulting subtasks have exclusively sequential
interrelationships. The main body of research on the topic has been
carried out in the field of entomology (Fowler and Robinson, 1979;
Ratnieks and Anderson, 1999; Anderson and Ratnieks, 2000; Hart and
Ratnieks, 2001).
The benefits of task partitioning in robot swarms are many: better

exploitation of specialization, increased efficiency, and physical separa-
tion of the robots. However, task partitioning also entails costs due to
overheads, which can subtract from these benefits. Task partitioning
should therefore be used only when the benefits are higher than the
costs.

137



Chapter 7 Exemplary studies conducted using the TAM

Figure 7.7: Illustration of the task partitioning problem. Robots har-
vest objects from the source and store them in the nest. The areas
containing the source and the nest are physically separated by the
cache. In order to travel between areas, robots have to use the cor-
ridor. Robots decide whether to use the cache or the corridor in two
cases, represented by question marks: after harvesting an object from
the source (left), and after storing an object in the nest (right).

7.3.1 Problem
In the studies, we concentrated on what we call the task partitioning
problem: selecting between partitioning a given task into subtasks or
performing it as a single piece of work—see Figure 7.7. In particular,
the overall task τforaging that the swarm faces is a foraging task: robots
have to harvest objects from a source and deposit it in the nest. The
foraging task is a complex task that can decomposed in two ways.
One way is to decompose τforaging into two atomic subtasks with a

sequential interrelationship: one subtask that consists in harvesting
an object from the source, and one subtask that consists in storing
the object in the nest. Similarly to the study presented in Section 7.2,
both subtasks have to be performed by the same robot—see Figure 4.9
in Chapter 4 for a low-level model of this type of task. In order to
travel from the source to the nest (or vice versa), a robot must use
the corridor that connects the two areas, as shown in Figure 7.7. As a
single robot completes the overall foraging task, we say that the task
has not been partitioned, which we denote as τnopart .
The second way is to decompose τforaging into two complex subtasks,

again with a sequential interrelationship. The first complex subtask
τsource consists of two atomic subtasks: harvesting an object from the
source, and depositing it in a cache. The second complex subtask
τnest also consists of two atomic subtasks: retrieving an object from
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the cache, and storing it in the nest. The overall task is therefore an
instance of a bucket-brigading task—see Figure 4.12 in Chapter 4 for a
high-level model for this type of task. Note that the complex subtasks
have to be performed by different robots that work in isolated areas
of the environment. These areas are separated by the cache, as shown
in Figure 7.7. If two robots complete the overall foraging task, we say
that these robots partition the task, which we denote as τpart .
Robots face a choice: to either partition the task or not, that is, to

either perform τpart or τnopart . If a robot decides to perform τpart , it
typically remains in one area of the environment, collaborating with
the robots in the other area in order to complete the overall task.
If a robot decides to perform τnopart , it uses the corridor to travel
continuously between source and nest. The two choices have different
costs associated with them. The cost of τpart depends on the cost
at which objects can be exchanged at the cache. The cost of τnopart
depends on the length of the corridor. Both choices are affected by
additional overheads, for example, physical interference due to high
robot densities.
We represent the source, the nest, and the cache using TAMs. The

source and the nest are represented using four TAMs each. The cache
consists of four TAMs on each side. Two TAMs, one on each side,
form a cache slot: if an object is deposited on the harvest side, the
TAM on the store side becomes available after a certain time-cost Π
by signalling the presence of an object. By modifying Π, we were able
to render τpart more or less advantageous over τnopart—a modification
that could be conveniently carried out via the centralized coordinator.
Figure 7.8 illustrates the setup of the arena and the positioning of the
TAMs.

7.3.2 Approach
The approach that we proposed relies on cost estimation: robots esti-
mate the costs of τpart and τnopart and decide accordingly. The overall
goal of the approach is to maximize the number of objects delivered
to the nest in a given time, which is equivalent to minimizing the
time needed to deliver each object. Therefore, in our approach, we
expressed cost as time.
We studied a total of three different algorithms. In Frison et al.

(2010) and Pini et al. (2011b), we studied a so called AdHoc algo-
rithm. Robots employing the AdHoc algorithm chose between τpart
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Figure 7.8: Illustration of the arena in
which the robots perform foraging. The
source, the nest, and each side of the
cache are represented using four TAMs.
Different areas in the arena are marked
with a specific ground color that can be
recognized by the robots. Three light
sources (each marked with “L”) are used
by the robots as a directional clue for
navigation.

and τnopart stochastically. After collecting an object from the source, a
robot chooses τpart and deposits the objects in the cache with a prob-
ability P . P depends on the cost estimate for τpart and a parameter
that regulates the degree of exploration of the algorithm. Exploration
consists in sampling less advantageous solutions in order to detect
variations in the environment that possibly make these solutions more
advantageous. After delivering an object to the nest, a robot retrieves
the next one from the cache with the same probability P . Robots
employing the AdHoc algorithm chose τpart with a probability P and
τnopart with a probability 1− P .
In Pini et al. (2012) and Pini et al. (2013b), we compared the AdHoc

algorithm with two established algorithms for the multi-armed bandit
problem. The ε-Greedy algorithm is a simple stochastic algorithm
that has been applied in many contexts (Sutton and Barto, 1998).
Robots employing the ε-Greedy algorithm select the choice with the
lowest associated cost with probability 1− ε and a random choice with
probability ε. ε is the only parameter of the algorithm and defines
the degree of exploration: the higher ε, the higher the amount of
exploration. The UCB algorithm is a heuristic adaptation of the UCB1
policy presented by Auer et al. (2002), which in turn was derived
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Figure 7.9: Performance of the studied algorithms, measured as objects
delivered to the nest by the swarm, based on 15 repetitions per algo-
rithm. At the top, results obtained if τpart is advantageous (Π = 0 s);
at the bottom, results obtained if τnopart is advantageous (Π = 160 s).

from an index-based policy proposed by Agrawal (1995). UCB1 is
characterized by a rapid convergence because it was originally designed
for stationary problems (Auer et al., 2002). Similarly to the algorithms
previously mentioned, the degree of exploration in UCB is tunable
using a parameter. Robots employing the UCB algorithm select the
task to perform deterministically.

Additionally, we compared the algorithms with three reference algo-
rithms: always-partition, which always performs τpart , never-partition,
which always performs τnopart , and random, which randomly switches
between τpart and τnopart .
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7.3.3 Results and discussion
Figure 7.9 shows the performance of the six algorithms for two differ-
ent value for the time-cost Π of using the cache: 0 s (top) and 160 s
(bottom). We measured the performance of an algorithm as the to-
tal number of objects delivered to the nest by the swarm. For each
algorithm, we tested two versions: one that is primarily exploiting,
and one that is primarily exploring. The results confirm that, for
Π = 0 s, the cache and therefore τpart are advantageous. Accordingly,
the best-performing algorithm was the always-partition algorithm. In
case of Π = 160 s, the corridor and therefore τnopart are advantageous.
Accordingly, the never-partition algorithm produced the best results.
Furthermore, algorithms that are primarily exploiting have an advan-
tage over exploring ones as the environment considered here is time-
invariant. We also performed experiments with the aim of assessing
the capability of the swarm to react to changes in the environmental
conditions (see Pini et al., 2011b) and of measuring whether commu-
nicating cost estimates among robots is advantageous (see Pini et al.,
2013b).
The study demonstrates the case in which the same overall task

τforaging can be decomposed in two ways: either as bucket-brigading
task τpart with a nestedness of 2, or a simple foraging task τnopart with a
nestedness of 1. This is related to the ambiguity of decomposing tasks
mentioned in Chapter 4: both decompositions have a justification,
depending on the context. It is therefore the responsibility of the
researcher—or, in this case, of the robots—to select the appropriate
choice for a given problem and environment.
Furthermore, the study demonstrates the flexibility of the TAM:

it can represent tasks with varying parameters such as the cost Π of
using the cache. In particular, the TAM allowed us to closely control
Π during an experiment—a great advantage over using existing ad hoc
abstractions, as changing the performance difference between τpart and
τnopart would require us to lengthen or shorten the corridor.

7.4 Temporal task allocation
In this section, I present a study of a robot swarm that has to perform
task allocation in an environment that features periodic properties.
The work presented has been published (Castillo-Cagigal et al., 2014).
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Figure 7.10: Illustration of the
arena, with workspaces A and
B in white and transition area
in gray. 10 TAMs represent
10 single-robot tasks in each
workspace.

In dynamical environments, real-time resource allocation commonly
involves situations in which events occur periodically and with a cer-
tain frequency (Rosu et al., 1997). Periodicity can originate from both
natural and artificial phenomena, for example, the rotation and rev-
olution of the earth, tides, cyclic production processes, and customer
demands. In artificial systems, the designer typically wishes to allocate
resources so as to increase the system performance and achieve prede-
fined goals (Martín H. et al., 2009). To this end, it is paramount that
information on the nature of the periodic events involved is available
during the design process (Liu and Picard, 1998).
We studied a case in which a robot swarm needs to perform task

allocation in an environment with periodic properties. Specifically, the
periodicity of the environment lies in the temporal pattern in which
new tasks appear. To operate effectively, the swarm needs to reallocate
its workforce according to the periodicity of the environment. We
call temporal task allocation a task allocation that takes into account
temporal properties of the environment.

7.4.1 Tasks with periodic interrelationships
We considered a rectangular environment divided in three areas: work-
space A, workspace B, and a transition area. Tasks appear either in
workspace A or B, following a temporal pattern. Figure 7.10 shows an
illustration of the environment. Robots have to travel from workspace
to workspace to attend to tasks where they appear. The workspaces
are separated by the transition area: a robot that moves from one
workspace to the other has to cross the transition area. The time
spent by a robot to cross the transition area is called switching cost.
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Figure 7.11: Environment period and location of task appearance: I)
signal senv[k] of task appearance with period T env, II) number NA[k]
of tasks in workspace A, III) number NB[k] of tasks in workspace B.

Tasks in the environment are stationary single-robot tasks repre-
sented using TAMs. Robots spend 0.5 s working on a task. Tasks ex-
pire after 5 s: if a task remains unattended for longer than this time,
it is removed from the environment. At time k, NA[k] and NB[k] are
the number of tasks present in workspace A and B, respectively. The
number of tasks in each workspace is limited by the task capacity Γ,
which is Γ = 10 for both workspaces.
The periodicity of the environment that we consider in this study

lies in the temporal pattern with which tasks appear. During a period
of time TA, new tasks appear in workspace A. After the end of TA,
new tasks appear in workspace B for a period of time TB. After the
completion of TB, new tasks appear again in workspace A, and so
on. The full cycle has a period T env = TA + TB, and we assume
TA = TB. The location of the appearance of tasks in the environment
can be described as a square signal denoted by senv[k] that takes a
value of either A or B. An example of T env and senv[k] is shown in
Figure 7.11-I.
Regardless of the workspace, tasks appear in the environment with

a certain incoming task rate λ. If the task capacity Γ of a workspace is
reached, additional tasks are dismissed. When tasks cease to appear
in a workspace, the number of tasks in this workspace decreases as
tasks expire. This effect can be observed in Figure 7.11-II and 7.11-III
for both workspaces: the number of tasks increases until Γ is reached
and decreases after new tasks cease to appear.

144



Chapter 7 Exemplary studies conducted using the TAM

The robots move in the arena between workspace A and B in order
to attend to the tasks. Robots act independently of each other, but are
able to exchange simple messages via short-range line-of-sight commu-
nication. We call the number of robots in a workspace the workforce
allocated to this workspace by the swarm. In order to maximize per-
formance, the swarm needs to allocate its complete workforce to the
workspace where tasks are available. To achieve this goal, the robots
need to switch between workspaces so that their movement is syn-
chronized with the temporal pattern of task appearance, performing
a temporal task allocation.

7.4.2 Approach

We proposed a novel temporal task allocation algorithm that adapts
to the environment. This algorithm is based on concepts that we
borrowed from the signal processing and collective synchronization
literature.
The goal of the algorithm, called CS for collective synchronization,

is to synchronize the movement of the robots between workspaces with
the appearance of tasks in the environment. In CS, each robot i has an
internal timer that governs its transitions between workspaces. This
timer increases each time step and resets to zero when it reaches the
period T i of robot i, thereby producing a square signal si[k] that takes
the values A or B as shown in Figure 7.12-I.
CS enables robots to synchronize their internal timer (and thereby

their movements) with the environment in two steps. First, each robot
i evaluates the extent to which it is synchronized with the environment.
This is measured by the fraction of time during which the robot finds
tasks its current workspace. Second, each robot i shifts its internal
timer such that its square signal si[k] matches the work signal wi[k]
of successful task executions, thereby approximating the signal senv[k]
of task appearance in the environment. Robot i is fully synchronized
if T i = T env and the time difference ∆i between its internal timer and
task appearance is zero.
Additionally, CS features a visual communication protocol to speed

up the synchronization process and avoid physical interference between
robots, as indicated in Figure 7.12.
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Figure 7.12: Example of robot operation: I) signal si[k] of the internal
timer of robot i; II) robot location in the environment and amount of
time W i spent in a workspace (as opposed to transitioning between
workspaces); III) work signal wi[k], that is, the signal of successful
task executions by robot i.

7.4.3 Results and discussion
We conducted experiments in simulation using 20 TAMs and a swarm
of six e-puck robots. Figures 7.13a and 7.13b report the periods and
phases of the robots over the course of an experiment when using CS.
We can observe that the period T i of every robot converges to T env

and that all ∆i converge to zero: the swarm successfully synchronizes
with the signal senv[k] of task appearance.
We compared CS to two other algorithms: 1) an algorithm that uses

internal timers for switching between areas but does not attempt to
synchronize with the environment or with other robots, denoted NS,
and 2) an algorithm that does not use internal timers but switches
depending on task availability—a “greedy” algorithm, denoted GR.
Figures 7.13c and 7.13d report and compare the performance of these
three algorithms. From the results, we can conclude that a swarm
using our algorithm outperforms the competing algorithms after an
initial adaptation period.
The study illustrates how the TAM can be used to represent tasks

with interrelationships that are not captured by the modeling approach
presented in Chapter 4. In particular, the complex temporal pattern
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Figure 7.13: a) Periods T i of the robots compared to the period T env

of task appearance; b) Time difference ∆i between the internal timers
and the task appearance; c) Average number of tasks performed during
the experiments, and final performance rate, for all three algorithms;
d) Box plot of the number of tasks performed by each algorithm dur-
ing the experiment, based on 15 repetitions per algorithm. In the
plots, CS denotes the proposed algorithm, GR denotes an algorithm
that switches depending on task availability without using an inter-
nal timer, and NS denotes an algorithm that does not attempt to
synchronize its internal timer with the environment.
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at which tasks appear in the environment cannot be modeled using
the proposed modeling approach. However, the TAM is still capable
of representing these single-robot tasks in an experiment: task param-
eters such as their availability can be conveniently controlled using the
centralized coordinator. This allows groups of TAMs to exhibit com-
plex coordinated behavior, for example, as shown here, by following a
temporal pattern.

7.5 Summary
In this chapter, I presented four scientific studies that have been con-
ducted using the tools presented in this dissertation. The studies serve
as a demonstration of the variety of tasks that can be abstracted with
the proposed modeling approach and subsequently represented with
the TAM. Furthermore, the studies illustrate the benefits of using the
centralized control framework for conducting robot experiments. Fi-
nally, the studies demonstrate some of the limitations of the proposed
tools.
The first study concerned behavioral specialization of robots in one

of two task types. The second study concerned property-driven de-
sign, a novel top-down design method for robot swarms based on pre-
scriptive modeling and model checking. The third study concerned
collective decision-making in a task partitioning scenario. The fourth
study concerned a new approach to task allocation in environments
that exhibit temporal properties.
None of these studies focused on task execution. Instead, each fo-

cused on the group dynamics and collective processes of the swarm.
Therefore, these studies could be conducted using an abstract task
representation such as the TAM. Conducting them without the TAM
would certainly have been possible, but would have required different
robots and/or different—possibly tailor-made—task representations.
The resulting experimental setup would have incurred a substantial
increase in cost without yielding different or qualitatively better re-
sults. I speculate that, without the TAM, it would be prohibitively
costly to conduct these studies in laboratory experiments using robots.
In the following Chapter 8, I conclude the dissertation by discussing

its main contribution and perspectives for future research.
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In this chapter, I conclude the dissertation by summarizing its main
contributions. Furthermore, I briefly discuss perspectives for future
research.

Summary of contributions
The core premise of this dissertation is that existing studies in swarm
robotics are limited by the fact that researchers use ad hoc solutions
for abstracting and representing tasks. As a result, most studies in
swarm robotics consider only simple tasks. The primary contribution
of this dissertation is to overcome this limitation by providing novel
conceptual and practical tools for task abstraction.

On the conceptual side, I first defined task abstraction and its use
in swarm robotics research. I reviewed various ad hoc solutions used
in the literature for task abstraction and representation. Furthermore,
I discussed the advantages and disadvantages of these solutions. The
lessons that I took from the discussion fueled the design of the tools
proposed in this dissertation.
I then presented the tools that lie at the core of this dissertation: a

novel approach for abstracting complex tasks and a generic device for
representing such tasks in laboratory experiments, called the TAM.
The TAM is generic in the sense that it can represent any task that
requires a single robot to remain for a given amount of time at a
specific location and at a specific moment in time. The TAM can be
considered a task emulator that operates at an intermediate level of
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abstraction between the task abstractions used in simulation and ad
hoc task abstractions employed in robot experiments.
A single TAM is limited to representing single-robot tasks; complex

tasks first have to be abstracted before a group of TAMs can be used
to represent them. To this end, I proposed a novel approach to model
complex tasks as a set of single-robot subtasks and their interrela-
tionships. In order to demonstrate the flexibility of the approach, I
reviewed the swarm robotics literature and applied the approach to the
various tasks considered. This review also allowed me to substantiate
the basic premise of this dissertation, namely that the complexity of
the tasks considered in the literature is rather limited.

On the practical side, I first presented the design and implementa-
tion of the TAM device. In particular, I discussed the goals that stand
behind the design and how I attained them in the implementation.
Furthermore, I presented a centralized control framework that allows
researchers to control a group of TAMs so that they can implement
the interrelationships identified by the modeling approach. The con-
trol framework also provides a reliable infrastructure for conducting
experiments that involve large numbers of robots. By using this in-
frastructure, researchers can conduct experiments conveniently at a
fraction of the cost of experiments that rely on ad hoc solutions for
task abstraction.
I presented several experiments and studies that employ the pro-

posed tools. In a proof-of-concept experiment, I demonstrated the
usage of the proposed tools from beginning to end: how to abstract a
complex task using the modeling approach presented, how to represent
the resulting model in laboratory experiments using the TAM, how to
conduct an experiment using a large swarm of robots by relying on
the infrastructure provided by the TAM, and how to collect and ana-
lyze the task-related data in experiments involving 20 e-puck robots.
Furthermore, I presented four scientific studies that consider a vari-
ety of problems ranging from property-driven design for robot swarms
to self-organized task allocation and task partitioning. Each of these
studies employed the TAM for task abstraction, thereby demonstrat-
ing the variety of possible applications for the TAM.

In conclusion, the main contribution of this dissertation are concep-
tual and practical tools that enable the study of complex tasks with
swarms of robots. The primary advantage of these tools is cost re-
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duction: as the limitation of swarm robotics experiments to simple
tasks is primarily due to cost, these tools enable research on problems
that was previously confined to simulation. Finally, I would like to
remark that the TAM can be extended with additional functionalities
or adapted to other robot platforms. Furthermore, the TAM can be
used apart from the modeling approach presented in this dissertation.
As such, I believe that the research community will benefit greatly
from the TAM.

Perspectives
Possible directions for future research on the tools presented in this
dissertation can be classified, just as the tools themselves, into research
on the conceptual level and on the practical level.
Future research on the conceptual level concerns mostly the abstract

concept of the TAM device and the presented modelling approach.
For instance, the concept of the TAM could be further generalized by
making the task representation device itself mobile. This would al-
low researchers to study complex tasks that exhibit spatial dynamics
for example. Regarding the presented modelling approach, a possi-
ble direction for future work is the inclusion of further concepts (e.g.,
conditionals) into the high-level model. Finally, the proposed mod-
elling approach could be related to existing design approaches that
work on several levels of complexity. For example, electronic design
automation (EDA) uses similar approaches to model the design of inte-
grated circuits on an ever-increasing level of abstraction (Sangiovanni-
Vincentelli, 2003).
Future research on the practical level concerns the presented imple-

mentations of the TAM and the control framework. Regarding the
TAM, possible additional features include a power plug that allows
researchers to use the TAM without a battery, a boot loader that en-
ables firmware updates over the mesh network, and other task-specific
extensions. Furthermore, a possible direction for future work is to
adapt the presented implementation of the TAM to other robot plat-
forms. Generalizing this direction, a future implementation of the
TAM could be adapted to multiple robot platform “on the fly” us-
ing pluggable sensors. Regarding the control framework, a current
limitation is that researchers have to manually describe the mapping
between TAMs, atomic subtasks, and the location of the represented
task. An useful extension of the control framework would therefore
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be the ability to track the location of TAMs in the environment and
assign tasks automatically to these TAMs based on their location.
The tools presented in this dissertation enable researchers to study

new classes of problems, whose study in physical robot experiments
would have presented considerable difficulty using ad hoc solutions for
task abstraction. Therefore, a large body of work previously studied
solely in simulation can now be evaluated in physical experiments.
For example, many approaches intended for agent-based systems can
now be ported to swarm robotics systems and studied in experiments
involving physical robots.
In terms of self-organized methods for task allocation—the topic

that I initially set out to study—many opportunities for future re-
search are brought forward by the tools presented in this dissertation.
In particular, the question of allocating swarms of robots to tasks with
many subtasks and various interrelationships has received very little
attention in the swarm robotics literature until now. For example, to
date, there are no self-organized methods to allocate a robot swarm
to tasks as complex as those presented in Chapter 6 or as those pro-
posed by the Swarm-bots project (e.g., Nouyan et al., 2009) or the
Swarmanoid project (Dorigo et al., 2013).
A possible direction for future research is to investigate methods that

rely on measuring waiting times at the point at which two subtasks
join. The study that I presented in Brutschy et al. (2014c) considers
such a method: robots base their decision to switch subtasks on the
performance of the group working on this subtask. The study is lim-
ited to a problem instance with two subtasks; however, the approach is
sufficiently promising to warrant the investigation of its applicability
to tasks with several subtasks and/or other interrelationships—thanks
to the TAM, these tasks can now be represented in laboratory exper-
iments. Preliminary studies on an agent-based model indicate that
the method can indeed be applied to such problems. A first direction
for future work is therefore to study an instance of the problem that
exhibits many subtasks using physical robots and the TAM.
Methods for different varieties of interrelationships warrant further

investigation as well. The method that I presented in Brutschy et al.
(2014c) has been tested exclusively on subtasks with a blocking sequen-
tial interrelationship, that is, an interrelationship where each subtask
has to wait for its predecessor to finish before it can start. A promising
direction are methods for task allocation that are sufficiently flexible
for tasks with several types of interrelationships, for example, block-
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ing ones as well as non-blocking ones, as commonly used in bucket-
brigading (see, e.g., Pini et al., 2014).
Other directions for future research outside the domain of task allo-

cation are studies that consider tasks with specific aspects. The tools
proposed in this dissertation allow researchers to closely control the
aspects of each task in an experiment. This capability enables research
on tasks that, for example, are available following certain distributions,
exhibit different behaviors for different robots, or provide feedback to
the robots. For instance, studies in reinforcement learning can pro-
vide positive and negative feedback to the robots directly through the
TAM.
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Tools and materials

In this section, I present the tools and materials common to all exper-
iments presented in this dissertation. More specifically, I present the
e-puck robot and the ARGoS simulation framework.

A.1 Robotic hardware: The e-puck
The e-puck (Mondada et al., 2009) is a mobile robot designed for edu-
cational and research purposes at EPFL.27 The e-puck is of cylindrical
shape with a diameter of 0.75 cm. The body of the e-puck does not pos-
sess any protrusions, which is advantageous when avoiding obstacles.
The e-puck is controlled by a dsPIC 30 micro-controller running at
30MHz, and powered by an exchangeable Lithium-Ion battery. The
capabilities of the e-puck can be augmented with various extension
boards, some of which are detailed in Section A.1.3. Its small, com-
pact, and extensible nature, and relatively cheap (Mondada et al.,
2009), makes the e-puck well suited for swarm robotics research. Fig-
ure A.1 illustrates the e-puck in two different configurations: the basic
model, equipped with only the sound extension, and a heavily ex-
tended one.

A.1.1 Sensors
The e-puck features the following sensors:

27 Ecole Polytechnique Fédérale de Lausanne, Switzerland
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Figure A.1: Two configurations of the e-puck robot. The robot on the
left is an e-puck without any extension. The sensors relevant to the
TAM are the forward-facing camera for the detection of the TAM and
the IR transceiver for communication with the TAM. The robot on
the right is an e-puck with several extensions: the range and bearing
sensor (Gutiérrez et al., 2008), the embedded computer running Linux,
and the omni-directional camera. The TAM is compatible with all
these extensions; the omni-directional camera is used to detect the
TAM instead of the forward-facing camera, if present.

• Proximity sensors: Eight infrared proximity sensors for obstacle
avoidance are placed around the body of the e-puck. Note that
the sensors are not mounted equidistantly, but with a higher
density towards the front of the robot. The proximity sensors
also double as ambient light sensors. Furthermore, the proximity
sensors can be employed as a communication device by using
libIrcom (see Section A.1.4).

• Forward camera: A forward-facing color camera with VGA res-
olution (640×480 pixels) is mounted at the front of the e-puck.
Note that the basic model of the e-puck lacks the computing
power to analyze a full camera frame in real-time.

• 3D accelerometer : This sensor measures the proper acceleration
of the e-puck in three dimensions.
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A.1.2 Actuators
The e-puck features the following actuators:

• Wheels: Each wheel is controlled by a stepper motor. The max-
imum speed of the e-puck is 18 cm/s.

• LEDs: Eight red LEDs are distributed equidistantly around the
body. The LEDs can be covered by a semi-transparent ring in
order to facilitate detection by other robots.

• Front LED: A strong LED that projects light into the field-of-
view of the forward-facing camera.

Note that the e-puck does not possess the means for manipulating
objects. Furthermore, in its default configuration, the robot does not
possess the means for communicating with the researcher in a scalable
way.28

A.1.3 Extensions
The capabilities of the e-puck can be augmented using various exten-
sions. In the following, I describe the extensions of the e-puck that
I use in the experiments discussed in this dissertation—see also Fig-
ure A.2.

• Sound: The sound extension features three microphones that
allow an e-puck to triangulate sound sources. Additionally, the
extension features a speaker for emitting sound. This extension
is included in the standard distribution of the e-puck, but is not
used in this dissertation—it has been included only for the sake
of completeness.

• Ground sensors: The ground sensor extension is equipped with
three infrared sensors that allow an e-puck to sense the brightness
of the ground. Figure A.2a shows a picture of the extension.

28 The e-puck does possess a Bluetooth communication device. However, Blue-
tooth is not suitable for communicating between a swarm and the researcher
due to its point-to-point nature as well as its limited range.
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(a) (b)

(c) (d)

Figure A.2: Various extensions for the e-puck robot: a) Ground sen-
sor extension, b) Range and bearing extension, c) Embedded Linux
extension, d) Omni-directional camera extension.

• Range and Bearing: The range-and-bearing extension enables
an e-puck to sense the range and bearing of neighboring ro-
bots (Gutiérrez et al., 2008), provided that they are equipped
with such an extension as well. Furthermore, the extension al-
lows low-bandwidth communication between robots. Figure A.2b
shows a picture of the extension.

• Embedded Linux : The extension features an embedded computer
for extending the processing power of the e-puck. The embed-
ded computer is a Gumstix Overo COM module equipped with
an ARM Cortex-A8 processor core (600MHz, 256MiB RAM).
This extension is required for using controllers developed in sim-
ulation directly on the e-puck without any changes (for infor-
mation on the ARGoS simulation framework, see Section A.2).
Additionally to the embedded computer, the extension features
a WiFi-network module and a long-distance proximity sensor.
Figure A.2c shows a picture of the extension.
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Figure A.3: Snapshot from the omni-
directional camera of an e-puck. Cam-
eras of this type have the advantage that
the robot can directly compute distances
from the captured image.

• Omni-directional camera: The omni-directional camera exten-
sion brings 360 ° vision to the e-puck. The camera is simi-
lar to the one used in the s-bot (a robot created during the
Swarm-bots project, see Mondada et al., 2004) or the marXbot (a
robot created during the Swarmanoid project, see Dorigo et al.,
2013). Omni-directional cameras of this type have the advantage
that the robot can directly compute distances from the captured
image—see Figure A.3 for a snapshot from the omni-directional
camera. The extension also features a secondary battery and
three top-mounted RGB LEDs. Figure A.2c shows a picture of
the extension.

A.1.4 Inter-robot communication using libIrcom
libIrcom is a library for the e-puck robot proposed by Campo et al.
(2010a). libIrcom29 has two functions: first, it allows an e-puck to
sense the range and the bearing of other robots (similarly to the de-
dicated range and bearing extension presented above), and second, it
allows inter-robot communication.
In the context of this dissertation, I exclusively use the inter-robot

communication functionality of libIrcom for the e-puck and a reimple-
mentation of this functionality for Atmel microprocessors for the TAM
(see Appendix B, Section B.2.1).
The communication functionality of libIrcom relies on the IRcom

communication protocol. The protocol allows robots to exchange
messages at a maximum rate of 30 bytes/s, including a 2 bit cyclic re-
dundancy check (CRC) that permits them to detect erroneous mes-
29 http://gna.org/projects/e-puck/
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sages (Campo et al., 2010a). Data is encoded using a frequency mod-
ulation that permits reliable communication in a wide range of light
conditions.
The maximum distance of reliable message reception depends on

the infrared transceivers used. Using the proximity sensors of the e-
puck, messages can be detected at a distance of up to 25 cm between
emitter and receiver. In libIrcom, communication is multiplexed with
the proximity sensors and ambient light sensors, so that robots can
still perform obstacle avoidance while using libIrcom. Messages are
stored in a queue and can be retrieved at any time, unless they are
overwritten when the queue is full (e.g., when the controller does not
retrieve the messages regularly).

A.2 Simulation framework: ARGoS
I performed all simulation experiments presented in this dissertation
using a simulation framework called ARGoS (Pinciroli et al., 2011,
2012; Pinciroli, 2014). ARGoS was developed during the Swarmanoid
project30 with the specific aim to support the real-time simulation of
large swarms of heterogeneous robots (Dorigo et al., 2013). ARGoS is
open source and can be freely used for other research projects.31
ARGoS is a framework in the sense that it allows users to transfer

controllers developed in simulation to the robots without any changes.
The framework consists primarily of a simulator and an abstract in-
terface to the hardware of the robots, which I will both outline in the
following. Note that, as the simulator is by far the biggest compo-
nent of the simulation framework, the name ARGoS is usually used
interchangeably for the framework and the simulator.

A.2.1 Common interface
The common interface allows users to access sensors and actuators,
whether they are simulated or real. This simple feature allows users
to first develop and test controllers in simulation before transferring
them to the real robot. Furthermore, transferring controllers typically
does not require adaptation of the source code. Various types of robot
30 http://www.swarmanoid.org/
31 http://iridia.ulb.ac.be/argos/
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Figure A.4: Architecture of the ARGoS simulator. ARGoS is highly
modularized, with the central Space entity being the only part of the
simulator that cannot be removed.

platforms are supported by the common interface of ARGoS; due to
its modular nature, new robot platforms can easily be added.

A.2.2 Simulator
The simulator included in the ARGoS framework is a discrete-time,
physics-based simulator. The main focus of ARGoS is to provide flex-
ible, accurate, and efficient simulations of large robots swarms. As
these are diverging requirements, the simulator accomplishes this by
running multiple physics engines in parallel if desired. This feature en-
ables the simulation of large spaces and/or swarms in parallel, making
ARGoS the only simulator that can simulate thousands of robots in
real-time. Furthermore, interchangeable physics engines allow the user
to choose the desired level of detail: simulations can range from simple
simulations with few details (e.g., two-dimensional environments gov-
erned by kinematic rules) to highly detailed and complex simulations
(e.g., three-dimensional environments governed by motion dynamics).
The simulator accomplishes this flexibility through its highly modular
design (see Figure A.4).
Over the time of my doctoral studies, ARGoS evolved from a pro-

totype to a very stable software.32 Unless mentioned otherwise, I con-
32 The current version at the time of writing this is version 3.
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ducted all experiments presented in this dissertation using version 2.
Furthermore, I employed a kinematics model of the robots simulated in
a two-dimensional environment. By default, a uniform random noise
of 10% has been added to all sensor readings at each time-step.

A.2.3 The TAM and e-pucks
ARGoS simulates the whole set of sensors and actuators available on
the e-puck. The TAM, including its sensors and actuators, is also
simulated in ARGoS from version 2 onwards. In version 2, the TAM
is included in the standard distribution of ARGoS.
Starting from version 3, which is highly modularized, the function-

ality required to simulate the e-puck robots and the TAM has been
moved into separate plug-ins, which are available on the homepage
of ARGoS.33 Version 3 also allows the user to simulate the behavior
of a group of TAMs using the same task controller as described in
Chapter 5: task controllers can be transferred between simulation and
reality without any changes. This feature greatly simplifies and speeds
up the development of the control code for the coordinator.
Note that e-pucks must be equipped with the embedded Linux ex-

tension in order to be fully compatible with the ARGoS framework
(see Section A.1.3).

33 http://iridia.ulb.ac.be/argos/
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Appendix B
The TAM – Technical Details

In this appendix, I present technical details of the implementation of
the TAM and its supporting infrastructure such as the control frame-
work. In Section B.1, I provide some hardware-related details of the
implementation, while in Section B.2, I provide some software-related
details. Section B.3 reproduces the license under which the preceding
information in Section B.1 and Section B.2 is released.

B.1 Hardware
In this section, I report some details required to reproduce the hard-
ware of the TAM. Electronic versions of this data and additional
information such as Gerber-files are available at https://github.
com/arnuschky/iridia-tam/. The TAM consists of the electronics,
spread over three printed circuit boards (the main, left, and right cir-
cuit board), as well as a number of passive parts for the body.

B.1.1 Bill-of-materials
In this section, I report the bill-of-materials, that is, the full list of elec-
tronic components required for producing the electronics of the TAM.
Table B.1 reports the bill-of-materials for the main circuit board,
which houses the majority of the electronic components. Table B.2 and
B.3 reports the bill-of-materials for the left and right circuit boards,
respectively. These boards only house the sensors of the TAM; hence
the short list of components.
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Table B.1: Bill-of-materials for the main board
Name Desc Package Manufacturer Part number Qty

Y1 CERAMIC RESONATOR 16.0MHZ SMD Murata Electronics CSTCE16M0V53-R0 1
T1,2 TRANSISTOR GP NPN AMP SOT-23 SOT-23 Fairchild Semiconductors MMBT3904FSCT 2
U1 IC CTLR ON/OFF W/DEB TSOT23-6 6-SOT23 Maxim Integrated MAX16054AZT+T 1
U2 IC OPAMP GP 700KHZ DUAL 8TSSOP 8-TSSOP Texas Instruments LM358PWR 1
U3 IC REG BUCK BST SYNC ADJ 12MSOP 12-MSOP Linear Technology LTC3536EMSE#PBF 1
U4 IC VOLT COMPARATOR DUAL 8-TSSOP 8-TSSOP STMicroelectronics LM293PT 1
U5 IC LED DRIVER LINEAR 28-TSSOP 28-TSSOP Texas Instruments TLC59116IPWR 1
U6 IC MCU 8BIT 128KB FLASH 44TQFP 44-TQFP Atmel ATMEGA1284P-AU 1
U7 CONN RECEPT 2MM SINGLE SMD 10POS GOLD 1X10SMD open/any 2
JP1A CONTACT BATT POSITIVE AA/AAA/N Keystone Electronics 637 1
JP1B CONTACT BATT NEG SPRING AA/AAA/N Keystone Electronics 629 2
JP2 CONN HEADER R/A 6POS 90° GOLD SMD 1X06SMD/90 open/any 1
JP3 2X3POS DIL VERTICAL PIN HEADER open/any 1
JP4 CONN FMALE 14POS DL .1" GOLD SMD 2X07SMD open/any 1
S1 SWITCH TACTILE SPST-NO 0.05A 12V C&K Components PTS525SM10SMTR LFS 1
S2 SWITCH TAPE SEAL 2 POS SMD CTS-219-02 CTS Electrocomponents 219-2MST 1
L1 INDUCTOR POWER 4.7UH 1.3A SMD VLCF5024T TDK Corporation VLCF5024T-4R7N1R3-2 1
L2 INDUCTOR MULTILAYER 10UH 0805 0805 TDK Corporation MLZ2012M100W 1
LED1 LED CHIPLED 570NM GREEN 1206 SMD 1206 OSRAM Opto Semiconductors LG N971-KN-1 1
LED2 THROUGH HOLE RGB FULL COLOR Hanhua HH-500CRGBW503 1
LED3 LED YELLOW CLEAR THIN 0805 SMD 0805 Lite-On Inc LTST-C171YKT 1
LED4 LED AMBER CLR THIN 0805 SMD 0805 Lite-On Inc LTST-C171AKT 1
LED5 LED RED ORAN CLEAR THIN 0805 SMD 0805 Lite-On Inc LTST-C171EKT 1
RGB_LED_L,R,M LED MULTILED RGB WHT BINNED 6PLC 6-PLCC OSRAM Opto Semiconductors LRTBG6SF-V2BA-3E7F 3
R1 RES 42.2k OHM 1/10W 1% 0603 SMD 0603 open/any 1
R2,22,23 RES 4.7k OHM 1/10W 1% 0603 SMD 0603 open/any 3
R3,8,16 RES 1M OHM 1/10W 1% 0603 SMD 0603 open/any 3
R4 RES 100K OHM 1/10W 1% 0603 SMD 0603 open/any 1
R5 RES 49.9k OHM 1/10W 1% 0603 SMD 0603 open/any 1
R6 RES 6.49k OHM 1/10W 1% 0603 SMD 0603 open/any 1
R7 RES 221k OHM 1/10W 1% 0603 SMD 0603 open/any 1
R10,11 RES 0.0 OHM 1/10W 5% 0603 SMD 0603 open/any 2
R12,13,19,20,24,25 RES 10k OHM 1/10W 5% 0603 SMD 0603 open/any 6
R14 RES 47k OHM 1/10W 1% 0603 SMD 0603 open/any 1
R15 RES 20K OHM 1/10W 1% 0603 SMD 0603 open/any 1
R17 RES 39 OHM 1/10W 5% 0603 SMD 0603 open/any 1
R18,21 RES 470 OHM 1/10W 5% 0603 SMD 0603 open/any 2
R9,26,27,28 RES 68 OHM 1/10W 5% 0603 SMD 0603 open/any 4
C1,2,10,11,13,14,15,16,17,18 CAP CER 0.1UF 16V 10% X7R 0603 0603 Taiyo Yuden EMK107B7104KA-T 10
C3,12,19 CAP CER 10UF 10V 10% X5R 0805 0805 Murata Electronics GRM21BR61A106KE19L 3
C4,8 CAP CER 1UF 16V 10% X7R 0603 0603 TDK Corporation C1608X7R1C105K080AC 2
C5 CAP CER 220PF 50V 5% NP0 0603 0603 TDK Corporation C1608C0G1H221J080AA 1
C6 CAP CER 47PF 50V 5% NP0 0603 0603 TDK Corporation C1608C0G1H470J080AA 1
C7 CAP CER 22UF 6.3V 10% X5R 1206 1206 AVX Corporation 12066D226KAT2A 1
C9 CAP CER 100PF 16V 10% X7R 0603 0603 open/any 1
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Table B.2: Bill-of-materials for the left side board
Name Desc Value Package Manufacturer Part number Qty

IR_LED_L IR EMITTER SFH 4258 4-PLCC OSRAM Opto Semiconductors SFH4258-Z 1
IR_TRANSISTOR_L IR PHOTOTRANSISTOR SFH 320 FA-Z PLCC-2 OSRAM Opto Semiconductors SFH320FA-Z 1
PROX_L OPTO TRANS 4MM REFL TCRT1000 Vishay Semiconductors TCRT1000 1

Table B.3: Bill-of-materials for the right side board
Name Desc Value Package Manufacturer Part number Qty

IR_LED_R IR EMITTER SFH 4258 4-PLCC OSRAM Opto Semiconductors SFH4258-Z 1
IR_TRANSISTOR_R IR PHOTOTRANSISTOR SFH 320 FA-Z PLCC-2 OSRAM Opto Semiconductors SFH320FA-Z 1
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B.1.2 Schematics
In this section, I reproduce the circuit schematics of the TAM. The
overall circuit is distributed over the main, left, and right printed
circuit boards. Electrical connections between the different printed
circuit boards are are provided by solder joints at the location where
the circuit boards join.
Figure B.1 shows the circuit schematics for the power supply and

the battery support circuits (e.g., soft on/off button handling and the
battery protection circuit). The power supply of the TAM is based on
the Linear LTC3536, a highly efficient boost/buck DC/DC regulator.
The regulator provides a stable operating voltage of 3.3V for the whole
range of input voltage delivered by the Lithium-Ion battery (typically,
2.7V - 4.2V).
Figure B.2 shows the circuit schematics for the connectors on the

main circuit board towards the left and right circuit board, as well as
the filtering circuit used for infrared communication via IRcom (see
Section B.2.1).
Figure B.3 shows the circuit schematics for the PWM LED controller

and the RGB LEDs. The controller, a TLC5911 constant current sink
driver, supports 24-bit colors on 16 channels. It is connected to the
main processor using an I2C bus.
Figure B.4 shows the circuit schematics around the main processor

of the TAM, an Atmel AVR ATmega-1284p running at 16MHz with
16KiB main memory and 128KiB flash memory. The circuit shown
replicates the base circuit of Arduino (Banzi, 2008).
Figure B.5 shows the support circuit for the 2.4GHz IEEE 802.15.4

radio module used for mesh-networking. The TAM is compatible, on
the protocol level, with IEEE 802.15.4 modules of various manufac-
turers; however, different modules might require a different socket.
The TAM can be configured to work on 4 different wireless channels,
which allows for up to four experiments to be run in parallel in close
proximity.
Figure B.6 shows the circuit schematics for the light barriers on the

left side of the TAM and the infrared transceiver for communication
with the robots.
Figure B.7 shows the circuit schematics for the light barriers on the

right side of the TAM.
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Figure B.1: Circuit schematics for the power supply and battery support circuits
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Figure B.2: Circuit schematics for the connectors for the side boards and infrared transceiver
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Figure B.3: Circuit schematics for the LEDs and the PWM controller
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Figure B.4: Circuit schematics for the main processor and supporting connectors
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Figure B.5: Circuit schematics for the mesh-networking radio module
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Figure B.6: Circuit schematics for the left-side light barriers and infrared transceiver for communication
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Figure B.7: Circuit schematics for the right-side light barriers
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B.1.3 Circuit boards
In this section, I reproduce the layouts of the printed circuit boards
that compose the active parts of the TAM.
The electronics of the TAM consist of three printed circuit boards:

The main circuit board, at the back of the TAM, is flanked by two
boards, forming a “U” shape. The two boards at the side of the TAM
are called the left and right circuit board. The main circuit board is
mechanically joined with the other circuit boards at a 90◦ angle using
two interlocking slots.
The circuit boards were produced by a professional service. The

main board is a 2-layer FR-4 board, the left and right board are single-
layer FR-4 boards. All boards have a white soldermask so that the
TAM can be sensed without issues by the proximity sensors of the
e-puck. Applying a silkscreen is optional, but advisable on the main
board as it provides instructions for the selection of radio channels as
well as the extension connector pinout—see Section B.1.5.
Figure B.8 shows the circuit board layout of the main board. At

the center, the main processor; above that on the left, the extension
connector. At the bottom center, the battery connectors. At the lower
left, the power supply; above that, the PWM LED controller. At the
right, the filtering circuit for the infrared transceiver; above that, the
connector for the IEEE 802.15.4 radio module. At the sides, the slots
into which the side boards slide; just above it, the pads for the solder
bridges that connect to the other circuit boards.
Figure B.9 shows the circuit board layout of the left circuit board.

On the top right, the slot into which the main board slides; just next to
it, the solder-pads for the solder bridges that connect the board to the
main board. At the top, the infrared transceiver for communication
with the robot. At the bottom, the 850 nm infrared emitters and
matching photo transistors used for the light barriers.
Figure B.10 shows the circuit board layout of the right circuit board.

On the top left, the slot into which the main board slides; just next
to it, the solder-pads for the solder bridges that connect the board
to the main board. At the bottom, the 850 nm infrared emitters and
matching photo transistors used for the light barriers.
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Figure B.8: Layout of the main circuit board. At the center, the
main processor; above that on the left, the extension connector. At
the bottom center, the battery connectors. At the lower left, the
power supply; above that, the PWM LED controller. At the right, the
filtering circuit for the infrared transceiver; above that, the connector
for the IEEE 802.15.4 radio module. At the sides, the slots into which
the side boards slide; just above it, the pads for the solder bridges that
connect to the other circuit boards.
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Figure B.9: Layout of the left circuit board. On the top right, the slot
into which the main board slides; just next to it, the solder-pads for
the solder bridges that connect the board to the main board. At the
top, the infrared transceiver for communication with the robot. At the
bottom, the 850 nm infrared emitters and matching photo transistors
used for the light barriers.

Figure B.10: Layout of the right circuit board. On the top left, the slot
into which the main board slides; just next to it, the solder-pads for
the solder bridges that connect the board to the main board. At the
bottom, the 850 nm infrared emitters and matching photo transistors
used for the light barriers.

176



Appendix B The TAM – Technical Details

Figure B.11: 3D CAD model of the TAM including measurements

B.1.4 Plastic body
The TAM has a cubical shape with a length of 12 cm in every dimen-
sion. Figure B.11 shows a 3D model including measurements. In the
following, I present technical details on its plastic body, which is com-
posed of six parts: the top bracket, which provides structural integrity
to the whole assembly (Figure B.12a); the LED diffuser, which diffuses
the light from the RGB LEDs for better perception by the cameras
of the robots (Figure B.12b); the left and right side walls, which are
fastened to the left and right circuit boards, respectively (Figure B.13a
and Figure B.14a); and the left and right bumpers, which act as a rail
at the inside of the booth in order to prevent robots from getting stuck
on the sensors of the light barrier (Figure B.13b and Figure B.14b).
2D-plans suitable for production by a professional service are available
at https://github.com/arnuschky/iridia-tam/
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(a) 3D CAD model of the top bracket

116.0mm

5.0mm

5.0mm

96.0mm

Iso view

50.0mm

66.0mm
106.0mm

1.0mm

1.0mm

TAM-diffuser

(b) 3D CAD model of the LED diffuser

Figure B.12: 3D CAD models of the plastic body, center parts
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Figure B.13: 3D CAD models of the plastic body, left-side parts

179



Appendix B The TAM – Technical Details

69.7mm

12.0mm

5.9mm

6.2mm

5.9mm

120.0mm

1.2mm

1.8mm

10.3mm

50.3mm

1.7mm

69.7mm

5.2mm

9.9mm

11.2mm

95.9mm

12.0mm

108.3mm

9.9mm

Iso view
TAM-side-shell-right

5.2mm

(a) 3D CAD model of the right side wall

16.0mm

108.3mm

16.0mm

91.9mm

6.0mm

Iso view
TAM-side-bumper-right

1.6mm

1.6mm

95.9mm

3.0mm

5.0mm

2.0mm

(b) 3D CAD model of the right bumper

Figure B.14: 3D CAD models of the plastic body, right-side parts
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Figure B.15: Pinout of the
extension connector

B.1.5 Extensions
The philosophy of the TAM follows Arduino and the e-puck in terms
of extensibility: the TAM features an extension connector that allows
students and researchers to easily extend its capabilities without re-
quiring a modification of the TAM itself. The pinout of this connector
is shown in Figure B.15; it is also reproduced on the circuit board of
the TAM, next to the extension connector.
Additionally to supplying power, the extension connector provides

10 input/output channels: 2 channels for PWM LED control, 4 digital
channels and 4 analog channels. The PWM LED control channels are
connected to the PWM controller and can be controlled by using an
I2C library for communication with the PWM controller. This library
is supplied with the firmware of the TAM. The digital and analog
channels are directly connected to the I/O pins of the main processor;
they therefore do not require an any additional library.
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B.2 Software
In this section, I report some details of the software for controlling
the TAM. The full control framework, including the source code of
the firmware, the coordinator, the common interface, and a task con-
troller template are available at https://github.com/arnuschky/
iridia-tam/.

B.2.1 IRcom support
IRcom is a communication protocol for communicating using short-
range infrared transceivers. It has been initially proposed by Campo
et al. (2010a) for exclusive use on the e-puck robots in form of a li-
brary called libIrCom—see Appendix A, Section A.1.4 for details on
libIrcom. However, due to the pervasiveness of infrared transceivers
in robotics (e.g., for the purpose of obstacle avoidance), IRcom can
potentially be ported to many robot platforms.
The firmware of the TAM supports IRcom to communicate with

the e-puck. To this end, the original libIrcom has been ported and
modified to work on Atmel microprocessors. The implementation for
the TAM deviates from the original libIrcom primarily by its inability
to measure the range and bearing of a sending robot. In other words,
the TAM only supports communication via IRcom.
The implementation of IRcom for the TAM deviates further from

the original implementation in two details:

1. Hardware filtering: as the communication protocol only needs to
distinguish between ones and zeros, rather than measuring the
intensity of a signal as required for range and bearing sensing,
the TAM implements a simplified and efficient hardware-based
signal filter;

2. Hardware interrupts: as the TAM features only a single sensor,
the implementation uses a hardware interrupt that is executed
upon a change in the signal, rather than continuously polling all
available sensors.

As a result, the implementation used on the TAM is more efficient than
libIrcom used on the e-puck robots—a necessity, as the microprocessor
used on the TAM is considerably less powerful than the microprocessor
of the e-puck.
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B.2.2 Common interface
The common interface provides an abstract interface to the TAMs used
in an experiment. It allows researchers to query and modify the state
of an individual TAM in an abstract fashion; all low-level operations
are handled by the coordinator. The interface is common in the sense
that the same interface is used for simulation experiments and robot
experiment: the common interface is replicated by the plug-in used
for simulating the TAM with ARGoS. Consequently, task controllers
written against the common interface can be ported from simulation to
reality without requiring any modifications. In practice, the common
interface consists of three components:

• the TAM interface, which provides access to data and function-
ality of the TAMs;

• the task controller interface, which is an abstract interface that
every task controller must implement; and

• the experiment interface, which defines a mapping of task con-
trollers to task instances (and therefore TAMs) in an experiment.

Below, I will reproduce these three components implemented using
Java interfaces.

TAM interface

package be.ac.ulb.iridia.tam.common;

/**
* This interface implements all methods required to manipulate and
* query the state of the TAM.
*
* @author Arne Brutschy
*/

public interface TAMInterface
{

/**
* Returns the color of the RGB LEDs of the TAM as currently known.
* @return LedColor object reflecting the 24bit color, or null if TAM didn’t

report status yet
*/

LedColor getLedColor();

/**
* Sets a new LED color.
* Update is ignored if LED color does not change.
* @param ledColor LedColor object reflecting the 24bit color
*/
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void setLedColor(LedColor ledColor);

/**
* Returns true if there is currently a robot in the TAM.
* @return true if there is currently a robot in the TAM
*/

boolean isRobotPresent();

/**
* Returns the id of the TAM.
* - it’s TAMXX with XX being a 2-digit unique integer; or
* - it’s the last 5 characters of the 64bit address if the id hasn’t been

resolved yet
* @return id of TAM as String 5 characters long
*/

String getId();

/**
* Sets a value for the robotData.
* Update is ignored if data did not change
* @param robotData new robotData value
*/

void setRobotDataToSend(int robotData);

/**
* Returns the data received from the robot currently in the TAM.
* @return data received from the robot currently in the TAM, as int
*/

int getRobotDataReceived();

/**
* Returns the user-defined controller of the TAM.
* @return controller of the TAM
*/

ControllerInterface getController();

/**
* Sets the user-defined controller of the TAM.
* @see be.ac.ulb.iridia.tam.common.ControllerInterface
* @param controller user-defined controller of the TAM
*/

void setController(ControllerInterface controller);
}

Controller interface

package be.ac.ulb.iridia.tam.common;

/**
* Interface for a user-defined controller that can be attached to a one
* or multiple TAMs. The controller can set the LED color of the TAM, check
* for the presence of a robot and read/write data from the robot using IRcom.
* @see be.ac.ulb.iridia.tam.common.TAMInterface
*
* @author Arne Brutschy
*/

public interface ControllerInterface
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{
/**
* Resets the controller.
*/

public void reset();

/**
* Step function of the controller.
* Called every Coordinator.STEP_INTERVAL milliseconds.
*/

public void step();
}

Experiment interface

package be.ac.ulb.iridia.tam.common;

/**
* Interface for a "TAM experiment". This should be implemented by your main

class.
*
* The coordinator uses the attachTAMController() function to attach controllers

to newly discovered TAMs.
* You can use the id of the TAM to attach specific controllers to specific TAMs

,
* thereby giving them the different functionality.
*
* Your main() function should look similar to this:
*
* Coordinator coordinator = new Coordinator();
* ExperimentInterface experiment = new YourExperimentClass();
* experiment.init(System.currentTimeMillis());
* coordinator.setExperiment(experiment);
* coordinator.start();
*
* @author Arne Brutschy
*/

public interface ExperimentInterface
{

/**
* Initializes experiment.
* @param randomSeed seed for the prng, set either constant or use System.

currentTimeMillis()
*/

public void init(long randomSeed);

/**
* Resets the experiment.
*/

public void reset();

/**
* Called by the coordinator to attach controllers to newly discovered TAMs.
* You can use the id of the TAM to attach specific controllers
* to specific TAMs, thereby giving them the different functionality.
* @param tam TAM the coordinator requests a coordinator for
*/
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public void attachTAMController(TAMInterface tam);

/**
* Checks whether the experiment is ready to start.
* @return true if ready to start
*/

public boolean isReady();

/**
* Checks whether the experiment should finish.
* @return true if should finish
*/

public boolean isFinished();

/**
* Called by the coordinator on regular intervals.
* Can be used for management of TAMs etc.
*/

public void step();
}

B.3 License
The TAM, including all its components in hard- and software, is open
source. All components, except the IRcom library for the TAM,34 are
licensed under the Creative Commons Attribution-ShareAlike 3.0 Un-
ported License, included hereunder.

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS PRO-
TECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW
IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT
AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT
THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS
YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE
OF SUCH TERMS AND CONDITIONS.

1. Definitions

a) “Adaptation” means a work based upon the Work, or upon the Work and other pre-
existing works, such as a translation, adaptation, derivative work, arrangement of music
or other alterations of a literary or artistic work, or phonogram or performance and in-
cludes cinematographic adaptations or any other form in which the Work may be recast,
transformed, or adapted including in any form recognizably derived from the original,
except that a work that constitutes a Collection will not be considered an Adaptation for
the purpose of this License. For the avoidance of doubt, where the Work is a musical
work, performance or phonogram, the synchronization of the Work in timed-relation with

34 As the IRcom library for the TAM has been ported from the e-puck, it retains
the licensing of the original libIrcom library, which is licensed under the GNU
GENERAL PUBLIC LICENSE, Version 3.
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a moving image (“synching”) will be considered an Adaptation for the purpose of this
License.

b) “Collection” means a collection of literary or artistic works, such as encyclopedias and
anthologies, or performances, phonograms or broadcasts, or other works or subject mat-
ter other than works listed in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in which the Work is in-
cluded in its entirety in unmodified form along with one or more other contributions, each
constituting separate and independent works in themselves, which together are assembled
into a collective whole. A work that constitutes a Collection will not be considered an
Adaptation (as defined above) for the purposes of this License.

c) “Distribute” means to make available to the public the original and copies of the Work
or Adaptation, as appropriate, through sale or other transfer of ownership.

d) “Licensor” means the individual, individuals, entity or entities that offer(s) the Work
under the terms of this License.

e) “Original Author” means, in the case of a literary or artistic work, the individual,
individuals, entity or entities who created the Work or if no individual or entity can be
identified, the publisher; and in addition (i) in the case of a performance the actors, singers,
musicians, dancers, and other persons who act, sing, deliver, declaim, play in, interpret
or otherwise perform literary or artistic works or expressions of folklore; (ii) in the case of
a phonogram the producer being the person or legal entity who first fixes the sounds of
a performance or other sounds; and, (iii) in the case of broadcasts, the organization that
transmits the broadcast.

f) “Work” means the literary and/or artistic work offered under the terms of this License
including without limitation any production in the literary, scientific and artistic domain,
whatever may be the mode or form of its expression including digital form, such as a book,
pamphlet and other writing; a lecture, address, sermon or other work of the same nature;
a dramatic or dramatico-musical work; a choreographic work or entertainment in dumb
show; a musical composition with or without words; a cinematographic work to which
are assimilated works expressed by a process analogous to cinematography; a work of
drawing, painting, architecture, sculpture, engraving or lithography; a photographic work
to which are assimilated works expressed by a process analogous to photography; a work
of applied art; an illustration, map, plan, sketch or three-dimensional work relative to
geography, topography, architecture or science; a performance; a broadcast; a phonogram;
a compilation of data to the extent it is protected as a copyrightable work; or a work
performed by a variety or circus performer to the extent it is not otherwise considered a
literary or artistic work.

g) “You” means an individual or entity exercising rights under this License who has not
previously violated the terms of this License with respect to the Work, or who has re-
ceived express permission from the Licensor to exercise rights under this License despite
a previous violation.

h) “Publicly Perform” means to perform public recitations of the Work and to communi-
cate to the public those public recitations, by any means or process, including by wire or
wireless means or public digital performances; to make available to the public Works in
such a way that members of the public may access these Works from a place and at a place
individually chosen by them; to perform the Work to the public by any means or process
and the communication to the public of the performances of the Work, including by public
digital performance; to broadcast and rebroadcast the Work by any means including signs,
sounds or images.

i) “Reproduce” means to make copies of the Work by any means including without limi-
tation by sound or visual recordings and the right of fixation and reproducing fixations of
the Work, including storage of a protected performance or phonogram in digital form or
other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any
uses free from copyright or rights arising from limitations or exceptions that are provided for
in connection with the copyright protection under copyright law or other applicable laws.
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3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants
You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable
copyright) license to exercise the rights in the Work as stated below:

a) to Reproduce the Work, to incorporate the Work into one or more Collections, and to
Reproduce the Work as incorporated in the Collections;

b) to create and Reproduce Adaptations provided that any such Adaptation, including any
translation in any medium, takes reasonable steps to clearly label, demarcate or otherwise
identify that changes were made to the original Work. For example, a translation could
be marked “The original work was translated from English to Spanish,” or a modification
could indicate “The original work has been modified.”;

c) to Distribute and Publicly Perform the Work including as incorporated in Collections;
and,

d) to Distribute and Publicly Perform Adaptations.

e) For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the
right to collect royalties through any statutory or compulsory licensing scheme cannot
be waived, the Licensor reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the
right to collect royalties through any statutory or compulsory licensing scheme can
be waived, the Licensor waives the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License; and,

iii. Voluntary License Schemes. The Licensor waives the right to collect royalties,
whether individually or, in the event that the Licensor is a member of a collecting
society that administers voluntary licensing schemes, via that society, from any exercise
by You of the rights granted under this License.

The above rights may be exercised in all media and formats whether now known or hereafter
devised. The above rights include the right to make such modifications as are technically
necessary to exercise the rights in other media and formats. Subject to Section 8(f), all rights
not expressly granted by Licensor are hereby reserved.

4. Restrictions The license granted in Section 3 above is expressly made subject to and limited
by the following restrictions:

a) You may Distribute or Publicly Perform the Work only under the terms of this License.
You must include a copy of, or the Uniform Resource Identifier (URI) for, this License
with every copy of the Work You Distribute or Publicly Perform. You may not offer or
impose any terms on the Work that restrict the terms of this License or the ability of the
recipient of the Work to exercise the rights granted to that recipient under the terms of
the License. You may not sublicense the Work. You must keep intact all notices that
refer to this License and to the disclaimer of warranties with every copy of the Work
You Distribute or Publicly Perform. When You Distribute or Publicly Perform the Work,
You may not impose any effective technological measures on the Work that restrict the
ability of a recipient of the Work from You to exercise the rights granted to that recipient
under the terms of the License. This Section 4(a) applies to the Work as incorporated
in a Collection, but this does not require the Collection apart from the Work itself to be
made subject to the terms of this License. If You create a Collection, upon notice from
any Licensor You must, to the extent practicable, remove from the Collection any credit
as required by Section 4(b), as requested. If You create an Adaptation, upon notice from
any Licensor You must, to the extent practicable, remove from the Adaptation any credit
as required by Section 4(b), as requested.

b) If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You
must, unless a request has been made pursuant to Section 4(a), keep intact all copyright
notices for the Work and provide, reasonable to the medium or means You are utilizing:
(i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or if
the Original Author and/or Licensor designate another party or parties (e.g., a sponsor
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institute, publishing entity, journal) for attribution (“Attribution Parties”) in Licensor’s
copyright notice, terms of service or by other reasonable means, the name of such party
or parties; (ii) the title of the Work if supplied; (iii) to the extent reasonably practicable,
the URI, if any, that Licensor specifies to be associated with the Work, unless such URI
does not refer to the copyright notice or licensing information for the Work; and (iv) ,
consistent with Section 3(b), in the case of an Adaptation, a credit identifying the use of
the Work in the Adaptation (e.g., “French translation of the Work by Original Author,”
or “Screenplay based on original Work by Original Author”). The credit required by this
Section 4 (b) may be implemented in any reasonable manner; provided, however, that in
the case of a Adaptation or Collection, at a minimum such credit will appear, if a credit
for all contributing authors of the Adaptation or Collection appears, then as part of these
credits and in a manner at least as prominent as the credits for the other contributing
authors. For the avoidance of doubt, You may only use the credit required by this Section
for the purpose of attribution in the manner set out above and, by exercising Your rights
under this License, You may not implicitly or explicitly assert or imply any connection
with, sponsorship or endorsement by the Original Author, Licensor and/or Attribution
Parties, as appropriate, of You or Your use of the Work, without the separate, express
prior written permission of the Original Author, Licensor and/or Attribution Parties.

c) Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted
by applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by
itself or as part of any Adaptations or Collections, You must not distort, mutilate, modify
or take other derogatory action in relation to the Work which would be prejudicial to the
Original Author’s honor or reputation. Licensor agrees that in those jurisdictions (e.g.
Japan), in which any exercise of the right granted in Section 3(b) of this License (the
right to make Adaptations) would be deemed to be a distortion, mutilation, modification
or other derogatory action prejudicial to the Original Author’s honor and reputation,
the Licensor will waive or not assert, as appropriate, this Section, to the fullest extent
permitted by the applicable national law, to enable You to reasonably exercise Your right
under Section 3(b) of this License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LI-
CENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATU-
TORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TI-
TLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGE-
MENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE
PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO
SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY
FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF
LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a) This License and the rights granted hereunder will terminate automatically upon any
breach by You of the terms of this License. Individuals or entities who have received
Adaptations or Collections from You under this License, however, will not have their
licenses terminated provided such individuals or entities remain in full compliance with
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b) Subject to the above terms and conditions, the license granted here is perpetual (for the
duration of the applicable copyright in the Work). Notwithstanding the above, Licensor
reserves the right to release the Work under different license terms or to stop distributing
the Work at any time; provided, however that any such election will not serve to withdraw
this License (or any other license that has been, or is required to be, granted under
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the terms of this License), and this License will continue in full force and effect unless
terminated as stated above.

8. Miscellaneous

a) Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor
offers to the recipient a license to the Work on the same terms and conditions as the
license granted to You under this License.

b) Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the recip-
ient a license to the original Work on the same terms and conditions as the license granted
to You under this License.

c) If any provision of this License is invalid or unenforceable under applicable law, it shall
not affect the validity or enforceability of the remainder of the terms of this License, and
without further action by the parties to this agreement, such provision shall be reformed
to the minimum extent necessary to make such provision valid and enforceable.

d) No term or provision of this License shall be deemed waived and no breach consented to
unless such waiver or consent shall be in writing and signed by the party to be charged
with such waiver or consent.

e) This License constitutes the entire agreement between the parties with respect to the Work
licensed here. There are no understandings, agreements or representations with respect to
the Work not specified here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be modified without
the mutual written agreement of the Licensor and You.

f) The rights granted under, and the subject matter referenced, in this License were drafted
utilizing the terminology of the Berne Convention for the Protection of Literary and Artis-
tic Works (as amended on September 28, 1979), the Rome Convention of 1961, the WIPO
Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996 and
the Universal Copyright Convention (as revised on July 24, 1971). These rights and sub-
ject matter take effect in the relevant jurisdiction in which the License terms are sought
to be enforced according to the corresponding provisions of the implementation of those
treaty provisions in the applicable national law. If the standard suite of rights granted
under applicable copyright law includes additional rights not granted under this License,
such additional rights are deemed to be included in the License; this License is not intended
to restrict the license of any rights under applicable law.
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