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Summary

In this thesis we focus on Stochastic Combinatorial Optimization Problems (SCOPs),
a wide class of combinatorial optimization problems under uncertainty, where part of
the information about the problem data is unknown at the planning stage, but some
knowledge about its probability distribution is assumed.

Optimization problems under uncertainty are complex and difficult, and often classi-
cal algorithmic approaches based on mathematical and dynamic programming are able
to solve only very small problem instances. For this reason, in recent years metaheuris-
tic algorithms such as Ant Colony Optimization, Evolutionary Computation, Simulated
Annealing, Tabu Search and others, are emerging as successful alternatives to classical
approaches.

In this thesis, metaheuristics that have been applied so far to SCOPs are introduced
and the related literature is thoroughly reviewed. In particular, two properties of
metaheuristics emerge from the survey: they are a valid alternative to exact classical
methods for addressing real-sized SCOPs, and they are flexible, since they can be quite
easily adapted to solve different SCOPs formulations, both static and dynamic. On
the base of the current literature, we identify the following as the key open issues in
solving SCOPs via metaheuristics: (1) the design and integration of ad hoc, fast and
effective objective function approximations inside the optimization algorithm; (2) the
estimation of the objective function by sampling when no closed-form expression for the
objective function is available, and the study of methods to reduce the time complexity
and noise inherent to this type of estimation; (3) the characterization of the efficiency
of metaheuristic variants with respect to different levels of stochasticity in the problem
instances.

We investigate the above issues by focusing in particular on a SCOP belonging to
the class of vehicle routing problems: the Probabilistic Traveling Salesman Problem
(PTSP). For the PTSP, we consider the Ant Colony Optimization metaheuristic and
we design efficient local search algorithms that can enhance its performance. We obtain
state-of-the-art algorithms, but we show that they are effective only for instances above
a certain level of stochasticity, otherwise it is more convenient to solve the problem
as if it were deterministic. The algorithmic variants based on an estimation of the
objective function by sampling obtain worse results, but qualitatively have the same
behavior of the algorithms based on the exact objective function, with respect to the
level of stochasticity. Moreover, we show that the performance of algorithmic variants
based on ad hoc approximations is strongly correlated with the absolute error of the
approximation, and that the effect on local search of ad hoc approximations can be
very degrading.

Finally, we briefly address another SCOP belonging to the class of vehicle routing
problems: the Vehicle Routing Problem with Stochastic Demands (VRPSD). For this
problem, we have implemented and tested several metaheuristics, and we have studied
the impact of integrating in them different ad hoc approximations.
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Original contributions and
outline

The contributions of this thesis stay at the intersection of two very active streams of
research inside the field of combinatorial optimization: Stochastic Combinatorial Op-
timization Problems (SCOPs) on one side, and metaheuristics on the other side. The
general logical structure of the thesis, which is schematized by Figure 1, is the follow-
ing. Part I addresses the field of solving SCOPs via metaheuristics; Part II focuses on
solving one particular SCOP, the Probabilistic Traveling Salesman Problem (PTSP),
via one particular metaheuristic, Ant Colony Optimization (ACO); and Appendix B
considers solving another particular SCOP, the Vehicle Routing Problem with Stochas-
tic Demands (VRPSD), via several metaheuristics. For each of these conceptual blocks,
we describe here the main original contributions, with pointers to the corresponding
scientific publications where part of the ideas have appeared or will appear.

Clear definition of the scope of SCOPs There is an increasing interest of the op-
erations research community in addressing optimization problems that include
in their mathematical formulation uncertain, stochastic, and dynamic informa-
tion. The multitude of model formulations in the literature makes it difficult
to compare different solution approaches and identifying promising directions of
research. Chapter 1 proposes a classification of the modeling approaches to un-
certainty according to dynamicity and type of description of uncertain data, and
precisely defines the scope of SCOPs. Chapter 2 recalls the main formal defini-
tions of both static and dynamic SCOPs from the literature, by providing links to
the corresponding algorithmic domains, with the aim of giving a clear view of the
intersection between classical approaches and new ones based on metaheuristics.

Survey of metaheuristics applications to SCOPs Chapter 3 aims at putting un-
der a unifying view the several applications of metaheuristics to SCOPs, by filling
a gap in the literature, where a number of surveys and books about solving SCOPs
via classical techniques exist, but none about using metaheuristics, despite the
research literature is already quite rich. This chapter also selects and discusses
some open issues that emerge from the survey. In particular, the issue of using
approximations of the objective function inside optimization algorithms will be
further investigated in Part II. The content of Part I (from Chapter 1 to Chapter
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SCOPs

metaheuristicsACO …

Part I

Part II
PTSP

VRPSD
Appendix B

… … …

Figure 1: General outline of this thesis (acronyms are explained in the text).

3), is the source of an article ([37]) which is in preparation for submission to an
international journal .

A benchmark for the PTSP The PTSP has many features that makes it useful as
a test problem for algorithms addressing SCOPs, and it is likely it will be consid-
ered again in the literature. Thus, we think that the creation of a benchmark of
instances for the PTSP will be a useful instrument for future research. Chapter
4, besides introducing the PTSP as a particular case study of the SCOPs class,
describes a benchmark of 432 PTSP instances that we have set up for the experi-
mental evaluation of algorithms for the PTSP. The benchmark has been carefully
designed, in particular to allow the analysis of the behavior of optimization algo-
rithms for different levels of stochasticity. In order to facilitate future comparisons
with our results, we have also used a known lower bound from the literature to
evaluate the lower bound of the optimal solution values for the instances of the
PTSP benchmark.

ACO for the PTSP Chapter 5 develops several ACO algorithms for the PTSP, and
focuses on two aspects. First, the dependence of ACO performance on PTSP
instance characteristics. Second, the impact of different approximations of the
objective function on the performance of ACO. Preliminary experiments about
the first ACO algorithm of this chapter, pACS, have been published in the pro-
ceedings of the 7th International Conference on Parallel Problem Solving from
Nature (PPSN-VII) [38] and in the proceedings of the 3rd International Workshop
on Ant Algorithms (ANTS 2002) [39].

Powerful local search algorithms for the PTSP Chapter 6 explores, in the spe-
cific context of the PTSP, a range of possibilities among which to choose when
designing a local search algorithm for a SCOP that has a computationally ex-

xiv



pensive objective function. The most promising alternatives are: using an ap-
proximated cost for the local search operators, and finding cost expressions that
can be computed efficiently and exactly by exploiting some recursive mechanism.
In Chapter 6 different cost approximations are proposed and analyzed, and, for
the 2-p-opt and 1-shift local search operators, efficient and exact cost expressions
are derived. The derivation and preliminary experimental results based on these
efficient local search algorithms (described in Section 6.4) have been published in
two articles in the European Journal of Operations Research [42, 35].

State-of-the-art algorithm combining ACO with local search In Chapter 7 we
obtain a state-of-the-art algorithm for solving the PTSP, by combining one ACO
algorithm proposed in Chapter 5 and the powerful 1-shift local search derived in
Chapter 6. Chapter 7 also achieves a classification in terms of solution quality
of the different local search variants based on different cost approximations for
the local search proposed in Chapter 6. The contents and experimental results
of Chapters 5 and 7 are being condensed in an article ([40]) in preparation for
submission to an international journal.

Using objective function approximations in metaheuristics for the VRPSD
Appendix B analyzes the performance of several metaheuristics on the VRPSD,
which, like all SCOPs, has a computationally demanding objective function. Two
types of approximations of the objective function are used inside the metaheuris-
tics. One approximation based on the deterministic traveling salesman problem
reveals to be particularly efficient when coupled to two metaheuristics (Iterated
Local Search and Evolutionary Computation), and leads to state-of-the-art algo-
rithms for the VRSPD. This work has been possible thanks to the collaboration of
several people from different research labs, who have participated to the “Meta-
heuristics Network” an European project funded by the Marie Curie programme
[143]. Preliminary results have been published in the proceedings of the 8th In-
ternational Conference on Parallel Problem Solving from Nature (PPSN VIII)
[32], and the contents of Appendix B have been accepted for publication by the
Journal of Mathematical Modelling and Algorithms [33].

Summarizing, the original contributions of this thesis can be quantified in terms of the
following scientific publications:

• Articles in international journals: 3 articles published ([42], [35], [33]), and 2
articles in preparation ([37], [40]).

• Articles in international conference proceedings: 3 articles published ([38], [39],
[32]).

It follows the complete list of mentioned scientific publications.
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Chapter 1

Introduction

The focus of the first part of this thesis (from Chapter 1 to Chapter 3) is on Stochastic
Combinatorial Optimization Problems (SCOPs), a wide class of combinatorial opti-
mization problems under uncertainty, where all or part of the information about the
problem data is unknown, but some knowledge about its probability distribution is
assumed. Our intention is to put under a unifying view the several applications of
metaheuristics to SCOPs, by filling a gap in the literature, where a number of surveys
and books about solving SCOPs via classical techniques exist, but none about using
metaheuristics, despite the research literature is already quite rich.

The first part of the thesis is organized as follows. Chapter 1 motivates, in Section
1.1, the interest for studying SCOPs via metaheuristics, and in Section 1.2 proposes a
classification of the modeling approaches to uncertainty according to dynamicity and
type of description of uncertain data, and precisely defines the scope of SCOPs. Chap-
ter 2 recalls the main formal definitions of both static and dynamic SCOPs from the
literature, by providing links to the corresponding algorithmic domains, with the aim
of giving a clear view of the intersection between classical approaches and new ones
based on metaheuristics. Chapter 2 also introduces the issue of objective function
computation in SCOPs, which may involve different types of objective function ap-
proximations. Chapter 3 reviews the main applications to SCOPs of metaheuristics
for which a significant amount of interesting literature exists, namely Ant Colony Op-
timization (ACO), Evolutionary Computation (EC), Simulated Annealing (SA), Tabu
Search (TS), Stochastic Partitioning Methods (SPM), Progressive Hedging (PH), and
Rollout Algorithms (RO). Finally, it selects and discusses some open issues by taking
a transversal view on the reviewed metaheuristics.

1.1 Motivation

There is an increasing interest of the operations research community in addressing opti-
mization problems that include in their mathematical formulation uncertain, stochastic,
and dynamic information. Problem solving under uncertainty has a very high impact
on real world contexts, since optimization problems arising in practice are becoming

3



4 CHAPTER 1. INTRODUCTION

Acronym Full SCOP name
PTSP Probabilistic Traveling Salesman Problem
TSPTW Traveling Salesman Problem with Stochastic Time Windows
VRPSD Vehicle Routing Problem with Stochastic Demands
VRPSDC Vehicle Routing Problem with Stochastic Demands and Customers
SCP Set Covering Problem
SSP Shop Scheduling Problem
SDTCP Stochastic Discrete Time-Cost Problem
SOPTC Sequential Ordering Problem with Time Constraint

Table 1.1: Explanation of acronyms used to refer to some relevant SCOPs.

increasingly complex and dynamic, also thanks to the fast development of telecommuni-
cations that makes not only the perception but also the changes of the world more rapid,
stochastic and difficult to forecast. Therefore, the study of optimization algorithms for
SCOPs is an aspect of operations research which is of increasing importance.

In recent years, metaheuristic algorithms such as Ant Colony Optimization (ACO),
Evolutionary Computation (EC), Simulated Annealing (SA), Tabu Search (TS), Stochas-
tic Partitioning Methods (SPM), and others, have emerged as successful alternatives
to classical approaches based on mathematical and dynamic programming for solving
SCOPs. In fact, due to the high complexity and difficulty of optimization problems un-
der uncertainty, often classical approaches (that guarantee to find the optimal solution)
are feasible only for small size instances, and they could require a lot of computational
effort. In contrast, approaches based on metaheuristics are capable of finding good
and sometimes optimal solutions to problem instances of realistic size, in a generally
shorter computation time. Table 1.2 lists some papers in the literature providing evi-
dence about the advantages in solving SCOPs via metaheuristics instead of using exact
classical methods, and Table 1.1 explains the acronyms used to refer to the SCOPs
involved in Table 1.2.

1.2 Modeling approaches to uncertainty

In defining the scope of SCOPs one should consider the many ways in which uncer-
tainty may be formalized. Uncertainty is included in the formulation of optimization
problems in order to go nearer to real world conditions, but models should also be a
bit simplified, in order to be tractable analytically or numerically. The efforts done
in reaching a good trade-off between usefulness of the model and tractability of the
problem have produced a multitude of formalizations of uncertainty. This is even more
evident for metaheuristics, because, due to their simplicity, they may be easily ap-
plied to complex formulations that would be considered intractable for many classical
algorithmic approaches.
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Reference(s) SCOP Metaheu-
ristic(s)

Exact method Advantage of the meta-
heuristic(s) over the exact
method

Beraldi and
Ruszczyński
[16] (2005)

SCP SPM (Beam
Search)

Branch and Bound Maximum deviation from
optimal solution is 5%, and
in some cases Beam Search
finds the optimal solution.
The running time reduction
with respect to Branch and
Bound is roughly between
20% and 90%

Bianchi et
al. [32] [33]
(2005)

VRPSD ACO, SA,
TS, ILS, EC

Integer L-shaped method
by Gendreau et al. [86]
solves instances with up to
70 customers

ACO, SA, TS, ILS, EC
address instances with up
to 200 customers (distance
from the optimum unknown)

Gutjahr [100]
(2004)

TSPTW ACO Complete Enumeration
solves in about 4 hours
instances with 10 customers

ACO and SA solve instances
with up to 20 customers in
a few seconds (distance from
the optimum unknown)

Branke and
Guntsch
[51] (2003)
[52] (2004),
Bowler et
al. [50] (2003),
Bianchi [38]
[39] (2002)

PTSP ACO, SA Branch and Cut by Laporte
et al. [132] solves instances
with up to 50 customers

In [38, 39], ACO addresses
instances with up to 200 cus-
tomers. In [51, 52] ACO ad-
dresses instances with up to
400 customers. In [50], SA
addresses instances with up
to 120 customers (distance
from the optimum unknown)

Finke et al.
[77] (2002)

SSP TS Mixed Integer Linear Pro-
gramming solves instances
with up to 10 jobs and 5 ma-
chines

29 out of 30 small instances
solved to optimality. In-
stances with up to 20 jobs
and 10 machines have been
addressed (distance from the
optimum unknown)

Gutjahr et
al. [104]
(2000)

SDTCP SPM
(Stochastic
Branch and
Bound)

Complete Enumeration ap-
proaches fail to generate re-
sults within a reasonable
amount of time even for
medium-size problems

Stochastic Branch and
Bound outperforms classic
techniques both in solution
quality and in runtime

Costa and Sil-
ver [65] (1998)

SOPTC TS Branch and Bound solves
instances with up to 14
causes, with a computa-
tion time from 0.1 to about
30000 seconds

TS is much faster (always
0.1 or 0.2 seconds for the
small instances with up to 14
customers). Addressed also
big instances with up to 500
customers (distance from the
optimum unknown)

Gendreau et
al. [88] (1996)

VRPSDC TS Integer L-shaped method
by Gendreau et al. [86]
solves instances with up to
70 customers

TS is faster (from Tables I
and II of [88] the time gain of
TS with respect to the exact
method may be computed)

Table 1.2: Evidence about some of the advantages in solving SCOPs via metaheuristics
instead of using exact classical methods. Metaheuristics are capable of finding good
and sometimes optimal solutions to problem instances of realistic size, in a generally
shorter computation time.
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When considering models of optimization problems under uncertainty, there are
mainly two aspects to define: first, the way uncertain information is formalized, and
second, the dynamicity of the model, that is, the time uncertain information is revealed
with respect to the time at which decisions must be taken. The several modeling
approaches differ in the way the first and/or the second aspects are defined. Here,
we propose a classification of models according to these two aspects, uncertainty and
dynamicity, as schematized in Figure 1.1. This thesis (Part I) will then focus only on
a subset of models, that correspond to our definition of SCOPs.

dynamicity

uncertainty

static dynamic

total uncertainty

random variables

interval values

fuzzy values

Determ. COPs
    (DCOPs)

Stochastic COPs
(SCOPs)

Pure
Online
Problems

Robust COPs

Fuzzy COPs

perfect knowledge

Figure 1.1: Scheme for the conceptual classification of Combinatorial Optimization
Problems (COPs) under uncertainty. The first part of this thesis focuses on Stochastic
COPs (SCOPs) and to solution methods based on metaheuristics.

Uncertain information may be formalized in several ways (vertical axis of Fig-
ure 1.1). The case of perfect knowledge about the data of the problem corresponds
to the classical field of solving (Deterministic) Combinatorial Optimization Problems
(DCOPs) (low left corner of Figure 1.1). Here, all information is available at the deci-
sion stage, and it is used by optimization algorithms to find a possibly optimal solution.
The concrete application of a solution found would lead exactly to the cost of the solu-
tion as computed by the optimization algorithm, therefore DCOPs are also considered
static problems, because from the point of view of the decision maker, there is nothing
else to be decided after the optimization took place1. A typical example of DCOP
is the well known Traveling Salesman Problem (TSP) [96], where, given a set of cus-
tomers and the set of distance values among each couple of customers, one must find
the Hamiltonian tour (that is, a tour visiting once each customer) of minimal length.

1Nevertheless, a solution algorithm may use a ‘dynamic’ or ‘stochastic’ mechanism also in these
cases, as, for example, the dynamic programming algorithm applied to (deterministic, static) shortest
path problems, or algorithms that involve some random choice such as virtually all metaheuristics and
local search procedures.
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Despite its simple formulation, the TSP is an NP-hard problem, like many DCOPs.
Let us now consider problem formulations involving uncertainty (upper levels of

Figure 1.1). One possibility is to describe uncertain information by means of random
variables of known probability distributions. This is what we assume in SCOPs (a
more precise definition and examples of SCOPs will be given in Chapter 2). Under
this assumption, the optimization problem is stochastic, and the objective function
strongly depends on the probabilistic structure of the model. Typically, the objective
function involves quantities such as an expected cost, the probability of violation of
some constraints, variance measures, and so on. In SCOPs one can distinguish a
time before the actual realization of the random variables, and a time after the random
variables are revealed, because the associated random events happen. Static SCOPs are
characterized by the fact that decisions, or, equivalently, the identification of a possibly
optimal solution, is done before the actual realization of the random variables. This
framework is applicable when a given solution may be applied with no modifications
(or very small ones) once the actual realization of the random variables are known. The
literature sometimes addresses this type of problems as ‘a-priori’ optimization. As an
example of this class of problems, consider the probabilistic TSP (PTSP), that consists
in finding a Hamiltonian tour visiting all customers (the ‘a priori’ tour) of minimum
expected cost, given that each customer has a known probability of requiring a visit.
Once the information of which customers actually require a visit on a certain day is
known, the customers requiring a visit are visited in the order of the ‘a priori’ tour,
simply skipping the customers not requiring a visit.

Dynamic SCOPs arise when it is not possible or not convenient to design a solution
that is usable as it is for any realization of the random variables. In this case, decisions
that need an optimization effort must be taken also after the random events have
happened. This could also be done in stages, because it is often the case that the
uncertain information is not revealed all at once, but in stages. As an example of
dynamic SCOP, consider for instance a TSP where new customers of known positions
appear with a certain probability while the salesman has already started to visit the
customers known a priori. In this case an a priori tour must be modified dynamically
in order to include the new customers in the visiting tour.

Another way of formalizing uncertainty is to identify the uncertain information
with fuzzy quantities (vectors or numbers), and constraints with fuzzy sets. This ap-
proach has its roots in Bellman and Zadeh [15] and in Zimmermann [187], but currently
occupies a minor portion of the optimization literature.

An approach which is receiving increasing attention in the last years is the one of
robust optimization, which assumes that uncertain information is known in the form
of interval values. For example, one could consider the robust TSP, where the cost of
arcs between couples of customers is given by interval values. These costs could have
the meaning of travel times, being small if there is no or little traffic, and being high
in case of traffic congestion. The robustness approach consists in finding solutions that
hedge against the worst contingency that may arise, given that no knowledge about
the probability distribution of random data is known. One possible way of quantifying
robustness is the minmax criterion, under which the robust decision is the one for which
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the highest level of cost taken across all possible future input data scenarios is as low
as possible. Both static and dynamic versions of robust optimization problems may be
formulated. For a good introduction to robust optimization, see for instance the book
by Kouvelis and Yu [130].

On the highest level of Figure 1.1 we placed problems that we call Pure Online,
where the input is modeled as a sequence of data which are supplied to the algorithm
incrementally, but without making any assumption that can help to make a previ-
sion on the new data. An algorithm for a Pure Online Problem produces the output
incrementally without knowing the complete input, and its performance is evaluated
with respect to an abstract competitor, who knows all the complete (past and future)
data, and that is able to solve the offline problem optimally. This way of evaluating
algorithms is called in the literature competitive analysis [4, 49]. An example of Pure
Online problem is the Dynamic Traveling Repair Problem [117], where a set of servers
move from point to point in a metric space; the speed of each server is constant, so
the time it takes to travel from one point to another is proportional to the distance
between two points; time is continuous and at any moment a request for service can
arrive at any point in the space; each job also specifies a deadline; if a job is serviced,
a server must reach the point where the request originated by its deadline; the goal is
to service as many incoming request as possible by their deadlines.

We should again remark that in this thesis we restrict to SCOPs (the shaded box
in Figure 1.1). SCOPs are combinatorial optimization problems, having by definition
a discrete decision space. By this choice we neglect the vast field of continuous opti-
mization under uncertainty, although the scheme we have just proposed for classifying
problems under uncertainty equally applies to continuous problems.

SCOPs are relevant in many practical contexts, such as vehicle routing problems,
where stochasticity is due to variable customers demands, or variable travel times, rout-
ing on information networks, where stochasticity is due to the variability of traffic and
the related speed of information packages, finance, scheduling, location problems and
many other contexts. All these problem domains may be, and usually are, also modeled
as DCOPs. The advantage of using SCOPs over DCOPs is that the solutions produced
may be more easily and better adapted to practical situations where uncertainty cannot
be neglected, such as thrash collection, cash collection from banks, location of emer-
gency services, and so on. Of course, the use of SCOPs instead of DCOPs comes at a
price: first, the objective function is typically much more computationally demanding
in SCOPs than in DCOPs; second, for a practical application of SCOPs, there is the
need to assess probability distributions from real data or subjectively, a task that is far
from trivial. For a discussion about the issue of computational burden and complexity
in certain SCOP formulations, see for instance Haneveld and van der Vlerk [109], and
Dyer and Stougie [73]. The ways this issue is managed in metaheuristics applied to
SCOPs will be described in detail in Chapter 3.



Chapter 2

Formal descriptions of SCOPs

The class of SCOPs is so important and has impact in so many domains that several
research areas are dedicated to its study: Stochastic Integer Programming, Markov
Decision Processes (which is part of Stochastic Dynamic Programming) and Simulation
Optimization being the main ones. Each research area corresponds to a particular
way of modeling, formulating and solving optimization problems under uncertainty,
and it is often treated separately in the optimization literature. The application of
metaheuristics to SCOPs is a quite recent and fast growing research area, and it is
thus natural that many of the papers borrow from the classical SCOP literature the
same problem formulations. In this chapter we first give, in Section 2.1, a definition
of SCOPs which is very general, but is only tentative since it does not well specifies
what are the quantities to be minimized or maximized (in a minimization, respectively
maximization problem). The limits of this tentative SCOP definition justify the need to
consider other formalizations, as we do in Section 2.2 and 2.3, where we recall the main
formal definitions of, respectively, static and dynamic SCOPs from the literature. We
also provide pointers to the research areas that originally proposed the various SCOP
definitions. In Section 2.4, we introduce the important issue of objective function
approximations in SCOPs, which will be the leitmotif of the rest of this thesis.

2.1 General but tentative SCOP definition

Let us now give a general definition of SCOP, as proposed by Kall and Wallace [127].
(Throughout the first part of the thesis we use the minimization form for optimization
problems, the maximization form is equivalent and can be derived in a straightforward
manner by substituting the word ‘min’ with the word ‘max’).

Definition 1 (SCOP - tentative)
Consider a probability space (Ω,Σ, P ) ([95]), where Ω is the domain of random variables
ω (typically a subset of Rk), Σ is a family of “events”, that is subsets of Ω, and P is a
probability distribution on Σ, with P (Ω) = 1. Consider also a finite set S of decision
variables x. S is typically a subset of Rn. The random variable ω could also depend on

9
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the decision variable x, in that case it is denoted by ωx. Given a cost function G and
constraint functions Hi, i = 1, 2, . . . ,m, mapping (x, ω) ∈ (S,Ω) to R, find{

“min”x∈S G(x, ω),
subject to Hi(x, ω) ≤ 0, i = 1, 2, . . . ,m.

(2.1)

Note, however, that according to the above definition, a SCOP is not well defined,
since the meaning of “min” as well as of the constraints are not clear at all [127]. In
fact, how could one take a decision on x before knowing the value of ω, and how could
one verify if Hi(x, ω) ≤ 0, if ω is not yet known? Moreover, since ω is a random
variable, also G(x, ω) and Hi(x, ω) are random variables. For these reasons, Definition
1 is not operational, and it must be refined. There are several possibilities to do this,
giving rise to different SCOP variants, both static and dynamic. These are also called
deterministic equivalents of Definition 1. Let us first focus on static SCOPs, and later
on dynamic SCOPs.

2.2 Static SCOPs

Definition 2 (Stochastic Integer Program - SIP)
Given a probability space (Ω,Σ, P ), a finite set S of feasible solutions x, a real val-
ued cost function G(x, ω) of the two variables x ∈ S and ω ∈ Ω, and denoting by
EP (G(x, ω)) the expected value of G(x, ω) over Ω according to P , find

min
x∈S

{
g(x) := EP (G(x, ω))

}
. (2.2)

The above definition is maybe the simplest SCOP formulation, and it does not consider
random constraints (observe, though, that deterministic constraints could be implicitly
included in the definition of the domain S of decision variables).

In some cases the cost function G is deterministic, that is, G only depends on x and
not on the random variable ω, but constraints do depend on the random variable ω. In
such situation it might be impossible to enforce Hi(x, ω) ≤ 0 for all ω ∈ Ω. Thus, one
could relax the notion of constraint satisfaction by allowing constraint violation, and
by imposing that constraints are satisfied at least with some given probabilities. This
leads to the following

Definition 3 (Chance Constrained Integer Program - CCIP)
Given a probability space (Ω,Σ, P ), a finite set S of feasible solutions x, a real valued
cost function G(x), a set of real valued constraint functions Hi(x, ω), and a set of
constraint violation probabilities αi, with 0 ≤ αi ≤ 1 and i = 1, 2, . . . ,m, find{

min
x∈S

G(x),

subject to Prob{Hi(x, ω) ≤ 0} ≥ 1− αi, i = 1, 2, . . . ,m.
(2.3)
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Both the Stochastic and Chance Constrained Program formulations have been orig-
inally proposed in the context of Mathematical Programming applied to SCOPs, and
this field is also called in the literature Stochastic Integer Programming (SIP), a sub-
set of the broader field of Stochastic Programming [46]. The Stochastic Programming
community has a very active website [168] where updated bibliographic references and
papers are available. Recent surveys on SIP include [109] and [128] (the latter overviews
SIP applications in the context of location routing problems). Let us now focus on some
dynamic SCOP deterministic equivalents of Definition 1.

2.3 Dynamic SCOPs

Informally, a stochastic dynamic problem is a problem where decisions are taken at
discrete times t = 1, . . . , T , the horizon T being finite or infinite. Decisions taken
at time t may influence the random events that happen in the environment after t.
In dynamic SCOPs the concept of solution used in static SCOPs is no longer valid.
For example, in the dynamic TSP that we described in Chapter 1.2, a tour among
the set of customers known at the beginning of the day cannot be traveled as it is in
practice, but it must be modified when new observations (new customers) are known.
What the decision maker can do before the observation-decision process starts is to
decide which policy (or strategy) to adopt, that is, to specify a set of rules that say
what action will be taken for each possible random future event. For example, in the
dynamic TSP, a possible policy consists in re-optimizing the portion of route among
the not-yet-visited customers each time that a new customer appears. Another policy,
which is less computationally expensive, but that possibly leads to a more costly tour,
is to re-optimize at stages, only after a certain number of new customers has appeared.
Note that in solving dynamic SCOPs one has to make a double effort: first, decide
which policy to adopt, second, given the policy, solve the optimization sub-problems
emerging dynamically. Both parts have influence on the final solution cost, but often
the choice of the policy is due to factors that are outside the control of the decision
maker. For instance, in the dynamic TSP one could be forced not to optimize every
time a new customer arrives, in case customers want to know in advance the vehicle
arrival time.

Among the dynamic formulations the most common ones are those belonging to the
class of Stochastic Programming with Recourse (Two-stage and Multiple-stage Integer
Stochastic Programs) and Markov Decision Processes.

Definition 4 (Two-stage Stochastic Integer Program - TSIP)
Given a probability space (Ω,Σ, P ), a finite set S1 of first-stage decisions x1, a finite
set S2 of second-stage decisions x2, and real valued cost functions f1 and f2, find

min
x1∈S1

{
g1(x1) := f1(x1) + EP

(
G(x1, ω)

)}
, (2.4)

where
G(x1, ω) := min

x2∈S2(x1,ω)
f2(x1, x2, ω). (2.5)
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Given the above definition, solving a Two-stage Stochastic Integer Program consists in
solving two problems: a DCOP for the second-stage (equation (2.5)), and a Stochastic
Integer Program (Definition 2) for the first-stage (equation (2.4)). The meaning of
the two-stage decision process is the following. The first-stage decision x1 must be
taken before knowing the actual value of the random variable ω. After the value of
ω is observed, it may be convenient or necessary to take some other decision (the
second-stage decision x2) in order to better adapt to the new situation discovered. The
second-stage decision is also called recourse action, because in some practical situations
it has the effect of ‘repairing’ the consequences of an action (x1) taken before knowing
the value of the random variable. Informally, a Two-stage Stochastic Integer Program
cosists in finding the best decision now, with the hypothesis that I will also take the best
decision when I will know the value of the random quantities. A practical example of a
Two-stage Integer Program is the Vehicle Routing Problem with Stochastic Demands
(VRSPD), where a vehicle tour among a set of customers is decided, prior of knowing
the actual demand of each customer. The vehicle travels along the tour, and the driver
discovers the actual demand of a customer only when arriving at that customer. When
a customer demand is known and the customer has been serviced, the next best decision
may be to go back to the depot for replenishment, or to proceed to the next planned
customer. The choice between these options is part of the second-stage optimization
problem. In this context, the tour planned a priori may be interpreted as the first-
stage decision x1, while the set of return trips to the depot may be interpreted as the
second-stage decision x2.

The Two-stage Stochastic Integer Program may be easily extended to the general
Multi-stage case.

Definition 5 (Multi-stage Stochastic Integer Program - MSIP)
Consider T decision stages t = 1, 2, . . . , T , and correspondingly, T decision variables
xt ∈ St (with St finite subsets depending on (x1, . . . , xt−1, ω1, . . . ωt−1)), and T random
variables ωt belonging to probability spaces (Ωt,Σt, Pt). The problem consists in finding

min
x1∈S1

{
g(x) := f1(x1) + EP1(G1(x1, ω1))

}
(2.6)

where, for t = 1, 2, . . . , T − 2,

Gt(x1, . . . , xt, ω1, . . . ωt) = min
xt+1∈St+1

[
ft+1(x1, . . . , xt+1, ω1, . . . , ωt+1)

+EPt+1(Gt+1(x1, . . . , xt+1, ω1, . . . , ωt+1))
]
,

(2.7)

and

GT−1(x1, . . . , xT−1, ω1, . . . , ωT−1) = min
xT∈ST

fT (x1, . . . , xT , ω1, . . . , ωT ). (2.8)

Observe that, from the above definition, solving a Multi-stage Stochastic Integer Pro-
gram consists in solving one DCOP for the last stage (equation (2.8)), and T − 1
Stochastic Integer Programs for the intermediate stages (equations (2.6) and (2.7)).
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Let us now introduce the framework of Markov Decision Processes (MDP). The
central concept in MDP is the state, which at each time step describes the knowledge
about the problem (called here system). In MDP the Markov property is assumed, that
is, future behavior of the system does only depend on past history through the current
state and the current decision taken. Obviously, this also depends on the way a state
is defined. Often, the state corresponds to the physical description of the system, but
this is not always the case. We now briefly provide a standard formulation of MDP.
For a complete discussion, see for instance [151].

Definition 6 (Markov Decision Process - MDP)
Consider a 4-tuple (X,A,P,C), where X is a finite state space, and A is a finite set
of possible actions or decisions. At state x, we denote the set of admissible actions
by A(x). For each x ∈ X, A(x) is a finite set. P is a state transition function, that
describes the stochastic behavior of the system over time: at time t, if the current
state is x ∈ X, and action a ∈ A is chosen, then the next state is y with probability
P (y|x, a). P is thus a function from X × A(X) = {(x,A(x)|x ∈ X)} to a probability
distribution over X. C specifies the costs of actions depending on the state in which
they are performed. Taking an action a in state x has a cost c(x, a). C is a function
from X ×A(X) to R.

A policy π is defined as a mapping from X to A(X) that associates to every x a
feasible action a ∈ A(x), and Π is the set of all possible policies. Informally, a policy
tells what actions need to be taken at which state, and this is what the decision maker
needs to know in order to take a decision at each discrete decision time, once the actual
state of the system is known.

Let us now define the cost associated to a policy. Let Xt, t = 0, 1, 2, . . . , T be a
random variable that denotes the state at time t. For a given policy π ∈ Π, and a
given initial state X0 = x0, if the decision maker follows the policy π over time, a
particular system path is given as a sequence of states and actions (X0 = x0, a0, X1 =
x1, a1, . . . , Xt = xt, at, Xt+1 = xt+1, at+1, . . . , aT−1, XT = xT ), where at is the action
taken at time t and at = π(xt), with xt ∈ X. Over the system path, the system
accumulates the discounted costs defined, for T <∞, as

T∑
t=0

γtC(xt, π(xt)), with γ ∈ (0, 1]. (2.9)

For T = ∞, γ (that is called discount factor) must be smaller than 1. Given a policy
π, the accumulated discounted cost (Equation (2.9)) is a random quantity, due to the
randomness of the system path. The expected discounted cost of a policy over all possible
system paths may be computed as follows:

J(π) =
∑

x0,...,xT

Pπ(x0, x1, . . . , xT )

[
T∑

t=0

γtC(xt, π(xt))

]
, (2.10)

with γ ∈ (0, 1], and where Pπ is the probability of a particular path:

Pπ(x0, x1, . . . , xT ) = δ(x0)ΠT
t=0P (xt+1|xt, π(xt)), (2.11)
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δ(x0) being the probability that state X0 = x0.
Given a 4-tuple (X,A,P,C) and the associated finite set of policies Π, an MDP

consists in finding
min
π∈Π

J(π). (2.12)

The model we have defined is known both as Markov Decision Process and Stochas-
tic Dynamic Programming. The first term comes from the fact that for any fixed policy,
the resulting model is a Markov chain. The second term comes from the family of so-
lution methods based on Dynamic Programming [19], originally designed for solving
optimal control problems. Dynamic Programming and MDP are also related to (and
could be seen as part of) Reinforcement Learning [172] and Neuro-Dynamic Program-
ming [22], which mainly focus on methods for approximating optimal solutions of MDP
and for dealing with incomplete information about the state of the system. Stochastic
Dynamic Programming is also related to Stochastic (Mathematical) Programming, and
in particular to Multi-stage Integer Programs. For a clear exposition on the relation
between these two domains, see for instance Kall and Wallace [127]).

Finding the optimal policy can be a prohibitive task unless the state and/or action
space is very small, which is usually not the case. For example Value Iteration, a well
known exact method for solving MDP [151], has a computational complexity polynomial
in |X|, |A|, and 1/(1−γ), and one single iteration takes O(|X|2 · |A|). There are several
approximation algorithms (that is, algorithms that do not guarantee to find the optimal
solution) that try to find good solutions in a feasible computation time via techniques
such as structural analysis, aggregation, sampling feature extraction and so on. See,
for example, [151, 172, 22]. Recently, also some metaheuristics have been applied to
approximately solve MDP, and they are discussed in the remainder of the first part of
this thesis.

2.4 Objective function computation

As we have seen, all the above SCOP formulations involve the computation of one or
more expected values for evaluating the objective function. As a consequence, three
different situations may arise when computing SCOP objective functions:

1. closed-form expressions for the expected values are available, and the objective
function is computed exactly based on these objective values;

2. as in case 1, closed-form expressions for the expected values are available, but the
computation of the objective function value is considered to be too time consum-
ing to be done during optimization. Therefore, ad hoc and fast approximations
of the objective function are designed and used during optimization (possibly
alternating exact and approximated evaluations);

3. the problem is so complex in terms of decision variables and/or in terms of prob-
abilistic dependencies, that no closed-form expression exists for the computation
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SCOP formulation Exact Ad hoc approximation Sampling approximation

SIP [74],
[175]

[38], [39], [51], [52], [32],
[33], [76]

[99], [100], [45], [181],
[185], [186], [121], [84],
[102], [103], [156], [79],
[7], [6], [115], [5], [56],
[105], [157], [138], [77],
[67], [65], [101], [104],
[150]

CCIP [16] [9]
TSIP [139] [88]
MSIP [155], [136], [23]
MDP [60], [61] [134], [135]

Table 2.1: Papers on metaheuristic applications to SCOPs, classified according to
SCOP formulation (rows) and type of objective function computation (columns).

of the expected value of the objective function. Therefore, the objective function
value is estimated by simulation with the so-called sampling approximation.

All the three above situations have been addressed within the metaheuristics literature,
as summarized in Table 2.1. Let us now give some introductory information on the use
of ad hoc and sampling approximations in SCOPs.

2.4.1 Ad hoc approximations

The design of ad hoc approximations is strongly problem dependent, and no general rule
exists for finding efficient approximations of the objective function. Examples of ad hoc
approximations in the literature include: the use of the objective function of a DCOP
similar in some respects to the SCOP considered; the use of truncated expressions for
the expected values, by neglecting terms that are estimated to be small; the use of
scenarios, instead of considering the true probabilistic model. Ad hoc approximations,
if on one side accelerate the evaluation and comparison among solutions, on the other
side introduce a systematic error in the computation of objective values. Usually, the
systematic error cannot be reduced unless a different, more precise ad hoc approxima-
tion is designed, and it can only be evaluated by comparison with the exact objective
value. Thus, metaheuristics typically alternate exact and approximated evaluations
during the optimization process. More details about the way ad hoc approximations
are used by metaheuristics are given in Chapter 3.

2.4.2 Sampling approximation

When a closed-form expression for the expected value(s) of the objective function is
not available, one common choice is to estimate expectations by Monte Carlo-type
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simulations. For example, in the case of the Stochastic Integer Program (Definition 2),
the objective function g(x) is typically approximated by the sample average

gN (x) :=
1
N

N∑
j=1

G(x, ωj) (2.13)

where ω1, ω2, . . . , ωN is a random sample of N independent, identically distributed
(i.i.d.) realizations of the random vector ω. The sample average is also referred to as
sample estimate, and the random realizations as random scenarios. In this thesis, we
will use these terms interchangeably.

The main difference between SCOPs requiring simulation for estimating the ob-
jective function and DCOPs, or SCOPs with exactly computable objective function is
that, in the first-mentioned case, it is not possible to decide with certainty whether a
solution is better than another one. This can only be tested by statistical sampling,
obtaining a correct comparison result only with a certain probability. Thus, the way
sampling approximation is used in metaheuristics largely depends on the way solu-
tions are compared and the best solution among a set of other solutions is selected
(‘selection-of-the-best’ method).

A huge research area devoted to solving problems with simulated objective func-
tion is Simulation Optimization. Following the definition given by Fu [81], Simulation
Optimization means “searching for the settings of controllable decision variables that
yield the maximum or minimum expected performance of a stochastic system that is
presented by a simulation model.” A compact picture of the field is given by the reviews
of the Winter Simulation Conference [8, 146]. The latest one by Ólafsson and Kim [146]
emphasizes discrete problems and practical approaches, including some references to
metaheuristics. Until a few years ago, the literature on Simulation Optimization was
especially focussed on theoretical results of convergence of mathematically elegant algo-
rithms. Interestingly, as noted by Fu [80], the many new commercial software packages
for simulation do not take advantage of the theoretical results of the literature. On the
contrary, most of them rely on metaheuristics such as Genetic Algorithms and Neural
Networks, that are more easily adaptable to complex real-world simulations, but often
their integration into commercial packages lacks rigor and is not provably convergent.
Fu speculates that an interesting direction of research would be the development of
algorithms that take advantage of the theoretical results of the literature, but are still
flexible and applicable to real-world situations, so to fill the gap between theory and
practice. Indeed, recent developments in Simulation Optimization, especially relying
on metaheuristics, go in this direction.



Chapter 3

Metaheuristics for SCOPs

A metaheuristic is a set of concepts that can be used to define heuristic methods capable
of being applied to a wide range of different problems. A metaheuristic can be seen as a
general algorithmic framework which can be applied to different optimization problems
with relatively few modifications to make them adapted to a specific problem.

Metaheuristics that have been applied to SCOPs include: ACO, EC, SA, and TS
(the meanings of these acronyms are listed in Table 3.1). For a review and compari-
son among these and other metaheuristics in the context of DCOPs, see for instance
the paper by Blum and Roli [48], and the publications pointed to by [143]. Besides
these metaheuristics, there are some algorithms such as Stochastic Partitioning Meth-
ods, Progressive Hedging, and Rollout Algorithms (see Table 3.1) that could be called
metaheuristics, even if they are not commonly known as such, or that make use of
metaheuristics as part of the algorithmic procedure.

The following sections focus on the cited metaheuristics. The format of Section 3.1,
3.2, 3.3, 3.4, and 3.5 describing respectively ACO, EC, SA, TS and SPM is the same:
first some background information on the principles of the metaheuristic is given, then
the results and issues of applying the metaheuristic to SCOPs are reviewed. For each
metaheuristic, the reviewed papers have been grouped in different parts, respectively
focussing on:

• SCOPs with exactly computed objective or ad hoc approximations;

• SCOPs with sampling approximation;

• Markov Decision Processes.

MDPs have been treated separately because they require a particular modeling effort
for each metaheuristic, which is quite different from the modeling of static SCOPs
and of TSIPs and MSIPs. Section 3.6 briefly gives references to the SCOP literature
involving metaheuristics that are still at their early stage in the SCOP domain (PH
and RO). Finally, Section 3.7 takes a transversal view on the reviewed metaheuristics,
and selects some open issues for discussion.

17
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Acronym Full name of the metaheuristic
ACO Ant Colony Optimization
EC Evolutionary Computation
= (EP+ES+GA) = (Evol. Programming + Evol. Strategies + Genetic Algorithms)
SA Simulated Annealing
TS Tabu Search
SMP Stochastic Partitioning Methods
= (BS+SBB+NP) =(Beam Search + Stoch. Branch and Bound + Nested Partitions)
PH Progressive Hedging
RO Rollout Algorithms

Table 3.1: Acronyms used for the metaheuristics described in this thesis.

3.1 Ant Colony Optimization

3.1.1 Introduction to ACO

The first algorithms based on the ant colony analogy appeared at the beginning of the
nineties in a paper by Dorigo et al. [70] later published as [71]. ACO is now a widely
studied metaheuristic for combinatorial optimization problems, as the recent book by
Dorigo and Stützle [72] testifies.

The inspiring concept that links optimization with biological ants is based on the
observation of their foraging behavior: when walking on routes from the nest to a
source of food, ants seem to find not simply a random route, but a quite ‘good’ one,
in terms of shortness, or, equivalently, in terms of time of travel; thus, their behavior
allows them to solve an optimization problem. This kind of success of biological ants is
entirely explained by their type of communication and by their way of deciding where
to go: While walking, ants deposit a chemical called pheromone on the ground, and
they tend to choose routes marked by strong pheromone concentrations. Given two
initially unexplored routes, a short and a long one, between the nest and the source of
food, ants choose at first randomly which one to walk. Ants that have chosen, at first
by chance, the shorter route are the first to reach the food and to start their return to
the nest. Therefore, pheromone starts to accumulate faster on the shorter route than
on the longer one. Subsequent ants tend to follow the shorter route because it has more
pheromone, thus reinforcing it more and more, and further attracting other ants on the
good route.

Combinatorial problems addressed by ACO are usually encoded by a construction
graph G = (V,A), a completely connected graph whose nodes V are components of
solutions, and arcs A are connections between components. Finding a solution means
constructing a feasible walk in G. For example, in the TSP nodes correspond to cus-
tomers, arcs correspond to streets connecting customers, and a feasible solution is a
Hamiltonian path on the graph. The construction graph encoding is also used in current
ACO applications to SCOPs and to dynamic optimization problems. Some examples
are also described in [72].
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The ACO algorithm is essentially the interplay of three procedures [68]: Construc-
tAntsSolutions, UpdatePheromones, and DeamonActions, as represented by Algorithm
1.

ConstructAntsSolutions is the process by which artificial ants construct walks on the
construction graph incrementally and stochastically. For a given ant, the probability
pkl to go from a node k to a feasible successor node l is an increasing function of τkl

and ηkl(u), where τkl is the pheromone on arc (k, l), and ηkl(u) is the heuristic value of
arc (k, l), which should be a reasonable guess of how good arc (k, l) is (for example, in
the TSP ηkl is the reciprocal of the distance between customer k and customer l). The
heuristic value may depend on the partial walk u.

UpdatePheromones is the process by which pheromone is modified on arcs. Pheromone
may be both increased and decreased. Pheromone is modified (decreased) by each ant
on each arc as soon as it is added to a partial walk on the construction graph, this
operation is called local update. Moreover, pheromone is further modified (increased)
on selected good solutions to more strongly bias the search in future iterations, and this
operation is called global update. Decreasing pheromone on selected arcs is important,
in order to avoid too rapid convergence of the algorithm to suboptimal solutions. Inter-
estingly, pheromone decreases also in the biological environment, due to evaporation.

DeamonActions are centralized operations, such as comparing solution values among
ants in order to find the best solution, or running a local search procedure.

Algorithm 1 Ant Colony Optimization (ACO)
while termination condition not met do

ScheduleActivities
ConstructAntsSolutions
UpdatePheromone
DeamonActions

end ScheduleActivities
end while

Several convergence proofs have been provided for the ACO metaheuristic. Con-
vergence in value, which, informally, means that the algorithm will find at least once
the optimal solution, has been given by Gutjahr [97] and by Stützle and Dorigo [169].
Convergence in solution, which, informally, means that the algorithm will generate over
and over the optimal solution, has been given by Gutjahr [98]. For details and for a
comprehensive discussion, see Dorigo and Stützle [72].

3.1.2 ACO for SCOPs

The investigation of ACO applications to SCOPs is at its early stages, the first works
being appeared at conferences after year 2000. Nevertheless, the ACO literature con-
tains both theoretical and experimental works that cover both static and dynamic
SCOPs.
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3.1.2.1 Exact objective and ad hoc approximation

The first SCOPs that have been addressed by ACO are the probabilistic TSP (PTSP),
in Bianchi et al. [38, 39] and Branke and Guntsch [51, 52], and the vehicle routing
with stochastic demands (VRPSD) in Bianchi et al. [32, 33]. These problems are
Stochastic Integer Programs with closed form expression for the objective function, that
is, the objective function is computable a priori, independently of particular random
realizations of the stochastic variables.

The PTSP and the VRPSD have in common the fact that their solution struc-
ture (and the corresponding construction graph) is very similar to their deterministic
counterpart (the TSP, respectively capacitated VRP). The main difference with the
respective deterministic counterpart problem is the much higher computational com-
plexity of the objective function in the stochastic version of the problem. In the PTSP,
the objective function is computable in O(n2) time, n being the number of customers,
while in the TSP it only requires O(n) time. In the VRPSD, the objective requires
O(nKQ), where n is the number of customers, K is the number of possible demand
values of each customer, and Q is the vehicle capacity, while the capacitated VRP
objective only requires O(n) time. The fact that the difference between the stochastic
and deterministic versions of these problems mainly lies in the objective function makes
them particularly appropriate for studying a first application of ACO to SCOPs. In
fact, in this case it is possible to apply to the stochastic problem an ACO algorithm
originally designed for the deterministic problem with almost no modifications.

In [38, 39], the authors experimentally investigate on the PTSP two versions of
ACO: ACS and pACS. ACS, that was originally designed for the TSP by Gambardella
and Dorigo [82] and by Dorigo and Gambardella [69], solves the PTSP using the ob-
jective function of the TSP (the length of a Hamiltonian path) as a rough but fast
approximation of the PTSP objective function. The second version of ACO considered
in [38, 39], pACS, is identical to ACS except for the fact that it uses the PTSP objective
function (the expected length). Such difference implies that pACS considers as good
solutions different solutions with respect to ACS, and so pACS reinforces pheromone
(during global updating) on different solutions with respect to ACS, with the conse-
quence that ants in pACS converge on different solutions. Note, however, that ACS and
pACS use the same, TSP specific, heuristic information (the reciprocal of the distance
between two customers). Experimental results on PTSP instances with homogeneous
customers probabilities have shown that pACS is better than ACS, except for the case
when the customers probabilities are close to 1, in which case ACS is more efficient than
pACS. This means that the overhead of the time consuming PTSP objective function
is not justified in those cases where the approximate objective function, which can be
computed much faster, is close enough to the exact one. The idea to employ faster
approximations of the exact objective function has been further developed in [51, 52].
The authors propose an ad hoc approximation of the expected cost that neglects the
least probable customers configurations. This approximation is shown experimentally
to accelerate convergence without significantly worsening the solution quality. Another
issue addressed by [51, 52] is the design of PTSP-specific heuristics to guide the ants
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construction process. The authors experimentally analyze different heuristics, and show
that one of them indeed improves the quality of solution constructed by ants, but at
the cost of a higher computational time.

An important aspect in designing ACO for SCOPs (but also for classical DCOPs),
is the application of a local search procedure to improve solutions found by ants (the
local search is part of the DeamonActions of Algorithm 1). In order to be competitive
with state-of-the-art algorithms, it has been necessary for ACO algorithms to use a
local search both in the PTSP [52] and the VRPSD [32]. Unfortunately, designing an
effective local search for a stochastic problem with a computationally expensive objec-
tive function may be a quite challenging task. The reason is that in local search it is
very important to compute efficiently the change, or ‘delta’, of the objective function
between two neighboring solutions. When the objective function is complex like in
most SCOPs, it is difficult to find a delta expression which is both exact and fast to be
computed. For the PTSP it has been possible to derive for two local search operators,
the 1-shift and the 2-p-opt, recursive, fast and exact expressions for the objective func-
tion delta [42, 35]. The 1-shift and 2-p-opt are very efficient, since they can explore the
whole neighborhood of a solution in O(n2) time, the same time it would take for the
same operators in the TSP. For the VRPSD, a local search operator is available, the
OrOpt, with an efficient delta expression which is not exact, but approximated, and
has been introduced by Yang et al. in [183] (we will call this ‘Yang approximation’). In
Bianchi et al. [32, 33], besides the Yang approximation, one based on computing the
length difference between two neighboring solutions has been considered. This last ap-
proximation is equivalent to treat a VRPSD solution (which is a Hamiltonian path) like
a solution for the TSP, and it is faster but less accurate than the Yang approximation.
In [32, 33], the impact of using the two above types of delta approximation has been
tested on several metaheuristics, namely ACO, EC, SA, TS, and Iterated Local Search.
In ACO, the use of the rough but efficient TSP approximation lead to better results
than the Yang approximation (even though ACO was not able to reach the quality of
the best performing metaheuristics, that were Iterated Local Search and EC).

3.1.2.2 Sampling approximation

When ACO is applied to this type of problems, the DeamonActions procedure (Algo-
rithm 1) must implement ways of performing statistical tests for comparing the sample
average values of the solutions generated by the ants, in order to select the best solution
(or a set of best solutions). Sampling could also be used in ConstructAntsSolutions, in
order to estimate heuristic values ηk,l(u), when the chosen heuristic depends on random
variables.

The first sampling-based ACO, called S-ACO, has been proposed and analyzed by
Gutjahr in two papers [99, 100]. The first paper [99] theoretically analyzes S-ACO, by
proving convergence to the optimal solution with probability one. The second paper
[100] experimentally studies S-ACO on two stochastic routing problems, the PTSP, and
the TSP with time windows and stochastic service times (TSPTW). S-ACO has been
applied in a third paper by Rauner et al. [152] to a policy optimization problem in
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healthcare management. Algorithm 2 summarizes the functioning of S-ACO, showing
in particular how sampling is used; for details about procedures ConstructAntsSolutions
and UpdatePheromone, see [99, 100]. In every iteration, after ants have constructed their

Algorithm 2 S-ACO
1: for iteration k = 1, 2, . . . do
2: ConstructAntsSolutions [s ants construct their walk xσ, σ = 1, 2, . . . , s on the

graph G]
3: from {x1, . . . , xs} select a walk x;
4: if k = 1 then
5: set x∗ = x [x∗ is the current approximation of the optimal solution]
6: else
7: based on Nk independent random scenarios ων , compute a sample estimate

gk(x) = 1/Nk
∑Nk

ν=1G(x, ων) of x;
8: based on Nk independent random scenarios ω′ν , compute a sample estimate

gk(x∗) = 1/Nk
∑Nk

ν=1G(x∗, ω′ν) of x∗;
9: if gk(x) < gk(x∗) then

10: set x∗ = x;
11: end if
12: end if
13: UpdatePheromone
14: end for

solutions xσ, only one ant solution x is selected for being further compared with the
current best solution (step 3 of Algorithm 2). Interestingly, for the sake of convergence,
it does not matter how the ant solution is selected [99]. A possible way to do it, which
has been chosen in [100], is to evaluate each xσ on a same random scenario drawn
specifically for a given iteration, and to take x as the solution with the best value. In
the case of the more complex problem treated in [152], selecting xσ based on a single
random scenario turned out as suboptimal; better results were obtained by choosing
several (but not too many) scenarios. After x has been selected, it is then again
evaluated, together with the current best solution x∗, in order to decide whether it is
better than x∗. This is done by estimating x by sampling over Nk scenarios ων and x∗

over Nk scenarios ω′ν . In the convergence proof of [99], it has been necessary to impose
that ων and ω′ν are independent, but in practice [100], if ων = ω′ν S-ACO also performs
well. The number of sample scenarios Nk is a critical parameter of S-ACO: if too small,
the estimate and comparison of solutions will be often faulty, but if Nk is too big, the
computational time required for one solution evaluation could become a problem. As
shown in [99], for proving convergence it is sufficient that Nk increases linearly with
the iteration number k. This result is interesting especially if compared with the faster
than quadratic increase recognized as necessary for the corresponding SA approach
in [102, 115]. In practical implementations of S-ACO, it may be more convenient
to choose the sample size Nk adaptively, based on some statistical test. In [100],
one version of S-ACO establishes the sample size by means of a parametric statistical
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test: Nk is gradually increased till when the difference between the sample estimation
for the two solutions being compared is larger than 3 times their estimated standard
deviation. This kind of sample schedule, also known as variable-sample strategy, has
been theoretically analyzed in the context of random search algorithms by Homem-de-
Mello [116].

More recently, the ACO/F-Race algorithm has been proposed by Birattari et al. [45],
where at each iteration the selection of the new best solution (steps 3 to 12 of Algorithm
2) is done with a procedure called F-Race, which is more sophisticated than the simple
parametric test of S-ACO. As explained in [45], F-Race consists in a series of steps
at each of which a new scenario ω is sampled and is used for evaluating the solutions
that are still in the race (at the beginning, all solutions generated by ants in a given
iteration, together with the current best solution, are in the race). At each step, a
Friedman test is performed and solutions that are statistically dominated by at least
another one are discarded from the race. The solution that wins the race is stored as the
new current best solution. Preliminary experiments on homogeneous instances of the
PTSP problem have shown that ACO/F-Race improves over the parametric procedure
adopted by S-ACO.

3.1.2.3 Markov Decision Processes

To our knowledge, there are only two papers that use ACO to solve MDP, the first
one by Chang et al. [60] and the second one by Chang [59]. Both papers design ACO
algorithms to solve MDP, and theoretically analyze their properties by providing con-
vergence proofs.

Chang et al. [60] focus on MDP with infinite horizon (that is, T = ∞). This
simplifies a little the problem, because in this case the optimal policy is stationary,
that is, it does not depend on time. The construction graph on which ACO algorithms
proposed in [60] are based is represented in Figure 3.1. The states in X are arranged

… … …x

(x, a1)

(x, a|A(x)|)

y … …

Figure 3.1: Construction graph of the ACO algorithm proposed in [60] for solving
Markov Decision Processes with stationary policies.

in an arbitrary order O; each state x ∈ X corresponds to a vertex of the construction
graph, and each arc of the construction graph corresponds to a pair (x, a) of state
x ∈ X and an admissible action a ∈ A(x). The direction of the arc goes from the
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current state x to the next state with respect to the order O. A particular ant traverses
all the states in the construction graph following the order O from the first state of
O. When it moves from a state x to a state y, it traverses randomly the arc (x, a)
with a transition probability that depends on the pheromone on that arc, and on some
heuristic appropriately defined (see [60] for details). Once an ant finishes the tour,
it has generated a stationary policy, which, in the context of MDP, is a candidate
solution to the problem. In [60], two ACO versions are proposed, ANT-PI and ANT-
TD. The first one is inspired by a well-known exact method for MDP, policy iteration
(PI) [151], and assumes that the state transition probabilities P of the MDP system are
known. The second one considers the case of unknown P , and uses one the well-known
reinforcement learning algorithms called temporal difference learning (TD) [172] for
evaluating the average value of a given policy. It is proven that both ANT-PI and ANT-
TD probabilistically converge to the optimal solution. For practical implementations,
due to the high computational complexity inherent to the problem, the authors suggest
that parallel implementations of the proposed ACO algorithms are used.

In Chang [59], the focus is on MDP with completely unknown system dynamics,
that is, unknown state transition probability P and unknown costs C. A finite horizon
T is considered and, for simplicity, it is assumed that every action is admissible at
every state. An ACO algorithm called ANT-EE is proposed, which is based on a TD
algorithm for evaluating a policy, similarly to the ANT-TD algorithm of [60]. Theorems
are provided that show that ANT-EE has the same convergence properties as Q-learning
[177], one of the best known basic techniques in reinforcement learning.

3.2 Evolutionary Computation

3.2.1 Introduction to EC

EC [31] is a collective term for all variants of optimization algorithms that are inspired
by Darwinian evolution. In this context, a solution to a given optimization problem
is called an individual, and a set of solutions is called a population. The basic struc-
ture of an EC algorithm is given by Algorithm 3. Every iteration of the algorithm
corresponds to a generation, where certain operators are applied to some individuals
of the current population to generate the individuals of the population of the next
generation. Typical operators are those of recombination, that recombine two or more
individuals to produce new individuals, and mutation, that modify single individuals to
obtain self-adaptation. At each generation, only some individuals are selected for being
elaborated by recombination and mutation operators, or for being just repeated in the
next generation without any change, on the base of their fitness measure (this can be
the objective function value, or some other kind of quality measure). Individuals with
higher fitness have a higher probability to be selected.

In the literature there are mainly three different categories of EC that have been de-
veloped independently from each other: Evolutionary Programming (EP), proposed by
Fogel et al. in 1966 [78], Evolutionary Strategies (ES) proposed by Rechenberg in 1973
[153], and Genetic Algorithms proposed by Holland in 1975 [114]. Presently, algorithms
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that fall in the EP and ES category mostly apply to continuous optimization problems,
while GA are more specific for discrete and combinatorial optimization problems. Re-
cent overviews about EC include Hertz and Kobler [112], and Calégari et al. [57]. For
the convergence properties of EC and GA, see for instance Rudolph [161], Vose [180],
and Reeves and Rowe [154].

Algorithm 3 Evolutionary Computation (EC)
P = GenerateInitialPopulation()
while termination condition not met do
P ′ = Recombine(P )
P ′′ = Mutate(P ′)
Evaluate(P ′′)
P = Select(P ′′ ∪ P )

end while

3.2.2 EC for SCOPs

There is a very large amount of literature on applying EC to optimization problems
‘under uncertainty’, such as problems with noisy fitness, with time varying and dy-
namic fitness, and with approximated fitness. For a recent survey on how the EC
literature addresses different types of uncertainty, see Jin and Branke [123]. Other
reviews include a book by Arnold [10], and a paper by Beyer [30]. Although SCOPs
are a particular case of optimization under uncertainty, the translation to the SCOP
domain of the results from the EC literature on optimization under uncertainty is not
easy. The main difficulty is that most papers focus on continuous optimization, and
they often restrict their attention to the optimization problem characterized by ad hoc
test functions, such as the ‘spherical’ objective function f(x) = xTx, x ∈ RN . Also
when discrete optimization problems are considered, experiments are often restricted
to the ‘onemax bit-counting’ function, which can be regarded as the counterpart of the
spherical objective function in binary search spaces.

In the following, we outline the contributions of EC in the SCOP domain, and we
also highlight the main ideas and methods proposed for problems under uncertainty
that may be relevant for SCOPs, even if they have not been directly tested on specific
problems from this domain.

3.2.2.1 Exact objective and ad hoc approximation

The EC literature addressing this kind of problems may be roughly divided in two
groups. In the first group ([74, 139]) EC algorithms use the exactly computable ob-
jective function as it is, even if computationally expensive, while in the second group
([32, 33], and references cited in [122]) EC exploits also computationally more efficient
objective function (fitness) approximations. Let us briefly analyze these two groups of
papers.
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In [74] Easton and Mansour apply a distributed GA to three different labor schedul-
ing problems, one of which is formulated as a stochastic goal programming problem.
Their algorithm operates in parallel on a network of three workstations. Separate
sub-populations evolve independently on each processor, but occasionally the fittest
solutions migrate over the network to join the other sub-populations. Also infeasible
solutions are accepted (with a fitness penalty) in order to encourage the exploration of
promising regions of the search space. The proposed GA is compared experimentally
to a SA and a TS metaheuristic previously developed by other authors (respectively in
[54, 55] and in [75]), and it is shown to outperform both of them.

In [139] Guo and Mak consider a vehicle routing problem with stochastic demand
and soft time windows, which is formulated as a Two-stage Stochastic Integer Program
(Definition 4). The authors propose an EC algorithm called Age-GA where, instead
of being replaced by their offspring after each iteration, individuals may grow up and
generate new offspring continuously before death, and the population comprises indi-
viduals from various age-groups. With the same amount of computational effort, it is
possible to use a larger population size in Age-GA than in a canonical GA. The paper
shows that, on a set of eighteen randomly generated instances, Age-GA outperforms a
canonical GA without the aging mechanism.

To the group of papers using in SCOPs efficient approximations of the fitness func-
tion belong [32, 33] by Bianchi et al. (also cited in Section 3.1), that compare a sim-
ple EC with other metaheuristics (ACO, SA, TS, and Iterated Local Search) for the
VRPSD. Similarly to the other metaheuristics, EC is integrated with the OrOpt local
search operator, where two approximations for the objective value difference between
neighboring solutions have been tested, the Yang and the TSP approximation. The ex-
act VRPSD objective function is used for accepting a new solution in the local search,
and for the selection of a new population. EC, like ACO and Iterated Local Search,
performs better with the TSP approximation. Interestingly, EC is improved even more
when in [33], instead of OrOpt, a more TSP-specific local search (3-opt) is used. EC,
together with Iterated Local Search, is shown to be the best performing among the
tested metaheuristics.

Here, it is useful to note that there is a thread in the EC literature that focuses on
the use of computationally efficient approximations of the original fitness in continuous
optimization problems. Some aspects of this issue that are developed in the context of
continuous optimization may be relevant to SCOPs as well. Fitness approximations are
also known as approximate models, meta-models or surrogates. A comprehensive survey
on fitness approximation in EC has been written by Jin [122]. This growing research
area is particularly oriented to continuous optimization problems with extremely time
consuming objective function computations, such as, for instance, structural design
optimization [12], where one single fitness evaluation may take over ten hours on a high-
performance computer. The issue of how the approximate model can be incorporated
in the EC algorithm, which has been widely addressed by the EC literature on fitness
approximation, is quite independent from the continuous or discrete nature of the
optimization problem. Nevertheless, most of the ideas still haven’t been applied to
SCOPs. For a review and pointers to existing literature, see Section 4 of [122].
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3.2.2.2 Sampling approximation

The EC literature about optimization with noisy fitness function is also relevant for
SCOPs with sampling estimated objective function. In fact, noise is mostly assumed
to be additive with zero-mean, which is the case when Monte Carlo sampling is used to
estimate the objective function. Section II of Jin and Branke [123] is a good overview
about the methodological approaches used in EC to deal with noisy fitness functions.
The authors identify three main strategies for dealing with noise: explicit averaging,
implicit averaging, and modifying the selection process.

Explicit averaging corresponds to the computation of sample averages of the fitness
function performing repeated measures of the noisy fitness and computing their aver-
age. This is very similar to the Simulation Optimization technique we have illustrated
in Section 2.4.2. Aizawa and Wah [3] propose either to increase the number of sam-
ples with the generation counter, or to higher the number of samples for individuals
that have a high estimated variance. Stagge [167] proposes to adjust the number of
samples according to the probability of an individual of being among the µ best ones.
Branke and Schmidt [53] also propose an adaptive sampling method that takes addi-
tional samples of two individuals participating in a tournament until the normalized
fitness difference between the two individuals falls below some threshold. The normal-
ized fitness difference is obtained dividing the difference of the observed fitnesses by
the standard deviation of the difference: (gN (x) − gN (y))/σd. Cantú-Paz [58] uses an
adaptive sampling method that consists in taking the smallest number of samples nec-
essary to make a decision between competing individuals during the selection process.
Their approach is very similar to Branke and Schmidt’s, but differs in that they take
samples one at a time from the individual with the highest observed variance, and they
use standard statistical tests to select the winner of the tournament with a certain
probability. Similar to the approach of Cantú-Paz, Teller and Andre [174] propose a
method that allocates varying numbers of samples to evaluate individuals. Individuals
are initially evaluated with a small number of samples, and are further evaluated only
if there is some chance that the outcome of the tournaments they participate in can
change. A similar technique has been developed by Giacobini et al. [89].

The second type of strategy for dealing with noise in EC is implicit averaging. Its
aim is to reduce the influence of noise by using a large population size, instead of
performing more fitness measures of a single individual. The intuition behind implicit
averaging is the following ([123], p.305): Because promising areas of the search space are
sampled repeatedly by the EC algorithm, and there are usually many similar solutions
in the population, when the population is large, the influence of noise in evaluating an
individual is very likely to be compensated by that of a similar individual. This can be
regarded as an implicit averaging effect. In the literature, conflicting conclusions have
been reported on whether it is more effective the use of implicit or explicit averaging,
given a fixed fitness evaluation number per generation is allowed. For a summary about
the history of implicit averaging we direct the reader to [123] and to the references cited
therein.

The third strategy used in EC to reduce the influence of noise is modifying the se-
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lection process of individuals. One example is to accept an offspring individual only if
its fitness is better that that of its parents by at least a predefined threshold, as done by
Markon et al. [140]. Beielstein and Markon [14] study the relationship between thresh-
old selection and hypothesis testing techniques. Another way of modifying the selection
process with respect to standard EC is to eliminate random choices during selection,
in order to exploit the uncertainty due to the noisy fitness as a sort of randomization
effect. This method has been proposed by Branke and Schmidt [53].

Convergence properties of EC and the dynamics of the fitness function when noise
is present have been analyzed in several papers, for example by Miller and Goldberg
[142] and by Beyer [30].

In all the above cited papers aiming at reducing the influence of noise via implicit
and explicit averaging, or via modifications of the selection process, the computational
experience is unfortunately limited to ad hoc continuous or discrete test functions. It
appears that an experimental validation of the various techniques in the SCOP domain
is still missing in the literature. In fact, the few papers applying EC to SCOPs that we
are going to outline below, either use very simple techniques for dealing with noise or
rely on methods that are unrelated to the main EC literature on noisy fitness functions.

Watson et al. [181] address a stochastic warehouse scheduling problem where the
objective function must be estimated by simulation. The authors consider a GA, a
solution construction heuristic specific for that problem, two local search and a random
search algorithm. Two versions of the GA and the local search algorithms are con-
sidered where the (set of) starting solution(s) is randomly generated in one case, and
provided by the constructive heuristic in the other case. In order to keep the run time
of the algorithms feasible, the simulator is used in a fast but inaccurate mode. Only
final solutions are eventually evaluated with a more accurate - two order of magnitude
slower - simulator mode. The constructive heuristic exploits specific knowledge about
the internal states of the simulator in order to construct a solution. Instead, in the
GA and local search algorithms the simulator is used as a black box, that, provided a
solution, returns a real value indicating the solution quality. Experimental results show
that GA initialized with the domain-specific construction heuristic outperforms all the
other algorithms. Moreover, all algorithms perform worse when initialized by random
solutions. The results also highlight an interesting phenomenon related to the use of a
black box, fast but inaccurate simulator for the evaluation of solutions during the exe-
cution of the GA. As better and better solutions according to this simulator are found,
it is observed that the correlation with solution values given by the slow-accurate sim-
ulator (evaluated a posteriori) decreases. This implies that the final solution returned
by the GA as best solution may be quite bad with respect to the nearly-exact objective
value. It is reasonable to think that this is a general phenomenon that can happen in
any metaheuristic exploiting a non-exact or noisy objective function evaluation, par-
ticularly when estimating the objective function by sampling and with a fixed (low)
number of samples. One possibility to overcome this problem is to keep in memory a
set of promising solutions encountered during the execution of the algorithm, and to
evaluate them a posteriori with the accurate simulator, or to apply more sophisticated
adaptive sampling techniques. Yoshitomi [185] and Yoshitomi and Yamaguchi [186] use
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GA for solving the stochastic job-shop scheduling problem. In both papers, the best
solution is extracted among the set of solutions that have been more frequently present
through the generations of the GA. In [186], Monte Carlo sampling is used to select
among the set of most frequent solutions the best final solution. Other applications of
GA based on Monte Carlo sampling are the ones by Sudhir Ryan Daniel and Rajen-
dran [171] applying GA to the inventory optimization problem in a serial supply chain,
and by Jellouli and Châtelet [121] using GA for addressing a supply-chain management
problem in a stochastic environment.

3.2.2.3 Markov Decision Processes

Chang et al. [61] propose an EC algorithm called Evolutionary Policy Iteration (EPI)
for solving inifinite horizon discounted reward MDPs. EPI is particularly suited for
problems where the state space is small but the action space is very large. This situation
makes the use of the well-known policy iteration (PI) algorithm [151] for solving MDPs
impractical, since PI must perform a maximization over the entire action space. EPI
eliminates the need of maximizing over the entire action space by directly manipulating
policies via a method called policy switching that generates an improved policy from
a set of given policies. The computation time for running the policy switching is on
the order of the state space size. The algorithmic structure of EPI is that of standard
GA, with appropriate modifications and extensions required for the MDP setting. EPI
iteratively generates a population or a set of policies such that the performance of the
best policy for a population monotonically improves with respect to a defined fitness
function. In [61], it is proved that EPI converges with probability one to a population
whose best policy is an optimal policy.

Lin et al. [134, 135] focus on finite horizon partially observed Markov decision pro-
cesses (POMDPs), an extension of MDPs that consider situations such as: State obser-
vations are costly; sensors that measure the current state value are noise-corrupted; at
least part of the current state value is inaccessible. In [134, 135], a GA is developed for
finding a good approximation of the value function. In [135], the GA is combined with
a mixed integer programming algorithm, and this combination is capable of determin-
ing the value function and of finding the optimal policy in less computation time than
other exact methods.

Yokoama and Lewis III [184], address a stochastic dynamic production cycling prob-
lem whose original formulation is that of an MDP. In order to reduce the search space
dimensionality, the problem is first re-formulated in a two-level problem. The first level
consists in a DCOP that, in order to be solved, needs that a series of MDP sub-problems
(constituting the second level) are solved. The first level DCOP is addressed by a GA,
which calls dynamic programming algorithms as sub-routines to solve the second level
MDPs.



30 CHAPTER 3. METAHEURISTICS FOR SCOPS

3.3 Simulated Annealing

3.3.1 Introduction to SA

The SA algorithm has been introduced in the area of combinatorial optimization by
Kirkpatrick et al. [129]. It relies on a model developed by Metropolis et al. [141] for
simulating the physical annealing process, where particles of a solid arrange themselves
into a thermal equilibrium. An introduction to SA can be found in van Laarhoven and
Aarts [179] or Aarts and Korst [1].

The standard type of applications concerns combinatorial optimization problems of
the form

minx∈S g(x),

where S is a finite set of feasible solutions. The algorithm uses a pre-defined neighbor-
hood structure on S. A control parameter which is called “temperature” in analogy
to the physical annealing process governs the search behavior. In each iteration, a
neighbor solution y to the current solution x is computed. If y has a better objective
function value than x, the solution y is “accepted”, that is, the current solution x is
replaced by y. If, on the other hand, y has a worse objective function value than x, the
solution y is only accepted with a certain probability depending on (i) the difference of
the objective function values in x and y, and (ii) the temperature parameter.

In pseudocode, the SA algorithm can be represented as follows (cf. [1], p. 16):

Algorithm 4 Simulated Annealing (SA)
Initialize state x and temperature parameter T1;
for iteration k = 1, 2, . . . do

select y randomly from S(x);
if g(y) ≤ g(x) then

set x = y;
else if exp

(
g(x)−g(y)

Tk

)
≤ uniform[0,1] then

set x = y;
end if
update Tk to Tk+1;

end for

Therein,

• x and y are feasible solutions from S;

• T1,T2, . . . is a (usually decreasing) sequence of values for the temperature param-
eter; the update of the values Tk is done according to a so-called cooling schedule;

• the sets S(x) form the pre-defined neighborhood structure: to each feasible solution
x ∈ S, a set S(x) ⊆ S \ {x} of “neighbor solutions” is assigned;

• uniform[α, β] is a procedure selecting a uniformly distributed (pseudo-)random
number from the interval [α, β].
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Several results showing convergence of SA to the set of optimal solutions under
suitable cooling schedules have been obtained by diverse authors, for example Geman
and Geman [85], Gelfand and Mitter [83], or Hajek [107]. Essentially, convergence can
be assured by a cooling schedule where Tk is decreased as Γ/ log k, with sufficiently
large Γ. In practice, cooling is usually done faster for computation time reasons. (For
more details, see [1].)

3.3.2 SA for SCOPs

In the literature, several extensions of the SA algorithm above have been suggested for
treating Stochastic Integer Programs (Definition 2), both in the case of exact objective
and ad hoc approximation, and sampling approximation.

3.3.2.1 Exact objective and ad hoc approximation

One early application of SA in the context of SCOPs is due to Teodorović and Pavković
[175]. The authors address a VRPSD with multiple vehicles, and use SA in two stages,
first for partitioning the customers among the different vehicles, and second to improve
the single vehicle routes. In this preliminary work, computational results are reported
only for one instance of 50 customers.

More recently, the already cited papers [32, 33] by Bianchi et al. (see Section 3.1 and
3.2) have applied to the VRPSD a simple SA algorithm, together with other metaheuris-
tics (ACO, EC, TS, and Iterated Local Search). Similarly to the other metaheuristics,
two approximations for the objective value difference between neighboring solutions
generated according to the OrOpt scheme have been tested, the Yang and the TSP
approximation. Differently from what happens for ACO, SA performs better when
using the more accurate but more computationally expensive Yang approximation. On
average, SA does not perform significantly different from ACO, and it is not able to
reach the quality of the best performing metaheuristics, that are EC and Iterated Local
Search.

3.3.2.2 Sampling approximation

Algorithm 5 shows a typical basic structure of an SA modification to the solution of
Stochastic Integer Programs (Definition 2) with sampling estimated objective function.
The approaches from the literature outlined below follow this general scheme. Dif-
ferences stay particularly in the way step 5 (estimation of the objective value), step
11 (choice of a new approximation of the optimal solution), and step 12 (temperature
level) are implemented in Algorithm 5.

Gelfand and Mitter [84] investigate the case where the observation of the objective
function g(x) is disturbed by random noise Wk in iteration k of the SA process, such
that instead of g(x), the estimate gk(x) = g(x) + Wk is observed. They show that if
Wk is normally distributed with mean zero and variance σ2

k, if certain conditions on
the values σk and on acceptance probabilities are satisfied, and if a suitable cooling
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Algorithm 5 Stochastic Simulated Annealing (SSA)
1: Initialize state x, temperature parameter T1 and sample size N1;
2: Set x∗ = x [x∗ is the current approximation of the optimal solution];
3: for iteration k = 1, 2, . . . do
4: select y randomly from S(x);
5: compute sample average estimates gk(x) and gk(y) for the costs in x resp. y;
6: if gk(y) ≤ gk(x) then
7: set x = y;
8: else if exp

(
gk(x)−gk(y)

Tk

)
≤ uniform[0,1] then

9: set x = y;
10: end if
11: compute a new current approximation x∗ of the optimal solution;
12: update Tk to Tk+1;
13: update Nk to Nk+1;
14: end for

schedule (ensuring convergence of ordinary SA) is used, then the convergence property
of ordinary SA remains valid.

Gutjahr and Pflug [102] follow a similar approach by showing that under suitable
conditions on the “peakedness” (Birnbaum [47]) of the noise distribution, convergence
of the current solutions to the set of optimal solutions can be guaranteed. To be
more specific, let us call a symmetric distribution µ1 more peaked around zero than a
symmetric distribution µ2, if for all t > 0, the probability mass on the interval [−t, t]
is larger or equal under µ1 than under µ2. Then, if the distribution of the noise Wk is
more peaked around zero than a normal distribution N(0, σ2

k), where σk = O(k−γ) with
a constant γ > 1, the distribution of the solution in iteration k converges as k → ∞
to the uniform distribution on the set of global optimizers, provided that a suitable
cooling schedule (ensuring convergence of ordinary SA) is used. Decreasing σk with the
required rate can be achieved by increasing the sample size Nk more than quadratically
in k, that is, by imposing that Nk = O(kµ) with µ > 2. An application of the technique
of [102] to a discrete time/cost tradeoff problem in activity planning has been reported
in [103].

Other approaches have been presented by Roenko [156], who proposes to store
the feasible solutions produced during the execution of the algorithm and to compare
them with the solution generated in each current iteration, and by Fox and Heine [79],
who derive a convergence result based on the assumption that with probability one,
the objective function estimates gk(x) coincide after some finite time with the true
objective function values g(x), as it can be achieved by consistent estimators in the
case of only finitely many possible objective function values. The last assumption can
also be relaxed, if some more complicated condition can be verified, but Fox and Heine
argue that in each computer representation, objective function values are taken from
some finite domain (given by the machine number precision) anyway. The algorithm
indicated by Fox and Heine does not use independent sampling from scratch in each
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iteration, as it is done in [84] and [102], but cumulates the sampling results, which is
of course advantageous from a computation time viewpoint.

Alrefaei and Andradóttir [7] pursue a different idea by keeping the temperature
parameter Tk constant during the process instead of decreasing it toward zero (as usual
in ordinary SA). To obtain convergence, two alternative techniques are suggested. The
first, let us call it A1, consists in the following procedure: In each iteration k, for the
current solution x chosen in this iteration, a counter Vk(x) is increased by one in order
to register how often x has been visited since the start of the algorithm. The current
number Vk(x) of visits is divided by the number D(x) of neighbors of x. The estimated
optimal solution x∗ in iteration k is then defined as that solution x∗ = x for which
Vk(x)/D(x) is maximal, among all the solutions x that have been encountered so far.
The second technique, let us call it A2, is to estimate the objective function value of
solutions x and y (step 5 of Algorithm 5), by cumulating previous estimates of x and y
(if any), and then, choose as new approximation x∗ of the optimal solution at iteration
k the solution with the smaller estimated objective value, among all solutions evaluated
so far. Both A1 and A2 compute sample averages with an increasing number of samples
at each iteration k.

Alrefaei and Andradóttir show that both alternatives guarantee, under mild con-
ditions, convergence with probability 1 to the set of optimal solutions. Their article
also reports on experimental comparisons showing a superiority of the introduced new
algorithms over the previous approaches in [84], [102] and [79]; among the two new al-
gorithms, A2 turns out to yield better results than A1. The experiments are restricted
to a test instance with only 50 feasible solutions, therefore it is not clear whether the
results can be generalized to larger search spaces; nevertheless, the empirical findings
give some evidence that using the solution with best objective function estimate so far
as the proposed solution may be a very good choice. Interestingly, for the considered
test instance, a random-search-like neighborhood structure including all elements of S
(different from x) into the neighborhood S(x) of x produces, for all tested algorithms,
better results than a more restricted neighborhood. This seems to indicate that in the
stochastic case, the hill-climbing feature of SA gains importance only for larger solution
spaces S.

A further important contribution of [7] is that the article discusses optimization
both in a transient and in a steady-state simulation context. It is shown that if g(x)
is given as the expectation of a functional G(x, ω) of a stochastic process in either a
transient or a steady-state situation, then the theoretical result derived for the simple
static SCOP case (corresponding to our Definition 2) still remains valid.

One practical limitation of approaches such as the two just described by Alrefaei
and Andradóttir [7] and the one by Roenko [156] is that they require the storage of
information about all or most of the solutions encountered by the algorithm, and this
is an infeasible task for problems that have a combinatorial nature.

Alkhamis et al. [6] use again a decreasing cooling schedule for the parameters Tk.
They propose to decide on acceptance or rejection of a neighbor solution y by means
of a statistical significance test: A confidence interval for the difference between the
true objective function values in x resp. y is computed; depending on the position of
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the value zero in relation to this confidence interval, the neighbor solution is judged as
equal, better or worse than the current solution x. After that, the usual acceptance rule
of SA is applied. The authors are able to show that on certain conditions on sample
size and cooling schedule, the classical SA convergence property is still satisfied.

Homem-de-Mello [115], [116] presents a comprehensive framework for describing and
analyzing variants of SA for SCOPs. The framework enables a thorough theoretical
analysis and opens a broader range of flexibility in the choice of sampling distributions.
Using ergodicity theory, Homem-de-Mello proves in [115] a rather general convergence
theorem for a variable-sample modification of SA. The theorem includes the result in
[102] as a special case, but does not make use of any normality assumptions related
to noise distributions anymore. In [116], this approach is further generalized beyond
the area of SA, although the described analytical techniques and algorithmic ideas
remain applicable in a SA context, as well as in the context of other metaheuristics
dealing with SCOPs with objective function estimated by sampling. In particular, the
author presents the interesting idea of adaptively modifying the sample size Nk during
the iterations of the algorithm, in such a way that Nk is usually only increased if the
result of a t-test indicates that higher accuracy of the objective function estimates is
required. To preserve the convergence property, the sample size is increased at some
specific points in time regardless of the t-test.

In Alkhamis and Ahmed [5], the acceptance rule based on confidence intervals
developed in [6] is modified by applying the constant-temperature schedule of [7] instead
of the classical decreasing temperature schedule. As the current estimated solution,
the authors take the solution with the maximum (normalized) number of visits so far.
Again, a convergence result is given.

There are also some purely experimental papers involving SA and SCOPs with sam-
pling estimated objective function. The earliest is a paper by Bulgak and Sanders [56]
addressing a buffer allocation problem in the context of a complex manufacturing sys-
tem. The objective function to be maximized (the efficiency of the system) is estimated
by means of a discrete event simulator. Similarly to [116], an adaptive sampling pro-
cedure is used, where the number of samples is gradually increased for testing whether
a candidate solution is statistically better than the current best solution.

Haddock and Mittenthal [105] investigate the feasibility of using an SA algorithm
in conjunction with a simulation model to find the optimal parameter levels at which
to operate a system. The authors modify Kirkpatrick et al. [129] by substituting an
estimate of the expected value of the system response (the objective function) in all
places requiring a deterministic objective function value.

Rosen et al. [157] propose a combined procedure, called RS team method, that im-
proves the SA of Haddock and Mittenthal [105] by initially searching for good solutions
to be then employed as starting solutions by SA. The initial search for good starting
solutions is done by the use of first-order linear approximations of the model, adapting
the technique of response surface methodology to the case of a discrete decision space.
The RS team method is tested on a simulation model of a semi-conductor manufactur-
ing process consisting of over 40 workstations, and it is experimentally compared with
the SA algorithm of Haddock and Mittenthal [105].
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Bowler et al. [50] use a stochastic SA algorithm to experimentally analyze the
asymptotic behavior of (sub)optimal homogeneous PTSP solutions, in the limit of pn
(customers probability times number of customers) going to infinity. The PTSP ob-
jective function is estimated by sampling, and the sampling estimation error is used
instead of the annealing temperature. Temperature decrease during the execution of
the SA algorithm is mimicked by an increase in the accuracy of the objective function
estimation, which, in turn, is obtained by increasing the number of samples.

Finally, two papers [100] and [150] focus on different metaheuristics, but involve
SA in experimental comparison. The paper by Gutjahr [100] that we also cited in
Section 3.1 focuses on S-ACO, and reports experimental comparisons between S-ACO
and the SSA algorithm of Gutjahr and Pflug [102]. Pichitlamken and Nelson [150],
while focusing on a Stochastic Partitioning Method that will be described in Section
3.5, use the SA algorithm of Alrefaei and Andradóttir [7] as a term of comparison in
the experimental analysis of their algorithm.

Although variants of SA for SCOPs have received a great deal of attention in the
last decade, such that, for example, the question under which conditions convergence
to the optimal solution is ensured can now be considered as relatively well understood,
there is a comparably smaller body of comprehensive experimental results aiming at
interesting questions such as: Which properties of the problem instance make which
algorithmic variant well-suited? In particular, there seems still to be little empirical
knowledge about the influence of the search space size on the performance of the single
variants.

3.4 Tabu Search

3.4.1 Introduction to TS

The main ideas characterizing the TS metaheuristic were independently proposed in
the eighties by Glover [90] and Hansen [110], and since then TS has been widely applied
to combinatorial optimization problems. A comprehensive introduction to TS can be
found in the book by Glover and Laguna [94], or in Hertz, Taillard and de Werra [113].

TS is essentially a sophisticated and improved type of local search, an algorithm that
in its simplest form, also known as Hill Climbing, works as follows. Consider a starting
current solution, evaluate its neighboring solutions (according to a given neighborhood
structure), and set the best or the first found neighbor which is better than the current
solution as new current solution. Iterate this process until an improving solution is
found in the neighborhood of a current solution. The local search stops when the
current solution is better than all its neighbors, that is, when the current solution is a
local optimum.

Such a simple and very general local search behaves quite poorly in practice, par-
ticularly because when a local optimum is found, the algorithm stops improving, and
combinatorial problems often have local optima whose objective values are much worse
than that of the global optimum. The strength of the TS metaheuristic with respect to
simple local search is that, by employing three TS-specific concepts, it avoids to get pre-
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maturely stuck in a local optimum. These TS-specific concepts are: best improvement,
tabu lists, and aspiration criteria.

Best improvement means that each current solution is always replaced by its best
neighbor, even if the best neighbor is worse than the current solution. This is clearly
a way not to get stuck in local optima. Using best improvement poses the problem
of possible cycling among already visited solutions, because it is possible, for example,
that the best neighbor of a solution is indeed the last visited current solution. In
order to avoid cycling, choosing recently visited solutions is forbidden, by storing some
attributes of these solutions in the so-called tabu lists. Whole solutions are not stored
in a tabu list, because this would require too much memory for most combinatorial
optimization problems. The choice of attributes is a delicate point. Typically, tabu lists
store the ‘moves’ that should be performed in order to go from one solution to another,
or the differences between solutions. In this way the memory requirement of tabu
lists is feasible, but another problem arises: forbidding all solutions corresponding to
a tabu attribute may forbid also solutions that have not yet been visited, and possibly
also very good or optimal solutions. TS employs aspiration criteria for solving this
problem. An aspiration criterion is a condition that, if satisfied, allows to set as new
current solution a solution obtained by performing a tabu move. A typical example of
aspiration criterion is requiring that a solution is better than the best solution found
from the beginning of the algorithm.

In pseudocode, the TS metaheuristic may be represented as in Algorithm 6, where

Algorithm 6 Tabu Search (TS)
Generate a starting current solution x
Initialize the tabu lists
for iteration k = 1, 2, . . . do

Set A(x, k) = {y ∈ S(x)\T (x, k) ∪ T̃ (x, k)}
Set x = arg miny∈A(x,k) g(y)
Update the tabu lists and the aspiration criteria

end for

x, y are feasible solutions of the combinatorial optimization problem, A(x, k) is the set
of solutions among which the new current solution is chosen at iteration k, S(x) is the
set of neighbors of x, T (x, k) is the set of tabu moves at iteration k, and T̃ (x, k) is the
set of tabu moves satisfying at least one aspiration criterion. In TS, typical stopping
criteria may be a maximum CPU time, a maximum number of consecutive iteration
not producing an improving solution, or the emptiness of the set A(x, k).

Theoretical properties of convergence of TS to the optimal solutions has been ana-
lyzed only quite recently by Hanafi [108] and by Glover and Hanafi [93]. Both papers
derive convergence results for a version of TS where the choice of a given neighborhood
and a decision criterion for selecting moves force some solutions to be revisited before
exploring other new ones.
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3.4.2 TS for SCOPs

In comparison to the wide literature about TS for DCOPs, there are still very few
papers applying TS to SCOPs. These works are all experimental, and address static
SCOPs both in the case of exact objective and ad hoc approximation, and sampling
approximation.

3.4.2.1 Exact objective and ad hoc approximation

As we have already pointed out, one of the major difficulties when solving SCOPs is
that the objective function, even if explicitly computable, is computationally expen-
sive. In local search algorithms, TS included, it is crucial to be able to evaluate the
neighborhood of a solution efficiently. Therefore, one of the main issues of applying TS
to SCOPs is indeed to find efficient approximations of the objective value difference
between couples of neighboring solutions.

Gendreau et al. [88] propose a TS algorithm for solving the vehicle routing problem
with stochastic demands and customers. One of the major contribution of their paper is
indeed the development of an easily computed approximation for the objective function,
used for the evaluation of potential moves. The proposed TS was quite successful in
experiments: for instances up to about 50 customes, it was able to find optimal solutions
in about 90% of cases, with an average deviation of 0.38% from optimality.

Other papers applying TS to SCOPs are the already cited [32, 33] by Bianchi et
al. (see Section 3.1, 3.2, and 3.3), where a simple TS algorithm has been compared
with other metaheuristics (ACO, EC, SA, and Iterated Local Search). Similarly to the
other metaheuristics, two approximations for the objective value difference between
neighboring solutions generated according to the OrOpt scheme have been tested, the
Yang and the TSP approximation. Even if the two approximations have different
characteristics (the first one is more accurate but more computationally expensive than
the second), the quality of results produced by the two versions of TS seemed to be
quite insensitive to the type of approximation. In [33], TS obtained results better than
ACO and SA, but worse than EC.

3.4.2.2 Sampling approximation

In the literature two types of contributions may be distinguished: papers that inside TS
use simulation as a black box for the evaluation of the objective value of solutions, and
papers that adapt the simulation procedure to the different components of TS, such as
neighborhood exploration, setting of tabu moves, verification of aspiration criteria, in
order to speed up the computation.

To the first group belong the papers by Lutz et al. [138], Finke et al. [77], Dengiz and
Alabas [67]. These papers apply quite standard TS techniques, and are usually very
time consuming, since the evaluation of solutions by simulation is a time consuming
process often relying on extern or commercial simulation packages. The advantage
of using simulation is that in this way the real objective function is considered, in
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problems where a rigorous mathematical programming formulation would impose severe
unrealistic restrictions.

Among the second group of papers (adapting simulation to the different compo-
nents of TS), we describe in some detail the works by Costa and Silver [65] and by
Aringhieri [9]. Costa and Silver [65] describe a TS algorithm for a problem in the
context of cause-effect analysis, where the true cause of an undesirable effect must be
recognized and eliminated. Given that the time to investigate a cause is a random
variable with known probability distribution, the goal is to establish a fixed sequence
of n causes so as to maximize the expected reward associated with discovering the true
cause within a specified time horizon. This problem is also called stochastic ordering
problem with time constraint (SOPTC).

The TS developed in this context, called NTS (Noisy TS), is based on sampling
and statistical tests, and is suited for all optimization problems where the evaluation of
the objective function is computationally expensive due to the presence of noise in the
problem definition. In the following we only describe the characteristics of NTS that
are directly related to the stochastic nature of the problem. What we do not describe,
is part of standard TS techniques for permutation problems. The objective value of a
new current solution is computed by a sample average of the type of Equation (2.13).
N samples are generated according to the so-called descriptive sampling technique as
described in [126], in order to obtain substantial variance reduction with respect to
other sampling methods. Descriptive sampling has been adopted by Costa and Silver
also because in this way the quality of estimation of the exact objective value does not
depend on the quality of the pseudo-random generator used. The estimation of the
objective function takes O(Nn) time, and if N is large enough to guarantee a good
estimation quality, this computation may be quite time consuming. For this reason,
the evaluation of the (possible many) neighbors of a solution is done with the following
method relying on a smaller number of samples. A statistical test is used to decide
whether a considered neighbor yc ∈ A(x, k) is better than the best neighbor yb ∈ A(x, k)
examined so far in the current iteration k. The decision is done in two phases. First,
a small number Nc < N of samples is randomly generated for estimating the expected
value gNc(yc) of yc. The decision as to wether the true objective value of yc, is higher
than that of yb is done by hypothesis testing. Second, if the test ‘has decided’ that yc is
better than yb, this is further ascertained, by using all the N samples. If it results that
gN (yc) > gN (yb), than yb is replaced by yc. Since N is finite, notwithstanding the use
of this double-check procedure, there is a certain probability that yb is not truly the
best feasible neighbor, and that the best solution so far is updated with not the truly
best solution so far. In order to lesser the risk of missing a very good solution due to
the bad quality of sampling, NTS keeps track of the ns best solutions encountered so
far. At the end of the run all solutions in this list are re-evaluated with a number of
samples κ > N , and the best solution according to this new estimation is the solution
returned by NTS.

In [65], the influence on the performance NTS of several factors has been exper-
imentally analyzed: the hypothesis testing technique (the t-test, the Wilcoxon test,
and the Median test have been compared), and the number of samples N,Nc and κ
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to be used in the different phases of NTS. NTS has been compared also with a TS
that is similar in everything to NTS, except for the fact that the objective function is
computed exactly on the base of a closed form expression available for SOPTC, and
no hypothesis test is performed. TS outperforms NTS both in computation time and
solution quality, but the solution quality is only slightly better than NTS. This is a
result that encourages the use of NTS for problems with very complex, or impossible
to compute, objective functions. Note, however, that when a closed form expression
for the objective function is available, even if it is quite computationally expensive like
in SOPTC, it may still be more efficient to use the classical TS algorithm, instead of
NTS.

An application where sampling is employed to save time with respect to using the
exact objective function is the one by Aringhieri [9], that applies TS to a Chance
Constrained Program (Definition 3). Constraints are supposed to be linear functions,
that is, in Definition 3 we pose Hi(x, ω) =

∑
j aijxj − bi(ω), with j = 1, 2 . . . , n and

x ∈ S ⊂ Rn. Note that in this problem, only the vector b is assumed to be random. In
the proposed TS, sampling is used to estimate the probability pi(x, k) that at iteration k
solution x violates constraint bi. Given a set ofNm random samples bi,r, i = 1, 2, . . . ,m,
r = 1, 2, . . . N , the probabilities are estimated as follows

pi(x, k) =
∑N

r=1 δi,r
N

, where δi,r =
{

1 if
∑

j aijxj − bi,r > 0
0 otherwise

(3.1)

Probabilities pi(x, k) are used to define the concept of probably tabu moves that in
practice extends the set of tabu moves. A move is probably tabu at iteration k, if
it leads to a solution x for which pi(x, k) > αi, i = 1, 2, . . . ,m (compare this with
Equation (2.3)). Given the set P (x, k) of probably tabu neighbors of x, the new TS,
called SIMTS-CCP (simulation TS for Chance Constrained Programs), can be obtained
from algorithm 6 by modifying the computation of A(x, k) as

A(x, k) = {y ∈ S(x)\T (x, k)\P (x, k) ∪ T̃ (x, k)}. (3.2)

In [9] the SIMTS-CCP algorithm has been applied to two NP-hard optimization prob-
lems arising in the design of telecommunication networks. Preliminary computational
results show that solution quality is comparable to that obtained by a TS algorithm
that addresses the problem as deterministic, and the increase in computation time is
acceptable.

3.5 Stochastic Partitioning Methods

3.5.1 Stochastic Partitioning Methods for SCOP’s

We have grouped under the name of SPM the Beam Search heuristic applied to SCOPs
[16, 76], the Stochastic Branch and Bound [144, 145], and the combined procedure
inspired by Nested Partitions [150]. These methods, explicitly designed for SCOPs,
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follow in different ways the same search strategy: the search space is recursively par-
titioned in sub-spaces, and the computation effort is concentrated on the sub-spaces
that are estimated to be the most promising ones. SPM are not usually considered as
belonging to the class of metaheuristics, but they could, since inside the general search
strategy, several heuristics may be employed for the evaluation of search sub-spaces, for
the improvement of solutions, and for the estimation and comparison among solutions.
In the following, we introduce the different SPM methods in the context of the type of
SCOP that each method mainly focus on.

3.5.1.1 Exact objective and ad hoc approximation

The Beam Search (BS) heuristic is a heuristic strategy closely related to Branch and
Bound, where the search space is recursively partitioned in sub-spaces, for which upper
and lower bounds for the objective function are computed, in order to guide the search
in the more promising partitions. Unlike Branch and Bound, BS reduces the width
of the search moving downward in the search tree only from a limited number of best
promising nodes. The success of BS depends on the evaluation function that is used
to select the nodes that will be further explored. Typically, in BS different evaluation
functions are used. First, a simple but imprecise evaluation function is used to discard
some nodes (this phase is called filtering); second, nodes that survive filtering are
subject to a more precise and time consuming evaluation. Thus, the main principles
behind BS (partitioning the search space and dosing the computation effort in specific
partitions) are similar to those of SBB and NP. The BS has been only recently applied
to SCOPs. Beraldi and Ruszczyński [16] consider Chance Constrained problems like
the ones we described in section 2.2. They apply BS to a set covering problem with
probabilistic constraints, and show experimentally that BS allows a considerable time
saving with respect to an exact Branch and Bound algorithm, and the solution quality
of BS goes from optimal to 5% worse than optimal. Erel, et al. [76] present a BS-based
method for the stochastic assembly line balancing problem in U-lines. Computational
experiments indicate that the average performance of the proposed method is better
than the best-known heuristic in the literature for the traditional straight-line problem.

3.5.1.2 Sampling approximation

Stochastic Branch and Bound (SBB) has been first proposed by Norkin, Ermoliev, and
Ruszczyński [144], as a method for solving problems where the objective function must
be estimated by sampling as described in Section 2.4.2. This algorithm extends to
SCOPs the main principle of the classical Branch and Bound, that is, the computation
of upper and lower bounds for the objective function of portions of the search space,
in order to guide the search. The main difference with respect to classical Branch and
Bound is that here, due to the stochastic and non-exact estimation of the objective
function (and thus of the upper and lower bounds), sub-spaces cannot in general be
cut during the search, but a sort of backtracking into previously evaluated sub-spaces
may be necessary.
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The SBB algorithm proposed in [144] is represented by the pseudocode of Algo-
rithm 7, and works as follows. Given the search space S, the algorithm constructs
increasingly finer partitions of S, denoted by P = {S1, S2, . . .}. The original problem
of finding g∗(S) := minx∈S{g(x)} (see Equation (2.2)), is divided into the sub-problems
of finding g∗(Sr) := minx∈Sr{g(x)}, with r = 1, 2, . . ., and g∗(S) = minSr∈P{g∗(Sr)}.
Assume that there exist functions L and U from P to R such that, for each Sr ∈ P,
L(Sr) ≤ g∗(Sr) ≤ U(Sr), and U(Sr) = g(x̄) for some x̄ ∈ Sr, and if Sr is a
singleton set, then L(Sr) = g∗(Sr) = U(Sr). Suppose that the lower and upper
bounds L(Sr) and U(Sr) cannot be exactly computed, but instead estimates λl(Sr)
and νm(Sr) are used, respectively, assuming that almost surely liml→∞ λl(Sr) = L(Sr),
and limm→∞ νm(Sr) = U(Sr).

Algorithm 7 Stochastic Branch and Bound (SBB)
1: Set P0 = S, λ0(S) = λl0(S), ν0(S) = νm0(S);
2: for iteration k = 0, 1, 2, . . . do
3: Select the lowest-bound subset S̄k ∈ argminSr∈Pk

{λk(Sr)} and a current solution
xk ∈ argminSr∈Pk

{νk(Sr)};
4: if the lowest-bound subset S̄k is a singleton then
5: Pk+1 = Pk;
6: else
7: Construct a partition of the lowest-bound subset P ′k(S̄k) = {S̄k

1 , S̄
k
2 , . . . , S̄

k
nk
};

8: Construct a new full partition Pk+1 = Pk\{S̄k} ∪ P ′k(S̄k);
9: end if

10: for all subsets Sr ∈ Pk do
11: Update the estimates of lower and upper bounds λk(Sr) = λlk(Sr), νk(Sr) =

νmk(Sr);
12: end for
13: end for

Norkin et al. [144] proved the following convergence result: Suppose the indices lk
and mk are chosen in such a way that whenever a subset Sr is an element of Pk for
infinitely many k, then limk→∞ lk = ∞ and limk→∞mk = ∞. Then with probability
one there exists an iteration k0 such that for all k ≥ k0, the lowest-bound subsets S̄k

are singletons and contain optimal solutions only. As suggested in [144], the estima-
tion of a lower bound L(Sr) for g∗(Sr), may be done by exchanging the minimization
and the expectation operator, since g∗(Sr) = minx∈Sr g(x) = minx∈Sr EP (G(x, ω)) ≥
EP

(
minx∈Sr G(x, ω)

)
. Thus, one may chose L(Sr) = EP

(
minx∈Sr G(x, ω)

)
, and the

estimation of the lower bound L(Sr) may be computed by the sample average

λN (Sr) =
1
N

N∑
j=1

min
x∈Sr

G(x, ωj), (3.3)

where ω1, ω2, . . . , ωN is an independent, identically distributed (i.i.d.) random sample
of N realizations of the random vector ω.
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In general, the practical application of SBB implies one major difficulty: computing
an estimation of the lower bound by Equation (3.3) requires solving a possibly NP-hard
deterministic combinatorial optimization problem, minx∈Sr G(x, ωj), for every sample
scenario ωj , and this is unfeasible in a reasonable amount of computation time, unless
very small problem instances are addressed.

Gutjahr et al. [101] use SBB to solve small instances of the single-machine-tardiness
scheduling problem. They consider different sampling techniques for estimating lower
bounds, and report computational experiments.

As a way to make SBB more efficient, Gutjahr et al. [104] propose to use heuristics
or metaheuristics to approximately solve the deterministic subproblems for the lower
bound estimation of Equation (3.3), as schematized by Figure 3.2. The authors focus on
the problem of Activity Crashing in Project Management, and show experimentally that
the replacement of an exact solution to deterministic subproblems by a heuristic one (in
this case a local search algorithm) is very advantageous. The authors also say that it is
possible to extend the convergence results of [144] to cases in which the deterministic
subproblems are approximately solved by a search heuristic with a random starting
point, keeping track of the best solution found so far. Another practical enhancement
of the SBB proposed in [104] is the use of Importance Sampling as a technique to reduce
the variance of the sample average estimates. Without the use of a variance-reduction
technique, the number of Monte Carlo samples (and thus of computation time) required
to obtain a sample average with the same variance would be much greater.

Stochastic Branch and Bound (SBB)

exact heuristic

Complete

Enumeration

Branch and

Bound

Dynamic

Programming

Local search ACO EC SA TS

Solution of the determ. subproblems

…

…

[79]

[76]

Figure 3.2: Possible ways of solving the deterministic subproblems for the computation
of the lower bound (Equation (3.3)) in SBB.

Pichitlamchen and Nelson [150] propose a combined procedure extending the Nested
Partitions (NP) method by Shi and Ólafsson [166] to SCOPs where the objective is
estimated by sampling. NP is based on identifying a sequence of ‘most promising’
subsets of the search space S, and concentrating the search of good solutions there.
At each iteration, the most promising subset of S is partitioned into M subsets, and
the entire surrounding region is aggregated into one single subset of S. Thus, at each



3.6. OTHER ALGORITHMIC APPROACHES TO SCOPS 43

iteration NP looks at a partition of M + 1 subsets of the search space S. From each of
these M +1 subsets, a random solution is chosen using some random sampling scheme,
and the objective value of each solution is evaluated, in order to decide which is the most
promising subset of the next iteration. With respect to NP, the combined procedure
of Pichitlamchen and Nelson applied to SCOPs includes a number of enhancements.
First, in each of the current M + 1 subsets, more than one solution is randomly chosen
for evaluating the most promising subset. Second, solutions here are evaluated by
the sample average estimation the objective value (see Equation (2.13)). Moreover, in
order to select the best solution of each subset, and the best solution of all subsets, a
statistical procedure called Sequential Selection with Memory (SMM) is used. SMM
guarantees to select the best or near-best alternative among a set of solutions with a
user-specified probability. It also exploits memorized information (samples and sample
averages) on previously encountered solutions. The spirit of SMM is similar to the F-
Race procedure proposed in the context of ACO [45] (see Section 3.1), since it consists in
a series of steps in which a set of competing solutions is evaluated and the worst of them
are eliminated. For details about SMM, see also [148, 149]. The combined procedure
based on NP also applies a Hill Climbing local search (HC) to the best solution of each
iteration. In this way, the computational effort is concentrated on the most promising
subset of the search space. Another specific characteristic of the combined procedure
of Pichitlamchen and Nelson is that at the end of the algorithm, the solution having
the smallest sample average accumulated over all visits to that solution is returned as
final solution. Pichilamchen and Nelson call their combined procedure NP+SMM+HC,
a name that underlines its main building blocks just described. In [150], they provide a
proof that, with probability one, NP+SMM+HC finds one of the optimal solutions as
the number of iterations goes to infinity. Moreover, numerical experiments applying the
algorithm to an (s,S) Inventory Problem and to a Three-Stage Buffer allocation problem
show that NP+SMM+HC has a good performance in comparison to a pure random
search and to a SA algorithm. While the convergence guarantee of NP+SMM+HC
is due to the global guidance system provided by NP, the practical performance is
enhanced by the use of SMM selection-of-the-best method and HC local search.

3.6 Other algorithmic approaches to SCOPs

In this section we briefly give some references to other approaches for solving SCOPs,
such as Progressive Hedging and Rollout Algorithms, that we have not reviewed in the
previous sections because they are still not very frequent in the literature. Nevertheless,
we include this section because the referenced approaches may be either classified as
metaheuristics, or they may involve metaheuristics as part of their solution strategy.

Progressive Hedging (PH) is an algorithm proposed by Rockafellar and Wets [155]
for solving multistage stochastic programs. It is based on considering a set of few rep-
resentative scenarios that capture the uncertain future; for each of these scenarios, a
deterministic optimization subproblem is solved; in this way one ends up with more
solutions, neither of which is in general feasible for the original problem. Therefore,
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a sort of averaging procedure among the solutions of the subproblems is performed,
in order to obtain a ‘blended’ solution that hedges against future uncertainty. Some
extensions of PH involve the use of heuristics or metaheuristics to solve the determin-
istic subproblems. For example, Løkketangen and Woodruff [136] integrate TS in the
PH framework and apply this combined procedure to mixed integer (0,1) multistage
stochastic programming. Haugen et al. [111] propose an extension of PH that is ex-
plicitly proposed as a metaheuristic: rather that using a heuristic algorithm to solve
deterministic subproblems, it uses an algorithm for subproblems that is exact in its
usual context, but severs as a heuristic for the proposed PH metaheuristic.

Rollout algorithms (RO) are an emerging class of methods for solving combinato-
rial optimization problems, that are capable of improving the performance of a given
heuristic through sequential applications. Originally, the ideas underlying RO have
been proposed by Tesauro and Galperin in 1997 [176] for developing a simulation-based
algorithm to play blackgammon. In the same year, Bertsekas et al. [23] formalized RO
for combinatorial optimization problems, by applying them to a machine maintainance
and repair problem. RO are based on the Policy Iteration algorithm, which is part of
the Dynamic Programming framework for solving MDP [19] (see the paragraph about
Markov Decision Processes of Section 2.3). Some authors (Bertsekas et al. in Sec-
tion 2 of [23], and Bertsekas on page 528 of [20]), emphasize that RO also share some
ideas with Tabu Search, particularly with the sequential fan candidate list strategy
(Glover and Laguna [94]) and its extended variant, the fan and filter method (Glover
[92]). Among the papers that apply RO to SCOPs, we cite the works of Secomandi
on the vehicle vouting problem with stochastic demands [162, 163] and on the TSP
with stochastic travel times [164], and the paper by Bertsekas and Castañon [21] on
stochastic scheduling.

3.7 Discussion and open issues

3.7.1 Using the Sampling approximation

We have seen that the selection-of-the-best method that a metaheuristic uses for per-
forming sample averages and for comparing solutions can have a great impact on the
effectiveness of the algorithm, but it is still hard to say which method is the most ef-
fective in relation to the metaheuristic where it is employed, and this is an interesting
open issue.

Table 3.2 reports some successful selection-of-the-best methods described in the
previous sections in the context of the metaheuristic where they have been used. In
some cases ([99, 102, 7, 6, 115]), the use of a particular method has been justified mainly
by the need to derive rigorous properties of convergence, and the application to other
metaheuristics is not very meaningful. But in more experimental oriented papers, a
method which is particularly efficient in one metaheuristic, could be advantageous also
in others. This is the case, for instance, of F-Race [45], SMM [150], and the adaptive
sampling procedures used in [100], [116], and [65]. In looking for efficient selection-
of-the-best methods to be applied in metaheuristics, the literature about statistical
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procedures of ranking, selection, and multiple comparisons (see, for example, [80, 173]
and the references cited therein) could be a good source of inspiration. Moreover,
for speeding up the sample average computations, it could be useful the application
of variance-reduction techniques, such as, for example, those belonging to the field of
Rare Event Simulation [160].

Given the above observations, a selection-of-the-best method working as a black
box simulation that does not allow to specify how samples are chosen is not advisable.
Another requirement that seems necessary is the possibility to increase the accuracy
of objective function estimates, particularly when the algorithm has identified good or
near optimal solutions. The intuitive reason is that often in SCOPs there are many
local optima, whose values may be also quite near, and in order to discriminate between
local optima one needs that the estimation error is small with respect to the difference
between the exact value of local optima. We have seen a practical confirmation of this
in several experimental papers, for instance [181] and [65]. A more rigorous argument in
favor of this requirement is that all metaheuristics with provable convergence properties
need to use a number of samples increasing with the iteration counter.

It has been recognized that completely different discrete stochastic optimization
algorithm may be needed for small and for large search spaces, respectively (cf. [80]).
Also the “degree of randomness”, that is, the size of noise compared to the undisturbed
objective function values, is an important factor. It cannot be expected that a meta-
heuristic variant working well for solution spaces with a small amount of noise will also
perform optimally for solution spaces with a large amount of noise, and vice versa. It
appears that a characterization of metaheuristic variants for SCOPs with respect to
their appropriate domains of problem instance types still waits for being elaborated. In
the second part of this thesis, we will address this particular aspect in the context of the
PTSP, by considering a benchmark of PTSP instances with varying levels of stochas-
ticity, and by analyzing the behavior of our developed metaheuristics for different type
of instances.

3.7.2 Experimental comparisons among different metaheuristics

At the moment, most of the papers in the SCOP literature focus on one single meta-
heuristic, which is compared either to variants of the same metaheuristic, or to simple
heuristics such as random search, or to exact methods when these are available. Only
a very small number of papers perform comparisons among different metaheuristics,
as reported in Table 3.3. Thus, it is still impossible to give guidelines on which meta-
heuristic is better in which situation.

One important aspect that experimentation with different metaheuristics could re-
veal is whether the effectiveness of a metaheuristic is due to the particular adjustments
to speed up the computation (like approximating the objective function or using care-
fully designed sampling and statistical comparison strategies), or to the intrinsic search
trajectory of the metaheuristic. This issue is addressed in Appendix B in the context
of the Vehicle Routing Problem with Stochastic Demands (VRPSD).
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Reference(s) Selection-of-the-best method Metaheuristic(s)
where the method is
used

Way of evaluating a solution Solutions compared

Gutjahr [99] Sample average with number
of samples increasing linearly
with the iteration counter

Current solution with current
estimation of optimal solution

ACO

Gutjahr [100] Sample average with number of
samples decided adaptively on
the base of a statistical test

Current solution with current
estimation of optimal solution

ACO, SA

Birattari et al.
[45]

Sample averages integrated
with the F-Race statistical
procedure

All solutions belonging to the
(dynamic) set of solutions in
the race

ACO

Gutjahr and
Pflug [102]

Sample average with number of
samples increasing more than
quadratically with the itera-
tion counter

Current solution with current
estimation of optimal solution

SA

Alrefaei and
Andradóttir [7]

Sample average and normal-
ized number of visits

All solutions visited so far SA

Alkhamis et
al. [6]

Sample average with number of
samples increasing with itera-
tions, comparison with a sta-
tistical significance test

Current solution with current
estimation of optimal solution

SA

Homem-
de-Mello
[115, 116]

Sample average with number of
samples decided adaptively on
the base of a t-test

Current solution with current
estimation of optimal solution

SA

Costa and Sil-
ver [65]

Descriptive sampling, statisti-
cal test in two stages (using a
higher number of samples only
if first stage of the test is posi-
tive)

Current solution with current
estimation of optimal solution,
keeping in memory a given
number of good solutions for fi-
nal, more accurate comparison

TS

Gutjahr et
al. [101]

Sample average using the Im-
portance Sampling variance-
reduction technique, and num-
ber of samples increasing with
the iteration counter

Lower and upper bounds of
all subsets in which the search
space has been partitioned

SBB (SPM)

Pichitlamchen
and Nelson
[150]

Sample averages integrated
with the SMM statistical
procedure

Random selected solutions in
each subset in which the search
space has been partitioned,
and random solutions selected
from the neighborhood of the
current solution during local
search

NP+SMM+HC
(SPM)

Table 3.2: Main selection-of-the-best methods used in the metaheuristics literature for
SCOPs where the objective function must be estimated by sampling.
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Reference SCOP Metaheuristics compared “Winner”

Bianchi et al. [32, 33] VRPSD ACO, EC, SA, TS, ILS EC, TS

Gutjahr [100] TSPTW ACO, SA ACO

Pichitlamken and
Nelson [150]

Inventory Problem and Three-
stage Buffer Allocation Prob-
lem

SPM, SA SPM

Easton and Mansour
[74]

Stochastic Goal Programming EC, SA, TS EC

Table 3.3: Papers with comparisons among different metaheuristics.

3.7.3 Theoretical convergence properties

Papers analyzing theoretical convergence properties of metaheuristics applied to SCOPs
are summarized in Table 3.4. Note that in the table, SCOPs with exactly computable
objective function are missing. In fact, when a metaheuristic always uses an exact
expression for the objective value of a solution, its convergence behavior is equivalent,
from a theoretical point of view, to that of applying the metaheuristic to a DCOP
(pointers to theoretical analyses of metaheuristics for DCOPs have been provided in
the previous sections while introducing each metaheuristic). On the contrary, when
ad hoc approximations of the objective function are used, the fact that the error is
systematic makes a theoretical analysis very difficult.

Theoretical convergence analyses do exist for static SCOPs with sampling estimated
objective function. The most studied metaheuristic from this point of view is certainly
SA, followed by ACO and SPM. TS and EC still miss this kind of analysis. Interstingly,
Homem-de-Mello [116] suggests that the results he derives for a simple variable-sample
random search algorithm can be readily adapted to show the convergence of variable-
sample versions of more sophisticated methods, in particular, those methods for which
the proof of convergence in the DCOP domain relies on the convergence of pure random
search. The author indicates explicitly EC (GA) as one of these, by referring to the
work of Rudolph [161].

Finally, metaheuristics with provable convergence properties (ACO and EC) have
been designed to solve MDPs. Actually, at the moment MDPs have been addressed
only theoretically by metaheuristics. Therefore, there is the need to validate their
effectiveness also by experimental investigations.
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Metaheuristic SCOP category Referece(s)

ACO sampling estimated objective Gutjahr [99]

SA “ ” Alrefaei and Andradóttir [7]

SA “ ” Alkhamis et al. [6]

SA “ ” Homem-de-Mello [115]

SA “ ” Alkhamis and Ahmed [5]

SBB (SPM) sampling estimated objective Norkin et al. [144]

SA objective function subject to normally
distributed noise

Gelfand and Mitter [84]

SA objective function subject to noise reduc-
ing to zero after a certain number of iter-
ations

Fox and Heine [79]

SA objective function subject to noise dis-
tributed according to a sufficiently
‘peaked’ distribution

Gutjahr and Pflug [102]

ACO infinite horizon MDP Chang et al. [60] and Chang
[59]

EC infinite horizon MDP Chang et al. [61]

EC finite horizon partially observed MDP Lin et al. [135]

Table 3.4: Papers with theoretical convergence proofs.
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Chapter 4

The Probabilistic Traveling
Salesman Problem

The first part of the thesis (up to Chapter 3) had a broad scope, being dedicated to the
review of the application of several metaheuristics to the wide class of SCOPs. This
second part of the thesis (from the present chapter to Chapter 7) focuses in particular
on one metaheuristic, ACO (Ant Colony Optimization), and on one SCOP, the Proba-
bilistic Traveling Salesman Problem (PTSP). Concentrating on this case study gives us
the occasion to explore in a more detailed way many issues that have been introduced
in the first part of the thesis, such as the use and effectiveness of objective function ap-
proximations inside ACO (in Chapter 5), the design of efficient local search algorithms
also based on move cost approximations (in Chapter 6), and the effect of combining a
metaheuristic with local search for solving the SCOP under study (in Chapter 7).

The remainder of this chapter is organized as follows. Section 4.1 formally defines
the PTSP, by introducing the notation used throughout the second part of the thesis,
and by defining and explaining the PTSP objective function. Section 4.2 reports on the
literature involving the PTSP. Some papers have been already cited in the first part of
the thesis, but they are again considered here for the sake of completeness. Section 4.3
describes the benchmark of PTSP instances that we have set up for our experimental
investigations of the following chapters. The benchmark has been carefully designed, in
particular to allow the analysis of the behavior of optimization algorithms for different
levels of stochasticity. Section 4.4 and 4.5 describe, respectively, the computation of
a lower bound of the optimal solution for the PTSP, and a set of simple heuristics
available in the literature to solve the PTSP. These elements will be used for producing
repeatable comparisons with our metaheuristics.

4.1 Statement of the problem

For many delivery companies, only a subset of the customers require a pickup or delivery
each day. Information may be not available far enough in advance to create optimal
schedules each day for those customers that do require a visit or the cost to acquire
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Figure 4.1: An a priori tour (left), and a possible a posteriori tour (right) obtained from
the a priori tour by visiting only the customers requiring a visit on a given random
realization of customers, and by keeping the same order of visit as in the a priori tour.
In this example, a random realization where only customers number 1, 2, 4, 5, 6, 9, 10
require a visits is shown.

sufficient computational power to find such solutions may be prohibitive. For these
reasons, it is not unusual to design a tour containing all customers (called a priori tour),
and each day to follow the ordering of this a priori tour to visit only the customers
requiring a visit that day (see Figure 4.1). The tour actually traveled each day when
the customers requiring a visit are revealed is called a posteriori tour. The problem of
finding an a priori tour of minimum expected cost, given a set of customers each with a
given probability of requiring a visit, defines the PTSP. In the remainder of the thesis,
the terms a priori tour tour, and solution, will be used interchangeably.

More formally, let N = {i | i = 1, 2, . . . , n} be a set of n customers. For each pair
of customers i, j ∈ N , d(i, j) represents the distance between i and j. Here, we assume
that the distances are symmetric, that is, d(i, j) = d(j, i). In the remainder of the thesis,
distances will also be referred to as costs. An a priori tour λ = (λ(1), λ(2), . . . , λ(n))
is a permutation over N , that is, a tour visiting all customers exactly once. Given the
independent probability pi that customer i requires a visit, qi = 1−pi is the probability
that i does not require a visit. The general case where customers probabilities pi may
be different, is referred to as heterogeneous PTSP, while if probabilities are all equal
(pi = p for every customer i), the problem is called homogeneous PTSP. We will use
the following convention for any customer index i:

i :=
{
i(modn) iff i 6= 0 and i 6= n
n otherwise,

(4.1)

where i(mod n) is the remainder of the division of i by n. The reason for defining the
above convention is that we want to use as customer indices numbers from 1 to n (and
not from 0 to n− 1), and we need to make computations with the ‘modulus’ operator.
The expected length of an a priori tour λ can be computed in O(n2) time with the
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following expression derived by Jaillet [118]

E[L(λ)] =
n∑

i=1

n−1∑
r=1

d(λ(i), λ(i+ r))pλ(i)pλ(i+r)

i+r−1∏
i+1

qλ. (4.2)

We use the following notation for any i, j ∈ {1, 2, . . . , n}

j∏
i

qλ :=


∏j

t=i qλ(t) if 0 ≤ j − i < n− 1∏n
t=i qλ(t)

∏j
u=1 qλ(u) if i− j > 1

1 otherwise.
(4.3)

The expression for the objective function (Equation (4.2)) has the following intuitive
explanation: each term in the summation represents the distance between the ith cus-
tomer and the (i + r)th customer weighted by the probability that the two customers
require a visit (pλ(i)pλ(i+r)) while the r − 1 customers between them do not require a
visit (

∏i+r−1
i+1 qλ).

In the homogeneous PTSP, where pi = p and qi = q for every customer i, the
expression for the objective function still requires O(n2) computation time, but it is a
bit simpler than Equation (4.2):

E[L(λ)] =
n∑

i=1

n−1∑
r=1

p2qr−1d(λ(i), λ(i+ r)). (4.4)

Note that the PTSP falls in the category of SIPs (Stochastic Integer Programs) as
introduced by Definition 2 in Chapter 2.

4.2 Literature review

The PTSP was introduced in 1985 by Jaillet in his PhD thesis [118], where he derives
several theoretical properties of the problem and proposes different heuristics as well
as an integer nonlinear programming formulation and an exact branch-and-bound al-
gorithm for the homogeneous PTSP (the exact algorithms remain of an introductory
level, since they are not tested experimentally). Some theoretical properties of the
PTSP derived in [118] have been later published in Jaillet [119], and focus mainly on
two issues: the derivation of closed form expressions for the efficient computation of the
objective function under several customers probability configurations, and the analysis
of properties of optimal PTSP solutions, especially in relation to optimal solutions of
(deterministic) TSP. The analysis presented in [119] implies that under specific condi-
tions (the set of customers on the Euclidean space is also the convex hull of this set of
customers) the optimal PTSP and TSP solutions coincide. In general though, bounds
have been derived that show how the optimal TSP solution may be arbitrarily bad with
respect to the optimal PTSP solution. This observation justified and triggered subse-
quent research on developing specific algorithms for the PTSP that take into account
its probabilistic nature.
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Bertsimas et al. [28] showed that the PTSP is an NP-hard problem. As such, the
PTSP is very difficult to be solved to optimality, and its literature is more rich in papers
on heuristics rather than on exact methods.

Rossi and Gavioli [159] adapt to the PTSP two well known TSP tour construction
heuristics, the Nearest Neighbor and the Clarke-Wright algorithms, by explicitly in-
cluding the customers probability in the evaluation and selection of new portions of
the tour to construct. Rossi and Gavioli experimentally evaluate the two heuristics
on homogeneous PTSP instances with up to 100 uniformly distributed customers, and
compare their performance to that of the classical deterministic Nearest Neighbor and
Clarke-Wright heuristics that solve a TSP. Their conclusion is that for the tested in-
stance it is important to use the techniques specifically designed for the PTSP only for
instances with more than 50 customers, and customers probability less than 0.6.

The PhD thesis of Bertsimas [24] and a related article by Bertsimas and Howell
[27] extend the results of Jaillet sharpening the bounds that link the PTSP with the
TSP, and analyze the relation of the PTSP with another probabilistic combinatorial
optimization problem, the probabilistic minimum spanning tree. In [27], the authors
also investigate the worst-case and average performance of some TSP heuristics in
a PTSP context. The analysis reveals that the Nearest Neighbour is very poor on
average for the PTSP, while the Space Filling Curve is asymptotically very close to the
re-optimization strategy, if nodes are uniformly distributed on the unit square and an
Euclidean metric is used for customer distances. The Space Filling Curve is analyzed
also experimentally in [27]. Two local search procedures, the 2-p-opt and the 1-shift,
are applied to the solution produced by the Space Filling curve, to achieve better
solutions for the PTSP. For the two local search procedures, recursive equations are
proposed, that efficiently compute the change of the homogeneous PTSP expected cost
of two neighboring solutions. We have verified that the recursive equations proposed
in [27] are not correct, and we derive in this thesis correct expressions both for the
homogeneous and for the heterogeneous case (see Section 6.4, that covers the contents
of Bianchi et al. [42] and Bianchi and Campbell [36]).

The results and analyses of [24] are summarized and further extended in Bertsimas
et al. [28], where also the probabilistic vehicle routing problem and the probabilistic
traveling salesman facility location problem are investigated with the paradigm of a
priori optimization. In [28], only problems with homogeneous probabilities are consid-
ered.

In [26], Bertsimas et al. investigate experimentally the PTSP and the Probabilistic
Vehicle Routing Problem, by comparing the solution quality obtained by solving the
problem a priori and a posteriori (that is, by sampling the stochastic variables and by
approximately solving the deterministic subproblems obtained by sampling). For the
PTSP, the authors consider both homogeneous and heterogeneous instances. Exper-
imental results on small instances with up to 50 customers uniformly distributed on
the unit square show that a priori solutions are on average only 1.22% worse than a
posteriori ones obtained via re-optimization of the sampled subproblems. These exper-
iments confirm the theoretical results of Bertsimas and Howell [27] on the similarity
between a priori optimization and re-optimization when solving uniformly distributed
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PTSP instances.
Exact algorithms for solving also heterogeneous PTSPs to optimality are addressed

in two papers: Berman and Simchi-Levi [17], and Laporte et al. [132]. In [17], the
considered problem is a PTSP on a network, that is, the underlying graph is not
assumed to be complete. The key result is the derivation of a good lower bound for the
optimal PTSP value, that is based on solving an appropriate transportation problem
with 2n constraints. It is suggested that the lower bound can be used in a Branch and
Bound algorithm to find the optimal solution. The authors of [17] refer to a working
paper [18] for a first attempt to implement such Branch and Bound algorithm. Another
result of [17] is the derivation of an algorithm that, given an a priori tour, finds in O(n3)
time the optimal location of a hypothetical depot from where the traveling salesman
departs, before traveling the a priori tour.

The paper by Laporte et al. [132] proposes a Branch and Cut algorithm based on an
integer two-stage stochastic programming formulation of the PTSP (for the definition
of this type of problems, see Section 2.2). The authors report on computational exper-
iments on both homogeneous and heterogeneous PTSP instances, and show that the
proposed algorithm finds the optimal solution for instances with up to 50 customers.
An interesting point that emerges from the experiments is that the lower the customers
probabilities, the more difficult the PTSP instance. In other words, “more random”
problems are more difficult to solve by the proposed Branch and Cut algorithm. Unfor-
tunately, [132] does not report the optimal values found for the tested instances, and
their results cannot be used to compare the performance of heuristic approaches.

Recent approaches to the PTSP mainly involve the application of metaheuristics.
These include Simulated Annealing (SA) [50], Evolutionary Computation [158], and
Ant Colony Optimization (ACO) [51, 52, 100, 45, 38, 39].

Bowler et al. [50] analyze experimentally by a stochastic SA algorithm the asymp-
totic behavior of (sub) optimal homogeneous PTSP solutions, in the limit of pn (cus-
tomers probability times number of customers) going to infinity. The PTSP objective
function is estimated by sampling, and the sampling estimation error is used as a sort
of temperature regulated during the annealing process.

The first preliminary results about solving the PTSP with ACO have been published
by Bianchi et al. [38, 39], and are the base of the results described also in this thesis.
The main issue addressed in [38, 39] is the comparison of a TSP specific version of
ACO with respect to a version that explicitly considers the PTSP objective function,
similarly to what has been done by Rossi and Gavioli [159] on the Nearest Neighbor
and Clarke-Wright heuristics.

Branke and Guntsch [51, 52] explore the idea to employ faster approximations of
the exact PTSP objective function. The authors propose an ad-hoc approximation
of the expected cost that neglects the least probable customers configurations. This
approximation is shown experimentally to accelerate convergence without significantly
worsening the solution quality. Another issue addressed by [51, 52] is the design of
PTSP-specific heuristics to guide the ants construction process. The authors experi-
mentally analyze different heuristics, and show that one of them indeed improves the
quality of solution constructed by ants, but at the cost of a higher computational time.
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name n

kroA100 100
eil101 101
ch150 150
d198 198
lin318 318
att532 532
rat783 783
dsj1000 1000

Table 4.1: TSPLIB instances providing customers coordinates, from which Euclidean
distances have been computed. Each of these TSP instances has been combined with
54 different customer probability configurations characterized by average probability
and variance as reported in Table 4.2.

Gutjahr [100] briefly addresses the PTSP as a pre-test for analyzing the performance
of S-ACO, an ACO algorithm that is suited for stochastic problems where the objective
function is not known exactly, but can only be estimated by sampling. After the pre-
test on the PTSP, S-ACO is applied to a TSP with time windows and with stochastic
travel times.

Recently (Birattari et al. [45]), the PTSP has been again used as a sort of test
problem for ACO/F-Race, another ACO algorithm suited for stochastic problems where
the objective function must be estimated by sampling.

More details on how S-ACO [100] and ACO/F-Race [45] work can be found in
Section 3.1.

4.3 Benchmark of PTSP instances

A PTSP instance is characterized by two types of information: distances between each
couple of customers, and probability for each customer of requiring a visit. Since cus-
tomer distances are what characterize instances of the TSP, we have used instances
from the well known TSPLIB benchmark [178] for this type of information. For each
TSP instance, we have then considered different customer probability configurations.
Homogeneous PTSP instances have been generated by simply associating a TSP in-
stance one single probability value, corresponding to all customers probabilities. For
heterogeneous PTSP instances different sets of customer probability values have been
randomly generated according to a probability distribution.

We have considered 8 TSP instances, with n ranging from 100 to 1000, as reported
in Table 4.1. For these instances we have computed Euclidean distances between cus-
tomers, on the base of the customers coordinates provided by the TSPLIB.

Customers probabilities have been generated as follows. For homogeneous PTSP
instances the customer probability has been varied from 0.1 to 0.9 with an increment
of 0.1. For heterogeneous PTSP instances, each customer probability pi, i = 1, 2, . . . , n
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has been generated randomly, according to the ‘beta probability distribution’. We have
chosen this probability distribution because it is defined on the finite interval [0, 1], and
it can easily model different average and variance of customers probability values by
choosing the appropriate parameters. The ‘beta probability distribution’ βa,b(pi) is
defined as follows

βa,b(pi) =
Γ(a+ b)
Γ(a)Γ(b)

pa−1
i (1− pi)b−1, (4.5)

where pi ∈ [0, 1], and a, b > 0 are parameters. The a and b parameters of the ‘beta
probability distribution’ determine the average customer probability p and the variance
σ2 around the average value:

p =
a

a+ b
(4.6)

σ2 =
ab

(a+ b)2(a+ b+ 1)
. (4.7)

In our benchmark we have generated different sets of customer probabilities by varying
the average customer probability p and the variance σ2. In order to have direct control
on these parameters, rather than on a and b, we have used the inverse of Equation (4.6)
and (4.7):

a =
p [p(1− p)− σ2]

σ2
, (4.8)

b =
(1− p) [p(1− p)− σ2]

σ2
. (4.9)

Note that the variance is limited by the relation σ2 < p(1 − p) ≤ 0.25. Similarly
to the homogeneous case, we have considered customer probability sets by varying
p between 0.1 and 0.9, with and increment of 0.1. For every value of p, we have
considered five different values of variance, corresponding respectively to 1/6, 2/6, 3/6,
4/6, and 5/6 of the maximum variance which is p(1 − p). More precisely, we have set
σ2 ∈ {p(1−p)/6, 2p(1−p)/6, 3p(1−p)/6, 4p(1−p)/6, 5p(1−p)/6}. For each probability,
the different σ2 values are also referred to as the 16%, 33%, 50%, 66%, and 83% of the
maximum variance. In the plots that will be presented in the remainder of this thesis,
the variance values will be indicated by percentage. The shape of the corresponding
‘beta probability distributions’ are shown in Figure 4.2.

Summarizing, for each of the 8 TSP instances, we have considered 54 customer
probability configurations, which in total means 432 PTSP instances. Table 4.2 reports
all the considered values of p and σ2, including the ones corresponding to homogeneous
instances (for which σ2 = 0). The naming convention that we use throughout this
thesis is illustrated in Table 4.3.

4.4 Lower bound of the optimal solution value

In evaluating the solution quality of algorithms for the PTSP, one faces the difficulty
that the optimal solution of problems is not know, in general. In fact, unlike the
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Figure 4.2: Shape of the ‘beta probability distributions’ used for generating customers
probabilities in heterogeneous instances of our PTSP benchmark. The legend in the
first plot specifies the type of line used for different values of σ2, and applies to all plots
of the figure.
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p σ2

0.1 0 0.015 0.030 0.045 0.060 0.075
0.2 0 0.027 0.053 0.080 0.107 0.133
0.3 0 0.035 0.070 0.105 0.140 0.175
0.4 0 0.040 0.080 0.120 0.160 0.200
0.5 0 0.042 0.083 0.125 0.167 0.208
0.6 0 0.040 0.080 0.120 0.160 0.200
0.7 0 0.035 0.070 0.105 0.140 0.175
0.8 0 0.027 0.053 0.080 0.107 0.133
0.9 0 0.015 0.030 0.045 0.060 0.075

Table 4.2: Average customer probability p and variance σ2 characterize the 54 customer
probability configurations generated for our PTSP benchmark. Homogeneous PTSP
instances correspond to the column with σ2 = 0. Heterogeneous probability config-
urations have been obtained for each TSP instance of Table 4.1 by using the above
values of p and σ2(6= 0) for computing a and b parameters (Equation (4.8)-(4.9)), and
by generating sets of random customer probabilities according the ‘beta probability
distribution’ (Equation (4.5)).

PTSP instance name TSP instance name n p σ2

kroA100.p10.v16 kroA100 100 0.1 p(1− p)/6 = 0.015
kroA100.p20.v33 kroA100 100 0.2 2p(1− p)/6 = 0.053
kroA100.p10 kroA100 100 0.1 0

Table 4.3: Three examples illustrating the naming convention we use for instances
belonging to our PTSP benchmark, where n is the number of customers, p is the
(average) customers probability, and σ2 is the variance of customers probability.
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TSP, no benchmark of problems exists for which optimal solutions are known. When
possible, a good alternative is to compare the solution quality of an algorithm with
a known lower bound of the optimal solution, which yields to an upper bound of the
distance from the optimal solution. More precisely, suppose that, for a given instance
of an optimization problem, the optimal solution value is E∗, and a lower bound LB
is available, such that, by definition

LB ≤ E∗. (4.10)

If the solution obtained by an algorithm that we want to analyze is E, we can bound
the relative error of the algorithm by the following inequality

E − E∗

E∗ ≤ E − LB
LB

. (4.11)

For the PTSP, we rely on the following lower bound of the optimal tour value E[L(λPTSP )],
proposed by Bertsimas, Howell [27]

z∗ ≤ E[L(λPTSP )] (4.12)

where z∗ is the optimal solution to the (linear) transportation problem

z∗ = min
∑

i,j∈V,i6=j

xi,jd(i, j),

s.t.
∑

i∈V,i6=j

xi,j = pj

1−
∏
k 6=j

qk

 ,

∑
j∈V,j 6=i

xi,j = pi

1−
∏
k 6=i

qk

 ,

xi,j ≥ 0.

(4.13)

The values of the lower bound computed by solving this transportation problem for all
the instances of our PTSP benchmark are shown in Table 4.5.

4.5 Simple constructive heuristics

Given that the solution structure of the PTSP is equal to that of the TSP (a Hamil-
tonian tour), all constructive heuristics for the TSP can also be used to construct
solutions for the PTSP. Of course, we do not expect that such heuristics find near
optimal solutions for the PTSP, mainly because they do not take into account cus-
tomers probabilities in their construction mechanism. Nevertheless, there are at least
two reasons why considering simple TSP constructive heuristics is useful:

• in developing sophisticated algorithms based on metaheuristics and local search
for solving the PTSP, the solution quality provided by simple TSP constructive
heuristics is a sort of minimal requirement for the quality of the more sophisticated
algorithms;
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• when a local search algorithm is available for a problem, it might be the case
that even when applied to quite poor starting solutions such those produced by
simple TSP constructive heuristics evaluated with the PTSP objective function,
the final solution found is very good.

In this thesis, we consider metaheuristics (ACO) and sophisticated local search algo-
rithms for solving the PTSP, therefore the above motivations are very relevant to us.
The algorithms described and analyzed in Chapter 5, 6 and 7 will be often compared
with selected TSP constructive heuristics, namely the Space Filling Curve, the Radial
Sort, the Farthest Insertion, the Nearest Neighbor, and the Random Search heuristic.

The Space Filling Curve heuristic The Space Filling Curve heuristic (SFC) for the
TSP was introduced by Bartholdi and Platzman [13], and the main idea behind it is the
following. Let C = {θ|0 ≤ θ < 1} denote the unit circle, so that θ ∈ C represents a point
on the circle from a fixed reference point. Also let S = {(x, y)|0 ≤ x ≤ 1, 0 ≤ x ≤ 1}
denote the unit square. A continuous mapping ψ from C onto S is known as ‘spacefilling
curve’ [2]. Suppose that ψ is such that limθ→1 ψ(θ) = ψ(0), so that, as θ ranges from
0 to 1, ψ(θ) traces out a tour of all the points in S. Given n points in S to be visited
(like in the TSP and PTSP on the unit square), the idea is to visit them in the same
order as they appear along the spacefilling curve, or, more mathematically, to sort the
customers according to their inverse image under ψ.

In order to be a good heuristic for the TSP, the spacefilling curve ψ must be chosen
in such a way that its inverse function is fast to be computed, and it satisfies some
geometrical properties. Details about SFC are described in [13], where also a BASIC
code of the algorithm is reported. SFC constructs a solution in O(n log n) computation
time.

SFC has been analyzed in [27] in the context of the PTSP, where it is shown that
it is asymptotically very close to the re-optimization strategy, if nodes are uniformly
distributed on the unit square and an Euclidean metric is used for customer distances.
In [27], SFC has been also used as starting solution of two local search algorithms, that
will be compared to our algorithms and described in Chapter 6.

The Radial Sort heuristic Radial Sort (RAD) builds a tour by sorting customers
by angle with respect to the ‘center of mass’ of the customer spatial distribution. More
precisely, the center of mass is a point whose coordinates (xCM, yCM) are computed by
averaging over the customers coordinates:

xCM =
1
n

n∑
i=1

xi, yCM =
1
n

n∑
i=1

yi. (4.14)

The angular position θi of customer i with respect to the center of mass is computed
as follows

θi = arctan
(
xi − xCM

yi − yCM

)
. (4.15)

The tour returned by Radial Sort visits customers in order of increasing angle θi.
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The Farthest Insertion heuristic Farthest Insertion (FI) [125] builds a tour by
starting with a subtour on a small number of nodes, and by extending the subtour by
inserting in the cheapest position the remaining nodes one after the other, choosing
each time the node which is farthest from the subtour.

In our implementation, the starting subtour is made by a single node (the one
labeled by 0), and the node to be selected for insertion at each iteration is the node
which is farthest from the last inserted one.

The Nearest Neighbor heuristic Nearest Neighbor (NN) constructs a tour by
choosing as next customer the nearest, not yet visited customer. Our implementation
of NN constructs n tours starting each with a different customer, and returns the tour
with the smallest expected length, evaluated with the PTSP objective function.

An adapted version of this heuristic which takes into account customers probabilities
has been analyzed in [159]. In [27], it has been shown that NN is very poor on average
for the PTSP with customers uniformly distributed on the unit square and an Euclidean
metric is used for customer distances.

The Random Search heuristic Random Search (RS) is maybe the simplest one.
It builds a solution starting from a random customer, and choosing iteratively as next
customer one at random among the not yet visited ones. In comparing this heuristic
with more sophisticated algorithms, a meaningful choice is to make RS run for the same
computation time as the comparing algorithms.

4.5.1 Experimental analysis

We present here results obtained on the PTSP benchmark by the simple TSP construc-
tive heuristics described above. These results will be also used in the following Sections
of this thesis, as a term of comparisons with our ACO metaheuristics. Experiments
have been run on a machine with two processors Intel(R) Xeon(TM) CPU 1.70 GHz,
running the GNU/Linux Debian 2.4.27 operating system. All algorithms have been
coded in C++ under the same development framework. Each heuristic was allowed a
runtime equal to n2/100 (with n being the number of customers of a PTSP instance).

Table 4.4 reports average results over all the PTSP benchmark. The solution quality
achieved by a heuristic is expressed in terms of percentage of the best value found above
the value of the lower bound (second column of the Table). More precisely, for each
heuristic heur and for each PTSP instance inst, the percentage above the lower bound
has been computed as:

% above LB(inst) =
E[L(λheur,inst)]− LB(inst)

LB(inst)
, (4.16)

where E[L(λheur,inst)] is the expected cost (that is, the PTSP objective value) of the
best solution found by heuristic heur on the PTSP instance inst. The second column of
Table 4.4 shows the average percentage above the lower bound over all PTSP instances,
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heuristic % above LB time (seconds)
FI 90.2% 0.1
SFC 111.1% 0.1
NN 111.6% 35.5
RAD 388.8% 0.1
RS 1228.6% 2712.0

Table 4.4: Average results of the heuristics for the TSP applied to the PTSP benchmark.

while the third column reports the average time required by each heuristic to find the
best solution. Note that comparisons with respect to the lower bound are useful for
having an objective and repeatible way of evaluating an algorithm for the PTSP, but
they do not indicate the amount by which an algorithm really deviates from optimal
solutions. The reason is that we do not know how near is the lower bound to optimal
solutions.

As expected, RS is the worst one, both in terms of solution quality and time. All
the other heuristics were quite fast, with NN being the slowest. The reason why NN
is so slow with respect to other heuristics (except RS), is that in our implementation
of NN we have generated n different solutions considering each time a different start-
ing customer, and all these n solutions have been evaluated with the PTSP objective
function. On the contrary, in the other simple heuristics (except RS), the algorithm
generated just one single solution.
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Chapter 5

Ant Colony Optimization

In our case study on metaheuristics for SCOPs we have chosen to focus on ACO for at
least two reasons. First of all, ACO has been shown to be successful in several difficult
combinatorial optimization problems, and particularly in many routing problems, to
which the PTSP belongs. Second, at the time the research for this thesis started, there
were still no applications of ACO algorithms to SCOPs, and the investigation of ACO
potentiality in solving problems from the SCOP domain was a completely open issue.
In this chapter we propose several ACO algorithms, beginning, in Section 5.1, with one
which is a straightforward extension to the PTSP of an ACO algorithm originally de-
veloped for the TSP. We will show experimentally that this first ACO version exploiting
the exact PTSP objective function already obtains quite good results, outperforming all
the simple heuristics. We will also show that the performance of ACO strongly depends
on the PTSP instance characteristics, and that if the ‘stochasticity’ of an instance is
under a certain level, it is better treating it like a (deterministic) TSP. In Section 5.2 we
investigate some issues related to the use of objective function approximations inside
ACO. As we have seen in the first part of this thesis (Section 2.4), there are two types of
possible approximations: ad hoc and sampling approximations. Here, we will consider
both types of approximations, and analyze for each type different aspects. For ad hoc
approximations, we will see how different precision measures are correlated with the
solution quality of an ACO algorithm, when ACO uses ad hoc approximations. More-
over, we will take advantage of the fact that the PTSP objective function is known
exactly, to measure the effectiveness of using the sampling approximation inside ACO.
A critical overview of the obtained results is done in Section 5.3.

5.1 A straightforward implementation

Because of the structural similarity between the PTSP and the TSP (the solution
structure is the same, only the cost of a solution is different), as a first implementation
of the ACO algorithm for the PTSP, we consider an adaptation to the PTSP of the
ACS algorithm by Dorigo and Gambardella [69], which was successfully applied to the
TSP. We call this algorithm probabilistic ACS, or pACS.

65
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In this section, we describe in detail how pACS and ACS work, and we show some
preliminary experimental evaluation of pACS that also motivates the subsequent inves-
tigations of the following sections.

5.1.1 The pACS algorithm

The main principles of the ACO metaheuristic have been described in Section 3.1.
Here, we focus on one particular ACO algorithm, the pACS, whose pseudocode skele-
ton is shown by Algorithm 8. The procedures Initialization, ConstructAntSolution, and

Algorithm 8 pACS
1: Initialization
2: for iteration k = 1, 2, . . . do
3: Initialize best ant solution λBA

4: for ant a = 1, 2, . . . ,m do
5: ConstructAntSolution [each ant constructs its solution λa]
6: if E[L(λa)] < E[L(λBA)] then
7: set λBA = λa

8: end if
9: end for

10: if E[L(λBA)] < E[L(λBSF )] then
11: set λBSF = λBA

12: end if
13: GlobalPheromoneUpdate
14: end for

GlobalPheromoneUpdate work as follows.
Initialization consists of four operations: the positioning of m ants on their starting

customers, the initialization of the best-so-far-solution λBSF , the computation and
initialization of the heuristic information η, and the initialization of pheromone τ .
Note that η and τ are bidimensional matrices of information, where ηij and τij are the
values of the heuristic information, respectively pheromone, on the arc (i, j) that goes
from customer i to customer j. Initialization is done as follows in pACS: the starting
customer of each ant is chosen randomly; heuristic information is so that ηij = 1/dij ,
where dij is the distance between i and j; pheromone values are set all equal to τ0,
which is computed according to

τ0 =
1

n · E[L(λFI)]
, (5.1)

where E[L(λFI)] is the expected length of the tour constructed by the Farthest Insertion
heuristic (see Section 4.5). As noted in [69], in the denominator of Equation (5.1) any
very rough approximation of the optimal solution value would suffice, therefore, the
expected cost of other heuristics could be used for the initialization of τ0. Observe
that, in this simple pACS version, η is a static information that is computed just once
during the initialization phase.
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ConstructAntSolution is the procedure by which each ant probabilistically builds
a tour by choosing the next customer to move to on the basis of the two types of
information: the pheromone τ and the heuristic information η. When an ant a is on
city i, the next city is chosen as follows.

• With probability q0 (a parameter), a city j that maximizes τij · ηβ
ij is chosen in

the set Ja(i) of the cities not yet visited by ant a. Here, β is a parameter which
determines the relative influence of the heuristic information.

• With probability 1− q0, a city j is chosen randomly with a probability given by

pa(i, j) =


τij ·ηβ

ijP
r∈Ja(i) τir·ηβ

ir

, if j ∈ Ja(i)

0, otherwise.
(5.2)

Hence, with probability q0 the ant chooses the best city according to the pheromone
trail and to the distance between cities, while with probability 1 − q0 it explores the
search space in a biased way.

The procedure ConstructAntSolution also takes care of local pheromone updates,
where each ant, after it has chosen the next city to move to, applies the following local
update rule:

τij ← (1− ρ) · τij + ρ · τ0, (5.3)

where τ0 is the initial pheromone parameter, and ρ, 0 < ρ ≤ 1, is another parameter.
The effect of the local updating rule is to make less desirable an arc which has already
been chosen by an ant, so that the exploration of different tours is favored during one
iteration of the algorithm.

After each ant has built its solution, the best ant solution λBA is updated and
stored (steps 6 to 8 of Algorithm 8) for future comparison with the best-so-far-solution
λBSF (steps 10 to 12 of Algorithm 8). After λBSF has also been updated, the Glob-
alPheromoneUpdate function is applied to modify pheromone on arcs belonging to λBSF

with the following global updating rule

τij ← (1− α) · τij + α ·∆τij , (5.4)

where
∆τij =

1
E[L(λBSF )]

(5.5)

with 0 < α ≤ 1 being the pheromone decay parameter, and E[L(λBSF )] is the expected
cost of the best-so-far solution.

As we have already pointed out, pACS is a straightforward adaptation of the ACS
algorithm originally designed for the TSP [69]. Basically, if in the above description of
pACS (in Equations (5.1) and (5.5), and in steps 6 to 10 of Algorithm 8) we substitute
the expected length of a solution with the length of it, we obtain ACS. Thus, from
the point of view of code, pACS is very similar to ACS. Note, however, that from
the complexity point of view there are more important differences, since the expected
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length of a solution needs O(n2) time to be computed, while the length of a solution only
requires O(n) time. It is useful here to consider in more detail what is the asymptotic
time complexity of each iteration of pACS, as a function of the number of customers n
and of the number of ants m:

t(one iteration of pACS or ACS) = m · t(ConstructAntSolution)
+m · t(computation of the objective value)
+ t(GlobalPheromoneUpdate).

(5.6)

Procedures ConstructAntSolution and GlobalPheromoneUpdate require respectivelyO(n2)
and O(n) time both in pACS and ACS. Thus, we have

t(one iteration of pACS) = 2m ·O(n2) +O(n) = O(n2), (5.7)
t(one iteration of ACS) = m ·O(n2) + (m+ 1)O(n) = O(n2). (5.8)

The asymptotic time complexity is the same in the two algorithms (O(n2)), but the
constant involved are different. In practice, given the same computation time is al-
lowed, pACS will be able to perform far fewer iterations than ACS. These observations
motivate the investigation, done in Section 5.2, of other variants of ACS for solving
the PTSP, where fast approximations of the objective function are used, instead of the
exact one based on the expected length of a solution.

5.1.2 Experimental analysis

5.1.2.1 Computational environment

All the experiments reported in this Section have been run on a machine with two
processors Intel(R) Xeon(TM) CPU 1.70GHz, running the GNU/Linux Debian 2.4.27
operating system. All algorithms have been coded in C++ under the same development
framework.

5.1.2.2 Tuning

The tunable parameters of pACS, as described in the previous section, are

• m, the number of ants;

• q0, the probability that the next customer is chosen deterministically;

• β, the power of heuristic information exponent;

• ρ, the local evaporation factor;

• α, the global evaporation factor.

We have verified empirically that pACS is not very sensitive to parameters m, ρ, and
α, when these have values near the ones suggested by Dorigo and Stützle [72] for
the ACS algorithm applied to the TSP. Thus, according to [72], we set m = 10, and
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random customer probability

β1,1: p = 0.5, σ2=0.08
β0.5,0.5: p = 0.5, σ2=0.13
β1.5,3: p = 0.33, σ2=0.04
β3,1.5: p = 0.67, σ2=0.04

Figure 5.1: Probability distributions used for randomly generating heterogeneous cus-
tomer probabilities in the tuning PTSP instances.

ρ = α = 0.1. Tuning of parameters q0 and β was done considering, respectively, three
and four different values as reported in Table 5.1. This results in twelve different pACS
programs to be run on a set of tuning PTSP instances.

q0 0.95 0.98 1
β 1 2 3 4

Table 5.1: Values of q0 and β parameters considered for the tuning of pACS.

The set of tuning PTSP instances has been constructed in the following way. Cus-
tomers coordinates are from two instances of the TSPLIB [178], namely eil51.tsp and
pcb442.tsp, with, respectively 51 and 442 customers. Customers probabilities have
been generated according to different probability configurations, both homogeneous
and heterogeneous. Homogeneous probabilities p belong to the set {0.25; 0.5; 0.75}.
Heterogeneous probabilities have been generated according to the ‘beta probability
distribution’ (Equation (4.5)), with four couples of a and b parameters, corresponding
to the four different probability distributions plotted in Figure 5.1. The customers
probability configurations considered for each of the two TSP instances of the tuning
set are summarized in Table 5.2. Note that these tuning instances do not belong to the
PTSP benchmark described in Section 4.3.

The pACS algorithm was run for n2/100 CPU seconds on each tuning instance,
and a summary of the results is reported by Figure 5.2. The best choice appears to
be q0 = 0.95 and β = 3. A summary of the parameter set used for the experimental
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Probability distribution p σ2

δ(p) 0.25 0
δ(p) 0.5 0
δ(p) 0.75 0
β0.5,0.5(·) 0.5 0.13
β1,1(·) 0.5 0.08
β1.5,3(·) 0.33 0.04
β3,1.5(·) 0.67 0.04

Table 5.2: Average customers probability p and variance σ2 characterize the 12 cus-
tomers probability configurations generated for the PTSP tuning set of pACS. The first
three rows correspond to homogeneous PTSP instances, and the last four to heteroge-
neous PTSP instances. The probability distribution βa,b(·) is described by Equation
(4.5) in Section 4.3

.

m q0 β ρ α

10 0.95 3 0.1 0.1

Table 5.3: Parameter set of pACS chosen after tuning.

evaluation of pACS is reported in Table 5.3.

5.1.2.3 Results

The first requirement for a metaheuristic such as pACS is that it performs better than
other simple heuristics (otherwise there would be no point in developing a metaheuris-
tic). This requirement is satisfied by pACS, as it is clear from a comparison with simple
heuristics of the average results over all the PTSP benchmark in Table 5.4. The simple
heuristics find results that are on average more than 90% above the optimal solution
lower bound (LB) (as computed in Section 4.4), while pACS is on average just 81.2%
above LB. However, the time required by pACS for achieving its performance is much
higher than other heuristics (except for RS (Random Search)). This is quite obvious,
since pACS generates a very high number of solutions in its iterations, until the avail-
able run time is over, while the other simple heuristics (except for RS) generate at most
n solutions, and then stop.

The performance of pACS with respect to the lower bound of optimal PTSP so-
lutions is graphically shown in Figure 5.3, where the relative difference of the best
found solution of pACS is plotted as a function of three different parameters charac-
terizing PTSP instances, namely average customers probability, customers probability
variance, and number of customers. We remark that comparisons with respect to the
lower bound are useful for having an objective and repeatible way of evaluating an
algorithm for the PTSP, but they do not indicate the amount by which an algorithm
really deviates from optimal solutions. The reason is that we do not know how near is



5.1. A STRAIGHTFORWARD IMPLEMENTATION 71

●

●

●

●

tuning pACS

value of the β parameter in pACS

be
st

 (
av

er
ag

e)

1 2 3 4 1 2 3 4 1 2 3 4

22
00

0
24

00
0

26
00

0
28

00
0

●

●
●

●

●

●

q = 0.95
q = 0.98
q = 1

Figure 5.2: Tuning results of pACS obtained by varying q0 and β parameters. The best
choice appears to be q0 = 0.95 and β = 3.

algorithm % above LB time (seconds)
pACS 81.2% 2453.7
FI 90.2% 0.1
SFC 111.6% 0.1
NN 111.1% 35.5
RAD 388.8% 0.1
RS 1228.6% 2712.0

Table 5.4: Aggregated results showing average values over all instances of the PTSP
benchmark.
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Figure 5.3: Relative distance of the best result found by pACS from the lower bound of
the optimal PTSP solution (LB). On the horizontal axis there is, respectively, average
customers probability (left), variance of the customers probability (center), number
of customers (right). Variance values correspond to the percentage of the maximum
variance in the ‘beta probability distribution’ used to generate random customers prob-
abilities, as explained in Section 4.3.

the lower bound to optimal solutions. For example, Figure 5.3 shows that the average
distance from the lower bound is bigger for smaller customers probability, but this does
not necessarly mean that pACS finds poorer solutions when customers probability is
small, in fact, it could be also the case that, for this type of PTSP instances, the lower
bound underestimates the optimal solutions more than for instances characterized by
high customers probability.

There is a third type of comparison which is of great importance for evaluating
the usefulness of a metaheuristic for the PTSP in general, and of pACS in particular.
This is the comparison with the solution quality of optimal TSP solutions evaluated
by the PTSP objective function. If the performance of an algorithm developed on
purpose for the PTSP is not superior to that of optimal TSP solutions, there would
be no point in developing such algorithm. This type of comparison is particularly
important here because the TSP is one of the most well known problems in the field
of operations research, and very powerful, freely available, algorithms exist for solving
to the optimum even very big instances of the TSP. In this thesis, we have used the
Concorde software [63] for finding the optimal solution of the TSP instances from which
our PTSP benchmark has been generated (see Section 4.3). A boxplot of the ranks
of our algorithms including the optimal TSP solutions, is shown in Figure 5.4. The
meaning of the vertical line joining two algorithms on the left of the plot is the following:
according to the Friedman two-way analysis of variance by ranks [64], the difference
between the two algorithms is not statistically significant at a confidence level of 95%.
Thus, if two algorithms are not linked by the vertical line, their difference is statistically
significant. The figure shows that pACS is indeed better than optimal TSP solutions.

It is now interesting to see how the relative gain of pACS with respect to optimal
TSP solutions varies by varying different instance characteristics. This is shown by
Figure 5.5. The figure reveals at least two important facts. First, the performance of
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Figure 5.4: Boxplot of the distribution of ranks of pACS, TSP (the optimal solution of
the TSP corresponding to the PTSP), and simple heuristics described in Section 4.5.
The vertical line on the left of the plot which joins NN and SFC means that these two
algorithms are not significantly different at a confidence level of 95%, according to the
Friedman two-way analysis of variance by ranks [64]. The interpretation of a box is the
following: the solid line inside the box is the median rank, the limits of the box are the
lower and upper quartile, the ‘whiskers’ are the smallest and largest values (outliers
excepted), and the circles are the outliers.
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Figure 5.6: Critical probability below which pACS finds solutions whose quality is
better than the quality of the optimal TSP solution. Circles correspond to the average
critical probability, and the length of error bars equals its standard deviation.

pACS is very different for different average customers probability. In particular, there
is a critical probability (circa 0.5), under which it is really worth solving PTSP instances
by pACS, while above the critical probability the problem can be better treated like a
TSP. Second, the variance of customers probability has also a great influence on pACS
performance, since, the higher the variance, the more important is the gain of pACS
with respect to the optimal TSP solution. Also the number-of-customers factor, shown
in the right part of Figure 5.5, seems to influence the performance of pACS, which
performs better for smaller number of customers.

It can be useful to have a closer look at the critical probability at which the pACS
ceases to find better solutions than the optimal TSP. In Figure 5.6, we have plotted the
critical probability by varying the number of customers and the variance of customers
probability. It seems that the critical probability goes from a maximum of about 0.8 for
instances with a small number of customers to a minimum of about 0.3 for big instances,
independently of the variance of customers probability. Detailed results obtained by
pACS are shown in Table A.1 in Appendix A.
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5.2 The use of objective function approximations in ACO

5.2.1 Motivation

As we have seen, the objective function of the PTSP is computationally expensive, since
it needs to consider all the O(n2) arcs joining couples of customers. For this reason, it
is worth investigating the design of fast approximations of the objective function, to be
used in optimization algorithms and in ACO in particular, for speeding up, and thus
possibly improving, the optimization process.

In this section we present and analyze three types of objective function approxi-
mations and three corresponding variations of the pACS algorithm. The first approx-
imation consists in using the TSP objective function instead of the PTSP one, that
is, in using the length instead of the expected length of an a priori tour. We call this
type of approximation TSP approximation. The second approximation is based on the
observation that, for a given a priori solution, some edges have a very small probability
of being actually travelled, and therefore they may be neglected. We call this type of
approximation Depth approximation (this naming convention will become clear later
in this chapter). These first two approximations belong to the class of ad hoc approx-
imations, as described in Section 2.4.1. The third type of approximation corresponds
to the Sampling approximation introduced in Section 2.4.2, and consists in computing
the sample average (Equation (2.13)) of an a priori tour.

There are several questions of interest, when studying the use of objective function
approximations inside an ACO algorithm, such as, for example: verifying whether a
fast approximation allows the algorithm to find better solutions than using the ex-
act objective; investigating the effectiveness of different ways of alternating the use of
approximated and exact objective; investigating how the tuned parameters of the al-
gorithm change, when using objective function approximations, what measure is more
appropriate to guess the effectiveness of an approximation (error, absolute error, corre-
lation with the exact objective, speed, others?). Some of these questions have already
been addressed in the context of the PTSP, and it is thus uninteresting to address them
again here. In particular, Branke and Guntsch [51, 52] propose the Depth approxima-
tion and investigate its effectiveness inside ACO. They show that this approximation
accelerates convergence without significantly worsening the solution quality. Gutjahr
[100] briefly addresses the PTSP as a pre-test for verifying the performance of S-ACO,
an algorithm that uses the Sampling approximation with a variable number of samples
for estimating the objective function. In [100], S-ACO has been only tested on very
small PTSP instances, since the goal was then to apply it to a problem where there
is not a closed-form expression for the objective, and estimation by simulation is the
only alternative. Here, the questions we want to address by considering the two ad hoc
approximations (TSP- and Depth approximations) and the Sampling approximation
are the following:

1. by means of the TSP- and Depth approximations, we want to see which ‘precision’
measure of the ad hoc approximation is more appropriate to guess the effectiveness
of an approximation, or, in other terms, we want to see which precision measure
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is more strongly correlated with the solution quality of an ACO algorithm, when
ACO uses these ad hoc approximations;

2. we want to verify the quality achieved by an ACO algorithm based on the Sam-
pling approximation.

The usefulness of answering the first question is that, when facing a different SCOP
than the PTSP, one may be in a situation where several ad hoc approximations can be
used, and the implementation and test of each of them inside ACO in order to find the
best one could be a very time consuming task. Thus, some criteria to select a small
set of promising ad hoc approximations before their actual implementation inside an
ACO, can be useful to save a lot of time.

The interest in the second question is specific to the type of approximation. In
fact, the Sampling approximation is a very general type of approximation, that can be
used in any SCOP, especially when a closed-form expression for the objective function is
missing. In these situations though, it is difficult to evaluate the true performance of the
algorithm, precisely because an exact, closed-form expression for the objective function
is missing. Therefore, the PTSP gives a good occasion to evaluate the performance of
sampling-based algorithm. In a certain sense, our goal is to extend the investigation of
[100], which was limited to very few small PTSP instances.

The remainder of this section is organized as follows. The TSP-, Depth-, and
Sampling approximations are described, together with their integration into pACS,
respectively in Section 5.2.2, 5.2.3, and 5.2.4. In section 5.2.5 we answer by experimental
investigation to the two questions described above.

5.2.2 The pACS-T algorithm based on the TSP approximation

5.2.2.1 The TSP approximation

The TSP approximation consists in using the length of an a priori tour instead of its
expected length. Thus, given an a priori tour λ, the TSP approximation is based in
the computation of

L(λ) =
n∑

i=1

d (λ(i), λ(i+ 1)) + d (λ(n), λ(1)) . (5.9)

This approximation can be computed in just O(n) computation time, which is much
faster than the O(n2) computation time of the PTSP objective function. Nevertheless,
it is not very accurate, since it does not consider the customers probability. The
TSP approximation is particularly inaccurate for PTSP instances with low customers
probabilities, but it is quite precise for instances with customers probabilities near 1.

5.2.2.2 The pACS-T algorithm

The pACS-T algorithm (Algorithm 9), is essentially equivalent to the ACS algorithm
for the TSP [69], since it exploits for the search of solutions exclusively the length
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of a solution (the TSP objective function), instead of the expected length (the PTSP
objective function). Differences with respect to pACS are in steps 6 to 13, and 15
of Algorithm 9. Best-ant and best-so-far solutions are updated on the base of their
length, and global pheromone update is done with the same rule as in pACS (Equation
(5.4)), but with a different quantity of reinforce pheromone (here, ∆τij = L(λBSF )−1,
while in pACS ∆τij = E[L(λBSF )]−1). In order to evaluate the final solution quality of
pACS-T, the exact expected cost is computed just once at the end for evaluating the
best-so-far-solution λBSF .

The Initialization procedure is the same as in pACS. In particular, the initial level
of pheromone is computed based on the exact expected cost of the Farthest Insertion
solution according to Equation (5.1). Also the ConstructAntSolution procedure is the
same as in pACS, since it exploits pheromone and heuristic information in the same
way. Note, however, that pheromone levels here will evolve differently than in pACS,
due to the different amount of pheromone deposited, and due to the fact that λBSF

solutions here are different than λBSF solutions in pACS.

Algorithm 9 pACS-T
1: Initialization
2: for iteration k = 1, 2, . . . do
3: Initialize best ant solution λBA

4: for ant a = 1, 2, . . . ,m do
5: ConstructAntSolution [each ant constructs its solution λa]
6: if L(λa) < L(λBA) then
7: set λBA = λa

8: end if
9: end for

10: if L(λBA) < L(λBSF ) then
11: set λBSF = λBA

12: end if
13: GlobalPheromoneUpdate [using ∆τij = L(λBSF )−1]
14: end for
15: Compute E[L(λBSF )]

5.2.3 The pACS-D algorithm based on the Depth approximation

5.2.3.1 The Depth approximation

We say that an edge eij has depth θ ∈ {0, 1, . . . , n− 2} with respect to a given a priori
tour λ if there are exactly θ cities on the tour between i and j. A high depth θ for
an edge implies a small probability for the edge to be actually part of a realized tour,
since this would mean that a large number θ of consecutive customers do not require a
visit. Therefore, edges with higher depth should impact less on the objective value of
an a priori tour. Let us now be more precise.
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Given an a priori tour λ and depth values θ = 0, 1, ..., n− 2, the edges of the PTSP
instance under consideration may be grouped in sets λ(θ), each set containing edges of
the same depth. Note that the edge set λ(θ) contains a number of subtours (that is,
tours which visit a subset of the customers) equal to gcd(n, θ + 1)1. For instance, the
set λ(0) contains exactly the edges of the a priori tour. In general, however, it may
be the case that the subtours formed in such a way can never be realized under the
a priori strategy. As an example of edge partition according to the depth, Figure 5.7
shows, from left to right, an a priori tour λ (which coincides with the set of edges λ(0)),
λ(1) and λ(2) for a PTSP with 8 customers. Note that λ(1) contains two subtours which
could be actually realized under the a priori strategy, but λ(2) contains one single tour
that visits all customers, and therefore cannot be realized under the a priori strategy
(since, if all customers are to be visited, then they are visited according to the a priori
tour λ).

Given the partition of edges according to their depth θ = 0, 1, 2, ..., n− 2, the exact
PTSP objective function may be written as a sum of terms of increasing depth:

E[L(λ)] =
n−2∑
θ=0

 n∑
j=1

d(λ(j), λ(j + θ + 1)) · pλ(j)pλ(j+θ+1)

j+θ∏
j+1

qλ

 , (5.10)

where λ = (λ(1), λ(2), ..., λ(n)) is the a priori tour. In the homogeneous PTSP, where
pi = p for all customers i ∈ V , Equation (5.10) may be written as

E[L(λ)] =
n−2∑
θ=0

L(λ(θ))p2(1− p)θ (5.11)

where L(λ(θ)) ≡
∑n

j=1 d(j, (j + 1 + θ)). The L(λ(θ))’s have the combinatorial inter-
pretation of being the sum of the lengths of the collection of subtours in λ(θ). It is
now easy to see how the probability of an edge of depth θ to be used decreases with θ.
In the homogeneous PTSP (Equation (5.11)) this probability is p2(1− p)θ, and in the
heterogeneous PTSP (Equation (5.10)) it also involves a product over θ+2 probability
coefficients. Therefore, the probability of an edge of depth θ to be used (and therefore
the weight of such and edge in the objective value) decreases exponentially with θ. The
idea, in Depth approximation, is to stop the evaluation of the objective function after
a fixed depth has been reached. We define

EDθ
[L(λ)] =

θ∑
r=0

 n∑
j=1

d(λ(j), λ(j + r + 1)) · pλ(j)pλ(j+r+1)

j+r∏
j+1

qλ

 , (5.12)

and for the homogeneous PTSP this simplifies to

EDθ
[L(λ)] =

θ∑
r=0

L(λ(r))p2(1− p)r. (5.13)

1The term ‘gcd’ stays for ‘greatest common divisor’.
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λ(1) λ(2)(0)
λ = λ

Figure 5.7: Edges grouped in sets according to their depth θ. The picture shows the
sets with λ(θ) with θ = 0, 1, 2. Note that λ(0) corresponds to the set of edges forming
the a priori tour.

The time complexity of Depth approximation is O(θn), therefore, the smallest the θ, the
bigger the time gain of Depth approximation with respect to the O(n2) exact objective
function. Nevertheless, the smallest the θ, the bigger is the difference, or error, between
approximated and exact computation.

5.2.3.2 The pACS-D algorithm

The algorithm pACS is modified in a straightforward manner in order to obtain pACS-
D, an algorithm that exploits the Depth approximation for the evaluation of the quality
of solutions. The pseudocode of pACS-D is shown in Algorithm 10. The Initialization
procedure performs the same tasks as in pACS, but also sets the depth of the ap-
proximation to be used for the computation of EDθ

. Differences between pACS-D
and pACS are in steps 6 to 13 of Algorithm 10. Best-ant and best-so-far solutions
are updated on the base of their Depth approximation expected values, and global
pheromone update is done with the same rule as in pACS (Equation (5.4)), but with
a different quantity of reinforce pheromone (here, ∆τij = EDθ

[L(λBSF )]−1, while in
pACS ∆τij = E[L(λBSF )]−1). In order to evaluate the final solution quality of pACS-
D, the exact expected cost is computed just once at the end (step 15 of Algorithm 10)
for evaluating the best-so-far-solution λBSF .

5.2.4 The pACS-S algorithm based on the Sampling approximation

5.2.4.1 The Sampling approximation

The Sampling approximation is based on the observation that the PTSP objective
function computes an expected value of a random quantity, and therefore it may be
estimated by a sample average of the type of Equation (2.13) introduced in Section
2.4.2. More precisely, given an a priori tour λ, the objective function may be written
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Algorithm 10 pACS-D
1: Initialization [like in pACS, plus setting of the depth of approximation θ]
2: for iteration k = 1, 2, . . . do
3: Initialize best ant solution λBA

4: for ant a = 1, 2, . . . ,m do
5: ConstructAntSolution [each ant constructs its solution λa]
6: if EDθ

[L(λa)] < EDθ
[L(λBA)] then

7: set λBA = λa

8: end if
9: end for

10: if EDθ
[L(λBA)] < EDθ

[L(λBSF )] then
11: set λBSF = λBA

12: end if
13: GlobalPheromoneUpdate [using ∆τij = (EDθ

[L(λBSF )])−1]
14: end for
15: Compute E[L(λBSF )]

as
E[L(λ)] =

∑
ω⊆V

p(ω)L(λ|ω). (5.14)

In the above expression, ω is a subset of the set of customers V , L(λ|ω) is the length
of the tour λ, pruned in such a way as to only visit the customers in omega, skipping
the others, and p(ω) is the probability for the subset of customers ω to require a visit:

p(ω) =
∏
i∈ω

pi

∏
i∈V \ω

qi. (5.15)

The objective function, as expressed by Equation (5.14), computes the expected length
of the tour λ, over all possible random subsets of customers.

The idea, in Sampling approximation, is to estimate the exact expected cost (5.14)
through sampling in the following way. The length L(λ) is a discrete random variable,
taking the value L(λ|ω) with probability p(ω). Let ωi, i ∈ 1, 3, ..., N be subsets of
the original set V of n customers sampled independently with probability p(ωi). The
Sampling approximation to E[L(λ)] is the following

ESN
[L(λ)] =

1
N

N∑
i=1

L(λ|ωi
). (5.16)

The time complexity of Sampling approximation is O(Nn), therefore, the smaller the
sample size N , the bigger the time gain of Sampling approximation with respect to the
O(n2) exact objective function. Nevertheless, the smaller N , the bigger the difference,
or error, between approximated and exact computation.
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Some indication of how the error decreases by increasing the sample size N is
given by a fundamental result of probability theory, the so called Strong Law of Large
Numbers [95], whose statement is as follows.

Theorem 1 (Strong Low of Large Numbers) Given an infinite sequence X1, X2,
X3, . . ., of independent and identically distributed random variables with common ex-
pected value µ and finite variance σ2, then the sample average

XN =
1
N

(X1 +X2 +X3 + . . .+XN ) (5.17)

satisfies

P

(
lim

N→∞
XN = µ

)
= 1 (5.18)

that is, the sample average converges almost surely to µ.

This theorem guarantees that, for any λ, EN [L(λ)] converges to E[L(λ)] with proba-
bility 1 for N → ∞. The ‘speed’ of convergence of the sample average to the exact
expected value may be estimated by evaluating the variance of the sample average.
Under the hypotheses of Theorem 1, the variance of the sample average is

Var(XN ) =
1
n2

Var(X1 +X2 +X3 + . . .+XN )

=
1
N2

(Var(X1) + Var(X2) + Var(X3) + . . .+ Var(XN ))

=
1
N2

N Var(X1) =
σ2

N
,

(5.19)

Thus, the standard deviation of the sample average is equal to σ/
√
N (with σ being

the standard deviation of the random variables X1, X2, X3, . . .). In the context of the
PTSP one could say that the error of the Sampling approximation roughly goes as
O(1/

√
N).

5.2.4.2 The pACS-S algorithm

In the first part of this thesis, in Section 3.1, we have considered a few papers that
focused on ACO algorithms for SCOPs where the objective function is estimated by
sampling. One of the main conclusions that these first papers achieve is that, when
Sampling approximation is used, the number of samples should be chosen dynamically
during the run of the algorithm, and in particular the number of samples should increase
during the run. Thus, we have also considered a variable-sample algorithm, pACS-S,
whose pseudocode is shown in Algorithm 11. The number of samples N is a variable
which is linear in the iteration counter k, and quadratic in the number of customers n,
similarly to what has been done by Gutjahr in [100]. More precisely, N is computed
according to the following rule

N = c+ bb · n2 · kc, (5.20)
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where c and b are two parameters. In pACS-S, after each solution has been constructed,
it is evaluated by the Sampling approximation with a freshly generated set of samples
(step 8 of Algorithm 11). The same set of samples is used to re-evaluate the best-ant
solution λBA. After the ants construction phase is over, at each iteration a new set
of samples is generated, in order to update the best-so-far solution λBSF (step 13 to
17 of Algorithm 11). Finally, similarly to what is done in pACS-T and pACS-D, the
final best-so-far solution is evaluated once with the exact objective function (step 20 of
Algorithm 11).

Algorithm 11 pACS-S with variable number of samples
1: Initialization [like in pACS]
2: for iteration k = 1, 2, . . . do
3: Initialize best ant solution λBA

4: Set N = NumberOfSamples(k) [apply Equation (5.20)]
5: for ant a = 1, 2, . . . ,m do
6: ConstructAntSolution [each ant constructs its solution λa]
7: GenerateSamples(N)
8: Compute ESN

[L(λa)] and re-compute ESN
[L(λBA)] using the last generated

samples
9: if ESN

[L(λa)] < ESN
[L(λBA)] then

10: set λBA = λa

11: end if
12: end for
13: GenerateSamples(N)
14: Re-compute ESN

[L(λBA)] and ESN
[L(λBSF )] using the last generated samples

15: if ESN
[L(λBA)] < ESN

[L(λBSF )] then
16: set λBSF = λBA

17: end if
18: GlobalPheromoneUpdate [using ∆τij = (ESN

[L(λBSF )])−1]
19: end for
20: Compute E[L(λBSF )]

5.2.5 Experimental analysis

5.2.5.1 Tuning

For pACS-T and pACS-D, the same parameters of pACS have been adopted (see Table
5.3 and Section 5.1.2.2), namely q0 = 0.95, β = 3, m = 10, ρ = α = 0.1.

For pACS-S, we have considered two settings, one where the number of samples N
is kept fixed through all the iterations, and a second one where a variable number of
samples is used. In this case, N is increased at each iteration of the algorithm, according
to Equation (5.20), where c and b are two parameters to be tuned. Even if we were
interested in only evaluating the performance of pACS-S with a variable number of
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samples, we decided to execute tuning also in the fixed number of samples setting,
in order to have an idea of the difference between the two. Table 5.5 summarizes
the parameter values tested for tuning pACS-S. A total of 432 parameter sets has
been considered. For each parameter set, pACS-S has been run on a set of 14 tuning

q0 0.95 0.98 1
β 1 2 3 4
N (fixed) 2 10 50 200
c (N variable) 1 10 50
b (N variable) 10−3 10−4 10−5

Table 5.5: Parameter values considered for tuning pACS-S.

instances (the same used for pACS, as described in Section 5.1.2.2). The parameter set
which corresponds to the lowest average best-found-solution-value by pACS-S is a fixed
number of samples setting, with β and q0 equal to the best pACS parameters (that is,
β = 3 and q0 = 0.95), and with N = 50. In the variable number of samples setting,
the best parameters are c = 1, b = 10−5, and again β = 3 and q0 = 0.95. This is the
parameter set that has been selected for executing pACS-S on the PTSP benchmark.

5.2.5.2 Results

As we anticipated in Section 5.2.1, the first issue that we address here experimentally is
which ‘precision’ measure of an ad hoc approximation (TSP and Depth approximation)
is more strongly correlated with the solution quality of an ACO based on the ad hoc
approximation. We consider two precision measures: the linear correlation between
the approximation and the exact objective function, and the absolute error of the
approximation. In order to compute these two precision measures, we have slightly
modified the code of pACS-T and pACS-D, by computing also the exact PTSP objective
value each time that a new best-so-far solution is encountered. In practice, we added the
instruction ‘Compute E[L(λBSF )]’ in the if statement starting at line 10 of Algorithm 9
and Algorithm 10. After running pACS-T or pACS-D, the linear correlation r between
the ad hoc approximation Eproxy (with proxy equal to T or to Dθ) and the exact
objective E has been computed as follows:

r =

∑
λBSF

(
Eproxy[L(λBSF )]− Eproxy

) (
E[L(λBSF )]− E

)√∑
λBSF

(
Eproxy[L(λBSF )]− Eproxy

)2 ∑
λBSF

(
E[L(λBSF )]− E

)2
, (5.21)

where sums are done over all encountered best-so-far solutions, and Eproxy and E are,
respectively, the average approximated value and average exact objective value over
all the encountered best-so-far solutions. The other precision measure is the average
absolute error ε, which is computed as follows

ε =
1

nBSF

∑
λBSF

|Eproxy[(λBSF )]− E[(λBSF )]| , (5.22)
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Figure 5.8: Average solution quality versus, respectively, the correlation r between
exact and approximated objective function (left), and the absolute error ε of the ap-
proximated objective function.

where nBSF is the number of best-so-far solutions encountered by the algorithm (pACS-
T or pACS-D). In order to evaluate which measure between r and ε is better correlated
with the solution quality of pACS-T and pACS-D, we have run once each algorithm
on all the instances of the PTSP benchmark. The run time of the algorithms has
been set equal to twice the time given to pACS, in order not to penalize pACS-T
and pACS-D due to the fact that each new best-so-far solution is evaluated twice
(once with the approximated objective, and once with the exact objective). For the
Depth approximation, we have considered depth values equal to 15, 30, 45, 60, and
75. For each depth value, a different run of pACS-D has been performed. In order to
see whether r or ε is better correlated with the average solution quality of our ACO
algorithms, we have produced scatterplots of the average solution quality versus the
precision measure as shown in Figure 5.8. From the plots, it is clear that the absolute
error (ε) is more strongly correlated with the solution quality than the linear correlation
(r). In particular, the TSP approximation (denoted by L in the Figure) has a very high
linear correlation with the exact objective, but the average solution quality of pACS-T
is very low. The justification of this fact is that the TSP approximation has the highest
absolute error, as shown in the right scatterplot of Figure 5.8. We think that this
result is reasonable, but not obvious. In fact, even if the TSP approximation is quite
imprecise, it is also very fast, and much faster than the Depth approximation. Thus,
pACS-T can perform many more iterations than pACS-D, and has more time to select
good solutions. It seems, though, that the precision of the objective function is more
important than the guidance due to the ACO intensification mechanism based on the
use of pheromone.

Let us now analyze our second issue of interest as described in Section 5.2.1, that
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Figure 5.9: Ranking of algorithms on the PTSP benchmark. According to the Friedman
two-way analysis of variance by ranks [64], the algorithms have statistically significant
different ranks, at a confidence level of 95%.

algorithm % above LB time (seconds)
pACS 81.2% 2453.7
pACS-S 83.7% 2367.6
FI 90.2% 0.1
NN 111.6% 35.5
SFC 111.1% 0.1
RAD 388.8% 0.1
RS 1228.6% 2712.0

Table 5.6: Average results of pACS-S compared to other heuristics over all the PTSP
benchmark.

is, the quality achieved by pACS-S, which never uses the exact objective function, but
is completely based on the Sampling approximation. The ranking of pACS-S with
respect to pACS and to other simple heuristics is reported in Figure 5.9, while average
deviations from the lower bound are reported in Table 5.6. Interestingly, pACS-S
achieves a quite good performance, being better than all simple heuristics, and being
worse than pACS of roughly 2%. As we have learned from the experimental analysis
of pACS in Section 5.1.2.3, it is important to see how the solution quality varies for
different PTSP instance parameters, particularly the average customers probability and
the variance of the customers probability. The quality of pACS-S with respect to the
optimal TSP solution, by varying the PTSP instance parameters, is shown in Figure
5.10. For comparison purposes, also the results of pACS are reported in the Figure. We
can observe that pACS-S has a behavior which is very similar to that of pACS, only
being shifted above of roughly 2%. Detailed results of pACS-S on the PTSP instances
with average probability smaller than or equal to 0.5 are reported by Table A.2 in
Appendix A.
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Figure 5.10: Relative gain of pACS-S and pACS over the optimal TSP solution, versus,
respectively, average customers probability (left), and variance of the customers prob-
ability (right). Points are averages computed over the the complete PTSP benchmark
(left) and over subset of PTSP instances with customers probability smaller than or
equal to 0.5 (right). The length of error bars corresponds to the standard deviation of
the gain.

5.3 Overview of the results

The following are the most important facts observed thanks to the experimental anal-
yses of this section.

• Our straightforward ACO implementation of pACS obtains on average results
that are roughly 10% better than the best of the simple heuristics (which is FI
(Farthest Insertion)). This is a confirmation that what we can consider a minimal
requirement for a metaheuristic is satisfied by ACO.

• When evaluating the performance of an algorithm for the PTSP, it is very im-
portant to consider the factors related to the degree of stochasticity of a PTSP
instance, since the performance can vary a lot for different degrees of stochastic-
ity. In our benchmark these factors are the average customers probability and
the variance of the customers probability.

• pACS, as compared to the expected value of the optimal solution of the TSP,
can be qualified indeed very differently, depending on the value of the average
customers probability, and of the variance of it. In particular, there is a critical
probability, under which PTSP instances are really worth solving by pACS, while
above the critical probability the problem can be better treated like a TSP. The
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average critical probability is 0.5, but in general, the higher the number of cus-
tomers, the lower the critical probability. Moreover, the higher the variance of
customers probability, the more important is the gain of pACS with respect to
the optimal TSP solution. Where pACS is most effective, it finds results that are
on average 8% better than the optimal TSP solution.

• In considering two ad hoc approximations for the PTSP objective function, we
have seen that the absolute error of the approximation is strongly correlated with
the performance of the pACS algorithm based on the ad hoc approximation. The
same is not true for the linear correlation between the ad hoc approximation and
the exact objective: an ad hoc approximation (in this case, the TSP approxima-
tion) can be strongly correlated with the exact objective, but its use inside pACS
can be degrading. This fact has important consequences, since, when designing ad
hoc approximations for a SCOP, one could be tempted to choose one which from
preliminary experiments seems well correlated with the exact objective function.
But this choice could be, as we have seen, quite bad.

• When solving a SCOP by means of a sampling-based ACO such as our implemen-
tation of pACS-S, it is very likely that its performance satisfies at least the min-
imal requirement of being better than simple heuristics solving a related DCOP.
This is, at least, what we observe for the PTSP.

• In our problem, pACS-S found results constantly worse than pACS of roughly
2%, but the qualitative behavior with respect to factors determining the stochas-
ticity of PTSP instances is the same as the pACS algorithm based on the exact
objective.
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Chapter 6

Local search

This chapter explores the situations that may arise when designing a local search al-
gorithm for a SCOP that, as we have seen in the first part of this thesis, usually has a
computationally expensive objective function. The different possibilities that one has
in dealing with the complexity of the objective function are analyzed in Section 6.1.
Section 6.2 introduces two local search operators, the 2-p-opt and the 1-shift, that are
the focus of the next sections. Sections 6.3, 6.4 and 6.5 develop different strategies
to deal with the complexity of the objective function and apply them to the 2-p-opt
and 1-shift local search operators. Finally, Section 6.6 summarizes the most important
contributions of this chapter.

6.1 The issue of complexity and three options to deal with
it

The efficiency of a local search algorithm depends on several factors, such as the starting
solution, the neighborhood structure, and the speed of exploration of the neighborhood.
In particular, the speed of exploration of the neighborhood depends on the time required
for computing the difference of the objective value between couples of neighboring
solutions (such difference is also referred to as ‘move cost’).

As we have pointed out in the first part of this thesis, the objective function of
SCOPs is computationally demanding, and the PTSP is no exception, since it requires
O(n2) computation time. This can be a serious issue when designing local search
algorithms for SCOPs, because it may imply the impossibility of a fast exploration of
any neighborhood.

In general there are three possibilities when designing a local search algorithm for
a SCOP:

1. Computing the move cost by means of the exact full computation of the difference
in the objective value of couples of solutions;

2. Computing the exact move cost more efficiently, by exploiting some particular
neighborhood and exploration strategy, that allows recursive computations;
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3. Computing an approximated move cost efficiently, by means of fast approximated
expressions for the difference in the objective value of couples of solutions;

Option 1 is the easiest to realize, because it can be used for any neighborhood structure,
and it does not require any particular search strategy, given that the objective function
is explicitly available, like in the PTSP. The problem is of course that it can be very
inefficient, due to the computational complexity of the objective function. We will show
the impracticality of this approach for the PTSP in Section 6.3.

Option 2, when possible, is in principle the best one. The main problem with this
alternative is that it can be very difficult to find a neighborhood structure that allows
for a recursive exact computation of the move cost and, given the SCOP, there is no way
a priori to say if such a neighborhood even exists. Fortunately, for the PTSP we have
been able to find, for two local search operators (the 2-p-opt and the 1-shift) fast and
exact recursive move cost computation expressions. The two operators are described
in Section 6.2, and their recursive move cost evaluation is derived in Section 6.4.

Option 3 can be a valid alternative to Option 1, when the move cost approximation
is both fast and accurate enough to guide the search towards good solutions. Trying this
alternative may also be better than trying Option 2, since sometimes it can be easier
to find ad hoc approximations of the move cost, instead of finding a neighborhood and
a local search operator that allows fast recursive computation. However, finding good
approximations of a move cost may require some effort too. Moreover, it is possible
that a given approximation is applicable only to a particular neighborhood structure.
For the PTSP, we will consider three different move cost approximations in Section 6.5.

6.2 The 2-p-opt and the 1-shift operators

In the literature, there are two local search procedures created specifically for the PTSP
that evaluate the move cost in terms of expected value: the 2-p-opt and the 1-shift.
The 2-p-opt neighborhood of an a priori tour is the set of tours obtained by reversing
a section of the a priori tour (that is, a set of consecutive nodes) such as the example
in Figure 6.1. The 2-p-opt is the probabilistic version of the famous 2-opt procedure
created for the TSP [133]. The 2-p-opt and the 2-opt are identical in terms of local
search neighborhoods, but greatly differ in the cost computation. The change in the
TSP objective value (the tour length) can be easily computed in constant time, while
the same cannot be said for the PTSP objective value. The 1-shift neighborhood of an
a priori tour is the set of tours obtained by moving a node which is at position i to
position j of the tour, with the intervening nodes being shifted backwards one space
accordingly, as in Figure 6.2. The number of neighbors generated by 2-p-opt and 1-shift
moves applied to one a priori tour is O(n2).
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Figure 6.1: A tour ζ = (1, 2, ..., i, i+1, ..., j, j+1, ..., n) (left) and tour ζi,j belonging to
its 2-p-opt neighborhood (right) obtained from ζ by reversing the section (i, i+1, ..., j),
with n = 10, i = 3, j = 7.
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Figure 6.2: A tour ζ = (1, 2, ..., i, i+ 1, ..., j, j + 1, ..., n) (left) and a tour ζi,j belonging
to its 1-shift neighborhood (right) obtained from ζ by moving node i to position j and
shifting backwards the nodes (i+ 1, ..., j), with n = 10, i = 3, j = 7.
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6.3 The infeasibility of using the exact full objective func-
tion

Given that both the 2-p-opt and the 1-shift neighborhoods of any a priori tour contain
O(n2) neighbors, and given that the PTSP objective value of a solution requires O(n2)
computation time, the exploration of a 2-p-opt or a 1-shift neighborhood of any a priori
tour requires O(n4) computation time, when the exact full objective function is used
to evaluate the move cost. The same operation in the TSP would require only O(n2)
time, since the objective value (length) difference between two neighboring solutions
can be computed in constant time. This is also true for the recursive expressions that
we derive in Section 6.4 for the 1-shift and 2-p-opt local search.

An O(n4) local search is in practice not feasible. As an example, consider the 100-
customers PTSP instance kroA100 with homogeneous customers probability equal to
0.5. If we generate one solution by means of the Space Filling Curve heuristic, and we
apply just once the 1-shift local search to this solution, the time required to end the
search on a 1.7 GhZ processor is 79.3 CPU seconds, while the time needed when the
O(n2) version of 1-shift (derived in Section 6.4) is only 0.19 CPU seconds. Thus, the
evaluation of the move cost by using the exact full objective is more than 400 times
slower. The time progression of the search for this example is shown in Figure 6.3.

6.4 Exact recursive local search

In the PTSP, it has been luckily possible to derive exact recursive and efficient move
cost expressions for the 2-p-opt and 1-shift operators. The recursion on one side allows
to store arrays of partial information for future computation and to save time, and
on the other side, it forces to explore the 2-p-opt and 1-shift neighborhoods in a fixed
lexicographic order as a condition to be able to store the necessary arrays of information.

This section is organized as follows. The first attempts to derive exact recursive
expressions for the cost of 2-p-opt and 1-shift moves date back in the Operations Re-
search history. Past work on this issue is reviewed in Section 6.4.1. In Section 6.4.2, we
derive new and correct expressions for computing the cost of 2-p-opt and 1-shift local
search moves for the general case of heterogeneous customers probabilities. In Section
6.4.3 we specialize the derivation of Section 6.4.2 to the case of homogeneous customers
probabilities. Finally, in Section 6.4.4 we perform a computational test showing the
effects of using, in the homogeneous PTSP, the incorrect expressions published in the
past in [24] and in [27], and the improvement due to the use of the correct cost values.

6.4.1 A bit of history

For the homogeneous PTSP, Bertsimas proposed move evaluation expressions in [27]
that explore the neighborhood of a solution (that is, that verify whether an improving
2-p-opt or 1-shift move exists) in O(n2) time. The intent of Bertsimas’ equations is
to provide a recursive means to quickly compute the exact change in expected value



6.4. EXACT RECURSIVE LOCAL SEARCH 93

1e−02 1e−01 1e+00 1e+01 1e+02

17
00

0
18

00
0

19
00

0

time

cu
rr

en
t b

es
t

full evaluation
recursive evaluation

Figure 6.3: Time progression of the 1-shift local search with two types of move cost
evaluation. The full exact evaluation is more than 400 times slower than the recursive
one. The 1-shift local search of this plot is applied to a solution obtained by the
Space Filling Curve heuristic for solving the kroA100 instance with 100 customers and
homogeneous customers probability equal to 0.5.

associated with either a 2-p-opt or 1-shift procedure. Evaluating the cost of a local move
by computing the cost of two neighboring solutions and then evaluating their difference
would require much more time (O(n4)) than a recursive approach. Unfortunately, as
we have shown in [41], Bertsimas’ expressions do not correctly calculate the change in
expected tour length. The correction of equations for computing the cost of local search
moves that we propose in this thesis confirms that it is possible to explore both the
2-p-opt and 1-shift neighborhood of a solution in O(n2) time, and does, as expected,
create significant improvement in the already good results for the homogeneous PTSP.

For the heterogeneous PTSP, Bertsimas et al. [26], report computational results of
2-p-opt and 1-shift local search algorithms applied to some small PTSP instances. The
results in [26] are based on the work of Chervi [62], who proposed recursive expressions
for the cost of 2-p-opt and 1-shift moves for the heterogeneous PTSP. Chervi’s expres-
sions explore the 2-p-opt and 1-shift neighborhoods in O(n3) time, suggesting that it
is not possible to retain the O(n2) complexity of the homogeneous PTSP. Moreover,
Chervi’s expressions reduce to the incorrect expressions for the homogeneous PTSP
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published in [27], when all customer probabilities are equal, and therefore are also
not correct. After deriving correct expressions for the computation of the change in
expected tour length, we demonstrate that the neighborhood of a solution for this im-
portant problem may be explored in O(n2) time, thus retaining the same complexity
as the homogeneous case.

6.4.2 Derivation of local search costs for the heterogeneous PTSP

6.4.2.1 The cost of 2-p-opt moves

Consider, without loss of generality, a tour ζ = (1, 2, ..., i, i + 1, ..., j, j + 1, ..., n), and
denote by ζi,j a tour obtained by reversing a section (i, i + 1, ..., j) of ζ, where i ∈
{1, 2, . . . , n}, j ∈ {1, 2, . . . , n}, and i 6= j (see Figure 6.1). Note that if j < i, the
reversed section includes n. Let ∆Ei,j denote the change in the expected tour length
E[L(ζi,j)]−E[L(ζ)]. We will derive a set of recursive formulas for ∆Ei,j that can be used
to efficiently evaluate a neighborhood of 2-p-opt moves. To describe this procedure, we
first introduce a few definitions. Let S, T ⊆ N be subsets of nodes, with λ representing
any a priori tour, and λ(i) representing the customer in the ith position on this tour
such that λ = (λ(1), λ(2), . . . , λ(n)). The product defined by Equation (4.3) can be
easily generalized by replacing qt with qλ(t) and qu with qλ(u).

Definition 7 E[L(λ)]∣∣T→S
=

∑
λ(i)∈S,λ(j)∈T,i6=j d(λ(i), λ(j) )pλ(i)pλ(j)

∏j−1
i+1 qλ, that is,

the contribution to the expected cost of λ due to the arcs from the nodes in S to the
nodes in T .

Note that E[L(λ)]∣∣T→S
= E[L(λ)], when T = S = N .

Definition 8 E[L(λ)]∣∣T↔S
= E[L(λ)]∣∣T→S

+ E[L(λ)]∣∣S→T

For the two a priori tours ζ and ζi,j we introduce

Definition 9 ∆E
i,j

∣∣T↔S
= E[L(ζi,j)]∣∣T↔S

−E[L(ζ)]∣∣T↔S
, that is, the contribution to

∆Ei,j due to the arcs from the nodes in S to the nodes in T and from the nodes in T
to the nodes in S.

Unlike the TSP, the expected cost of an a priori tour involves the arcs between all of
the nodes. The ordering of the nodes on the a priori tour simply affects the probability
of an arc being used, and this probability determines the contribution this arc makes
to the expected cost of the tour. The change in expected tour length, ∆Ei,j , resulting
from a reversal of a section is thus based on the change in probability, or weight, placed
on certain arcs in the two tours ζ and ζi,j . While computing ∆Ei,j it is thus necessary
to evaluate the weight change of each arc. The change in weight on an arc is influenced
by how many of its endpoints are included in the reversed section. Because of this, it
is useful to consider the following partitions of the node set.

Definition 10 insidei,j = {i, . . . , j}, that is, the section of ζ that is reversed to obtain
ζi,j
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Definition 11 outsidei,j = N \ insidei,j.

Using the above definitions, ∆Ei,j may be expressed as

∆Ei,j = ∆E
i,j

∣∣insidei,j→insidei,j
+ ∆E

i,j
∣∣outsidei,j→outsidei,j

+ ∆E
i,j

∣∣insidei,j↔outsidei,j
.

(6.1)
It is not difficult to verify that the contributions to ∆Ei,j due to ∆E

i,j
∣∣insidei,j→insidei,j

and to ∆E
i,j

∣∣outsidei,j→outsidei,j
are zero. The contribution to ∆Ei,j due to arcs between

inside and outside (which is now equal to ∆Ei,j) may be split into three components:

∆E
i,j

∣∣insidei,j↔outsidei,j
=E[L(ζi,j)]∣∣insidei,j→outsidei,j

+

E[L(ζi,j)]∣∣outsidei,j→insidei,j
−

E[L(ζ)]∣∣insidei,j↔outsidei,j
,

(6.2)

where the three terms on the right hand side of the last equation are, respectively,
the contribution to E[L(ζi,j)] due to the arcs going from insidei,j to outsidei,j , the
contribution to E[L(ζi,j)] due to the arcs going from outsidei,j to insidei,j , and the
contribution to E[L(ζ)] due to arcs joining the two customer sets in both directions.
For compactness, these three components will be referenced hereafter by the notation:

E
(1)
i,j = E[L(ζi,j)]∣∣insidei,j→outsidei,j

(6.3)

E
(2)
i,j = E[L(ζi,j)]∣∣outsidei,j→insidei,j

(6.4)

E
(3)
i,j = E[L(ζ)]∣∣insidei,j↔outsidei,j

. (6.5)

We may rewrite the expected tour length change ∆Ei,j as follows

∆Ei,j = E
(1)
i,j + E

(2)
i,j − E

(3)
i,j . (6.6)

Unlike the TSP, there is an expected cost associated with using an arc in a forward
direction as well as a reverse direction, and these costs are usually not the same. The
expected costs are based on which customers would have to be “skipped” in order for
the arc to be needed in the particular direction. For example, the weight on arc (1, 2)
is based only on the probability of nodes 1 and 2 requiring a visit, whereas the weight
on arc (2, 1) is also based on the probability of nodes (3, 4, · · · , n) not requiring a visit.
(The tour will travel directly from the 2 to 1 only if none of the rest of the customers
on the tour are realized.) For the homogeneous PTSP, the equations are much simpler
since the expected cost is based on the number of nodes that are skipped, not which
nodes are skipped. This difference dictates the new set of equations we present here.

We will now derive recursive expressions for E(1)
i,j , E(2)

i,j , E(3)
i,j , respectively, in terms of

E
(1)
i+1,j−1, E

(2)
i+1,j−1 and E(3)

i+1,j−1. These recursions are initialized with the expressions
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corresponding to entries (i, i) and (i, i + 1) for all i. We will derive these expressions
quite easily later. First, let us focus on the case where j = i+k and 2 ≤ k ≤ n−2. The
case k = n− 1 may be neglected because it would lead to a tour that is reversed with
respect to ζ, and, due to the symmetry of distances, this reversed tour would have the
same expected length as ζ. Let us consider the tour ζi+1,j−1 = (1, 2, ..., i−1, i, j−1, j−
2, ..., i+1, j, j+1..., n) obtained by reversing section (i+1, ..., j−1) of ζ. We can make
three important observations. The first one is that the partitioning of customers with
respect to ζi,j is related to the partitioning with respect to ζi+1,j−1 in the following
way:

insidei,j = insidei+1,j−1 ∪ {i, j} (6.7)
outsidei,j = outsidei+1,j−1 \ {i, j}. (6.8)

The second observation is that for any arc (l, r), with l ∈ insidei+1,j−1 and r ∈
outsidei,j , the weight on the arc in the expected total cost equation for ζi,j can be
obtained by multiplying the weight that the arc has in ζi+1,j−1 by qi and dividing it
by qj . One way to see this is to compare the set of skipped customers in ζi,j with the
set of skipped customers in ζi+1,j−1. In ζi,j , the fact that arc (l, r) is used implies that
customers (l − 1, l − 2, . . . , i+ 1, i, j + 1, . . . , r − 1) are skipped, while in ζi+1,j−1 using
arc (l, r) implies that customers (l − 1, l − 2, . . . , i + 1, j, j + 1, . . . , r − 1) are skipped.
Therefore, the set of skipped customers in ζi+1,j−1 is equal to the set of skipped cus-
tomers in ζi,j except for customer j in ζi+1,j−1, which is replaced by customer i in ζi,j .
In terms of probabilities, our second observation can be expressed as

E[L(ζi,j)]∣∣insidei+1,j−1→outsidei,j
=
qi
qj
E[L(ζi+1,j−1)]∣∣insidei+1,j−1→outsidei,j

. (6.9)

The third important observation is similar to the previous one, but it refers to arcs
going in the opposite direction. More precisely, for any arc (r, l), with r ∈ outsidei,j
and l ∈ insidei+1,j−1, the weight of the arc in ζi,j can be obtained by multiplying the
weight that the arc has in ζi+1,j−1 by qj and by dividing it by qi. It is not difficult
to verify this using the same argument as in the previous observation. Similar to the
second observation, the third observation can be expressed as

E[L(ζi,j)]∣∣outsidei,j→insidei+1,j−1
=
qj
qi
E[L(ζi+1,j−1)]∣∣outsidei,j→insidei+1,j−1

. (6.10)

Now, by Equations (6.3), (6.4) and (6.7) we can write

E
(1)
i,j = E[L(ζi,j)]∣∣insidei+1,j−1→outsidei,j

+ E[L(ζi,j)]∣∣{i,j}→outsidei,j
(6.11)

E
(2)
i,j = E[L(ζi,j)]∣∣outsidei,j→insidei+1,j−1

+ E[L(ζi,j)]∣∣outsidei,j→{i,j}
. (6.12)

By combining Equation (6.9) with Equation (6.11), we obtain

E
(1)
i,j =

qi
qj
E[L(ζi+1,j−1)]∣∣insidei+1,j−1→outsidei,j

+ E[L(ζi,j)]∣∣{i,j}→outsidei,j
, (6.13)



6.4. EXACT RECURSIVE LOCAL SEARCH 97

which, by Equation (6.8), becomes

E
(1)
i,j =

qi
qj
E[L(ζi+1,j−1)]∣∣insidei+1,j−1→outsidei+1,j−1

− qi
qj
E[L(ζi+1,j−1)]∣∣insidei+1,j−1→{i,j}

+ E[L(ζi,j)]∣∣{i,j}→outsidei,j
.

(6.14)

We can rewrite this to obtain the following recursion

E
(1)
i,j =

qi
qj
E

(1)
i+1,j−1 −

qi
qj
E[L(ζi+1,j−1)]∣∣insidei+1,j−1→{i,j}

+ E[L(ζi,j)]∣∣{i,j}→outsidei,j
.

(6.15)
In an analogous way, we can create a recursive expression for E(2)

i,j . By first combining
Equation (6.9) with Equation (6.12), and then applying (6.8), we obtain

E
(2)
i,j =

qj
qi
E

(2)
i+1,j−1 −

qj
qi
E[L(ζi+1,j−1)]∣∣{i,j}→insidei+1,j−1

+ E[L(ζi,j)]∣∣outsidei,j→{i,j}
.

(6.16)
Let us now focus on E

(3)
i,j . This term refers to the original tour ζ. Therefore, in order

to get a recursive expression in terms of E(3)
i+1,j−1, we must isolate the contribution to

E
(3)
i,j due to arcs going from insidei+1,j−1 to outsidei+1,j−1 and vice versa. Thus, by

combining Equation (6.5) with both (6.7) and (6.8) we obtain

E
(3)
i,j = E

(3)
i+1,j−1 − E[L(ζ)]∣∣{i,j}↔insidei+1,j−1

+ E[L(ζ)]∣∣{i,j}↔outsidei,j
. (6.17)

Now we complete the derivation by showing that it is possible to express the ‘residual’
terms on the right hand side of E(s)

i,j , s = 1, 2, 3 in Equations (6.15), (6.16), (6.17) in
terms of the four two-dimensional matrices Q, Q, A and B, defined as follows

Qi,j =
j∏
i

q, Qi,j =
i+n−1∏

j+1

q, (6.18)

and

Ai,k =
n−1∑
r=k

d(i, i+ r)pipi+rQi+1,i+r−1 (6.19)

Bi,k =
n−1∑
r=k

d(i− r, i)pi−rpiQi−r+1,i−1. (6.20)

where 1 ≤ k ≤ n − 1, 1 ≤ i, j ≤ n. Expressing the E(s)
i,j expressions in terms of these

defined matrices allows to minimize the number of calculations necessary in evaluating
a neighborhood of local search moves, since Q, Q, A and B must be recomputed only
when a new current tour ζ is defined.
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Let us now focus on the ‘residual’ terms on the right hand side of E(s)
i,j , s = 1, 2, 3

in Equations (6.15), (6.16), (6.17). Recalling that j = i + k, the second term on the
right hand side of Equation (6.15) is the following

− qi
qj
E[L(ζi+1,j−1)]∣∣insidei+1,j−1→{i,j}

= − qi
qj

k−1∑
t=1

d(i+ t, i)pi+tpiQi+1,i+t−1Qi,j−1

− qi
qj

k−1∑
t=1

d(i+ t, i+ k)pi+tpi+kQi+1,i+t−1.

(6.21)

The right hand side of the above equation is in two pieces. In the first piece, the
factor Qi,j−1 may be taken out from the sum and, by applying the definition of A from
Equation (6.19) to the remaining terms in the sum, we get − qi

qj
Qi,j−1(Ai,1−Ai,k). Also

the second piece can be expressed in terms of the A matrix, but it requires a bit more
work. First, we substitute (qi/qj)Qi+1,i+t−1 with Qi,i+t−1/qj . Then, we multiply and
divide it by the product qjqj+1 . . . qi+n−1, and we obtain the term Qj+1,i+t−1/Qj,i+n−1,
whose denominator (which is equivalent to Qi,j−1) may be taken out from the sum.
Finally by replacing i+ t with j + n− k+ t, and by applying the definition of A to the
remaining terms in the sum, the second piece of the right hand side of Equation (6.21)
becomes 1

Qi,j−1
Aj,n−k+1, and the whole Equation (6.21) may be rewritten as

− qi
qj
E[L(ζi+1,j−1)]∣∣insidei+1,j−1→{i,j}

= − qi
qj
Qi,j−1(Ai,1−Ai,k)−

1
Qi,j−1

Aj,n−k+1. (6.22)

The rightmost term of Equation (6.15) may be written as

E[L(ζi,j)]∣∣{i,j}→outsidei,j
=

n−k−1∑
r=1

d(i, i+ k + r)pipi+k+rQi+k+1,i+k+r−1

+
n−k−1∑

r=1

d(i+ k, i+ k + r)pi+kpi+k+rQi+k+1,i+k+r−1Qi,i+k−1.

(6.23)

By applying the definition of A from Equation (6.19) to the right hand side of the last
equation we obtain

E[L(ζi,j)]∣∣{i,j}→outsidei,j
=
qi
qj

1
Qi,j−1

Ai,k+1 +Qi,j−1(Aj,1 −Aj,n−k). (6.24)

The second term on the right hand side of Equation (6.16) is the following

−qj
qi
E[L(ζi+1,j−1)]∣∣{i,j}→insidei+1,j−1

= −qj
qi

k−1∑
t=1

d(i, i+ k − t)pipi+k−tQi+k−t+1,i+k−1

−qj
qi

k−1∑
t=1

d(i+ k, i+ k − t)pi+kpi+k−tQi+k−t+1,i+k−1Qi+1,j ,

(6.25)
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which, by applying the definition of B from Equation (6.20), becomes

−qj
qi
E[L(ζi+1,j−1)]∣∣{i,j}→insidei+1,j−1

= −qj
qi

1
Qi,j−1

Bi,n−k+1−Qi,j−1(Bj,1−Bj,k). (6.26)

The rightmost term of Equation (6.16) may be written as

E[L(ζi,j)]∣∣outsidei,j→{i,j}
=

n−k−1∑
r=1

d(i− r, i)pi−rpiQi−r+1,i−1Qi+1,i+k

+
n−k−1∑

r=1

d(i− r, i+ k)pi−rpi+kQi−r+1,i−1.

(6.27)

By applying the definition of B from Equation (6.20) to the right hand side of the last
equation we obtain

E[L(ζi,j)]∣∣outsidei,j→{i,j}
=
qj
qi
Qi,j−1(Bi,1 −Bi,n−k) +

1
Qi,j−1

Bj,k+1. (6.28)

The second term on the right hand side of Equation (6.17) is the following

−E[L(ζ)]∣∣{i,j}↔insidei+1,j−1
= −

k−1∑
t=1

d(i, i+ t)pipi+tQi+1,i+t−1

−
k−1∑
t=1

d(i+ k, i+ t)pi+kpi+tQi−n+k+1,i+t−1

−
k−1∑
t=1

d(i+ k − t, i)pi+k−tpiQi+k−t+1,i+k−1Qi+k,i+n−1

−
k−1∑
t=1

d(i+ k − t, i+ k)pi+k−tpi+kQi+k−t+1,i+k−1,

(6.29)

which, by applying the definition of A (Equation (6.19)) and B (Equation (6.20)),
becomes

−E[L(ζ)]∣∣{i,j}↔insidei+1,j−1
= − (Ai,1 −Ai,k +Aj,n−k+1 +Bi,n−k+1 +Bj,1 −Bj,k) .

(6.30)
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The rightmost term of Equation (6.17) is the following

E[L(ζ)]∣∣{i,j}↔outsidei,j
=

n−k−1∑
r=1

d(i− r, i)pi−rpiQi−r+1,i−1

+
n−k−1∑

r=1

d(i− r, i+ k)pi−rpi+kQi−r+1,i+k−1

+
n−k−1∑

r=1

d(i, i+ k + r)pipi+k+rQi+1,i+k+r−1

+
n−k−1∑

r=1

d(i+ k, i+ k + r)pi+kpi+k+rQi+k+1,i+k+r−1,

(6.31)

which, by applying the definition of A (Equation (6.19)) and B (Equation (6.20)),
becomes

E[L(ζ)]∣∣{i,j}↔outsidei,j
= Bi,1 −Bi,n−k +Bj,k+1 +Ai,k+1 +Aj,1 −Aj,n−k. (6.32)

By substituting in Equations (6.15), (6.16) and (6.17) the appropriate terms from
equations (6.22), (6.24), (6.26), (6.28), (6.30) and (6.32), we obtain the following final
recursive equations for the 2-p-opt local search for j = i+ k and k ≥ 2:

∆Ei,j = E
(1)
i,j + E

(2)
i,j − E

(3)
i,j , (6.33)

E
(1)
i,j =

qi
qj
E

(1)
i+1,j−1 + qi

1
Qi,j

Ai,k+1 − qiQi,j(Ai,1 −Ai,k)

− 1
qj

1
Qi,j

Aj,n−k+1 +
1
qj
Qi,j(Aj,1 −Aj,n−k),

(6.34)

E
(2)
i,j =

qj
qi
E

(2)
i+1,j−1 −

1
qi

1
Qi,j

Bi,n−k+1 +
1
qi
Qi,j(Bi,1 −Bi,n−k)

+ qj
1
Qi,j

Bj,k+1 − qjQi,j(Bj,1 −Bj,k),
(6.35)

E
(3)
i,j = E

(3)
i+1,j−1−Ai,1 +Ai,k +Ai,k+1 +Aj,1 −Aj,n−k −Aj,n−k+1

+Bi,1 −Bi,n−k −Bi,n−k+1 −Bj,1 +Bj,k +Bj,k+1.
(6.36)

For k = 1, we can express the three components of ∆Ei,i+1 (6.3), (6.4) and (6.5) in
terms of A and B and obtain the following equations
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E
(1)
i,i+1 =

1
qi+1

Ai,2 + qi(Ai+1,1 −Ai+1,n−1) (6.37)

E
(2)
i,i+1 = qi+1(Bi,1 −Bi,n−1) +

1
qi
Bi+1,2 (6.38)

E
(3)
i,i+1 = Ai,2 +Ai+1,1 −Ai+1,n−1 +Bi,1 −Bi,n−1 +Bi+1,2. (6.39)

For j = i, ∆Ei,i = 0 since ζi,i = ζ. It is still necessary, though, to compute the
three components E(s)

i,i , s = 1, 2, 3 separately, in order to initiate the recursion E(s)
i−1,i+1,

s = 1, 2, 3. By expressing (6.3), (6.4) and (6.5) in terms of A and B, we obtain

E
(1)
i,i = Ai,1 (6.40)

E
(2)
i,i = Bi,1 (6.41)

E
(3)
i,i = Ai,1 +Bi,1. (6.42)

Note that ∆Ei,i = E
(1)
i,i + E

(2)
i,i − E

(3)
i,i = 0, as expected. It is possible to verify that

when pi = p and qi = q = 1− p, we obtain the same recursive ∆Ei,j expressions as for
the homogeneous PTSP in [42].

The time required for evaluating one single 2-p-opt move by means of the recursive
equations is O(1), given that the matrices A,B,Q and Q are known. For each tour,
there are O(n2) possible 2-p-opt moves, and the time required to compute the matrices
A,B,Q and Q is O(n2). Thus, the recursive calculations allow us to evaluate all
possible 2-p-opt moves from the current solution in O(n2) time. With a straightforward
implementation that does not utilize recursion, evaluating the 2-p-opt neighborhood
would require O(n4) time instead of O(n2). Since a local search procedure involves
many iterations, these savings can lead to much better solutions.

The expression for ∆Ei,j derived by Chervi in [62] is of the form ∆Ei,j = ∆Ei+1,j−1+
ξ. This greatly differs from our set of recursive equations. First, the ξ term, as derived
in [62], is not computable in O(1) time but is O(n). Second, the expression derived in
[62] is incorrect since it reduces to the incorrect 2-p-opt expression for the homogeneous
PTSP published in [27] when all customer probabilities are equal.

6.4.2.2 The cost of 1-shift moves

Consider, without loss of generality, a tour ζ = (1, 2, ..., i, i + 1, ..., j, j + 1, ..., n), and
denote by ζi,j a tour obtained from ζ by moving node i to the position of node j and
shifting backwards the nodes (i + 1, ..., j), where i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n},
and i 6= j (see Figure 6.2). Note that the shifted section may include n. Let ∆Ei,j

denote the change in the expected tour length E[L(ζi,j)] − E[L(ζ)]. In the following,
the correct recursive formula for ∆Ei,j is derived for the 1-shift neighborhood.

Let j = i + k. For k = 1, the tour ζi,i+1 obtained by 1-shift is the same as the
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one obtained by 2-p-opt, and the expression for ∆Ei,i+1 may be derived by applying
the equations derived for the 2-p-opt. By summing Equations (6.37), (6.38) and by
subtracting Equation (6.39) we find

∆Ei,i+1 =
(

1
qi+1

− 1
)
Ai,2 + (qi+1 − 1)(Bi,1 −Bi,n−1)

+ (qi − 1) (Ai+1,1 −Ai+1,n−1) +
(

1
qi
− 1

)
Bi+1,2.

(6.43)

We will now focus on the more general case where 2 ≤ k ≤ n − 2. Again, the case
where k = n− 1 can be neglected because it does not produce any change to the tour
ζ. We re-define the notions of inside, outside and the contributions to the change in
expected tour length adapting them for the 1-shift.

Definition 12 ∆E
i,j

∣∣S↔T
= E[L(ζi,j)]∣∣T↔S

− E[L(ζ)]∣∣T↔S
. This is similar to Def-

inition 9, the only difference being the meaning of the a priori tour ζi,j, that here is
obtained from ζ by a 1-shift move.

Definition 13 insidei,j = {i + 1, . . . , j}, that is, the section of ζ that is shifted to
obtain ζi,j

Definition 14 outsidei,j = N \ (insidei,j ∪ {i})

It is not difficult to verify that the weights on arcs between outside nodes and arcs
between inside nodes again do not change as a result of the shift. Therefore, the
only contribution to ∆Ei,j is given by the change in weight placed on arcs between
insidei,j ∪ {i} nodes and outsidei,j nodes, and on arcs between node {i} and insidei,j
nodes, that is

∆Ei,j = ∆E
i,j

∣∣(insidei,j∪{i})↔outsidei,j
+ ∆E

i,j
∣∣{i}↔insidei,j

. (6.44)

In the following, we derive a recursive expression for each of the two components of
∆Ei,j . Let

∆E
i,j

∣∣(insidei,j∪{i})↔outsidei,j
= ∆E

i,j−1
∣∣(insidei,j−1∪{i})↔outsidei,j−1

+ δ, (6.45)

and
∆E

i,j
∣∣{i}↔insidei,j

= ∆E
i,j−1

∣∣{i}↔insidei,j−1
+ γ. (6.46)

Then, by Equation (6.44), we can write the following recursive expression

∆Ei,j = ∆Ei,j−1 + δ + γ. (6.47)



6.4. EXACT RECURSIVE LOCAL SEARCH 103

Now we complete the derivation by showing that it is possible to express the ‘residual’
terms δ and γ of Equation (6.47) in terms of the already defined matrices A, B, and
Q, Q, defined as follows

Qi,j =
j∏

i+1

q, Qi,j =
i+n−1∏

j+1

q. (6.48)

Expressing the ∆Ei,j expressions in terms of these defined matrices allows to minimize
the number of calculations necessary in evaluating a neighborhood of local search moves.

We first re-define the matrices A (Equation (6.19)) and B (Equation (6.20)) in
terms of the matrix Q (Equation (6.48))

Ai,k =
n−1∑
r=k

d(i, i+ r)pipi+rQi,i+r−1 (6.49)

Bi,k =
n−1∑
r=k

d(i− r, i)pi−rpiQi−r,i−1. (6.50)

Let us now focus on the ‘residual’ term δ from Equation (6.45). The contribution to
∆Ei,j due to arcs between insidei,j ∪ {i} and outsidei,j for ζi,j is the following

∆E
i,j

∣∣(insidei,j∪{i})↔outsidei,j
=

n−k−1∑
r=1

[d(i− r, i)pi−rpiQi−r,i−1 (Qi,j − 1)

+ d(i, i+ k + r)pipi+k+rQi+k,i+k+r−1 (1−Qi,j)]

+
k∑

t=1

n−k−1∑
r=1

[d(i− r, i+ t)pi−rpi+tQi−r,i−1Qi,i+t−1(1− qi)

+ d(i+ k − t+ 1, i+ k + r)pi+k−t+1pi+k+rQi+k−t+1,i+kQi+k,i+k+r−1(qi − 1)] , (6.51)

while the contribution to ∆Ei,j−1 due to arcs between insidei,j−1∪{i} and outsidei,j−1

for ζi,j−1 is

∆E
i,j−1

∣∣(insidei,j−1∪{i})↔outsidei,j−1
=

n−k∑
r=1

[d(i− r, i)pi−rpiQi−r,i−1 (Qi,j−1 − 1)

+ d(i, i+ k − 1 + r)pipi+k−1+rQi+k−1,i+k+r−2 (1−Qi,j−1)]

+
k−1∑
t=1

n−k∑
r=1

[d(i− r, i+ t)pi−rpi+tQi−r,i−1Qi,i+t−1(1− qi)

+ d(i+ k − t, i+ k + r − 1)pi+k−tpi+k+r−1Qi+k−t,i+k−1Qi+k−1,i+k+r−2(qi − 1)] .
(6.52)
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The difference between ∆E
i,j

∣∣(insidei,j∪{i})↔outsidei,j
and ∆E

i,j−1
∣∣(insidei,j−1∪{i})↔outsidei,j−1

will only involve arcs which are connected to nodes i and j, that is,

δ = terms with i and j in ∆E
i,j

∣∣(insidei,j∪{i})↔outsidei,j

− terms with i and j in ∆E
i,j−1

∣∣(insidei,j−1∪{i})↔outsidei,j−1
.

(6.53)

So, by extracting the terms which contain the appropriate arcs from Equation (6.51)
and Equation (6.52) and by expressing them in terms of the matrices A (Equation
(6.49)) and B (Equation (6.50)) we obtain the following expression for δ

δ =(1−Qi,j)
[

1
Qi,j

Ai,k+1 − (Bi,1 −Bi,n−k)
]

+(qi − 1)
[
(Aj,1 −Aj,n−k)− q−1

i Bj,k+1

]
− (1−Qi,j−1)

[
1

Qi,j−1
Ai,k − (Bi,1 −Bi,n−k+1)

]
− (qi − 1)

[
(Bj,1 −Bj,k)− q−1

i Aj,n−k+1

]
,

(6.54)

which completes the recursive expression of Equation (6.45). Let us now focus on the
‘residual’ term γ from Equation (6.46). The contribution to ∆Ei,j due to arcs between
{i} and inside is the following

∆E
i,j

∣∣{i}↔insidei,j
=

(
Qi,j − 1

) k∑
t=1

[d(i, i+ t)pipi+tQi,i+t−1

−d(i+ k − t+ 1, i)pi+k−t+1piQi+k−t+1,i+k] ,
(6.55)

while the contribution to ∆Ei,j−1 due to arcs between {i} and insidei,j−1 for ζi,j−1 is

∆E
i,j−1

∣∣{i}↔insidei,j−1
=

(
Qi,j−1 − 1

) k−1∑
t=1

[d(i, i+ t)pipi+tQi,i+t−1

−d(i+ k − t, i)pi+k−tpiQi+k−t,i+k−1] .
(6.56)

Now, by subtracting Equation (6.56) from Equation (6.55) and by applying the defini-
tion of A (Equation (6.49)), and B (Equation (6.50)), we obtain the following expression
for γ

γ =
(
Qi,j − 1

) [
Ai,1 −Ai,k+1 −

1
Qi,j−1

Bi,n−k)

]

+
(
1−Qi,j−1

) [
Ai,1 −Ai,k −

1
Qi,j−1

Bi,n−k+1

]
,

(6.57)
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which completes the recursive expression of Equation (6.46).
By substituting the expression for δ (Equation (6.54)) and γ (Equation (6.57)) in

Equation (6.47), we obtain the following final recursive equations for the 1-shift local
search for j = i+ k and k ≥ 2:

∆Ei,j = ∆Ei,j−1 + (Qi,j −
1
Qi,j

)(qjAi,k −Ai,k+1)

+ (
1
Qi,j

−Qi,j)(Bi,n−k −
1
qj
Bi,n−k+1)

+ (1− 1
qj

)Q′
i,jBi,1 + (

1
qi
− 1)Bj,k+1

+ (1− qj)Qi,jAi,1 + (1− 1
qi

)Aj,n−k+1

+ (qi − 1)(Aj,1 −Aj,n−k)
+ (1− qi)(Bj,1 −Bj,k).

(6.58)

Similarly to the 2-p-opt, the time required for evaluating one single 1-shift move by
means of the recursive equations is O(1), given that the matrices A,B,Q and Q are
known. For each tour, there are O(n2) possible 1-shift moves, and the time required
to compute the matrices A,B,Q and Q is O(n2). Thus, the recursive calculations
allow us to evaluate all possible 1-shift moves from the current solution in O(n2) time.
With a straightforward implementation that does not utilize recursion, evaluating the
1-shift neighborhood would require O(n4) time instead of O(n2). Since a local search
procedure involves many iterations, these savings can lead to much better solutions.

The expression for ∆Ei,j derived by Chervi in [62] is of the form ∆Ei,j = ∆Ei,j−1 +
ξ′. Again, the ξ′ term, as derived in [62], is not computable in O(1) time but requires
O(n). This expression is also incorrect since it reduces to the incorrect 1-shift expression
for the homogeneous PTSP published in [27] when all customer probabilities are equal.

6.4.3 Derivation of local search costs for the homogeneous PTSP

In this section we derive the cost of 2-p-opt and 1-shift moves for the homogeneous
PTSP, in a similar way as we did for the heterogeneous case in the previous section.
The fact that we obtain cost expressions that are equivalent to those that one would
obtain from the heterogeneous PTSP cost expression by letting pi = p and qi = q for
i = 1, 2, . . . , n, is an additional check of their correctness.

6.4.3.1 The cost of 2-p-opt moves

Consider, without loss of generality, a tour ζ = (1, 2, ..., i, i + 1, ..., j, j + 1, ..., n), and
denote by ζi,j a tour obtained by reversing a section (i, i + 1, ..., j) of ζ, where i ∈
{1, 2, . . . , n}, j ∈ {1, 2, . . . , n}, and i 6= j (see Figure 6.1) (see Figure 6.1). Note that
if j < i, the reversed section includes n. Let ∆Ei,j denote the change in the expected
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length E[L(ζi,j)]−E[L(ζ)]. In the following, the correct recursive formula for ∆Ei,j is
derived for the 2-p-opt move set. This derivation consists in first developing a formula
for ∆Ei,j and then finding a recursive form of this.

Let j = i+k (we are using the notation expressed by (4.1)). For k = 1 we believe the
expression given in [24] and in [27] for ∆Ei,j (Equation (6.76)) is correct. Therefore,
we focus on the case k ≥ 2 (and k ≤ n − 2). Let S, T ⊆ N be subsets of nodes,
with λ representing any a priori tour, and λ(i) representing the customer in the ith
position on this tour such that λ = (λ(1), λ(2), . . . , λ(n)). The contribution to the
expected cost of λ due to the arcs from the nodes in S to the nodes in T , denoted
by E[L(λ)]∣∣T→S

and introduced by Definition 7 in section 6.4.2.1, assumes in case of

homogeneous probabilities the following form:

E[L(λ)]∣∣T→S
=

∑
λ(i)∈S,λ(j)∈T,i6=j

d(λ(i), λ(j) )p2qj−i−1. (6.59)

Definition 8 and Definition 9 introduced section 6.4.2.1 must be adapted accordingly.
Given that the set of nodes of tour ζ is partitioned in the the two sets insidei,j and
outsidei,j (see Definition 10 and Definition 11), the change in expected tour length
∆Ei,j may be expressed as

∆Ei,j = ∆E
i,j

∣∣insidei,j→insidei,j
+ ∆E

i,j
∣∣outsidei,j→outsidei,j

+ ∆E
i,j

∣∣insidei,j↔outsidei,j
.

(6.60)
It is not difficult to verify that, as in the heterogeneous PTSP, the contributions to
∆Ei,j due to ∆E

i,j
∣∣insidei,j→insidei,j

and to ∆E
i,j

∣∣outsidei,j→outsidei,j
are zero, therefore

we can write
∆Ei,j = ∆E

i,j
∣∣insidei,j↔outsidei,j

. (6.61)

Now, the contribution from arcs between insidei,j and outsidei,j to the expected tour
length of the undisturbed tour ζ is

E[L(ζ)]∣∣insidei,j↔outsidei,j
= p2

k+1∑
t=1

qt−1
n−k−1∑

r=1

qr−1[d(i− r, i+ t− 1)+ d(j− t+1, j+ r)].

(6.62)
In the disturbed tour ζi,j , the contribution of the same arcs is

E[L(ζi,j)]∣∣insidei,j↔outsidei,j
= p2

k+1∑
t=1

qt−1
n−k−1∑

r=1

qr−1[d(i+t−1, j+r)+d(i−r, j−t+1)].

(6.63)
By subtracting (6.62) from (6.63), we obtain

∆Ei,j = p2
k+1∑
t=1

qt−1
n−k−1∑

r=1

qr−1[d(i+ t− 1, j + r) + d(i− r, j − t+ 1)

−d(i− r, i+ t− 1)− d(j − t+ 1, j + r)].

(6.64)
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Consider now the case when the section from i+ 1 to j − 1 of ζ is reversed, leading to
the tour ζi+1,j−1. Then the difference in expected length is

∆Ei+1,j−1 = p2
k−1∑
t=1

qt−1
n+1−k∑

r=1

qr−1[d(i+ t, j + r − 1) + d(i+ 1− r, j − t)

−d(i− r + 1, i+ t)− d(j − t, j + r − 1)].

(6.65)

From the two above expressions (6.64) and (6.65) it is possible to extract a recursive
equation which relates ∆Ei,j to ∆Ei+1,j−1

∆Ei,j = ∆Ei+1,j−1 + ε. (6.66)

Observe that the difference between ∆Ei,j and ∆Ei+1,j−1 will only involve arcs which
are connected to nodes i and j, that is,

ε = terms with i and j in ∆Ei,j

− terms with i and j in ∆Ei+1,j−1.
(6.67)

So, let us extract the terms which contain the appropriate arcs from (6.64) and (6.65).
The terms with i in ∆Ei,j are (from Equation (6.64))

p2
n−k−1∑

r=1

qr−1[(1− qk)d(i, j + r) + (qk − 1)d(i− r, i)], (6.68)

and the terms with j in ∆Ei,j are (from Equation (6.64))

p2
n−k−1∑

r=1

qr−1[(qk − 1)d(j, j + r) + (1− qk)d(i− r, j)]. (6.69)

The terms with i in ∆Ei+1,j−1 are (from Equation (6.65))

p2
k−1∑
t=1

qt−1[(qn−k − 1)d(i+ t, i) + (1− qn−k)d(i, j − t)], (6.70)

and the terms with j in ∆Ei+1,j−1 are (from Equation (6.65))

p2
k−1∑
t=1

qt−1[(1− qn−k)d(i+ t, j) + (qn−k − 1)d(j − t, j)]. (6.71)

By subtracting (6.70) and (6.71) from (6.68) and (6.69) we obtain

ε = p2{(1− qk)
n−k−1∑

r=1

qr−1[d(i, j + r)− d(i− r, i) + d(j, j + r)− d(i− r, j)]

+(1− qn−k)
k−1∑
r=1

qr−1[d(i+ r, i)− d(i, j − r)− d(i+ r, j) + d(j − r, j)]}.

(6.72)
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Now, the two dimensional matrices of partial results A and B defined in the hetero-
geneous case by Equations (6.19) and (6.20), assume here the following form (as also
given by Bertsimas [27])

Ai,k =
n−1∑
r=k

qr−1d(i, i+ r) and Bi,k =
n−1∑
r=k

qr−1d(i− r, i), 1 ≤ k ≤ n− 1, 1 ≤ i ≤ n.

(6.73)
By expressing Equation (6.72) in terms of A and B as defined above we obtain

ε =p2[(q−k − 1)Ai,k+1 + (qk − 1)(Bi,1 −Bi,n−k)

+ (qk − 1)(Aj,1 −Aj,n−k) + (q−k − 1)Bj,k+1

+ (1− qn−k)(Ai,1 −Ai,k) + (1− qk−n)Bi,n−k+1

+ (1− qk−n)Aj,n−k+1 + (1− qn−k)(Bj,1 −Bj,k)].

(6.74)

Finally, the above expression, together with Equation (6.66) leads to the following re-
cursive equation for the change in expected tour length

∆Ei,j = ∆Ei+1,j−1 + p2[(q−k − 1)Ai,k+1 + (qk − 1)(Bi,1 −Bi,n−k)

+ (qk − 1)(Aj,1 −Aj,n−k) + (q−k − 1)Bj,k+1

+ (1− qn−k)(Ai,1 −Ai,k) + (1− qk−n)Bi,n−k+1

+ (1− qk−n)Aj,n−k+1 + (1− qn−k)(Bj,1 −Bj,k)].

(6.75)

This expression differs from the one proposed by Bertsimas in [24] in the sign of the last
four terms inside the squared brackets, and from the expression proposed by Bertsimas-
Howell in [27] also in the first term on the right side. Recall that Equation (6.75) is
valid for k ≥ 2. In the case k = 1 the expression for ∆Ei,j , as published in [24] and
[27], is correct, and it is the following

∆Ei,i+1 = p3[q−1Ai,2 − (Bi,1 −Bi,n−1)− (Ai+1,1 −Ai+1,n−1) + q−1Bi+1,2]. (6.76)

The computational complexity of evaluating the 2-p-opt neighborhood is O(n2), the
motivation being the same as for the heterogeneous PTSP case (see the end of section
6.4.2.1). In practice, the homogeneous case will be faster, since one does not need to
compute the matrices Q and Q.

6.4.3.2 The cost of 1-shift moves

Consider, without loss of generality, a tour ζ = (1, 2, . . . , i, i + 1, . . . , j, j + 1, . . . , n),
and denote by ζi,j a tour obtained from ζ by moving node i to position j and shifting
backwards one space the nodes i+1, ..., j, where i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n}, and
i 6= j (see Figure 6.2). Let ∆Ei,j denote the change in the expected length E[L(ζi,j)]−
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E[L(ζ)]. In the following, the correct recursive formula for ∆Ei,j is derived for the
1-shift move set. This derivation follows a line similar to the one for the 2-p-opt.

Let j = i+ k (we are using the notation expressed by (4.1)). Note that, for k = 1,
the tour ζi,j obtained by 1-shift is the same as the one obtained by 2-p-opt, for which
we believe [24] and [27] gives the correct expression (Equation (6.43)). Therefore, we
focus on the case k ≥ 2 (and k ≤ n− 2).

Based on the node partitions insidei,j and outsidei,j introduced for the 1-shift by
Definition 13 and 14, it is not difficult to verify that, like in the heterogeneous case,
the weights on arcs between outside nodes and arcs between inside nodes again do not
change as a result of the shift. Therefore, the only contribution to ∆Ei,j is given by
the change in weight placed on arcs between insidei,j ∪{i} nodes and outsidei,j nodes,
and on arcs between node {i} and insidei,j nodes, that is

∆Ei,j = ∆E
i,j

∣∣(insidei,j∪{i})↔outsidei,j
+ ∆E

i,j
∣∣{i}↔insidei,j

. (6.77)

In the following, we derive a recursive expression for each of the two components of
∆Ei,j . Let

∆E
i,j

∣∣(insidei,j∪{i})↔outsidei,j
= ∆E

i,j−1
∣∣(insidei,j−1∪{i})↔outsidei,j−1

+ δ, (6.78)

and
∆E

i,j
∣∣{i}↔insidei,j

= ∆E
i,j−1

∣∣{i}↔insidei,j−1
+ γ. (6.79)

Then, by Equation (6.77), we can write the following recursive expression

∆Ei,j = ∆Ei,j−1 + δ + γ. (6.80)

Now we complete the derivation by showing that it is possible to express the ‘resid-
ual’ terms δ and γ of Equation (6.80) in terms of the already defined matrices A, B
(Equation (6.73)).

Let us now focus on the ‘residual’ term δ from Equation (6.78). The contribution
to ∆′Ei,j due to arcs between insidei,j ∪ {i} and outsidei,j for ζ is the following

E[L(ζ)]∣∣(insidei,j∪{i})↔outsidei,j
= p2

k+1∑
t=1

qt−1
n−k−1∑

r=1

qr−1[d(i−r, i+t−1)+d(j−t+1, j+r)].

(6.81)
In the disturbed tour ζi,j , the contribution of the same arcs is

E[L(ζi,j)]∣∣(insidei,j∪{i})↔outsidei,j
= p2

n−k−1∑
r=1

qr−1[qkd(i− r, i) + d(i, j + r)]

+p2
k∑

t=1

qt−1
n−k−1∑

r=1

qr−1[qd(j − t+ 1, j + r) + d(i− r, i+ t)].

(6.82)
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By subtracting (6.81) from (6.82), we obtain

∆E
i,j

∣∣(insidei,j∪{i})↔outsidei,j
= p2

n−k−1∑
r=1

qr−1[(qk − 1)d(i− r, i) + (1− qk)d(i, j + r)]

+p2
k∑

t=1

qt−1
n−k−1∑

r=1

qr−1[(1− q)d(i− r, i+ t) + (q − 1)d(j − t+ 1, j + r)].

(6.83)

Consider now the case where node i is shifted to position j − 1, leading to a perturbed
tour ζi,j−1. Then the contribution to ∆′Ei,j−1 due to arcs between insidei,j−1 ∪ {i}
and outsidei,j−1 for ζi,j−1 is

∆E
i,j−1

∣∣(insidei,j−1∪{i})↔outsidei,j−1
=

p2
n−k∑
r=1

qr−1[(qk−1 − 1)d(i− r, i) + (1− qk−1)d(i, j − 1 + r)]

+p2
k−1∑
t=1

qt−1
n−k∑
r=1

qr−1[(1− q)d(i− r, i+ t) + (q − 1)d(j − t, j − 1 + r)].

(6.84)

Now, here, like in the heterogeneous PTSP, the difference between
∆E

i,j
∣∣(insidei,j∪{i})↔outsidei,j

and ∆E
i,j−1

∣∣(insidei,j−1∪{i})↔outsidei,j−1
will only involve

arcs which are connected to nodes i and j, that is,

δ = terms with i and j in ∆E
i,j

∣∣(insidei,j∪{i})↔outsidei,j

− terms with i and j in ∆E
i,j−1

∣∣(insidei,j−1∪{i})↔outsidei,j−1
.

(6.85)

So, let us extract the terms which contain the appropriate arcs from (6.83) and (6.84).
The terms with i and j in ∆E

i,j
∣∣(insidei,j∪{i})↔outsidei,j

are (from (6.83)):

p2
n−k−1∑

r=1

qr−1[(qk − 1)d(i− r, i) + (1− qk)d(i, j + r)

+(q − 1)d(j, j + r) + (qk−1 − qk)d(i− r, j)],

(6.86)

and the terms with i and j in ∆E
i,j−1

∣∣(insidei,j−1∪{i})↔outsidei,j−1
are (from (6.84)):

p2
k−1∑
t=1

qt−1[qn−k−1(1− q)d(j, i+ t) + (q − 1)d(j − t, j)]

+p2
n−k∑
r=1

qr−1[(qk−1 − 1)d(i− r, i) + (1− qk−1)d(i, j + r − 1)].

(6.87)
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Now, by subtracting (6.87) from (6.86) and by applying the definition of A and B (6.73)
we obtain the following expression

δ = p2[(qk − 1)(Bi,1 −Bi,n−k) + (q−k − 1)Ai,k+1

+(1− qk−1)(Bi,1 −Bi,n−k+1) + (1− q−k+1)Ai,k

+(q − 1)(Aj,1 −Aj,n−k) + (q−1 − 1)Bj,k+1

+(1− q)(Bj,1 −Bj,k) + (1− q−1)Aj,n−k+1],

(6.88)

which completes the recursive expression (6.78). Let us now focus on the ‘residual’
term γ from Equation (6.79). The contribution from arcs between {i} and insidei,j to
the expected tour length of the undisturbed tour ζ is

E[L(ζ)]∣∣{i}↔insidei,j
= p2

k∑
t=1

[qt−1d(i, i+ t) + qn−k−1qt−1d(j − t+ 1, i)]. (6.89)

In the disturbed tour ζi,j , the contribution of the same arcs is

E[L(ζi,j)]∣∣{i}↔insidei,j
= p2

k∑
t=1

[qt−1d(j + 1− t, i) + qn−k−1qt−1d(i, i+ t)]. (6.90)

By subtracting (6.89) from (6.90), we obtain

∆E
i,j

∣∣{i}↔insidei,j
= p2(qn−k−1 − 1)

k∑
t=1

qt−1[d(i, i+ t)− d(j + 1− t, i)]. (6.91)

Consider now the case where node i is shifted to position j − 1, leading to a perturbed
tour ζi,j−1. Then the contribution to ∆′Ei,j−1 due to arcs between {i} and insidei,j−1

is

∆E
i,j−1

∣∣{i}↔insidei,j−1
= p2(qn−k − 1)

k−1∑
t=1

qt−1[d(i, i+ t)− d(j − t, i)]. (6.92)

Now, by subtracting (6.92) from (6.91) and by applying the definition of A and B (6.73)
we obtain the following expression

γ = p2[(qn−k−1 − 1)(Ai,1 −Ai,k+1) + (qk+1−n − 1)Bi,n−k

+(1− qn−k)(Ai,1 −Ai,k) + (1− qk−n)Bi,n−k+1],
(6.93)

which completes the recursive expression (6.79). By substituting the expression for δ
(Equation (6.88)) and γ (Equation (6.93)) in Equation (6.80), we obtain the following
recursive equation for the 1-shift local search for j = i+ k and k ≥ 2:
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∆Ei,i+k =∆Ei,i+k−1 + p2[(q−k − qn−k−1)Ai,k+1

+(qk − qk−1)Bi,1 + (qk+1−n − qk)Bi,n−k

+(qn−k−1 − qn−k)Ai,1 + (qn−k − q1−k)Ai,k

+(qk−1 − qk−n)Bi,n−k+1

+(q − 1)(Ai+k,1 −Ai+k,n−k) + (q−1 − 1)Bi+k,k+1

+(1− q−1)Ai+k,n−k+1 + (1− q)(Bi+k,1 −Bi+k,k)].

(6.94)

This expression differs from the one proposed by Bertsimas in [24] and [27] by the first
six terms on the right side inside the square brackets, and it can be further simplified
to

∆Ei,j = ∆Ei,j−1 + p2[(qn−k − q−k)(qAi,k −Ai,k+1)

+(qk−n − qk−1)(qBi,n−k −Bi,n−k+1)

+(1− q−1)(qkBi,1 −Bj,k+1)

+(q−1 − 1)(qn−kAi,1 −Aj,n−k+1)
+(q − 1)(Aj,1 −Aj,n−k)
+(1− q)(Bj,1 −Bj,k)].

(6.95)

Recall that Equation (6.95) is valid for k ≥ 2, and that in the case k = 1 the expression
for ∆Ei,j as published in [24] and [27] (Equation (6.76)) is correct.

Again, the computational complexity of evaluating the 1-shift neighborhood is
O(n2), the motivation being the same as for the heterogeneous PTSP case (see the
end of section 6.4.2.2). In practice, the homogeneous case will be faster, since one does
not need to compute the matrices Q and Q.

6.4.4 Computational test

In this section we report the results of a computational test showing the improvement
due to the use of the correct cost values with respect to using the incorrect expressions
for the costs 2-p-opt and 1-shift moves published in [24] and in [27] for the homogeneous
PTSP. In the following section 6.4.4.1 we explain the search strategies for the 2-p-opt
and 1-shift local search, that we implemented following [24] and [27]. In section 6.4.4.2,
we describe the experimental setup, and in section 6.4.4.3 we show and comment the
experimental results.

6.4.4.1 Pseudocode of the 2-p-opt and 1-shift local search

2-p-opt The 2-p-opt local search proceeds in two phases. The first phase consists of
only exploring the moves that swap two consecutive nodes λ(i) and λ(i+1) of the current
tour λ, as represented in pseudocode by Algorithm 12, named Swapping local search.
The costs ∆Ei,i+1 are computed for every value of i (by means of Equation (6.76)),
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and each time a negative ∆Ei,i+1 is encountered, one immediately swaps the two nodes
involved. Note that since the computation of ∆Ei,i+1 only involves two rows of A and
B, one can proceed to the next pair of nodes without recomputing each entire matrix.
The local search has, as second argument, a tour λBSF which is the best-so-far tour
known by the algorithm calling the Swapping local search function. At the end of the
first phase of the local search, an a priori tour is reached for which every ∆Ei,i+1 is
positive, and the matrices A and B are complete and correct for that tour.

Algorithm 12 Swapping local search(λ, λBSF )

for (i = 1, 2, . . . , n) do
compute rows i and i+ 1 of matrices A and B relative to the current solution λ
compute ∆Ei,i+1 according to Equation (6.43)
if (∆Ei,i+1 < 0) then
λ := the tour obtained from λ by switching node λ(i) with node λ(i+ 1)
if E[L(λ)] < E[L(λBSF )] then
λBSF := λ

end if
end if

end for
if (the starting solution has changed) then

re-compute the full matrices A and B
end if

The second phase of the local search consists of computing ∆Ei,j with j = i+k and
k ≥ 2 recursively by means of Equation (6.75). The 2-p-opt, represented in pseudocode
by Algorithm 13, is implemented as a first-improvement local search, that is, when a
neighbor better than the current solution is found, the current solution is immediately
updated with the neighbor solution, and the search is restarted. When there are no
improving solutions in the neighborhood, or when the time is over, the search stops.

1-shift The 1-shift algorithm follows the same lines as the 2-p-opt algorithm: all
phase one computations, including the accumulation of matrices A and B, proceed in
the same way (see Algorithm 12). The second phase of the local search consists of
computing ∆Ei,j with j = i + k and k ≥ 2 recursively by means of Equation (6.95).
Differently from the 2-p-opt, the 1-shift, represented in pseudocode by Algorithm 14,
is implemented as a best-improvement local search, that is, the whole neighborhood
is explored and the current solution is updated with the best (improving) neighbor
solution. When there are not improving solutions in the neighborhood, or when the
time is over, the search stops.

6.4.4.2 Experimental setup

We considered instances with n = 100 and with customers coordinates uniformly and
independently distributed on the square [0, 1]2. For generating random instances we
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Algorithm 13 2-p-opt(λ, λBSF )
(1) Swapping local search(λ, λBSF )
k := 2
while (k ≤ n− 2 and time is not over) do
i := 1
while (i ≤ n and time is not over) do

compute ∆Ei,i+k according to Equation (6.75)
if (∆Ei,i+k < 0) then
λ := tour obtained by inverting section λ(i), λ(i+ 1), . . . , λ(i+ k) of λ
if E[L(λ)] < E[L(λBSF )] then
λBSF := λ

end if
go to (1)

else
i := i+ 1

end if
end while
k := k + 1

end while

Algorithm 14 1-shift(λ, λBSF )
(1) Swapping local search(λ, λBSF )
while (locally optimal tour not found and time is not over) do

for (i = 1, 2, . . . , n) do
for (k = 2, . . . , n− 2) do

compute ∆Ei,i+k according to Equation (6.95)
end for

end for
if (arg mini,k ∆Ei,i+k < 0) then
λ := tour obtained from λ by inserting λ(i) after λ(i+ k)
if E[L(λ)] < E[L(λBSF )] then
λBSF := λ

end if
go to (1)

else
return locally optimal tour λ

end if
end while
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used the Instance Generator Code of the 8th DIMACS Implementation Challenge at
http://www.research.att.com/∼dsj/chtsp/download.html. Distances were com-
puted with the Euclidean metric. We considered only homogeneous PTSP instances,
and for each of the common demand probabilities p = 0.1, 0.2, ..., 0.9 we generated 10
problems. Experiments were run on a PowerPC G4 400MHz, the code has been written
in C++ and it is available at http://www.idsia.ch/∼leo .

6.4.4.3 Comparison between correct and incorrect local search

We tested the 2-p-opt local search algorithm with three delta objective evaluation
expressions: the correct one (Equation (6.75)), the incorrect one published in [24], and
the incorrect one published in [27]. We also tested two versions of the 1-shift local
search algorithm: one with the correct delta objective evaluation (Equation (6.94))
and one with the incorrect delta objective evaluation published in [24] (which is the
same as that published in [27]). In the following, we denote by the prefix ‘C’, the
algorithms involving the correct delta objective evaluations (e.g., C-1shift), and by the
prefix ‘I’ the ones implementing the incorrect delta objective evaluations as published
in [27] (e.g., I-1shift). Since we obtained similar results with the incorrect expressions
of [24] and [27], in the following we only show results obtained with the delta objective
evaluation expression of [27].

For each C- and I-local search, we considered two types of starting solutions, gen-
erated with two different solution construction heuristics, namely the the Radial Sort
and the Space Filling Curve heuristic. These solution construction heuristics have been
extensively applied in previously published papers on the PTSP, and are described in
Section 4.5.

The absolute solution quality of the tested algorithms was evaluated with respect
to near-optimal solutions which were heuristically generated in the following way. Con-
sider three solution construction heuristics, namely Radial Sort, Space Filling Curve
and Random Search. Consider as local search heuristics the application of both C-
1shift and C-2-p-opt one after the other. This results in two local search heuristics
(first C-1shift and after C-2-p-opt and vice versa). By combining the three solution
construction with the two local search heuristics one obtains six different heuristics.
Return the best solution found by these six heuristic combinations.

Table 6.1 shows the results obtained with the correct algorithms, and the percent
increase resulting from the use of Bertsimas’ expressions. CPU running times in seconds
are shown in parenthesis. In each line of the table the data show the average over 10
different instances. For each instance, each algorithm was run only once. Note, to eval-
uate the I-algorithms we checked the final solutions obtained using the full evaluation
Equation (4.2). For the C-algorithms we confirm that this check was unnecessary be-
cause the algorithms exactly calculated the improvements obtained by the local search.
In Figure 6.4 the relative difference between each algorithmic combination and the
best near-optimal solution found is shown in a graphical form. It is clear from both
Table 6.1 and Figure 6.4 that I-algorithms always give worse solution quality than to
C-algorithms, as expected. From Table 6.1 we see that for small customer probability
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Figure 6.4: percent distance from the best solution found for C-(Correct) and I-
(Incorrect) local search heuristics, combined with the Radial Sort and the Space Filling
Curve solution construction heuristics. Black symbols refer to C-algorithms, and white
symbols refer to I-algorithms. Each point is an average over 10 different Euclidean in-
stances with 100 customers and customer coordinates in the unit square. The customer
probability is on the horizontal axis.
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(p=0.1) the error in Bertsimas’ expressions results in a very small worsening effect,
smaller than 1%, for all heuristic combinations. The table shows that the higher the
probability, the worse are I-algorithms with respect to C-algorithms. This effect is
bigger for the algorithms involving the Radial Sort, where I-algorithms obtain results
more than 30% worse than C-algorithms.

The running times of all algorithmic combinations are under the second, and also
obtaining the best near-optimal result only took a time of the order of the second.
Running times of I-algorithms (not shown), are very similar to those of C-algorithms,
except for some cases, where the solution quality of a I-algorithm is very bad. In
those cases the I-local search would stop improving very early, because it starts cycling
between two solutions, never stopping until the maximum allowed run time is exceeded.
In order to understand why cycling may occur in the I-local search, consider for instance
the I-2-p-opt local search. Given a solution λ, suppose that the section λ(i), λ(i +
1), . . . , λ(i + k), with k ≥ 2 is reversed, leading to a new solution λi,j , with λi,j(i) =
λ(i+k), λi,j(i+1) = λ(i+k−1), . . . , λi,j(i+k) = λ(i). This means that ∆Ei,i+k(λ) < 0.
Now, due to the incorrectness of the expression for evaluating ∆Ei,i+k of [24, 27], it may
happen that also ∆Ei,i+k(λi,j) < 0, and that the section λi,j(i), λi,j(i+1), . . . , λi,j(i+k)
is reversed, going back to solution λ. The same situation may occur in the I-1shift local
search.

From Figure 6.4 we can see that C-1shift consistently gives the best results (among
single heuristic combinations), with both the Space Filling Curve and the Radial Sort.
The C-2-p-opt heuristic always gives worse results, but it is not clear if it works better
with Space Filling Curve or with Radial Sort. When using I-algorithms, it seems that
the starting solution is more important than the local search, since, as we see from
Figure 6.4, the Space Filling Curve gives better results than the Radial Sort, no matter
if it is combined with I-2-p-opt or with I-1shift. This is a side effect of the inaccuracy
resulting from the use of incorrect local searches.

6.5 Approximated local search

In this section we describe three types of approximations for the move cost computation
of PTSP local search operators. The first two types of approximations (section 6.5.1)
are called ‘ad hoc’, since they are based on the particular solution structure of the
PTSP, while the third type of approximation (section 6.5.2), which is based on Monte
Carlo sampling, can be applied, in principle, to any SCOP. We restrict the description of
move cost approximations to the 1-shift local search operator, since this is the one that
appears to be more promising (according to our experiments described in Section 6.4.4).
Nevertheless, our derivation might be quite easily extended to the 2-p-opt operator as
well.

In the reminder of this Section, we will consider, without loss of generality, a tour
ζ = (1, 2, ..., i, i+ 1, ..., j, j + 1, ..., n) and a tour ζi,j obtained from ζ by moving node i
to the position of node j and shifting backwards the nodes (i+1, ..., j) (see Figure 6.2),
like we did in Section 6.4.
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6.5.1 Ad hoc approximations for the 1-shift

Unlike the TSP, the expected cost of an a priori tour involves the arcs between all of the
nodes, as it appears from Equation (4.2). The ordering of the nodes on the a priori tour
simply affects the probability of an arc being used, and this probability determines the
contribution this arc makes to the expected cost of the tour. The change in expected
tour length, that we denote by ∆Ei,j , resulting from shifting the node at position i to
position j (see Figure 6.2) is thus based on the change in probability, or weight, placed
on the arcs in the two tours ζ (the undisturbed tour) and ζi,j (the tour obtained by
applying the 1-shift move to ζ). The exact value of ∆Ei,j thus consists of the sum of
the weight change of all arcs.

The main idea behind the two ad hoc approximations that we are going to describe
(1-shift-T and 1-shift-P), is to neglect in the computation of ∆Ei,j the arcs whose
weight change is very small, or, equivalently to select a small number of arcs whose
weight change is biggest. The two different ad hoc approximations correspond to two
different ways in approximating the value of the weight change of selected arcs, while
the selected arcs are the same in 1-shift-T and in 1-shift-P.

Let us first specify how we select arcs, and secondly how we approximate the weight
change (respectively in Section 6.5.1.1 for 1-shift-T and in Section 6.5.1.2 for 1-shift-
P). Arcs whose weight changes more from tour ζ to ζi,j are the ones satisfying the two
following conditions

1. arcs whose weight change is not zero;

2. arcs that link nodes which are nearest neighbor either in ζ, or in ζi,j or in both
tours.

The first condition is obvious, since an arc whose weight is the same in ζ and ζi,j
cannot contribute to ∆Ei,j . The second condition can be understood by considering
that the weight of an arc corresponds to its probability of being actually traveled
in the a posteriori tour. Thus, the more far away are two nodes (with respect to
ζ and/or ζi,j), the smaller is the probability of being actually traveled, and thus its
weight in the expected cost expression. For example, arc (i, i + 4) in Figure 6.2 has a
probability of actually being traveled in the a posteriori tour corresponding to ζ equal
to pipi+4qi+1qi+2qi+3. This weight is a product over four numbers smaller than one,
which is much smaller than one. Thus, the more the number of ‘q’ factors entering an
arch weight, the smaller its weight.

There are only six arcs that satisfy both the two above mentioned conditions, and
these are: (j, j + 1), (j, i), (i, j + 1), (i − 1, i + 1), (i − 1, i), and (i, i + 1), as shown
in Figure 6.5. Selecting only these six arcs from the set of all 2n(n − 1) arcs for
computing an approximation of ∆Ei,j constitutes a first level of approximation, which
is common both to the 1-shift-T and the 1-shift-P approximation. The next level of
approximation consists in approximating the difference between the weight of each of
these arcs in ζ and ζi,j , and the way this is done distinguishes the 1-shift-T from the
1-shift-P approximations. Before focusing on approximating weight differences, it is
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Figure 6.5: The set of arcs that are selected to approximate a 1-shift move cost ∆Ei,j .

Arc (1) Weight in E[L(ζ)] (2) Weight in E[L(ζi,j)] (2)–(1) Weight in ∆Ei,j

(j, j + 1) pjpj+1 pjpj+1qi −pjpj+1(1− qi)
(j, i) pjpi

∏i−1
j+1 qζ pjpi pjpi(1−

∏i−1
j+1 qζ)

(i, j + 1) pipj+1

∏j
i+1 qζ pipj+1 pipj+1(1−

∏j
i+1 qζ)

(i− 1, i+ 1) pi−1pi+1qi pi−1pi+1 pi−1pi+1(1− qi)
(i− 1, i) pi−1pi pi−1pi

∏j
i+1 qζ −pi−1pi(1−

∏j
i+1 qζ)

(i, i+ 1) pipi+1 pipi+1

∏i−1
j+1 qζ −pipi+1(1−

∏i−1
j+1 qζ)

Table 6.2: Exact probabilistic weights of the arcs selected for the 1-shift-T and the
1-shift-P ad hoc approximations. Tour ζ and ζi,j are shown in Figure 6.2, while for the
definition of the product notation, see Equation (4.3).

useful to consider the exact weights of the selected arcs in ζ and ζi,j . These are shown
in Table 6.2. Note that some of the exact weight differences can require an O(n)
computation time, when the product of several ‘q’ factors must be performed.

6.5.1.1 1-shift-T approximation

In this very rough approximation, the weight difference of each selected arc (the right
column of Table 6.2) is approximated either by 1 or by -1, depending on the fact
whether its probability of being traveled a posteriori increases or decreases from ζ to
ζi,j . From an inspection of the exact weights of the six arcs that we selected, it is not
difficult to verify that the weight increases for (i− 1, i+ 1), (j, i), and (i, j + 1), while
it decreases for (j, j + 1), (i − 1, i), and (i, i + 1). Thus, we define the approximated
move cost as

∆TEi,j = d(i−1, i+1)+d(j, i)+d(i, j+1)−d(j, j+1)−d(i−1, i)−d(i, i+1). (6.96)

Note that ∆TEi,j also corresponds to the length difference between ζ and ζi,j , as if,
instead of dealing with a PTSP, we would be working with a TSP. This is the reason for
the subscript T in ∆TEi,j and for the name of this ad hoc approximation. Obviously,
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∆TEi,j requires a constant-time computation.

6.5.1.2 1-shift-P approximation

Here, we approximate the weight difference of each selected arc (the right column of
Table 6.2) by posing any product involving more than 3 ‘q’ factors equal to zero. Let

3
j∏
i

qζ =
{ ∏j

i qζ if j − i ≤ 3 or j + n− i ≤ 3,
0 otherwise.

(6.97)

Then, the approximated move cost in 1-shift-P is the following

∆PEi,j =

d(i− 1, i+ 1)pi−1pipi+1 + d(j, i)pjpi(1−3
i−1∏
j+1

qζ) + d(i, j + 1)pipj+1(1−3
j∏

i+1

qζ)

−d(j, j + 1)pjpj+1pi − d(i− 1, i)pi−1pi(1−3
j∏

i+1

qζ)− d(i, i+ 1)pipi+1(1−3
i−1∏
j+1

qζ).

(6.98)

Note that, since each product appearing in Equation (6.98) can be computed in constant
time, also the 1-shift-P approximation ∆PEi,j can be computed in constant time, for
any node i and j.

6.5.2 Sampling approximation for the 1-shift: 1-shift-S

This approximation of ∆Ei,j is based on the Sampling approximation of the PTSP
objective function, as defined in Section 5.2.4.1. More precisely, given a set ofN samples
of customers ω1, . . . , ωk, . . . , ωN , sampled independently according to probability p(ωk)
(see Equation (5.15)), the Sampling approximation for the 1-shift is defined as follows

∆SN
Ei,j = ESN

[L(ζi,j)]− ESN
[L(ζ)], (6.99)

where

ESN
[L(ζi,j)] =

1
N

N∑
k=1

L(ζi,j|ωk
) and ESN

[L(ζ)] =
1
N

N∑
k=1

L(ζ|ωk
). (6.100)

Equation (6.99) can be rewritten as a sample average over length differences, each one
corresponding to a sample ωk of customers. For this purpose, let us introduce the
following definitions

Definition 15 Given a subset of customers ω ⊆ V , and a node i ∈ V ,

predω(i) =
{
i, if i ∈ ω,
the first-met node r ∈ ω going backward from i along ζ, otherwise.

(6.101)
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Definition 16 Given a subset of customers ω ⊆ V , and a node i ∈ V ,

succω(i) =
{
i, if i ∈ ω,
the first-met node r ∈ ω going onward from i along ζ, otherwise.

(6.102)

Equipped with the above definitions, the length difference of the two a posteriori tours
induced by ζ and ζi,j on a given subset of customers ωk is the following

∆ωk
Li,j =



0, if i /∈ ωk,
d(predωk

(i− 1), succωk
(i+ 1))

+d(predωk
(j), i) + d(i, succωk

(j + 1))
−d(predωk

(j), succωk
(j + 1))

−d(predωk
(i− 1), i)− d(i, succωk

(i+ 1)),

otherwise,
(6.103)

and the sampling approximation of 1-shift can be computed with the following
expression

∆SN
Ei,j =

1
N

N∑
k=1

∆ωk
Li,j . (6.104)

Since the time required to compute a predecessor or a successor node is O(n) in the
worst case, the time complexity for computing ∆SN

Ei,j is O(Nn), which is much higher
than the constant time complexity of 1-shift, 1-shift-T and 1-shift-P. Note, however,
that there is the possibility to decrease at least by a constant factor the complexity
of ∆SN

Ei,j , if the neighborhood is explored lexicographically, and if the same set of
samples is kept fixed during the neighborhood exploration. Let us see in more detail
how this is done.

Suppose that the 1-shift neighborhood is explored lexicographically, such that for
each i = 1, 2, . . . , n and for each j = 1, 2, . . . , n, the value of ∆SN

Ei,j is computed
in this order by means of Equation (6.104). Suppose also that before starting the
double cycle over indexes i and j, N random samples of the subsets of customers are
generated independently, and this set is kept fixed until all ∆SN

Ei,j are evaluated. It
is not difficult to see that in such a situation it is possible to compute some of the
successor and predecessor nodes needed for the computation of ∆ωk

Li,j (see Equation
(6.103)) recursively. In fact, for any node i ∈ V and any subset of customers ω, one
can compute succω(i) and predω(i) in the following ways

succω(i) =
{
succω(i) (by Definition 16 in O(n)), if i− 1 ∈ ω
succω(i− 1) (recursively in O(1)), otherwise.

(6.105)

predω(i) =
{
predω(i− 1) (recursively in O(1)), if i /∈ ω
i (in O(1)), otherwise.

(6.106)
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Thus, the probability of needing an O(n) computation for ∆ωk
Li,j is equal to the

probability that customer i−1 ∈ ω in Equation (6.105), and this can be estimated by p,
the average customers probability. In this way, the complexity of computing ∆SN

Ei,j

by Equation (6.104) is now O(Npn) (and not O(Nn) as it would be without any
hypothesis on the neighborhood exploration). For PTSP instances with low customers
probabilities, the time complexity of 1-shift-S may be comparable to that of 1-shift,
1-shift-T and 1-shift-P.

The interest in considering 1-shift-S despite its possibly high time complexity lies in
its generality. In fact, the sampling approximation can be applied to any SCOP, even
when there is no analytical or closed-form expression for the objective function, and so
it is not possible to design any good ad hoc approximation.

6.5.3 Pseudocode of the approximated 1-shift local search

The three approximated move cost expressions ∆TEi,j , ∆PEi,j , and ∆SN
Ei,j in prin-

ciple can be used inside a local search algorithm without any restriction on the order
in which the 1-shift neighbors are explored, and both in first-improvement or best-
improvement mode. However, since our goal is to compare the effectiveness of these
approximated move costs with the exact ones, we have developed 1-shift-T, 1-shift-P,
and 1-shift-S by keeping the same exploration strategy (best-improvement with lexico-
graphic neighborhood exploration) as the 1-shift algorithm based on the exact recursive
move costs (described in Section 6.4.4.1). The pseudocode of the three approximated
1-shift local searches is very similar to the one of the exact recursive 1-shift, except for
two differences: first, the exact move cost ∆Ei,j is substituted by, respectively, ∆TEi,j ,
∆PEi,j , and ∆SN

Ei,j ; second, there is no distinction between a first phase (where only
single swap moves were checked) and a second phase. The pseudocode of 1-shift-T,
1-shift-P, and 1-shift-S are represented respectively in Algorithms 15, 16, and 17, and
Table 6.5.3 summarizes the asymptotic time complexity for all the 1-shift variants that
we have presented.

Local Search Single move All neighborhood
1-shift O(n), if j = i+ 1; O(1), otherwise O(n2)
1-shift-T O(1) O(n2)
1-shift-P O(1) O(n2)
1-shift-S (N samples) O(Npn) O(Npn3)

Table 6.3: Time complexity of the neighborhood exploration for exact and approxi-
mated versions of 1-shift.

6.6 Overview of the results

There are several achievements obtained in this chapter, both from the methodological
point of view common to all SCOPs, and from the point of view of specific results valid
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Algorithm 15 1-shift-T(λ, λBSF )
while (locally optimal tour not found and time is not over) do

for (i = 1, 2, . . . , n) do
for (k = 1, . . . , n− 2) do

compute ∆TEi,i+k using equation (6.96)
end for

end for
if (mini,k ∆TEi,i+k < 0) then

(i, k) := arg mini,k ∆TEi,i+k

λ := tour obtained from λ by inserting λ(i) after λ(i+ k)
if E[L(λ)] < E[L(λBSF )] then
λBSF := λ

end if
else

return locally optimal tour λ
end if

end while

Algorithm 16 1-shift-P(λ, λBSF )
while (locally optimal tour not found and time is not over) do

for (i = 1, 2, . . . , n) do
for (k = 1, . . . , n− 2) do

compute ∆PEi,i+k using equation (6.98)
end for

end for
if (mini,k ∆PEi,i+k < 0) then

(i, k) := arg mini,k ∆PEi,i+k

λ := tour obtained from λ by inserting λ(i) after λ(i+ k)
if E[L(λ)] < E[L(λBSF )] then
λBSF := λ

end if
else

return locally optimal tour λ
end if

end while
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Algorithm 17 1-shift-S(λ, λBSF ) with fixed number of samples N
while (locally optimal tour not found and time is not over) do

GenerateSamples(N)
for (i = 1, 2, . . . , n) do

for (k = 1, . . . , n− 2) do
compute ∆SN

Ei,i+k using equation (6.104)
end for

end for
if (mini,k ∆SN

Ei,i+k < 0) then
(i, k) := arg mini,k ∆SN

Ei,i+k

λ := tour obtained from λ by inserting λ(i) after λ(i+ k)
GenerateSamples(N)
Compute ESN

[L(λ)] and (re-)compute ESN
[L(λBSF )] using the last generated

samples
if ESN

[L(λ)] < ESN
[L(λBSF )] then

λBSF := λ
end if

else
return locally optimal tour λ

end if
end while

and useful only for the PTSP.

• From the methodological point of view, we have presented, discussed, and ex-
emplified in the case of the PTSP the three situations that one can face when
designing a local search for a SCOP. Namely: using the full exact evaluation of
the objective function for computing the move cost; finding exact and recursive
expressions for the move cost, which are faster to be computed; or considering
approximations of the move cost. In this last case, similarly to what happens for
the evaluation of one single solution, ad hoc and sampling approximations may
be considered.

• After verifying the burden of one single run of local search when the full exact
evaluation of the objective function is used for computing the move cost, we can
say that, unless faster alternatives are found, it is not convenient to consider such
local search for integration in a metaheuristics. In fact, the metaheuristic itself
would be very much slowed, and it is very unlikely that the already quite good
results obtained without the local search would be improved in this situation.

• For the specific case of the PTSP, it has been possible to derive exact recursive
and efficient move cost expressions for the 2-p-opt and 1-shift local search oper-
ators. This is a very good result, given that the recursive expressions allow the
exploration of the neighborhood in the same asymptotic time complexity as the
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(deterministic) TSP. In general, when efficient expressions for the move cost are
obtained, it is very likely that, when combined with a metaheuristic, they will let
greatly improve its performance. We will verify this aspect in the next chapter,
dealing with hybrid ACO, that is, ACO integrated with local search.

• We proposed two ad hoc and one Sampling approximation of the move cost for
the 1-shift local search operator. The main idea behind the two ad hoc approx-
imations can be in principle exploited also in other SCOPs, since it is based on
estimating and neglecting the terms in the objective function that are smaller,
due to small probabilistic weights. The Sampling approximation that we pro-
pose is enhanced by some observations that allow to partially compute the move
cost in a recursive way, thus saving a lot of computation time. However, the
computational burden of the Sampling-based local search is bigger than ad hoc
approximations.



Chapter 7

Integration of Ant Colony
Optimization with local search

In this chapter, we focus on hybrid algorithms, that is, algorithms that solve an op-
timization problem by combining solution construction and local search techniques1.
In particular, we consider hybrid algorithms obtained by integrating local search algo-
rithms of Chapter 6 with the constructive ACO algorithms of Chapter 5 and with the
simple heuristics presented in Chapter 4.

In the previous chapters, we have proposed several solution construction algorithms
(5 simple constructive heuristics and a few ACO variants) and several variants of lo-
cal search for the PTSP (2-p-opt and 1-shift with 4 different ways for computing the
move cost). In principle, any combination of these algorithms can be used to obtain
a new hybrid one that is hopefully better performing than the simple solution con-
struction algorithm. However, it is impractical to test all the hybrid combinations
(potentially more than 30) and we have to make a selection guided by some specific
research question. The following are the main issues that we want to address by testing
experimentally some hybrid combinations of the previously proposed algorithms:

Issue 1: the advantage of using a local search with ACO. We have seen that
the design of a feasible local search algorithm for the PTSP has been more dif-
ficult than the design of an ACO algorithm. This situation can be quite often
encountered in SCOPs, where metaheuristics are usually easy to design, but the
same cannot be said for local search algorithms. Thus, we want to verify whether
the effort for the design of a good local search is balanced by a significant im-
provement in the solution quality, when the local search is used to hybridize an
easy-to-design metaheuristic (ACO in this context). Therefore, we want to quan-
tify the improvement due to the use of local search with ACO, given a fixed

1Note, however, that the term ‘hybrid’ can also refer to other features of an algorithm. For instance,
in the work about the vehicle routing problem with stochastic demands (VRPSD) reported in Appendix
B, the term hybrid also refers to the fact of using inside the algorithm the objective function of other
problems. Thus, in that context, the use of ad hoc objective function approximations taken from other
problems is a type of hybridization.

127
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amount of time is available for solving each PTSP problem.

Issue 2: exact versus approximated local search. In designing a local search for
the PTSP (and for any SCOP in general), we have seen several possibilities for
computing the move cost (exact recursive computation, ad hoc approximations,
and the Sampling approximation). Each one of these alternatives needs more
or less stringent conditions on the structure of the SCOP, such as a particular
neighborhood structure, an explicitly known objective function, the possibility
of performing simulations. Therefore, when one faces the problem of designing a
local search for a particular SCOP, it may be useful to have an idea about which is
the most promising choice among the different alternatives. For this purpose, we
want to achieve a classification in terms of solution quality of the different local
search variants, because this can constitute a sort of guideline for the practitioner
who faces a SCOP different from the PTSP.

The remainder of this chapter is organized as follows. Section 7.1 presents the hybrid
algorithms selected for the investigation of the above issues. Experiments are described
in Section 7.2, and Section 7.3 summarizes the main results obtained.

7.1 Description of hybrid algorithms

In order to address the issues listed above, we have considered for hybridization only
the 1-shift local search, since it has been shown to be more promising than the 2-p-opt
(see the experimental results described in Section 6.4.4.3), and also because for 1-shift
we have developed the different move cost sampling schemes. Our main interest is
in analyzing the achievements of hybrid ACO, to which we have applied both exact
and approximated versions of the 1-shift local search, as we are going to describe in
Section 7.1.2. Nevertheless, we have also considered hybrid versions of the simple
constructive heuristics using the exact recursive 1-shift local search, as described in
Section 7.1.1. Similarly to the case of non-hybrid ACO, the performance of simple
heuristics is considered a sort of minimum quality level, that any metaheuristic should
be able to surpass.

7.1.1 Hybridization of simple constructive heuristics

We have considered hybridized versions of all the simple constructive heuristics in-
troduced in Section 4.5, namely Space Filling Curve, Radial Sort, Farthest Insertion,
Nearest Neighbor, and the Random Search heuristic. For all these heuristics, except
Random Search, hybridization is done simply by applying just once the exact recursive
1-shift local search (Algorithm 14) to the single solution produced by the constructive
heuristic. In Random Search hybridization is done differently. There, the exact re-
cursive 1-shift algorithm is applied after any random solution, until the fixed available
runtime is exhausted. Thus, in Random Search the local search is applied several times.
At the end, the best solution with respect to the PTSP objective function is returned.
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7.1.2 Hybridization of ACO

In order to address Issue 1 previously described, we considered an hybridized version
of pACS with the exact recursive 1-shift local search (Algorithm 14). For addressing
Issue 2, we considered different hybridizations, namely pACS with 1-shift-P, pACS with
1-shift-T, and pACS-S with 1-shift-S (for a description of the move cost approximation
in 1-shift-P, -T, and -S variants, see Section 6.5).

The hybridization of pACS is done by applying the local search to each ant solution,
before the global pheromone update is performed, as shown in Algorithm 18.

Algorithm 18 hybrid pACS (pACS + 1-shift, pACS + 1-shift-T, pACS + 1-shift-P)
1: Initialization [like in pACS]
2: for iteration k = 1, 2, . . . do
3: Initialize best ant solution λBA

4: for ant a = 1, 2, . . . ,m do
5: ConstructAntSolution [each ant constructs its solution λa]
6: Apply either 1-shift(λa, λBSF ), 1-shift-T(λa, λBSF ), or 1-shift-P(λa, λBSF )
7: if E[L(λa)] < E[L(λBA)] then
8: set λBA = λa

9: end if
10: end for
11: if E[L(λBA)] < E[L(λBSF )] then
12: set λBSF = λBA

13: end if
14: GlobalPheromoneUpdate
15: end for

The hybridization of pACS-S has been done differently. In fact, in order to hybridize
pACS-S with 1-shift-S, we had to take into account the fact that the move cost of 1-
shift-S is much more computationally expensive than in 1-shift, 1-shift-T and 1-shift-P
(see Table 6.5.3). Preliminary experiments lead us to consider an hybridization where
local search is only applied to the best ant solution of each iteration, as shown in
Algorithm 19.

7.2 Experimental analysis

The experimental environment is the same as for the non hybrid ACO versions described
in Section 5.1.2.1. The parameters used for hybrid pACS and hybrid pACS-S are the
same as those used, respectively, in pACS and pACS-S, as described in Section 5.1.2.2
and Section 5.2.5.1.
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Algorithm 19 hybrid pACS-S (pACS-S + 1-shift-S)
1: Initialization [like in pACS]
2: for iteration k = 1, 2, . . . do
3: Initialize best ant solution λBA

4: Set N = NumberOfSamples(k) [apply Equation (5.20)]
5: for ant a = 1, 2, . . . ,m do
6: ConstructAntSolution [each ant constructs its solution λa]
7: GenerateSamples(N)
8: Compute ESN

[L(λa)] and re-compute ESN
[L(λBA)] using the last generated

samples
9: if ESN

[L(λa)] < ESN
[L(λBA)] then

10: set λBA = λa

11: end if
12: end for
13: GenerateSamples(N)
14: Re-compute ESN

[L(λBA)] and ESN
[L(λBSF )] using the last generated samples

15: if ESN
[L(λBA)] < ESN

[L(λBSF )] then
16: set λBSF = λBA

17: end if
18: 1-shift-S(λBA, λBSF )
19: GlobalPheromoneUpdate [using ∆τij = (ESN

[L(λBSF )])−1]
20: end for
21: Compute E[L(λBSF )]

7.2.1 Advantage of using a local search with ACO

If we consider average results over the entire PTSP benchmark (Table 7.1), it appears
that pACS+1-shift goes nearer to the lower bound than pACS, but the amount of
improvement is just 0.1% (see first row of the Table). The advantage of pACS+1-shift
with respect to pACS is more relevant if we look at the average time for reaching the
best solution within the allowed computation time: pACS+1-shift requires on average
about 60% time less than pACS (again, see first row of Table 7.1). Table 7.1 also
shows that the simple heuristics, even when hybridized with the 1-shift local search,
do not reach the performance neither of pACS+1-shift, nor of pACS. The statistical
significance of the difference among algorithms has been tested by means of a Friedman
two-way analysis of variance by ranks [64]. The results of this type of test are reported
in Figure A.1 of Appendix A.

As we have learned from the experimental analysis of pACS in Section 5.1.2 how-
ever, the algorithmic performance may be very different for different average customers
probability. In particular, for pACS we arrived at the important conclusion that only
PTSP instances with average customers probability up to 0.5 are worth solving by
pACS, since for bigger customers probability the problem can be better treated like a
TSP. Is the situation the same for pACS+1-shift? A look at the left part of Figure
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with 1-shift without 1-shift
algorithm % above LB time (seconds) % above LB time (seconds)
pACS 81.1% 1476.9 81.2% 2453.7
FI 83.2% 86.9 90.2% 0.1
SFC 93.1% 257.9 111.6% 0.1
NN 98.7% 293.1 111.1% 35.5
RAD 231.2% 2074.7 388.8% 0.1
RS 667.4% 131.7 1228.6% 2712.0

Table 7.1: Aggregated results showing average values over all instances of the PTSP
benchmark.

7.1 tells us that the answer is positive. It is thus more fair to restrict the compari-
son between pACS+1-shift and other algorithms only to PTSP instances with average
customers probability smaller than or equal to 0.5. Comparative results restricted to
this subset of PTSP instances are reported in Table 7.2. From the Table and from a
Friedman two-way analysis of variance by ranks [64], it is clear that pACS+1-shift finds
statistically significant better results than all other algorithms (at a confidence level of
95%). In particular, the improvement with respect to pACS is 0.4%. Detailed results
are reported by Table A.3 in Appendix A.

We have also analyzed how the influence of using 1-shift in pACS depends on the
other factors characterizing PTSP instances (variance of the customers probability and
number of customers). The number-of-customers factor, which is shown in the right
plot of Figure 7.1 does not seem to be significant. The customers-probability-variance
factor is more interesting, and we have showed it in the central plot of Figure 7.1. From
the plot one can conclude that hybridization is more effective for instances with low
customers probability variance, while for instances with high probability variance, it
seems that pACS produces better results.

7.2.2 Exact versus approximated local search

The effect of hybridizing ACO with different approximated local search operators is
summarized in Table 7.3. The ranking of the four algorithms has been tested by the
Friedman two-way analysis of variance by ranks [64]. The statistical test tells us that
differences are significant at a confidence level of 95%, except for pACS+1-shift-P and
pACS+1-shift-T.

As expected, pACS+1-shift, which is based on the exact recursive local search, is
the best one. This is an important confirmation, since it means that the big effort done
in Section 6.4 for finding fast recursive expressions for the move cost has been worth.

Quite interestingly, the second classified hybrid ACO of Table 7.3 is the sampling-
based algorithm pACS-S+1-shift-S. This fact is ‘good news’, as the sampling approxi-
mation can be applied to any SCOP, even when there is no analytical or closed-form
expression for the objective function, and so it is not possible to design any good ad
hoc approximation, or any fast recursive exact move cost expression. The performance
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X best(pACS+1-shift)−best(X)
best(X) (0.1 ≤ p ≤ 0.5)

pACS -0.4%
FI -5.9%
NN -16.1%
RAD -46.0%
RS -73.8%
SFC -12.8%
FI+1-shift -1.2%
NN+1-shift -10.2%
RAD+1-shift -14.9%
RS+1-shift -25.0%
SFC+1-shift -3.7%

Table 7.2: Average relative difference of the best solution found by pACS+1-shift with
respect to other algorithms (listed in column named ‘X’). Averages are restricted to
significant PTSP instances, that is, those with customers probability less then or equal
to 0.5.

of pACS-S+1-shift-S is not much worse than pACS+1-shift and pACS (taking into ac-
count Table 7.1), and it is superior to all the simple heuristics even when hybridized
with the exact 1-shift (again, see Table 7.1), which means that the sampling approxi-
mation is indeed quite effective.

Table 7.3 shows another interesting result: the bad performance of the two ad hoc
approximations, 1-shift-P and 1-shift-T. Their performance is bad also in comparison
to the simple pACS and to the FI heuristic hybridized with the exact 1-shift (see Table
7.1). This means that the quality of the move cost approximations ∆PEi,j and ∆TEi,j

is not sufficient, and the application of these approximated local searches to pACS is
only a time consuming task. Computation time would be much better exploited by the
solution construction mechanism of pACS.

The performance of the different hybrid ACO versions with respect to the value of
the optimal TSP solution is shown in Figure 7.2. Similarly to what emerged from Figure
7.1, there are some groups of PTSP instances for which pACS-S+1-shift-S performs
better than pACS+1-shift. This happens for probabilities higher than 0.4, and for
probability variance higher than 60%. Detailed results obtained by pACS-S+1-shift-S,
pACS+1-shift-T, and pACS+1-shift-P are reported, respectively, by Table A.4, A.5,
and A.6 in Appendix A. Appendix A also reports, in Figure A.1, the results of the
Friedman two-way analysis of variance by ranks done on all the hybrid and non-hybrid
versions of pACS, together with the simple heuristics and the optimal TSP solutions.

7.3 Overview of the results

• Simple heuristics enhanced by local search do not reach the performance of the
simple, non-hybrid pACS. This is an additional confirmation that, even without
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Figure 7.1: Relative gain of pACS (with and without the 1-shift local search) over
the optimal TSP solution, versus, respectively, average customers probability (left),
variance of the customers probability (center), and number of customers. Points are
averages computed over the the complete PTSP benchmark (left) and over subset of
PTSP instances with customers probability smaller than or equal to 0.5 (center and
right). The length of error bars is equal to the standard deviation of the relative gain.

% above LB time(seconds)
pACS+1-shift 81.1% 1476.9
pACS-S+1-shift-S 81.9% 1965.2
pACS+1-shift-P 87.3% 1995.1
pACS+1-shift-T 88.6% 1859.2

Table 7.3: Average results over the complete PTSP benchmark of different ACO ver-
sions, hybridized with exact and approximated 1-shift local search algorithms.

local search, the ACO metaheuristic obtains quite good results for the PTSP.

• The hybridization of pACS with the exact recursive 1-shift local search leads
to an improvement of less than 1%. This is not impressive, but it should be
considered that the hybrid version converges faster to good solutions. In fact, the
time required for finding the best solution in the hybrid pACS is about 60% less
than in the non-hybrid version.

• Interestingly, the exact 1-shift local search does not improve, but worsens the
solution quality of pACS, for PTSP instances characterized by very high variance
of the customers probability.

• The sampling-based ACO, pACS-S and its hybrid version, is quite near to pACS
hybridized with the exact recursive local search (within 1% on average). This is
an interesting and good result, when we think that the Sampling approximation
is very general, and can be applied to any SCOP, particularly to those for which
an explicit expression for the objective function is not available. The result is also
not obvious, since the behavior of a local search with approximated move cost,
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Figure 7.2: Relative gain of hybrid ACO algorithms over the optimal TSP solution,
versus, respectively, average customers probability (left), variance of the customers
probability (center), and number of customers (right). Points are averages computed
over the the complete PTSP benchmark (left) and over subset of PTSP instances with
customers probability smaller than or equal to 0.5 (center and right).

like 1-shift-S, could be in principle also quite bad.

• The best performance of the sampling-based ACO is in correspondence of PTSP
instances with high variance of the customers probability, where pACS-S+1-shift-
S outperforms both pACS and pACS+1-shift. This means that, for this class of
PTSP instances, the Sampling approximation could be chosen even for those
SCOPs, such as the PTSP, for which the exact objective function is available.

• When ACO is hybridized with local search based on ad hoc approximations, its
performance can be bad, both with respect to non-hybrid ACO, and to sim-
ple heuristic hybridized with a good local search. Such bad performance of local
search based on ad hoc approximations reveals that ad hoc approximations should
be chosen very carefully, and that, whenever possible, it might be better to spend
some effort in searching for exact efficient recursive move cost expressions. When
this is impossible, it may still be better to put more effort in improving the per-
formance of the non-hybrid metaheuristic, instead of considering the integration
of local search with ACO.



Chapter 8

Conclusions

In this thesis we have focused on SCOPs (Stochastic Combinatorial Optimization Prob-
lems), a wide class of combinatorial optimization problems under uncertainty, where
part of the information about the problem data is unknown at the planning stage, and
some knowledge about its probability distribution is assumed. Note, however, that the
SCOP modeling approach is one among many other possible modeling approaches to
optimization under uncertainty, such as Pure Online, Robust, and Fuzzy approaches,
that have been briefly described in the introduction, but that we have otherwise ne-
glected.

The first part of the thesis has been devoted to the introduction and survey of
the applications to SCOPs of metaheuristics for which there is a significant amount
of literature. These include, Ant Colony Optimization, Evolutionary Computation,
Simulated Annealing, Tabu Search and Stochastic Partitioning Methods. From the
survey, two properties of metaheuristics emerge clearly: they are a valid alternative to
exact classical methods for addressing real-sized SCOPs, and they are flexible, since
they can be quite easily adapted to solve different SCOPs formulations, both static
and dynamic. In fact, there exist applications of metaheuristics to problems formalized
as Stochastic, Chance Constraint, Two-stage and Multi-stage Integer Programs, and
Markov Decision Processes.

On the base of the reviewed literature, we have identified mainly three key issues in
solving SCOPs via metaheuristics: (1) the design and integration of ad hoc, fast and
effective objective function approximations inside the optimization algorithm; (2) the
estimation of the objective function by sampling when no closed-form expression for
the objective function is available, and the ways to deal with the time complexity and
noise induced by this type of estimation; (3) the characterization of the efficiency of
metaheuristic variants with respect to different levels of stochasticity in the problem
instances. In particular, the following observations can be done by looking at the
application of metaheuristics to SCOPs.

(1) The design of ad hoc approximations is strongly problem dependent, and no
general rule exists for finding efficient approximations of the objective function. Exam-
ples of ad hoc approximations in the literature include: the use of the objective function
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of a deterministic combinatorial optimization problem similar in some respects to the
SCOP considered; the use of truncated expressions for the expected values, by neglect-
ing terms that are estimated to be small; the use of scenarios, instead of considering the
true probabilistic model. Ad hoc approximations, if on one side accelerate the evalua-
tion and comparison among solutions, on the other side introduce a systematic error in
the computation of objective values. Usually, the systematic error cannot be reduced
unless a different, more precise ad hoc approximation is designed, and it can only be
evaluated by comparison with the exact objective value. Thus, metaheuristics typically
alternate exact and approximated evaluations during the optimization process.

(2) When the estimation of the objective function by sampling is used, the decision
whether a solution is better than another can only be done by statistical sampling,
obtaining a correct comparison result only with a certain probability. The way sam-
pling approximation is used in metaheuristics largely depends on the way solutions are
compared and the best solution among a set of other solutions is selected (‘selection-
of-the-best’ method). The selection-of-the-best method that a metaheuristic uses for
performing sample averages and for comparing solutions can have a great impact on
the effectiveness of the algorithm, but it is still hard to say which method is the most
effective in relation to the metaheuristic where it is employed.

(3) It has been recognized that completely different algorithms may be needed for
small and for large search spaces. Also the “degree of randomness”, that is, the size of
noise compared to the undisturbed objective function values, is an important factor. It
cannot be expected that a metaheuristic variant working well for solution spaces with
a small amount of noise will also perform optimally for solution spaces with a large
amount of noise, and vice versa. It appears that a characterization of metaheuristic
variants for SCOPs with respect to their appropriate domains of problem instance types
still waits for being elaborated.

The second part of the thesis describes a case study where we have investigated
the three key issues introduced above, by focusing in particular on a SCOP belonging
to the class of vehicle routing problems: the PTSP (Probabilistic Traveling Salesman
Problem). This problem is NP-hard, and can also be formalized as a Stochastic Integer
Program. Since no commonly used and satisfying benchmark existed for the PTSP,
we have generated our own. It consists of 432 PTSP instances carefully designed, in
particular to allow the analysis of the behavior of optimization algorithms for different
levels of stochasticity. In order to facilitate future comparisons with our results, we
have also used a known lower bound from the literature to evaluate the lower bound
of the optimal solution values for the instances of our PTSP benchmark. The PTSP,
besides having a practical interest, has many features that make it is useful as a test
problem for algorithms addressing SCOPs, such as: simple formulation, analogy with
the well known (deterministic) Traveling Salesman Problem, and most importantly, a
closed form expression for the exact objective function. Thus, it is likely it will be
considered again in the literature, and for this reason we think that the creation of a
benchmark of instances for the PTSP is a useful instrument for future research.

For the PTSP, we have first concentrated on the design of the ACO (Ant Colony Op-
timization) metaheuristic, second on the design of efficient local search algorithms, and
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third, on the integration of local search with ACO and with other heuristics (hybridiza-
tion). In the following, we summarize the main results and highlight their importance
and limitations.

• Our simplest implementation of ACO, which we have called pACS, obtains, with-
out the use of local search, results that can be considered good. In fact, pACS
is better than the Farthest Insertion and the Space Filling Curve heuristics both
enhanced by local search, which have been considered for long time as the best
available algorithms for the PTSP.

• We have evaluated how the performance of pACS depends on the level of stochas-
ticity of an instance. In our benchmark two factors can be considered as expression
of the level of stochasticity: the average customers probability and the variance
of the customers probability of requiring a visit. When there is no stochasticity
(that is, when customers probability is 1 and variance is 0), the PTSP is not dif-
ferent from the deterministic classical Traveling Salesman Problem (TSP), thus,
we have compared pACS results with the results obtained by an algorithm for the
TSP which solves the TSP to the optimum. We have found that there is a crit-
ical probability, under which PTSP instances are really worth solving by pACS,
but above the critical probability the problem can be better treated like a TSP.
The average critical probability is 0.5, but in general, the higher the number of
customers, the lower the critical probability. Moreover, the higher the variance
of customers probability, the more important is the gain of pACS with respect to
the optimal TSP solution.

• We have also considered two versions of pACS that exploit two ad hoc approx-
imations for the PTSP objective function. One of these two approximations is
the objective function of the corresponding TSP, and another one is based on
neglecting some small terms of the exact objective function. We have shown that
the performance of pACS using an ad hoc approximation is strongly correlated
with the absolute error of the approximation, and less related with the linear
correlation between exact and approximated evaluation. This fact has impor-
tant consequences, since, when designing ad hoc approximations for a SCOP, one
could be tempted to choose one which from preliminary experiments seems well
correlated with the exact objective function. But this choice could be, as we have
seen, quite bad, and we would suggest to consider, instead, the absolute error
of the approximation. However, it is important to stress the fact that the goal
of our analysis of ad hoc approximations applied to ACO was not to enhance
its performance, since this result has already been achieved by others ([51, 52]),
showing that in some cases an ad hoc approximation can accelerate convergence
without significantly worsening the solution quality.

• The sampling approximation of the objective function has also been considered in
a version of pACS, with the goal to see how worse is the performance with respect
to the original pACS algorithm. We found results constantly worse than pACS
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of roughly 2%, but the qualitative behavior with respect to factors determining
the stochasticity of PTSP instances is the same as the pACS algorithm based on
the exact objective.

• One of the nicest results of this thesis is the design of powerful local search algo-
rithms for the PTSP, that do not rely on any objective function approximation.
In fact, it has been possible to derive exact recursive and efficient cost expressions
for two local search operators, the 2-p-opt and 1-shift. This is a very good result,
given that the recursive expressions allow the exploration of the neighborhood of
a solution in the same asymptotic time complexity as the (deterministic) TSP,
and that, without recursion, the same task would require two orders of magnitude
more time. A limitation of this result is that it useful only for the PTSP, since
it strongly depends on the structure of its objective function. The experimen-
tal evaluation local search has been restricted to the most promising 1-shift local
search. The integration of pACS with the exact recursive 1-shift local search leads
an average improvement of less than 1%. This is not impressive, but it should
be considered that the hybrid version converges faster to good solutions. In fact,
the time required for finding the best solution in pACS with local search is about
60% less than without local search.

• In considering the effect of ad hoc approximation on local search, we have observed
that, when pACS is hybridized with local search based on two different ad hoc
approximations, its performance can be quite bad, both with respect to non-
hybrid ACO, and to simple heuristic hybridized with a good local search. Such
bad performance of local search based on ad hoc approximations reveals that ad
hoc approximations should be chosen very carefully, and that, whenever possible,
it is better to spend some effort in searching for exact efficient recursive move
cost expressions. When this is impossible, it may still be better to put more
effort in improving the performance of the non-hybrid metaheuristic, instead of
considering the integration of local search with ACO.

• We have also considered an hybrid version of pACS which only uses evaluations
of the objective function and of the local search moves based on the sampling
approximation of the objective function. Such algorithm is quite good, since it
achieves on average results within 1% of the best hybrid pACS algorithm using the
exact objective function. Interestingly, for PTSP instances with high customers
probability variance the sampling-based hybrid pACS is the best one. This means
that, for this class of PTSP instances, the sampling approximation could be chosen
on purpose, even if the exact objective function is available.



Appendix A

Detailed computational results of
ACO algorithms for the PTSP

This appendix first presents, in Figure A.1, a complete ranking scheme of most of
the algorithms analyzed in this thesis. Secondly, six tables of detailed computational
results are reported. The six tables report computational results of two ACO algo-
rithms described in Chapter 5 (pACS and pACS-S) and four hybrid ACO algorithms
described in Chapter 7 (pACS+1-shift, pACS-S+1-shift-S, pACS+1-shift-T, and
pACS+1-shift-P). Hybrid ACO algorithms combine pACS and pACS-S with three
versions of the 1-shift local search presented in Chapter 6.

Experiments have been run on a machine with two processors Intel(R) Xeon(TM) CPU
1.70GHz, running the GNU/Linux Debian 2.4.27 operating system. All algorithms
have been coded in C++ under the same development framework. Each algorithm has
been run once on each PTSP instance for a computation time equal to n2/100 CPU
seconds, where n is the number of customers of the PTSP instance.

The format of the tables is as follows. There are three times six columns. The first of
the six columns contains the name of the PTSP instance, from which it is possible to
extract informations such as: the corresponding TSP instance with customers coordi-
nates, the number of customers, the average and variance of the customers probability.
For detailed informations on the instances of the PTSP benchmark, see Section 4.3.
Since, as we have seen in Section 5, above the critical probability the PTSP is better
treated by TSP-specific algorithms, our results are interesting particularly for instances
with average probability smaller than the critical one. For this reason, we report only
results of instances with average probability up to 0.5 (which corresponds to the av-
erage critical probability). The second of the six columns reports the PTSP objective
function value of the best found solution. The third and the fourth of the six columns
contain, respectively, the iteration kb and the time tb at which the best solution was
found. Finally, the fifth and the sixth of the six columns contain, respectively, the total
number of iterations performed ktot and the total time ttot allowed to the algorithm.
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(a) Ranking on PTSP instances with low customers probability.
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(b) Ranking on PTSP instances with high customers probability. Note that in this
case, no algorithm generates significantly better solutions than optimal TSP solu-
tions.

Figure A.1: Ranking of algorithms on the PTSP benchmark. According to the Fried-
man two-way analysis of variance by ranks [64], the algorithms have statistically sig-
nificant different ranks, at a confidence level of 95%, when they are not linked by a
vertical line on the left of the plot.
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pACS
Instance name best kb tb ktot ttot Instance name best kb tb ktot ttot Instance name best kb tb ktot ttot

kroA100.p10.v16 9104.9 4736 99.97 4738 100 ch150.p50.v16 4993.8 4000 197.49 4559 “ ” att532.p30.v16 56571.0 4454 2663.9 4730 “ ”
kroA100.p10.v33 8280.7 4776 99.99 4777 “ ” ch150.p50.v33 5107.8 3022 148.99 4630 “ ” att532.p30.v33 55323.6 4699 2804.26 4742 “ ”
kroA100.p10.v50 7318.1 4338 89.93 4826 “ ” ch150.p50.v50 4915.2 4528 215.76 4714 “ ” att532.p30.v50 52790.9 4651 2828.39 4654 “ ”
kroA100.p10.v66 9507.4 4711 98.98 4764 “ ” ch150.p50.v66 4992.4 3960 185.81 4751 “ ” att532.p30.v66 55349.7 3648 2175.14 4756 “ ”
kroA100.p10.v83 9700.7 1872 31.75 5131 “ ” ch150.p50.v83 4395.6 4219 204.73 4641 “ ” att532.p30.v83 54761.4 4661 2748.36 4798 “ ”
kroA100.p20.v16 11003.2 4502 95.53 4711 “ ” ch150.p10 2493.6 5902 181.51 7279 “ ” att532.p40.v16 63021.1 4529 2682.75 4775 “ ”
kroA100.p20.v33 12008.7 4494 92.74 4855 “ ” ch150.p20 3444.2 6794 218.85 6986 “ ” att532.p40.v33 63909.0 4482 2683.06 4725 “ ”
kroA100.p20.v50 11416.7 5160 99.96 5164 “ ” ch150.p30 4076.3 5807 186.21 7020 “ ” att532.p40.v50 62651.1 4598 2764.17 4708 “ ”
kroA100.p20.v66 10369.2 4186 86.93 4828 “ ” ch150.p40 4636.7 7045 224.04 7075 “ ” att532.p40.v66 64815.9 4650 2713.06 4859 “ ”
kroA100.p20.v83 11402.6 3699 76.13 4837 “ ” ch150.p50 5164.3 4945 155.82 7159 “ ” att532.p40.v83 60648.0 4841 2813.22 4871 “ ”
kroA100.p30.v16 14116.2 4271 90.98 4698 “ ” d198.p10.v16 8166.3 4407 362.39 4768 “ ” att532.p50.v16 72227.3 4593 2781.96 4672 “ ”
kroA100.p30.v33 12973.2 4210 87.51 4804 “ ” d198.p10.v33 7891.4 4874 390.52 4893 “ ” att532.p50.v33 67775.5 4554 2720.79 4738 “ ”
kroA100.p30.v50 13894.6 4578 96.93 4724 “ ” d198.p10.v50 7481.7 4524 370.17 4789 “ ” att532.p50.v50 67844.2 3114 2579.61 3414 “ ”
kroA100.p30.v66 12916.7 3949 82.01 4830 “ ” d198.p10.v66 6473.9 4139 341.1 4763 “ ” att532.p50.v66 68433.3 4860 2824.87 4869 “ ”
kroA100.p30.v83 12462.4 4724 97.42 4853 “ ” d198.p10.v83 6496.9 4116 314.11 5107 “ ” att532.p50.v83 72637.3 4883 2827.52 4888 “ ”
kroA100.p40.v16 15338.9 3611 72.78 4922 “ ” d198.p20.v16 9138.0 4533 365.37 4857 “ ” att532.p10 35179.7 7296 2793.28 7393 “ ”
kroA100.p40.v33 14870.9 4544 96.7 4700 “ ” d198.p20.v33 9709.2 4618 378.53 4785 “ ” att532.p20 47531.4 7386 2819.1 7415 “ ”
kroA100.p40.v50 16112.4 4747 99.43 4776 “ ” d198.p20.v50 8287.4 1349 104.95 5008 “ ” att532.p30 55865.3 7115 2788.28 7237 “ ”
kroA100.p40.v66 14871.3 5104 99.69 5120 “ ” d198.p20.v66 9123.9 4511 366.91 4821 “ ” att532.p40 63308.0 7204 2817.19 7237 “ ”
kroA100.p40.v83 13901.5 3207 67.09 4771 “ ” d198.p20.v83 9525.9 1227 99.45 4982 “ ” att532.p50 69671.2 7210 2822.81 7229 “ ”
kroA100.p50.v16 16454.6 2861 61.43 4672 “ ” d198.p30.v16 11100.2 3004 246.01 4869 “ ” rat783.p10.v16 3382.4 4851 6117.61 4861 6131
kroA100.p50.v33 16851.8 3299 69.48 4749 “ ” d198.p30.v33 10305.1 4387 356.29 4829 “ ” rat783.p10.v33 3320.1 4801 6047.41 4877 “ ”
kroA100.p50.v50 16825.6 3918 83.5 4688 “ ” d198.p30.v50 10463.7 4800 390.26 4822 “ ” rat783.p10.v50 3167.7 1425 1781.86 4879 “ ”
kroA100.p50.v66 16200.8 4590 97.19 4726 “ ” d198.p30.v66 12356.7 4894 389.08 4931 “ ” rat783.p10.v66 3236.0 4757 6006.06 4857 “ ”
kroA100.p50.v83 15771.9 2189 45.8 4780 “ ” d198.p30.v83 10497.6 3510 278.95 4938 “ ” rat783.p10.v83 2732.1 4767 5873.92 4968 “ ”
kroA100.p10 9039.4 7867 99.64 7897 “ ” d198.p40.v16 11817.7 4678 376.14 4873 “ ” rat783.p20.v16 4938.1 4855 6122.6 4862 “ ”
kroA100.p20 11720.6 6721 82.45 8182 “ ” d198.p40.v33 13040.6 4707 384.76 4795 “ ” rat783.p20.v33 4720.8 4817 6008.55 4914 “ ”
kroA100.p30 13711.4 6688 83.34 8011 “ ” d198.p40.v50 10753.2 4733 388.07 4782 “ ” rat783.p20.v50 4680.7 4804 6115.72 4824 “ ”
kroA100.p40 15253.8 7451 93.79 7945 “ ” d198.p40.v66 12649.6 4925 384.74 5019 “ ” rat783.p20.v66 4391.3 4662 5704.86 5008 “ ”
kroA100.p50 16605.4 7712 95.11 8112 “ ” d198.p40.v83 11260.9 4729 371.65 4987 “ ” rat783.p20.v83 5020.8 4788 5832.12 5030 “ ”
eil101.p10.v16 184.9 4468 94.88 4808 102 d198.p50.v16 13174.1 4516 369.64 4793 1011 rat783.p30.v16 5768.9 4705 5926.64 4867 “ ”
eil101.p10.v33 173.7 2340 48.66 4901 “ ” d198.p50.v33 12969.6 3903 316.83 4841 “ ” rat783.p30.v33 5752.8 4883 6107.47 4901 “ ”
eil101.p10.v50 149.2 4713 100.4 4791 “ ” d198.p50.v50 11945.2 4709 373.04 4944 “ ” rat783.p30.v50 5845.3 1732 2183.8 4836 “ ”
eil101.p10.v66 176.2 3494 72.7 4893 “ ” d198.p50.v66 11614.1 4471 353.88 4997 “ ” rat783.p30.v66 5641.2 3205 6096.46 3224 “ ”
eil101.p10.v83 220.9 2488 51.33 4906 “ ” d198.p50.v83 13293.1 4957 388.26 5004 “ ” rat783.p30.v83 5803.9 4006 4860.76 5039 “ ”
eil101.p20.v16 276.0 4111 87.52 4790 “ ” d198.p10 7556.1 6953 367.45 7419 “ ” rat783.p40.v16 6647.8 4733 5903.59 4913 “ ”
eil101.p20.v33 299.7 4865 100.48 4939 “ ” d198.p20 9489.2 7032 373.32 7384 “ ” rat783.p40.v33 6714.0 4856 6122.22 4863 “ ”
eil101.p20.v50 271.4 4814 101.02 4861 “ ” d198.p30 10951.9 1044 55.33 7406 “ ” rat783.p40.v50 6682.2 3093 5973.12 3174 “ ”
eil101.p20.v66 277.5 4646 98.4 4817 “ ” d198.p40 12047.9 337 17.49 7576 “ ” rat783.p40.v66 6559.2 4772 6110.96 4788 “ ”
eil101.p20.v83 267.0 2852 60.87 4789 “ ” d198.p50 12745.5 7209 382.14 7397 “ ” rat783.p40.v83 6026.6 4918 6116.8 4929 “ ”
eil101.p30.v16 346.5 4615 96.67 4871 “ ” lin318.p10.v16 18511.7 4691 999.05 4747 “ ” rat783.p50.v16 7285.5 4865 6083.56 4903 “ ”
eil101.p30.v33 366.8 4652 98.65 4812 “ ” lin318.p10.v33 18831.3 4673 1007.09 4692 “ ” rat783.p50.v33 7222.1 3654 6093.83 3677 “ ”
eil101.p30.v50 353.8 4829 100.92 4881 “ ” lin318.p10.v50 17446.5 4567 1006.69 4588 “ ” rat783.p50.v50 7275.9 4917 6105.37 4938 “ ”
eil101.p30.v66 338.5 3475 73.86 4801 “ ” lin318.p10.v66 16941.7 4680 998.93 4736 “ ” rat783.p50.v66 7178.3 5036 6125.26 5041 “ ”
eil101.p30.v83 361.5 4954 95.15 5275 “ ” lin318.p10.v83 18288.8 4661 1002.98 4698 “ ” rat783.p50.v83 7188.3 4821 5939.14 4976 “ ”
eil101.p40.v16 399.4 4808 102 4809 “ ” lin318.p20.v16 24781.9 4035 892.12 4583 “ ” rat783.p10 3368.9 7448 6081.61 7508 “ ”
eil101.p40.v33 426.5 4169 88.49 4800 “ ” lin318.p20.v33 24070.8 4532 1000.97 4579 “ ” rat783.p20 4781.2 7638 6105.53 7669 “ ”
eil101.p40.v50 409.1 4725 100.26 4810 “ ” lin318.p20.v50 24228.3 4099 897.68 4614 “ ” rat783.p30 5794.0 7396 6055.79 7488 “ ”
eil101.p40.v66 433.6 4431 84.8 5252 “ ” lin318.p20.v66 22356.3 4574 989.16 4676 “ ” rat783.p40 6643.6 7351 6004.38 7505 “ ”
eil101.p40.v83 384.6 4350 91.21 4864 “ ” lin318.p20.v83 22020.2 4512 960.26 4744 “ ” rat783.p50 7334.1 7331 6000.03 7491 “ ”
eil101.p50.v16 466.6 3733 79.88 4767 “ ” lin318.p30.v16 27840.1 4578 999.69 4630 “ ” dsj1000.p10.v16 7877145.0 4122 9928.24 4152 10000
eil101.p50.v33 469.9 3768 78.66 4877 “ ” lin318.p30.v33 28665.3 3560 768.75 4673 “ ” dsj1000.p10.v33 7360107.9 3945 9448.79 4173 “ ”
eil101.p50.v50 463.1 4702 100.2 4787 “ ” lin318.p30.v50 27947.6 4615 1007.24 4633 “ ” dsj1000.p10.v50 7622986.4 4102 9992.69 4106 “ ”
eil101.p50.v66 431.2 4929 101.84 4938 “ ” lin318.p30.v66 28331.7 3941 853.22 4672 “ ” dsj1000.p10.v66 8122145.6 3712 8950.18 4159 “ ”
eil101.p50.v83 392.2 4641 95.45 4963 “ ” lin318.p30.v83 26640.7 4416 926.11 4810 “ ” dsj1000.p10.v83 7494223.3 2128 4909.98 4322 “ ”
eil101.p10 199.7 7640 95.11 8190 “ ” lin318.p40.v16 31072.0 4742 1010.29 4746 “ ” dsj1000.p20.v16 10463471.8 4157 9996.07 4159 “ ”
eil101.p20 286.7 7461 95.67 7959 “ ” lin318.p40.v33 31633.4 4497 962.5 4720 “ ” dsj1000.p20.v33 10444565.1 4138 9951.73 4159 “ ”
eil101.p30 353.5 7646 96.4 8090 “ ” lin318.p40.v50 31780.5 4608 1010.57 4611 “ ” dsj1000.p20.v50 10647711.3 3552 8647.21 4118 “ ”
eil101.p40 410.9 6950 87.56 8100 “ ” lin318.p40.v66 30802.8 4583 975.41 4749 “ ” dsj1000.p20.v66 10329885.8 4261 9965.86 4276 “ ”
eil101.p50 470.7 7660 99.04 7891 “ ” lin318.p40.v83 31151.6 3532 740.23 4781 “ ” dsj1000.p20.v83 10594892.2 3788 8822.87 4281 “ ”
ch150.p10.v16 2465.3 4470 220.53 4562 225 lin318.p50.v16 34790.1 4199 907.26 4676 2830 dsj1000.p30.v16 12656292.2 3942 9496.84 4152 “ ”
ch150.p10.v33 2301.9 3827 191.21 4505 “ ” lin318.p50.v33 33756.3 4205 917.69 4625 “ ” dsj1000.p30.v33 12639273.8 4100 9988.05 4105 “ ”
ch150.p10.v50 2426.2 4512 224.98 4513 “ ” lin318.p50.v50 32835.5 4755 1009.01 4766 “ ” dsj1000.p30.v50 12121381.1 3954 9496.62 4172 “ ”
ch150.p10.v66 2462.0 4466 219.09 4600 “ ” lin318.p50.v66 34607.4 4704 1009.49 4712 “ ” dsj1000.p30.v66 12982963.5 3850 8865.51 4342 “ ”
ch150.p10.v83 2501.4 2453 121.63 4559 “ ” lin318.p50.v83 33085.1 4768 1004.71 4798 “ ” dsj1000.p30.v83 11962145.3 4101 9547.72 4286 “ ”
ch150.p20.v16 3553.0 4232 212.14 4492 “ ” lin318.p10 17583.4 7016 994.06 7136 “ ” dsj1000.p40.v16 14362558.1 3968 9663.42 4106 “ ”
ch150.p20.v33 3441.5 4531 223.04 4572 “ ” lin318.p20 24413.7 6479 921.46 7108 “ ” dsj1000.p40.v33 14248703.2 4095 9965.81 4110 “ ”
ch150.p20.v50 3301.9 4507 224.88 4511 “ ” lin318.p30 28654.4 7107 1009.2 7121 “ ” dsj1000.p40.v50 13938082.7 3025 9903.35 3055 “ ”
ch150.p20.v66 3113.0 4766 222.7 4830 “ ” lin318.p40 32035.3 6761 936.93 7294 “ ” dsj1000.p40.v66 14314148.8 3862 9196.83 4203 “ ”
ch150.p20.v83 3513.6 4543 220.99 4626 “ ” lin318.p50 34797.1 7088 1005.88 7125 “ ” dsj1000.p40.v83 14185609.1 2327 5413.97 4289 “ ”
ch150.p30.v16 3973.1 4229 211.3 4503 “ ” att532.p10.v16 37742.4 4657 2797.11 4711 “ ” dsj1000.p50.v16 15599104.5 2894 9987.1 2898 “ ”
ch150.p30.v33 4096.4 4546 223.42 4579 “ ” att532.p10.v33 35825.3 4630 2808.23 4672 “ ” dsj1000.p50.v33 15446401.0 3107 9962.8 3120 “ ”
ch150.p30.v50 4144.8 4742 224.13 4760 “ ” att532.p10.v50 32788.1 3588 2191.98 4635 “ ” dsj1000.p50.v50 15579476.9 3318 9797.33 3387 “ ”
ch150.p30.v66 3894.0 4588 222.97 4630 “ ” att532.p10.v66 33202.3 4146 2494.98 4704 “ ” dsj1000.p50.v66 15141669.2 4266 9949.5 4288 “ ”
ch150.p30.v83 4019.7 4521 222.53 4572 “ ” att532.p10.v83 31511.7 4795 2802.34 4843 “ ” dsj1000.p50.v83 14900006.2 4047 9271.85 4366 “ ”
ch150.p40.v16 4701.1 3770 186.56 4545 “ ” att532.p20.v16 47508.7 4632 2797.67 4688 “ ” dsj1000.p10 7772825.8 6615 9948.81 6650 “ ”
ch150.p40.v33 4771.8 4305 210.96 4594 “ ” att532.p20.v33 48727.8 1090 662.94 4657 “ ” dsj1000.p20 10674105.7 6620 9998.22 6622 “ ”
ch150.p40.v50 4651.5 3530 176.16 4508 “ ” att532.p20.v50 45935.8 4628 2804.55 4671 “ ” dsj1000.p30 12564114.6 6727 9944.57 6765 “ ”
ch150.p40.v66 4410.3 4719 221.2 4799 “ ” att532.p20.v66 44800.1 4556 2662.58 4844 “ ” dsj1000.p40 14313456.5 6509 9632.96 6758 “ ”
ch150.p40.v83 4498.8 2261 109.25 4660 “ ” att532.p20.v83 45257.9 4620 2693.74 4853 “ ” dsj1000.p50 15563658.3 6594 9762.4 6758 “ ”

Table A.1: Detailed results of pACS for PTSP instances with 0.1 ≤ p ≤ 0.5.
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pACS-S
Instance name best kb tb ktot ttot Instance name best kb tb ktot ttot Instance name best kb tb ktot ttot

kroA100.p10.v16 9182.38 2247 99.82 2251 100 ch150.p50.v16 4983.58 1843 224.01 1848 “ ” att532.p30.v16 56961.37 4454 2816.56 1014 “ ”
kroA100.p10.v33 8293.02 2259 98.34 2280 “ ” ch150.p50.v33 5090.03 1849 224.95 1850 “ ” att532.p30.v33 56354.99 4699 2784.6 1020 “ ”
kroA100.p10.v50 7330.31 2288 99.94 2290 “ ” ch150.p50.v50 4914.16 1840 223.54 1847 “ ” att532.p30.v50 55153.30 4651 2829.36 1025 “ ”
kroA100.p10.v66 9515.77 2276 99.68 2282 “ ” ch150.p50.v66 4922.89 1859 224.66 1862 “ ” att532.p30.v66 55373.59 3648 2764.24 1027 “ ”
kroA100.p10.v83 9700.78 2278 99.68 2283 “ ” ch150.p50.v83 4309.73 1832 211.89 1892 “ ” att532.p30.v83 56697.74 4661 291.76 1032 “ ”
kroA100.p20.v16 11152.90 2278 99.98 2279 “ ” ch150.p10 2533.73 1903 224.22 1908 “ ” att532.p40.v16 64376.03 4529 2793.78 1000 “ ”
kroA100.p20.v33 12046.54 2318 99.98 2320 “ ” ch150.p20 3486.08 1878 224.9 1880 “ ” att532.p40.v33 64866.41 4482 2588.81 1006 “ ”
kroA100.p20.v50 11423.25 2297 99.98 2298 “ ” ch150.p30 4290.10 1859 224.89 1861 “ ” att532.p40.v50 62777.79 4598 2799.67 1011 “ ”
kroA100.p20.v66 10386.02 2274 99.86 2276 “ ” ch150.p40 4803.82 1864 224.92 1865 “ ” att532.p40.v66 65533.29 4650 2810.4 1014 “ ”
kroA100.p20.v83 11406.31 2281 99.94 2283 “ ” ch150.p50 5318.64 1847 224.99 1848 “ ” att532.p40.v83 65135.12 4841 2793.47 1017 “ ”
kroA100.p30.v16 14275.90 2234 99.95 2236 “ ” d198.p10.v16 8298.36 4407 374.19 1692 392 att532.p50.v16 72217.84 4593 2821.12 1004 “ ”
kroA100.p30.v33 12900.53 2241 99.73 2245 “ ” d198.p10.v33 7900.93 4874 380.3 1699 “ ” att532.p50.v33 68567.59 4554 2805.45 1004 “ ”
kroA100.p30.v50 14164.21 2232 99.73 2236 “ ” d198.p10.v50 7481.83 4524 381.73 1708 “ ” att532.p50.v50 70003.69 3114 2815.8 1009 “ ”
kroA100.p30.v66 12932.81 2236 97.93 2263 “ ” d198.p10.v66 6598.56 4139 376.36 1691 “ ” att532.p50.v66 69915.05 4860 2764.21 1019 “ ”
kroA100.p30.v83 12535.02 2274 99.85 2277 “ ” d198.p10.v83 6560.45 4116 257.45 1705 “ ” att532.p50.v83 72235.53 4883 2388.22 1024 “ ”
kroA100.p40.v16 15436.64 2213 99.8 2216 “ ” d198.p20.v16 9192.41 4533 384.47 1666 “ ” att532.p10 36946.82 7296 2828.43 1051 “ ”
kroA100.p40.v33 14928.29 2231 99.95 2233 “ ” d198.p20.v33 9984.28 4618 389.03 1670 “ ” att532.p20 48392.53 7386 2828.71 1023 “ ”
kroA100.p40.v50 16188.03 2230 99.89 2232 “ ” d198.p20.v50 8231.83 1349 374.28 1690 “ ” att532.p30 57177.77 7115 2829.96 1003 “ ”
kroA100.p40.v66 14916.15 2242 100 2243 “ ” d198.p20.v66 9057.44 4511 88.85 1687 “ ” att532.p40 64655.98 7204 2825.99 991 “ ”
kroA100.p40.v83 14009.87 2239 99.86 2241 “ ” d198.p20.v83 9592.74 1227 388.75 1687 “ ” att532.p50 70963.86 7210 2827.3 992 “ ”
kroA100.p50.v16 16572.49 2232 99.91 2234 “ ” d198.p30.v16 11044.31 3004 158.51 1643 “ ” rat783.p10.v16 3520.95 518 2210.97 883 6131
kroA100.p50.v33 16877.11 2288 99.85 2291 “ ” d198.p30.v33 10458.84 4387 358.22 1653 “ ” rat783.p10.v33 3475.39 830 5373.94 889 “ ”
kroA100.p50.v50 16915.17 2225 99.79 2228 “ ” d198.p30.v50 10899.03 4800 367.71 1638 “ ” rat783.p10.v50 3206.70 855 5633.16 894 “ ”
kroA100.p50.v66 16278.17 2116 90.71 2234 “ ” d198.p30.v66 12340.85 4894 356.51 1671 “ ” rat783.p10.v66 3386.69 349 1030.22 892 “ ”
kroA100.p50.v83 15842.17 2269 99.79 2273 “ ” d198.p30.v83 10474.07 3510 45.12 1658 “ ” rat783.p10.v83 2820.73 879 5898.91 897 “ ”
kroA100.p10 9098.05 2284 99.88 2286 “ ” d198.p40.v16 12249.24 4678 387.92 1629 “ ” rat783.p20.v16 5001.62 849 6061.2 855 “ ”
kroA100.p20 11819.46 2282 99.89 2284 “ ” d198.p40.v33 13179.72 4707 389.94 1637 “ ” rat783.p20.v33 4826.23 862 6097.73 865 “ ”
kroA100.p30 13831.31 2241 99.91 2243 “ ” d198.p40.v50 10940.37 4733 379.25 1631 “ ” rat783.p20.v50 4833.63 865 6078.9 869 “ ”
kroA100.p40 15299.55 2225 99.96 2226 “ ” d198.p40.v66 13222.28 4925 386.88 1643 “ ” rat783.p20.v66 4473.33 871 6057.55 878 “ ”
kroA100.p50 16793.61 2245 100.01 2246 “ ” d198.p40.v83 11220.15 4729 386.31 1640 “ ” rat783.p20.v83 5126.43 439 1652.18 874 “ ”
eil101.p10.v16 185.76 2267 101.89 2270 102 d198.p50.v16 13281.17 4516 384.99 1623 “ ” rat783.p30.v16 5904.17 832 6097.41 836 “ ”
eil101.p10.v33 174.85 2292 101.72 2297 “ ” d198.p50.v33 13087.54 3903 369.73 1632 “ ” rat783.p30.v33 5870.49 843 6101.92 846 “ ”
eil101.p10.v50 149.42 2235 97.7 2291 “ ” d198.p50.v50 12053.34 4709 381.49 1638 “ ” rat783.p30.v50 5919.19 848 6113.06 850 “ ”
eil101.p10.v66 176.72 2278 101.49 2286 “ ” d198.p50.v66 11637.35 4471 391.16 1631 “ ” rat783.p30.v66 5950.67 832 5791.09 857 “ ”
eil101.p10.v83 219.51 2269 101.7 2274 “ ” d198.p50.v83 13750.07 4957 348.12 1637 “ ” rat783.p30.v83 5772.29 540 2518.15 859 “ ”
eil101.p20.v16 276.99 2252 101.46 2260 “ ” d198.p10 7584.43 6953 388.21 1702 “ ” rat783.p40.v16 6704.20 816 6050.99 822 “ ”
eil101.p20.v33 296.73 2308 101.27 2318 “ ” d198.p20 9607.01 7032 391.53 1663 “ ” rat783.p40.v33 6839.40 828 6127.4 829 “ ”
eil101.p20.v50 275.54 2249 100.05 2274 “ ” d198.p30 10879.23 1044 384.89 1639 “ ” rat783.p40.v50 6804.40 663 3895.72 839 “ ”
eil101.p20.v66 283.22 2261 99.1 2298 “ ” d198.p40 11912.64 337 386.88 1628 “ ” rat783.p40.v66 6690.64 805 5618.55 843 “ ”
eil101.p20.v83 265.52 2282 102 2283 “ ” d198.p50 13109.46 7209 363.9 1624 “ ” rat783.p40.v83 6189.75 773 5149.35 847 “ ”
eil101.p30.v16 352.81 2255 101.94 2257 “ ” lin318.p10.v16 19171.90 4691 1008.89 1351 1011 rat783.p50.v16 7327.53 805 5932.52 819 “ ”
eil101.p30.v33 367.66 2220 101.93 2222 “ ” lin318.p10.v33 18298.50 4673 988.18 1360 “ ” rat783.p50.v33 7335.12 819 6033.69 826 “ ”
eil101.p30.v50 362.76 2242 101.82 2245 “ ” lin318.p10.v50 17374.96 4567 994.48 1353 “ ” rat783.p50.v50 7540.76 832 6093.82 835 “ ”
eil101.p30.v66 341.47 2233 101.77 2237 “ ” lin318.p10.v66 18123.88 4680 954.57 1366 “ ” rat783.p50.v66 7388.08 841 6121.39 842 “ ”
eil101.p30.v83 349.61 2246 101.63 2252 “ ” lin318.p10.v83 18684.73 4661 749.14 1356 “ ” rat783.p50.v83 7401.50 832 5970.7 845 “ ”
eil101.p40.v16 405.59 2206 101.99 2207 “ ” lin318.p20.v16 25199.26 4035 1003.92 1322 “ ” rat783.p10 3472.58 869 6100.19 872 “ ”
eil101.p40.v33 432.45 2228 101.73 2232 “ ” lin318.p20.v33 24510.45 4532 904.26 1326 “ ” rat783.p20 4863.61 844 6120.03 846 “ ”
eil101.p40.v50 410.60 2289 101.92 2291 “ ” lin318.p20.v50 25001.38 4099 307.14 1327 “ ” rat783.p30 5888.89 815 6016.13 824 “ ”
eil101.p40.v66 434.75 2199 99.53 2230 “ ” lin318.p20.v66 22609.73 4574 902.38 1336 “ ” rat783.p40 6707.93 807 6107.34 809 “ ”
eil101.p40.v83 369.67 2240 101.67 2245 “ ” lin318.p20.v83 22061.35 4512 1002.61 1338 “ ” rat783.p50 7423.20 806 6103.95 808 “ ”
eil101.p50.v16 476.90 2232 101.68 2237 “ ” lin318.p30.v16 28093.94 4578 1010.16 1306 “ ” dsj1000.p10.v16 8066789.86 762 9963.63 764 10000
eil101.p50.v33 479.17 2238 101.9 2240 “ ” lin318.p30.v33 28674.76 3560 1008.25 1304 “ ” dsj1000.p10.v33 7673655.47 758 9638.42 773 “ ”
eil101.p50.v50 476.94 2246 101.97 2247 “ ” lin318.p30.v50 28512.86 4615 1007.64 1303 “ ” dsj1000.p10.v50 7961863.87 761 9693.95 774 “ ”
eil101.p50.v66 431.68 2222 101.19 2233 “ ” lin318.p30.v66 29255.38 3941 1010.26 1308 “ ” dsj1000.p10.v66 8186052.70 624 6514.5 780 “ ”
eil101.p50.v83 417.87 2250 101.68 2255 “ ” lin318.p30.v83 26434.57 4416 988.57 1318 “ ” dsj1000.p10.v83 7332409.55 780 9991.78 782 “ ”
eil101.p10 201.68 2285 101.92 2287 “ ” lin318.p40.v16 32049.58 4742 1009.88 1290 “ ” dsj1000.p20.v16 10799931.97 729 9935.55 733 “ ”
eil101.p20 287.97 2272 101.92 2274 “ ” lin318.p40.v33 32387.46 4497 1010.53 1290 “ ” dsj1000.p20.v33 10770686.78 737 9914.45 741 “ ”
eil101.p30 357.49 2240 101.94 2241 “ ” lin318.p40.v50 32484.74 4608 972.08 1294 “ ” dsj1000.p20.v50 10813920.38 744 9881.3 749 “ ”
eil101.p40 421.07 2227 101.85 2230 “ ” lin318.p40.v66 31596.57 4583 993.87 1292 “ ” dsj1000.p20.v66 10292914.12 681 8155.47 757 “ ”
eil101.p50 476.03 2243 102.01 2244 “ ” lin318.p40.v83 31575.20 3532 1010.03 1302 “ ” dsj1000.p20.v83 10936611.85 760 10000.11 761 “ ”
ch150.p10.v16 2524.34 1899 223.62 1907 225 lin318.p50.v16 35203.54 4199 973.61 1294 “ ” dsj1000.p30.v16 12916320.79 699 9793.78 708 “ ”
ch150.p10.v33 2289.85 1899 223.71 1906 “ ” lin318.p50.v33 34422.99 4205 1007.98 1287 “ ” dsj1000.p30.v33 13072731.61 700 9567.12 717 “ ”
ch150.p10.v50 2430.43 1915 224.79 1917 “ ” lin318.p50.v50 33420.74 4755 1009.4 1296 “ ” dsj1000.p30.v50 12381820.80 731 9961.54 733 “ ”
ch150.p10.v66 2469.26 1751 190.24 1919 “ ” lin318.p50.v66 34481.07 4704 1002.48 1301 “ ” dsj1000.p30.v66 12802724.67 715 9492.48 735 “ ”
ch150.p10.v83 2502.02 1924 222.86 1935 “ ” lin318.p50.v83 33916.41 4768 1006.95 1292 “ ” dsj1000.p30.v83 12323164.62 435 3551.38 745 “ ”
ch150.p20.v16 3518.86 1874 224.91 1875 “ ” lin318.p10 18130.60 7016 993.68 1347 “ ” dsj1000.p40.v16 14507685.54 679 9796.68 688 “ ”
ch150.p20.v33 3521.56 1885 225.01 1886 “ ” lin318.p20 24924.10 6479 1010.77 1319 “ ” dsj1000.p40.v33 14494379.47 687 9684.42 700 “ ”
ch150.p20.v50 3347.31 1885 223.05 1895 “ ” lin318.p30 29922.82 7107 1009.12 1302 “ ” dsj1000.p40.v50 14431883.24 712 9992.95 713 “ ”
ch150.p20.v66 3178.82 1747 192.05 1905 “ ” lin318.p40 32737.70 6761 1010.6 1290 “ ” dsj1000.p40.v66 14700442.81 498 4910.97 721 “ ”
ch150.p20.v83 3375.21 1895 223.34 1903 “ ” lin318.p50 35559.28 7088 1008.33 1287 “ ” dsj1000.p40.v83 14183887.09 727 9904.61 731 “ ”
ch150.p30.v16 4057.14 1849 224.61 1852 “ ” att532.p10.v16 38841.24 4657 2812.02 1050 2830 dsj1000.p50.v16 15682511.91 679 9982.77 680 “ ”
ch150.p30.v33 4407.36 1830 218.91 1859 “ ” att532.p10.v33 36114.86 4630 2670.12 1069 “ ” dsj1000.p50.v33 15749031.67 686 9854.33 692 “ ”
ch150.p30.v50 4025.01 1862 223.99 1868 “ ” att532.p10.v50 35380.47 3588 2793.17 1078 “ ” dsj1000.p50.v50 15870168.49 695 9736.25 706 “ ”
ch150.p30.v66 4089.49 1780 207.78 1860 “ ” att532.p10.v66 34038.21 4146 2641.78 1077 “ ” dsj1000.p50.v66 15503076.08 710 9752.6 720 “ ”
ch150.p30.v83 4021.93 1099 84.64 1884 “ ” att532.p10.v83 32677.09 4795 2738.61 1083 “ ” dsj1000.p50.v83 15135976.98 141 465.43 728 “ ”
ch150.p40.v16 4695.92 1838 224.87 1840 “ ” att532.p20.v16 48940.30 4632 2822.02 1035 “ ” dsj1000.p10 7947090.75 756 9909.45 760 “ ”
ch150.p40.v33 4779.80 1844 224.18 1848 “ ” att532.p20.v33 47846.35 1090 2681.44 1042 “ ” dsj1000.p20 10855790.85 720 9918.87 724 “ ”
ch150.p40.v50 4646.98 1845 224.55 1848 “ ” att532.p20.v50 46725.65 4628 2781.22 1052 “ ” dsj1000.p30 12772805.12 696 9946.66 699 “ ”
ch150.p40.v66 4574.77 1850 223.85 1856 “ ” att532.p20.v66 47116.98 4556 2804.57 1041 “ ” dsj1000.p40 14353182.94 679 9997.57 680 “ ”
ch150.p40.v83 4544.59 1880 224.13 1884 “ ” att532.p20.v83 48522.20 4620 1415.78 1049 “ ” dsj1000.p50 15741284.59 664 9854.02 670 “ ”

Table A.2: Detailed results of pACS-S for PTSP instances with 0.1 ≤ p ≤ 0.5.
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pACS+1-shift
Instance name best kb tb ktot ttot Instance name best kb tb ktot ttot Instance name best kb tb ktot ttot

kroA100.p10.v16 8279.7 1 47.16 17 100 ch150.p50.v16 4979.5 16 202.43 29 “ ” att532.p30.v16 52469.3 1 439.84 4 “ ”
kroA100.p10.v33 7318.1 1 38.43 15 “ ” ch150.p50.v33 4763.4 25 209.6 28 “ ” att532.p30.v33 51282.7 1 317.82 3 “ ”
kroA100.p10.v50 9507.0 1 60.73 17 “ ” ch150.p50.v50 4953.4 1 211.17 16 “ ” att532.p30.v50 53201.8 1 99.39 3 “ ”
kroA100.p10.v66 9700.7 1 7 19 “ ” ch150.p50.v66 4588.7 18 218.24 20 “ ” att532.p30.v66 59588.5 1 1214.73 3 “ ”
kroA100.p10.v83 10969.9 1 0.21 19 “ ” ch150.p50.v83 5344.3 83 215.75 87 “ ” att532.p30.v83 61735.2 38 1357.8 81 “ ”
kroA100.p20.v16 11997.1 1 4.74 33 “ ” ch150.p10 3418.3 1 143.55 19 “ ” att532.p40.v16 62660.0 1 504.31 4 “ ”
kroA100.p20.v33 11416.5 1 15.14 41 “ ” ch150.p20 4053.5 1 223.42 34 “ ” att532.p40.v33 61540.0 1 568.95 4 “ ”
kroA100.p20.v50 10360.8 1 29.66 34 “ ” ch150.p30 4581.4 18 98.85 77 “ ” att532.p40.v50 67870.7 1 532.68 4 “ ”
kroA100.p20.v66 11414.8 1 37.8 16 “ ” ch150.p40 5030.2 30 107.42 105 “ ” att532.p40.v66 64386.0 74 2554.54 86 “ ”
kroA100.p20.v83 14081.7 68 75.82 114 “ ” ch150.p50 5467.1 28 192.42 81 “ ” att532.p40.v83 69773.5 52 1951.11 77 “ ”
kroA100.p30.v16 12828.8 1 33.8 48 “ ” d198.p10.v16 7809.8 1 23.18 4 392 att532.p50.v16 66369.5 1 56.15 4 “ ”
kroA100.p30.v33 13880.7 25 72.78 35 “ ” d198.p10.v33 7373.7 1 284.48 5 “ ” att532.p50.v33 67862.0 1 479.28 4 “ ”
kroA100.p30.v50 12916.7 1 40.63 38 “ ” d198.p10.v50 6451.1 1 9.92 6 “ ” att532.p50.v50 70631.0 1 328.25 2 “ ”
kroA100.p30.v66 12630.9 1 0.87 22 “ ” d198.p10.v66 6589.3 1 85.26 7 “ ” att532.p50.v66 73302.4 82 2795.44 84 “ ”
kroA100.p30.v83 15302.8 100 97.36 105 “ ” d198.p10.v83 8927.8 99 343.4 113 “ ” att532.p50.v83 74189.3 70 2692.83 80 “ ”
kroA100.p40.v16 14868.8 18 51.12 99 “ ” d198.p20.v16 9504.5 1 55.86 5 “ ” att532.p10 45755.5 1 1095.67 3 “ ”
kroA100.p40.v33 16093.9 1 30.88 54 “ ” d198.p20.v33 7898.0 1 55.04 5 “ ” att532.p20 55197.4 1 424.27 4 “ ”
kroA100.p40.v50 15115.5 1 64.46 55 “ ” d198.p20.v50 9578.7 1 279.22 5 “ ” att532.p30 62285.2 1 469.29 5 “ ”
kroA100.p40.v66 14040.9 30 30.52 122 “ ” d198.p20.v66 9676.4 33 128.99 99 “ ” att532.p40 69346.5 1 2314.42 6 “ ”
kroA100.p40.v83 16454.1 78 86.22 101 “ ” d198.p20.v83 10716.9 96 320.12 117 “ ” att532.p50 74465.2 1 207.02 7 “ ”
kroA100.p50.v16 16850.3 65 97.89 67 “ ” d198.p30.v16 9977.5 1 96.52 7 “ ” rat783.p10.v16 3065.1 1 2016.47 3 6131
kroA100.p50.v33 16564.6 24 51.24 97 “ ” d198.p30.v33 10181.7 1 273 7 “ ” rat783.p10.v33 2946.5 1 2098.74 2 “ ”
kroA100.p50.v50 16186.7 1 60.29 36 “ ” d198.p30.v50 12146.1 1 275.55 7 “ ” rat783.p10.v50 2978.5 1 3665.17 2 “ ”
kroA100.p50.v66 15845.5 1 29.55 40 “ ” d198.p30.v66 10858.9 1 195.01 6 “ ” rat783.p10.v66 3003.2 1 3415.33 3 “ ”
kroA100.p50.v83 17499.0 36 39.47 91 “ ” d198.p30.v83 11801.6 72 310.32 92 “ ” rat783.p10.v83 4722.8 51 3553.29 92 “ ”
kroA100.p10 11715.1 1 16.25 50 “ ” d198.p40.v16 12871.4 1 35.84 8 “ ” rat783.p20.v16 4442.9 1 3680.9 3 “ ”
kroA100.p20 13679.3 1 38.52 105 “ ” d198.p40.v33 10890.1 1 347.05 10 “ ” rat783.p20.v33 4392.6 1 4202.93 3 “ ”
kroA100.p30 15253.6 1 28.69 105 “ ” d198.p40.v50 13773.8 1 372.08 8 “ ” rat783.p20.v50 4529.9 1 1180.19 3 “ ”
kroA100.p40 16569.7 24 27.87 178 “ ” d198.p40.v66 11918.3 3 240.14 114 “ ” rat783.p20.v66 5275.4 1 881.96 74 “ ”
kroA100.p50 17723.7 1 56.09 183 “ ” d198.p40.v83 13100.5 83 390.6 85 “ ” rat783.p20.v83 5546.6 67 5444.93 76 “ ”
eil101.p10.v16 172.6 1 55.28 13 102 d198.p50.v16 12467.9 1 358.03 9 “ ” rat783.p30.v16 5367.4 1 1906.88 3 “ ”
eil101.p10.v33 149.1 1 88.18 12 “ ” d198.p50.v33 11782.2 1 3.95 10 “ ” rat783.p30.v33 5461.3 1 2321.88 3 “ ”
eil101.p10.v50 176.2 1 5.25 13 “ ” d198.p50.v50 12496.4 1 298.53 9 “ ” rat783.p30.v50 5927.4 1 921.67 3 “ ”
eil101.p10.v66 219.4 1 1.62 18 “ ” d198.p50.v66 14104.3 84 365.17 99 “ ” rat783.p30.v66 5767.0 40 4532.02 58 “ ”
eil101.p10.v83 270.0 1 0.85 25 “ ” d198.p50.v83 13333.3 85 380.6 88 “ ” rat783.p30.v83 6390.1 17 1414.47 78 “ ”
eil101.p20.v16 293.8 1 47.99 15 “ ” d198.p10 9312.1 1 210.39 9 “ ” rat783.p40.v16 6446.7 1 252.23 3 “ ”
eil101.p20.v33 267.9 1 88.05 14 “ ” d198.p20 10645.9 1 59.69 9 “ ” rat783.p40.v33 6747.1 1 763.8 3 “ ”
eil101.p20.v50 277.5 1 89.83 16 “ ” d198.p30 11631.5 1 232.58 11 “ ” rat783.p40.v50 6829.9 81 5341.53 95 “ ”
eil101.p20.v66 277.7 1 43.19 16 “ ” d198.p40 12666.5 1 284.23 16 “ ” rat783.p40.v66 6178.2 18 1464.7 81 “ ”
eil101.p20.v83 344.7 124 99.85 127 “ ” d198.p50 13539.7 1 308.65 16 “ ” rat783.p40.v83 7088.5 1 1009.71 80 “ ”
eil101.p30.v16 353.4 1 66.79 20 “ ” lin318.p10.v16 17556.2 1 980.88 4 1011 rat783.p50.v16 6973.7 1 172.59 3 “ ”
eil101.p30.v33 349.7 1 85.49 19 “ ” lin318.p10.v33 16788.8 1 188.88 4 “ ” rat783.p50.v33 7475.4 1 3365 3 “ ”
eil101.p30.v50 334.7 1 79.54 20 “ ” lin318.p10.v50 19755.4 1 232.65 4 “ ” rat783.p50.v50 7421.6 82 5705.81 89 “ ”
eil101.p30.v66 385.0 1 39.32 15 “ ” lin318.p10.v66 19158.1 1 43.5 103 “ ” rat783.p50.v66 7386.9 81 6030.79 83 “ ”
eil101.p30.v83 393.0 71 63.77 113 “ ” lin318.p10.v83 24587.6 116 1004.73 117 “ ” rat783.p50.v83 7987.6 57 4547.67 77 “ ”
eil101.p40.v16 418.6 1 90.54 40 “ ” lin318.p20.v16 22957.6 1 130.36 5 “ ” rat783.p10 4619.2 1 1234.98 3 “ ”
eil101.p40.v33 383.7 1 95.87 24 “ ” lin318.p20.v33 23822.4 1 744.53 5 “ ” rat783.p20 5672.8 1 1555.04 3 “ ”
eil101.p40.v50 452.6 6 95.2 30 “ ” lin318.p20.v50 21881.9 1 198.98 4 “ ” rat783.p30 6516.2 1 320.25 4 “ ”
eil101.p40.v66 395.3 71 64.02 113 “ ” lin318.p20.v66 22589.5 1 231.6 4 “ ” rat783.p40 7199.0 1 221.2 4 “ ”
eil101.p40.v83 454.7 88 96.54 93 “ ” lin318.p20.v83 27411.2 92 983.32 95 “ ” rat783.p50 7785.5 1 682.03 5 “ ”
eil101.p50.v16 456.4 32 97.04 35 “ ” lin318.p30.v16 28360.4 1 173.58 6 “ ” dsj1000.p10.v16 7072023.4 1 1405.43 2 10000
eil101.p50.v33 450.0 25 91.03 29 “ ” lin318.p30.v33 27552.9 1 850.98 6 “ ” dsj1000.p10.v33 7241096.9 1 9110.1 2 “ ”
eil101.p50.v50 464.2 1 91.69 22 “ ” lin318.p30.v50 27541.5 1 234.72 5 “ ” dsj1000.p10.v50 6875873.6 1 2985.8 2 “ ”
eil101.p50.v66 434.5 93 93.69 102 “ ” lin318.p30.v66 30091.0 1 304.01 5 “ ” dsj1000.p10.v66 7603393.8 1 6701.61 2 “ ”
eil101.p50.v83 506.0 63 66.16 97 “ ” lin318.p30.v83 31184.7 51 633.75 87 “ ” dsj1000.p10.v83 9992975.8 18 2152.05 83 “ ”
eil101.p10 283.6 1 1.21 30 “ ” lin318.p40.v16 31734.9 1 768.93 7 “ ” dsj1000.p20.v16 9840719.2 1 9999.42 2 “ ”
eil101.p20 349.2 1 73.25 32 “ ” lin318.p40.v33 31656.1 1 915.68 7 “ ” dsj1000.p20.v33 9953525.6 1 7854.33 2 “ ”
eil101.p30 404.7 9 47.26 72 “ ” lin318.p40.v50 34028.0 1 957.72 7 “ ” dsj1000.p20.v50 10536279.5 1 9960.55 2 “ ”
eil101.p40 454.5 14 60.31 84 “ ” lin318.p40.v66 34738.0 71 686.46 106 “ ” dsj1000.p20.v66 10941566.1 1 1363.86 60 “ ”
eil101.p50 500.6 12 78.63 110 “ ” lin318.p40.v83 34505.6 32 388.99 83 “ ” dsj1000.p20.v83 12157464.8 1 6275.69 72 “ ”
ch150.p10.v16 2278.3 1 92.32 7 225 lin318.p50.v16 32922.7 1 858.91 9 “ ” dsj1000.p30.v16 11933542.3 1 4873.86 3 “ ”
ch150.p10.v33 2423.3 1 150.51 7 “ ” lin318.p50.v33 32604.1 1 851.87 8 “ ” dsj1000.p30.v33 11499618.5 1 6369.15 2 “ ”
ch150.p10.v50 2460.4 1 203.41 8 “ ” lin318.p50.v50 35782.0 1 1010.57 7 “ ” dsj1000.p30.v50 13260366.4 1 2813.75 3 “ ”
ch150.p10.v66 2501.4 1 109.16 10 “ ” lin318.p50.v66 35763.7 76 985.57 94 “ ” dsj1000.p30.v66 12750737.3 31 5838.84 58 “ ”
ch150.p10.v83 3444.1 98 199.62 111 “ ” lin318.p50.v83 36885.9 19 299.62 87 “ ” dsj1000.p30.v83 13815793.3 21 3577.4 63 “ ”
ch150.p20.v16 3390.7 1 184.53 12 “ ” lin318.p10 23719.9 1 869.14 6 “ ” dsj1000.p40.v16 13820422.7 1 1033.16 3 “ ”
ch150.p20.v33 3284.0 1 221.01 11 “ ” lin318.p20 28945.8 1 605.64 8 “ ” dsj1000.p40.v33 14968529.9 1 2343 3 “ ”
ch150.p20.v50 3107.0 1 163.72 10 “ ” lin318.p30 31676.6 1 657.24 9 “ ” dsj1000.p40.v50 14737781.8 44 7652.21 61 “ ”
ch150.p20.v66 3511.5 1 72.6 8 “ ” lin318.p40 34575.3 1 1000.21 16 “ ” dsj1000.p40.v66 14269100.2 1 1100.66 65 “ ”
ch150.p20.v83 3941.2 20 42.64 103 “ ” lin318.p50 36774.7 13 956.23 22 “ ” dsj1000.p40.v83 15717063.4 1 56.12 63 “ ”
ch150.p30.v16 4035.8 1 208.23 13 “ ” att532.p10.v16 34145.9 1 360.52 3 2830 dsj1000.p50.v16 15976411.2 96 8906.4 109 “ ”
ch150.p30.v33 3960.2 1 156.98 12 “ ” att532.p10.v33 33662.9 1 2094.49 3 “ ” dsj1000.p50.v33 15916478.1 27 3735.58 83 “ ”
ch150.p30.v50 3892.6 1 139.73 14 “ ” att532.p10.v50 31982.0 1 1646.95 3 “ ” dsj1000.p50.v50 15792848.0 11 4120.13 77 “ ”
ch150.p30.v66 4247.8 1 183.42 10 “ ” att532.p10.v66 32594.8 1 725.65 3 “ ” dsj1000.p50.v66 15201985.7 1 2365.17 70 “ ”
ch150.p30.v83 4540.5 86 213.64 91 “ ” att532.p10.v83 46120.8 86 2630.3 93 “ ” dsj1000.p50.v83 17093520.2 1 9.04 71 “ ”
ch150.p40.v16 4649.8 24 219.88 25 “ ” att532.p20.v16 45123.6 1 355.95 4 “ ” dsj1000.p10 10055741.1 1 1861.05 3 “ ”
ch150.p40.v33 4626.5 1 206.98 18 “ ” att532.p20.v33 44572.6 1 302.66 3 “ ” dsj1000.p20 12076064.1 1 1224.55 3 “ ”
ch150.p40.v50 4557.8 1 213.13 16 “ ” att532.p20.v50 48693.1 1 1153.64 3 “ ” dsj1000.p30 13756464.9 1 5784.11 3 “ ”
ch150.p40.v66 4843.6 86 192.3 115 “ ” att532.p20.v66 49473.9 1 570.46 82 “ ” dsj1000.p40 15209693.8 1 346.11 3 “ ”
ch150.p40.v83 4943.4 51 133.78 86 “ ” att532.p20.v83 54615.5 81 2820.9 82 “ ” dsj1000.p50 17021037.7 1 292.43 4 “ ”

Table A.3: Detailed results of pACS+1-shift for PTSP instances with 0.1 ≤ p ≤ 0.5.
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pACS-S+1-shift-S
Instance name best kb tb ktot ttot Instance name best kb tb ktot ttot Instance name best kb tb ktot ttot

kroA100.p10.v16 9230.3 610 99.78 614 100 ch150.p50.v16 4917.1 273 223.6 275 “ ” att532.p30.v16 56022.5 152 2673.7 187 “ ”
kroA100.p10.v33 8294.0 1339 99.73 1341 “ ” ch150.p50.v33 4953.2 265 223.57 271 “ ” att532.p30.v33 55023.4 11 2081.18 183 “ ”
kroA100.p10.v50 7354.7 1440 99.89 1442 “ ” ch150.p50.v50 4678.7 265 222.85 275 “ ” att532.p30.v50 53958.5 1 1470.19 161 “ ”
kroA100.p10.v66 9518.9 1487 98.96 1497 “ ” ch150.p50.v66 4846.5 364 223.22 370 “ ” att532.p30.v66 50676.7 1 2156.79 153 “ ”
kroA100.p10.v83 9701.0 1663 99.94 1665 “ ” ch150.p50.v83 4279.9 245 224.62 308 “ ” att532.p30.v83 51855.9 1 1894.72 131 “ ”
kroA100.p20.v16 11312.0 341 95.36 361 “ ” ch150.p10 2814.2 293 218.77 315 “ ” att532.p40.v16 62975.9 202 2827.03 203 “ ”
kroA100.p20.v33 12577.8 288 98.79 347 “ ” ch150.p20 3539.1 181 169.35 272 “ ” att532.p40.v33 64045.9 38 595.97 186 “ ”
kroA100.p20.v50 11476.3 408 97.65 421 “ ” ch150.p30 4118.5 275 223.99 277 “ ” att532.p40.v50 63235.9 160 2757.45 165 “ ”
kroA100.p20.v66 10398.1 1179 95 1229 “ ” ch150.p40 4574.2 275 224.9 276 “ ” att532.p40.v66 61581.3 68 1720.68 157 “ ”
kroA100.p20.v83 11417.4 1126 99.52 1133 “ ” ch150.p50 5051.3 271 222.25 275 “ ” att532.p40.v83 62493.8 1 2371.25 126 “ ”
kroA100.p30.v16 14477.0 190 66.95 291 “ ” d198.p10.v16 8372.7 287 391.25 288 392 att532.p50.v16 69857.5 184 2709.58 192 “ ”
kroA100.p30.v33 12887.6 310 99.19 314 “ ” d198.p10.v33 8216.5 105 376.13 276 “ ” att532.p50.v33 66431.1 159 2507.8 187 “ ”
kroA100.p30.v50 13952.7 353 92.25 382 “ ” d198.p10.v50 7553.0 139 315.07 276 “ ” att532.p50.v50 68192.3 1 1664.71 161 “ ”
kroA100.p30.v66 12922.9 577 99.66 589 “ ” d198.p10.v66 6513.8 139 373.65 290 “ ” att532.p50.v66 66841.3 1 2667.27 147 “ ”
kroA100.p30.v83 12467.3 1148 99.86 1152 “ ” d198.p10.v83 6487.5 5 258.26 361 “ ” att532.p50.v83 67911.4 133 2793.06 156 “ ”
kroA100.p40.v16 15411.1 317 99.53 319 “ ” d198.p20.v16 9537.2 83 374.83 275 “ ” att532.p10 40662.6 1 2196.46 195 “ ”
kroA100.p40.v33 14933.0 318 99.87 319 “ ” d198.p20.v33 10131.4 21 99.61 257 “ ” att532.p20 48748.1 1 2521.97 197 “ ”
kroA100.p40.v50 16101.1 293 98.08 299 “ ” d198.p20.v50 8241.3 33 190.3 258 “ ” att532.p30 57785.7 1 50.42 195 “ ”
kroA100.p40.v66 14956.4 357 99.98 368 “ ” d198.p20.v66 9115.5 14 385.18 235 “ ” att532.p40 64084.5 198 2807.4 200 “ ”
kroA100.p40.v83 13901.4 1015 99.12 1025 “ ” d198.p20.v83 9380.8 11 316.2 265 “ ” att532.p50 69650.1 201 2830.05 204 “ ”
kroA100.p50.v16 16476.6 313 99.33 316 “ ” d198.p30.v16 11131.0 46 371.94 256 “ ” rat783.p10.v16 3495.0 1 61.4 165 6131
kroA100.p50.v33 16863.1 308 100 309 “ ” d198.p30.v33 10347.9 18 225.48 245 “ ” rat783.p10.v33 3460.7 1 2010.97 148 “ ”
kroA100.p50.v50 16637.7 317 99.49 320 “ ” d198.p30.v50 10172.3 51 316.28 244 “ ” rat783.p10.v50 3106.2 1 945.98 155 “ ”
kroA100.p50.v66 16247.8 338 99.86 342 “ ” d198.p30.v66 12076.4 24 357.85 216 “ ” rat783.p10.v66 3201.8 1 2091.15 126 “ ”
kroA100.p50.v83 15771.9 1331 94.01 1415 “ ” d198.p30.v83 10133.3 2 183.33 212 “ ” rat783.p10.v83 2581.3 1 5038.71 115 “ ”
kroA100.p10 9161.6 681 99.67 685 “ ” d198.p40.v16 11933.0 184 275.7 259 “ ” rat783.p20.v16 5014.1 10 1106.83 170 “ ”
kroA100.p20 12241.7 250 85.31 326 “ ” d198.p40.v33 13147.0 28 187.92 246 “ ” rat783.p20.v33 4721.2 1 5437.24 151 “ ”
kroA100.p30 13787.0 308 99.91 311 “ ” d198.p40.v50 11045.9 5 377.86 246 “ ” rat783.p20.v50 4743.9 1 2559.21 136 “ ”
kroA100.p40 15286.8 324 99.96 325 “ ” d198.p40.v66 12682.9 2 134.02 232 “ ” rat783.p20.v66 4320.9 1 1805.49 137 “ ”
kroA100.p50 16679.3 283 96.98 298 “ ” d198.p40.v83 11417.1 7 372.15 231 “ ” rat783.p20.v83 4451.3 1 5655.17 99 “ ”
eil101.p10.v16 197.6 495 96.19 523 102 d198.p50.v16 12988.3 156 235.75 256 “ ” rat783.p30.v16 5888.0 17 3964.24 155 “ ”
eil101.p10.v33 180.9 525 96.37 554 “ ” d198.p50.v33 12733.0 8 245.4 251 “ ” rat783.p30.v33 5711.8 1 3379 144 “ ”
eil101.p10.v50 149.3 776 100 780 “ ” d198.p50.v50 11494.0 38 349.38 244 “ ” rat783.p30.v50 5749.7 60 3089 151 “ ”
eil101.p10.v66 177.6 1193 97.26 1251 “ ” d198.p50.v66 11625.5 19 370.74 236 “ ” rat783.p30.v66 5570.0 1 5893.04 121 “ ”
eil101.p10.v83 219.8 946 100 948 “ ” d198.p50.v83 13223.7 2 292.98 189 “ ” rat783.p30.v83 5338.1 1 931.08 104 “ ”
eil101.p20.v16 291.9 162 100 292 “ ” d198.p10 8028.3 281 385.78 286 “ ” rat783.p40.v16 6539.0 164 5711.75 176 “ ”
eil101.p20.v33 303.5 288 100 289 “ ” d198.p20 10071.9 218 310.32 272 “ ” rat783.p40.v33 6708.5 8 4226.63 153 “ ”
eil101.p20.v50 284.9 74 98.38 285 “ ” d198.p30 11290.9 22 381.58 263 “ ” rat783.p40.v50 6668.9 1 3580.08 132 “ ”
eil101.p20.v66 280.8 200 79.66 359 “ ” d198.p40 11978.5 230 342.86 262 “ ” rat783.p40.v66 6485.3 1 3125.67 122 “ ”
eil101.p20.v83 267.4 536 100 587 “ ” d198.p50 12613.3 128 388.13 255 “ ” rat783.p40.v83 5969.7 1 3279.12 107 “ ”
eil101.p30.v16 368.9 229 100.11 284 “ ” lin318.p10.v16 19454.4 42 169.28 231 1011 rat783.p50.v16 7126.1 152 6066.69 164 “ ”
eil101.p30.v33 368.4 224 97.19 280 “ ” lin318.p10.v33 18857.1 1 541.93 214 “ ” rat783.p50.v33 7239.7 1 5648.78 148 “ ”
eil101.p30.v50 368.3 180 101.37 277 “ ” lin318.p10.v50 17678.2 4 927.92 216 “ ” rat783.p50.v50 7343.6 1 5748.98 133 “ ”
eil101.p30.v66 343.6 191 100.94 291 “ ” lin318.p10.v66 17211.9 1 236.28 197 “ ” rat783.p50.v66 7165.0 1 4077.72 120 “ ”
eil101.p30.v83 348.8 593 101.34 597 “ ” lin318.p10.v83 18044.3 1 827.7 173 “ ” rat783.p50.v83 7014.6 1 5229.56 105 “ ”
eil101.p40.v16 402.2 275 100.17 281 “ ” lin318.p20.v16 26036.7 9 954.25 224 “ ” rat783.p10 3514.5 1 31.54 172 “ ”
eil101.p40.v33 430.8 254 97.81 279 “ ” lin318.p20.v33 25083.2 23 601.76 211 “ ” rat783.p20 4943.5 101 3769.11 162 “ ”
eil101.p40.v50 390.1 176 99 272 “ ” lin318.p20.v50 24357.1 1 694.16 204 “ ” rat783.p30 5855.0 133 4659.63 173 “ ”
eil101.p40.v66 434.9 251 101.71 272 “ ” lin318.p20.v66 22197.5 2 682.63 197 “ ” rat783.p40 6622.7 167 5795.25 176 “ ”
eil101.p40.v83 356.4 531 100.4 547 “ ” lin318.p20.v83 21627.9 1 447.03 168 “ ” rat783.p50 7261.4 176 6111.74 177 “ ”
eil101.p50.v16 460.2 271 100.16 280 “ ” lin318.p30.v16 29657.2 1 163.9 219 “ ” dsj1000.p10.v16 8181221.0 1 4665.53 141 10000
eil101.p50.v33 462.2 271 101.16 274 “ ” lin318.p30.v33 29344.1 1 714.7 211 “ ” dsj1000.p10.v33 7824935.1 1 3399.16 130 “ ”
eil101.p50.v50 455.5 231 91.06 270 “ ” lin318.p30.v50 28710.8 1 365.57 196 “ ” dsj1000.p10.v50 7659801.0 1 7355.16 123 “ ”
eil101.p50.v66 429.9 307 101.31 311 “ ” lin318.p30.v66 27845.2 1 905.47 184 “ ” dsj1000.p10.v66 7277949.9 1 9323.73 108 “ ”
eil101.p50.v83 387.8 614 97.47 644 “ ” lin318.p30.v83 27227.6 1 732.27 162 “ ” dsj1000.p10.v83 6940676.8 1 9752.77 93 “ ”
eil101.p10 236.1 434 101.88 436 “ ” lin318.p40.v16 31156.8 107 950.29 219 “ ” dsj1000.p20.v16 11010588.1 1 47.19 140 “ ”
eil101.p20 313.7 261 101.32 290 “ ” lin318.p40.v33 32134.2 30 652.14 208 “ ” dsj1000.p20.v33 10757083.9 1 1172.85 123 “ ”
eil101.p30 364.0 237 97.94 283 “ ” lin318.p40.v50 32152.0 2 235.83 200 “ ” dsj1000.p20.v50 10757457.2 1 6229.08 124 “ ”
eil101.p40 413.6 280 101.59 282 “ ” lin318.p40.v66 32272.0 1 905.49 177 “ ” dsj1000.p20.v66 9950239.4 1 4431.27 108 “ ”
eil101.p50 460.7 268 101.93 280 “ ” lin318.p40.v83 30572.7 1 810.29 167 “ ” dsj1000.p20.v83 10312122.1 1 1524.21 95 “ ”
ch150.p10.v16 2668.2 285 215.23 299 225 lin318.p50.v16 34119.5 222 1006.71 224 “ ” dsj1000.p30.v16 12869179.9 1 7253.26 135 “ ”
ch150.p10.v33 2471.9 287 219.47 342 “ ” lin318.p50.v33 33610.0 218 986.67 224 “ ” dsj1000.p30.v33 12879954.8 1 3352.98 125 “ ”
ch150.p10.v50 2458.4 88 215.35 361 “ ” lin318.p50.v50 32728.5 52 748.47 206 “ ” dsj1000.p30.v50 12233534.5 1 9368.57 118 “ ”
ch150.p10.v66 2487.9 308 218.55 330 “ ” lin318.p50.v66 34724.6 1 947.3 196 “ ” dsj1000.p30.v66 12670807.3 1 7714.14 109 “ ”
ch150.p10.v83 2514.6 802 216.81 825 “ ” lin318.p50.v83 33013.2 1 922.8 166 “ ” dsj1000.p30.v83 12081075.5 1 1649.63 84 “ ”
ch150.p20.v16 3577.2 57 205.55 269 “ ” lin318.p10 20075.7 14 909.41 240 “ ” dsj1000.p40.v16 14267996.3 119 9886.1 133 “ ”
ch150.p20.v33 3570.6 102 163.03 268 “ ” lin318.p20 26765.1 12 699.73 228 “ ” dsj1000.p40.v33 14100084.6 16 9551.9 135 “ ”
ch150.p20.v50 3371.1 226 207.16 305 “ ” lin318.p30 29958.2 1 900.57 226 “ ” dsj1000.p40.v50 14243574.9 1 9623.66 119 “ ”
ch150.p20.v66 3144.1 113 213.42 349 “ ” lin318.p40 32122.0 148 658.13 226 “ ” dsj1000.p40.v66 14304389.9 1 1879.36 110 “ ”
ch150.p20.v83 3410.3 99 177.75 271 “ ” lin318.p50 34338.2 231 1005.81 233 “ ” dsj1000.p40.v83 13791984.3 1 8272.07 90 “ ”
ch150.p30.v16 4046.1 69 223.99 261 “ ” att532.p10.v16 40632.8 3 2054.18 183 2830 dsj1000.p50.v16 15676078.7 134 9216.52 144 “ ”
ch150.p30.v33 4113.3 2 224.27 261 “ ” att532.p10.v33 37971.3 1 2199.85 186 “ ” dsj1000.p50.v33 15484736.5 124 9623.54 129 “ ”
ch150.p30.v50 3986.3 32 180.89 253 “ ” att532.p10.v50 34184.7 1 1945.84 166 “ ” dsj1000.p50.v50 15564876.7 44 5802.32 116 “ ”
ch150.p30.v66 3819.4 291 223.8 303 “ ” att532.p10.v66 32732.6 1 1740.44 158 “ ” dsj1000.p50.v66 14968905.1 29 8977.94 112 “ ”
ch150.p30.v83 4001.2 1 224.79 346 “ ” att532.p10.v83 31207.0 1 937.23 143 “ ” dsj1000.p50.v83 14671854.7 1 9401.83 95 “ ”
ch150.p40.v16 4590.7 264 220.7 269 “ ” att532.p20.v16 47825.1 1 1456.4 176 “ ” dsj1000.p10 8116079.6 40 2342.36 147 “ ”
ch150.p40.v33 4603.4 221 194.61 271 “ ” att532.p20.v33 47879.5 1 1125.87 182 “ ” dsj1000.p20 10925284.4 1 973.42 150 “ ”
ch150.p40.v50 4463.8 262 221.91 266 “ ” att532.p20.v50 45897.9 1 651.84 175 “ ” dsj1000.p30 12946617.0 1 46.87 145 “ ”
ch150.p40.v66 4419.9 200 224.58 249 “ ” att532.p20.v66 45449.7 1 1941.89 151 “ ” dsj1000.p40 14358797.0 142 9886.96 145 “ ”
ch150.p40.v83 4460.0 28 116.53 268 “ ” att532.p20.v83 43596.9 1 1050.87 131 “ ” dsj1000.p50 15373069.3 120 9731.58 145 “ ”

Table A.4: Detailed results of pACS-S+1-shift-S for PTSP instances with 0.1 ≤ p ≤ 0.5.
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pACS+1-shift-T
Instance name best kb tb ktot ttot Instance name best kb tb ktot ttot Instance name best kb tb ktot ttot

kroA100.p10.v16 9348.0 1 96.87 33 100 ch150.p50.v16 5422.4 28 195.63 33 “ ” att532.p30.v16 57908.2 17 1544.22 32 “ ”
kroA100.p10.v33 8331.0 29 86.38 34 “ ” ch150.p50.v33 5499.8 33 220.13 35 “ ” att532.p30.v33 58734.3 27 2512.5 31 “ ”
kroA100.p10.v50 7327.5 32 82.44 40 “ ” ch150.p50.v50 5156.8 28 194.21 34 “ ” att532.p30.v50 56852.1 17 1546.67 32 “ ”
kroA100.p10.v66 9512.3 41 99.87 49 “ ” ch150.p50.v66 5432.5 27 176.06 35 “ ” att532.p30.v66 57661.7 12 936.64 36 “ ”
kroA100.p10.v83 9700.7 50 85.73 59 “ ” ch150.p50.v83 4770.0 36 200.7 42 “ ” att532.p30.v83 57620.2 32 2467.12 37 “ ”
kroA100.p20.v16 11394.6 30 91.63 34 “ ” ch150.p10 2577.8 32 209.2 36 “ ” att532.p40.v16 64715.6 20 1801.47 32 “ ”
kroA100.p20.v33 12058.6 27 82.04 34 “ ” ch150.p20 3753.0 33 212.7 36 “ ” att532.p40.v33 65357.6 30 2764.96 32 “ ”
kroA100.p20.v50 12133.9 33 98.06 35 “ ” ch150.p30 4358.9 29 184.58 36 “ ” att532.p40.v50 65774.5 27 2746.18 32 “ ”
kroA100.p20.v66 10381.0 36 86.66 43 “ ” ch150.p40 4893.7 28 212.95 36 “ ” att532.p40.v66 65977.7 28 2352.64 34 “ ”
kroA100.p20.v83 11419.5 54 96.58 59 “ ” ch150.p50 5447.5 24 152.6 36 “ ” att532.p40.v83 64480.5 32 2683.3 34 “ ”
kroA100.p30.v16 14599.6 33 99.84 34 “ ” d198.p10.v16 8389.9 22 256.15 34 392 att532.p50.v16 72994.9 18 1630.35 32 “ ”
kroA100.p30.v33 13520.8 23 98.93 33 “ ” d198.p10.v33 8030.4 32 352.68 36 “ ” att532.p50.v33 69544.9 1 197.06 32 “ ”
kroA100.p30.v50 14613.7 33 99.88 34 “ ” d198.p10.v50 7801.8 29 265 42 “ ” att532.p50.v50 71411.7 21 1971.07 30 “ ”
kroA100.p30.v66 13408.7 29 97.46 34 “ ” d198.p10.v66 6743.7 40 376.71 43 “ ” att532.p50.v66 71518.3 29 2820.5 32 “ ”
kroA100.p30.v83 13277.4 42 99.96 43 “ ” d198.p10.v83 6929.2 13 73.47 63 “ ” att532.p50.v83 73585.1 29 2568.87 33 “ ”
kroA100.p40.v16 15998.5 25 95.88 34 “ ” d198.p20.v16 9311.6 27 315.66 34 “ ” att532.p10 37364.4 28 2469.98 33 “ ”
kroA100.p40.v33 15242.8 31 92.08 34 “ ” d198.p20.v33 10371.0 21 244.63 34 “ ” att532.p20 49824.7 17 1484.69 32 “ ”
kroA100.p40.v50 17053.9 30 98.34 33 “ ” d198.p20.v50 8576.5 35 391.09 36 “ ” att532.p30 57812.4 27 2466.91 32 “ ”
kroA100.p40.v66 16065.1 12 99.03 33 “ ” d198.p20.v66 9424.4 28 299.07 41 “ ” att532.p40 66226.2 21 1837.09 32 “ ”
kroA100.p40.v83 14270.9 46 96.87 53 “ ” d198.p20.v83 9863.9 56 387.36 57 “ ” att532.p50 71613.6 29 2588.05 32 “ ”
kroA100.p50.v16 18201.7 30 92.04 34 “ ” d198.p30.v16 11366.1 29 345.58 34 “ ” rat783.p10.v16 3525.9 21 4231.01 30 6131
kroA100.p50.v33 17318.5 26 93.84 33 “ ” d198.p30.v33 10735.2 32 384.79 34 “ ” rat783.p10.v33 3493.5 29 5582.51 32 “ ”
kroA100.p50.v50 17037.5 32 96.46 34 “ ” d198.p30.v50 11323.1 27 312.45 34 “ ” rat783.p10.v50 3216.1 33 5342.81 39 “ ”
kroA100.p50.v66 16791.1 21 94.86 34 “ ” d198.p30.v66 12744.4 31 343.01 36 “ ” rat783.p10.v66 3428.2 22 2877.12 44 “ ”
kroA100.p50.v83 15845.6 28 74.81 43 “ ” d198.p30.v83 11015.8 26 278.55 37 “ ” rat783.p10.v83 3029.5 54 5998.12 56 “ ”
kroA100.p10 9229.9 25 86.89 35 “ ” d198.p40.v16 12122.4 17 366.73 34 “ ” rat783.p20.v16 5024.5 26 5297.28 30 “ ”
kroA100.p20 12115.8 33 89.57 37 “ ” d198.p40.v33 13526.4 28 332.59 34 “ ” rat783.p20.v33 4874.4 18 5734.15 31 “ ”
kroA100.p30 14042.3 34 97.85 35 “ ” d198.p40.v50 11635.0 2 15.83 34 “ ” rat783.p20.v50 4944.0 25 4577.05 33 “ ”
kroA100.p40 15653.9 29 93.52 35 “ ” d198.p40.v66 13777.8 24 265.42 36 “ ” rat783.p20.v66 4556.9 36 6046.02 38 “ ”
kroA100.p50 16839.5 34 98.3 35 “ ” d198.p40.v83 12050.0 37 389.63 38 “ ” rat783.p20.v83 5305.1 37 4723.23 49 “ ”
eil101.p10.v16 196.1 22 64.67 35 102 d198.p50.v16 13793.4 27 322.03 34 “ ” rat783.p30.v16 5921.3 28 5861.3 30 “ ”
eil101.p10.v33 179.3 31 87.44 37 “ ” d198.p50.v33 13281.5 28 328.1 34 “ ” rat783.p30.v33 5942.7 23 4980.95 31 “ ”
eil101.p10.v50 150.4 39 87.42 46 “ ” d198.p50.v50 12361.1 30 353.66 34 “ ” rat783.p30.v50 5963.9 30 6101.2 31 “ ”
eil101.p10.v66 181.9 48 88.7 56 “ ” d198.p50.v66 12830.2 6 63.19 34 “ ” rat783.p30.v66 5939.1 25 5004.66 31 “ ”
eil101.p10.v83 220.9 45 85.23 54 “ ” d198.p50.v83 14009.9 27 318.41 35 “ ” rat783.p30.v83 5796.8 37 5713.86 40 “ ”
eil101.p20.v16 297.4 30 94.03 34 “ ” d198.p10 7747.8 32 357.81 36 “ ” rat783.p40.v16 6730.1 27 5515.75 30 “ ”
eil101.p20.v33 318.2 33 100.76 34 “ ” d198.p20 10031.1 19 210.6 35 “ ” rat783.p40.v33 6846.5 16 3175.08 30 “ ”
eil101.p20.v50 296.4 30 95.55 37 “ ” d198.p30 11157.3 22 239.4 36 “ ” rat783.p40.v50 6842.6 4 767.31 29 “ ”
eil101.p20.v66 289.6 30 100.05 44 “ ” d198.p40 12698.4 16 173.4 36 “ ” rat783.p40.v66 6862.5 25 4955.71 31 “ ”
eil101.p20.v83 281.3 21 47.14 48 “ ” d198.p50 13261.4 33 370.36 35 “ ” rat783.p40.v83 6230.8 30 4807.95 39 “ ”
eil101.p30.v16 366.3 32 97.43 34 “ ” lin318.p10.v16 19371.4 30 948.77 33 1011 rat783.p50.v16 7479.0 28 5755.2 30 “ ”
eil101.p30.v33 378.0 33 100.03 34 “ ” lin318.p10.v33 19469.2 28 1000.68 33 “ ” rat783.p50.v33 7377.6 28 6007.38 29 “ ”
eil101.p30.v50 382.1 32 95.19 35 “ ” lin318.p10.v50 18096.6 34 994.63 36 “ ” rat783.p50.v50 7616.4 15 2965.04 30 “ ”
eil101.p30.v66 385.4 30 84.14 37 “ ” lin318.p10.v66 18686.4 24 502.18 48 “ ” rat783.p50.v66 7471.4 29 5795.24 31 “ ”
eil101.p30.v83 394.0 21 85.26 48 “ ” lin318.p10.v83 19078.3 44 822.52 53 “ ” rat783.p50.v83 7421.3 7 1079.08 34 “ ”
eil101.p40.v16 433.8 33 99.69 35 “ ” lin318.p20.v16 25663.2 29 914.4 33 “ ” rat783.p10 3488.3 30 5913.63 32 “ ”
eil101.p40.v33 459.2 25 76 34 “ ” lin318.p20.v33 25551.1 30 955.51 33 “ ” rat783.p20 4886.7 16 3026.56 32 “ ”
eil101.p40.v50 432.0 30 91.43 35 “ ” lin318.p20.v50 24910.4 28 837.48 34 “ ” rat783.p30 5912.7 22 4373.63 32 “ ”
eil101.p40.v66 473.5 32 94.8 35 “ ” lin318.p20.v66 23651.3 34 832.32 41 “ ” rat783.p40 6736.3 8 1415.85 32 “ ”
eil101.p40.v83 401.0 36 87.61 42 “ ” lin318.p20.v83 22667.0 50 963.43 53 “ ” rat783.p50 7427.4 31 6127.99 32 “ ”
eil101.p50.v16 491.4 25 76.03 34 “ ” lin318.p30.v16 28740.3 29 914.08 33 “ ” dsj1000.p10.v16 8344886.8 25 9015.93 28 10000
eil101.p50.v33 506.0 33 101.34 34 “ ” lin318.p30.v33 29180.9 29 967 33 “ ” dsj1000.p10.v33 7895146.6 25 8634.33 29 “ ”
eil101.p50.v50 499.2 30 91.31 34 “ ” lin318.p30.v50 29372.8 32 1010.71 33 “ ” dsj1000.p10.v50 7939788.7 31 8747.46 36 “ ”
eil101.p50.v66 467.6 29 74.87 39 “ ” lin318.p30.v66 29097.7 38 1002.2 39 “ ” dsj1000.p10.v66 8496195.3 31 7103.56 42 “ ”
eil101.p50.v83 445.9 22 100.63 39 “ ” lin318.p30.v83 29724.9 36 885.98 42 “ ” dsj1000.p10.v83 7858166.8 6 1016.28 52 “ ”
eil101.p10 209.8 34 100.91 35 “ ” lin318.p40.v16 32505.6 29 926.83 33 “ ” dsj1000.p20.v16 11027340.2 21 7453.91 29 “ ”
eil101.p20 308.1 30 95.91 35 “ ” lin318.p40.v33 33523.0 11 332.78 32 “ ” dsj1000.p20.v33 10947425.7 25 8846.33 29 “ ”
eil101.p30 386.4 35 100.79 36 “ ” lin318.p40.v50 32605.8 31 968.79 33 “ ” dsj1000.p20.v50 10968878.7 10 3234.45 30 “ ”
eil101.p40 441.9 28 80.95 36 “ ” lin318.p40.v66 33333.6 32 951.06 35 “ ” dsj1000.p20.v66 10518728.9 33 9867.85 35 “ ”
eil101.p50 491.7 27 80.5 35 “ ” lin318.p40.v83 33625.5 36 974.37 38 “ ” dsj1000.p20.v83 10997852.7 34 8468.7 44 “ ”
ch150.p10.v16 2628.2 26 176.33 33 225 lin318.p50.v16 35273.7 31 978.35 33 “ ” dsj1000.p30.v16 13014260.7 14 4789.86 29 “ ”
ch150.p10.v33 2363.6 26 162.29 36 “ ” lin318.p50.v33 34698.5 30 946.85 33 “ ” dsj1000.p30.v33 13159190.9 7 7242.54 28 “ ”
ch150.p10.v50 2605.1 40 210.51 43 “ ” lin318.p50.v50 34667.0 30 938.31 33 “ ” dsj1000.p30.v50 12475469.4 1 189.59 29 “ ”
ch150.p10.v66 2509.2 32 133.26 56 “ ” lin318.p50.v66 35137.2 32 1010.95 33 “ ” dsj1000.p30.v66 13360667.7 27 8907.79 31 “ ”
ch150.p10.v83 2511.8 31 128.1 54 “ ” lin318.p50.v83 35156.1 37 1000.48 38 “ ” dsj1000.p30.v83 12498224.5 32 8996.26 36 “ ”
ch150.p20.v16 3644.4 31 211.92 33 “ ” lin318.p10 18714.7 23 700.97 34 “ ” dsj1000.p40.v16 14626192.1 25 9290.11 28 “ ”
ch150.p20.v33 3725.9 11 72.9 34 “ ” lin318.p20 24880.3 27 810.61 34 “ ” dsj1000.p40.v33 14619775.6 25 8999.73 28 “ ”
ch150.p20.v50 3722.8 30 187.92 37 “ ” lin318.p30 29583.3 31 920.06 34 “ ” dsj1000.p40.v50 14600198.7 20 7610.9 27 “ ”
ch150.p20.v66 3420.2 34 209.07 37 “ ” lin318.p40 32906.9 27 823.45 34 “ ” dsj1000.p40.v66 14801227.0 23 8223.57 29 “ ”
ch150.p20.v83 3543.7 29 120.52 53 “ ” lin318.p50 35558.5 30 899.76 34 “ ” dsj1000.p40.v83 14310237.1 30 8017.7 38 “ ”
ch150.p30.v16 4198.0 22 151.43 34 “ ” att532.p10.v16 39690.6 30 2730.77 32 2830 dsj1000.p50.v16 15911032.9 22 8298.73 27 “ ”
ch150.p30.v33 4276.5 33 221.86 34 “ ” att532.p10.v33 38117.1 37 2684.31 40 “ ” dsj1000.p50.v33 15829449.3 6 1980.95 27 “ ”
ch150.p30.v50 4208.6 29 195.82 34 “ ” att532.p10.v50 36298.6 45 2640.98 49 “ ” dsj1000.p50.v50 15995734.4 10 3454.64 28 “ ”
ch150.p30.v66 4274.9 20 123.56 39 “ ” att532.p10.v66 34110.9 42 2753.45 44 “ ” dsj1000.p50.v66 15915362.2 27 9645.22 29 “ ”
ch150.p30.v83 4151.0 35 209.3 38 “ ” att532.p10.v83 35996.3 32 1552.58 58 “ ” dsj1000.p50.v83 15234347.6 31 9179.5 34 “ ”
ch150.p40.v16 4879.9 33 223.38 34 “ ” att532.p20.v16 49769.3 15 1319.57 32 “ ” dsj1000.p10 8141856.8 27 9332.35 30 “ ”
ch150.p40.v33 5126.4 31 208.86 34 “ ” att532.p20.v33 48588.3 6 1512.41 31 “ ” dsj1000.p20 10928532.6 14 4712.81 30 “ ”
ch150.p40.v50 4902.1 25 174.31 34 “ ” att532.p20.v50 46622.8 32 2781.3 33 “ ” dsj1000.p30 12904321.0 24 8081.83 30 “ ”
ch150.p40.v66 4805.9 33 210.88 36 “ ” att532.p20.v66 48480.0 38 2799.28 39 “ ” dsj1000.p40 14596440.1 27 9238.32 30 “ ”
ch150.p40.v83 4752.7 34 187.52 41 “ ” att532.p20.v83 49350.4 47 2763.82 49 “ ” dsj1000.p50 15844384.8 3 905.79 30 “ ”

Table A.5: Detailed results of pACS+1-shift-T for PTSP instances with 0.1 ≤ p ≤ 0.5.
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pACS+1-shift-P
Instance name best kb tb ktot ttot Instance name best kb tb ktot ttot Instance name best kb tb ktot ttot

kroA100.p10.v16 9231.28 40 99.37 41 100 ch150.p50.v16 5257.95 32 218.23 33 “ ” att532.p30.v16 57234.84 15 1073.41 40 “ ”
kroA100.p10.v33 8311.57 47 92.16 52 “ ” ch150.p50.v33 5364.55 41 217.65 43 “ ” att532.p30.v33 57562.08 41 2802.9 44 “ ”
kroA100.p10.v50 7328.27 40 92.25 44 “ ” ch150.p50.v50 5127.69 51 222.38 53 “ ” att532.p30.v50 56744.81 27 1753.15 44 “ ”
kroA100.p10.v66 9529.83 47 99.65 48 “ ” ch150.p50.v66 5440.89 27 115.16 52 “ ” att532.p30.v66 57350.33 50 2820.94 51 “ ”
kroA100.p10.v83 9701.82 58 87.36 66 “ ” ch150.p50.v83 4420.91 52 216.69 55 “ ” att532.p30.v83 58715.05 33 1845.79 52 “ ”
kroA100.p20.v16 11717.29 41 93.12 45 “ ” ch150.p10 2540.74 33 215.82 35 “ ” att532.p40.v16 64138.12 25 2394.97 30 “ ”
kroA100.p20.v33 12553.35 45 88.81 51 “ ” ch150.p20 3446.41 35 224.83 36 “ ” att532.p40.v33 65607.63 41 2673.8 44 “ ”
kroA100.p20.v50 11984.50 44 96.79 46 “ ” ch150.p30 4110.99 31 196.56 37 “ ” att532.p40.v50 68409.80 44 2555.34 50 “ ”
kroA100.p20.v66 10415.38 41 78.85 53 “ ” ch150.p40 4629.25 28 216.36 35 “ ” att532.p40.v66 65621.06 49 2801.86 50 “ ”
kroA100.p20.v83 11509.82 39 84.41 47 “ ” ch150.p50 5099.03 36 224.89 37 “ ” att532.p40.v83 66303.11 25 1465.78 49 “ ”
kroA100.p30.v16 14345.75 41 99.06 42 “ ” d198.p10.v16 8268.71 42 390.66 43 392 att532.p50.v16 72897.09 28 2800.83 31 “ ”
kroA100.p30.v33 13033.73 44 96.3 47 “ ” d198.p10.v33 8145.76 15 111.91 52 “ ” att532.p50.v33 70223.34 41 2782.62 42 “ ”
kroA100.p30.v50 14552.30 47 99.62 48 “ ” d198.p10.v50 7600.31 46 378.69 48 “ ” att532.p50.v50 70726.72 40 2523.42 45 “ ”
kroA100.p30.v66 13482.30 46 83.37 56 “ ” d198.p10.v66 6634.63 42 358.09 47 “ ” att532.p50.v66 72258.37 39 2151.36 52 “ ”
kroA100.p30.v83 12595.77 32 61.26 54 “ ” d198.p10.v83 6647.58 17 168.29 42 “ ” att532.p50.v83 73392.64 43 2487.39 50 “ ”
kroA100.p40.v16 15624.58 37 96.01 40 “ ” d198.p20.v16 9336.76 37 344.32 43 “ ” att532.p10 36007.74 1 2788.38 27 “ ”
kroA100.p40.v33 15318.28 38 91.8 43 “ ” d198.p20.v33 10359.02 18 135.93 52 “ ” att532.p20 48548.83 26 2627.09 29 “ ”
kroA100.p40.v50 17539.00 40 84.96 48 “ ” d198.p20.v50 8569.92 48 359.74 53 “ ” att532.p30 57075.65 28 2767.84 32 “ ”
kroA100.p40.v66 15078.76 20 38.66 52 “ ” d198.p20.v66 9706.05 43 318.31 54 “ ” att532.p40 64432.50 24 2114.99 34 “ ”
kroA100.p40.v83 14438.70 45 83.65 55 “ ” d198.p20.v83 9830.37 42 338.82 49 “ ” att532.p50 70544.94 21 2822.07 30 “ ”
kroA100.p50.v16 16882.97 28 93.75 31 “ ” d198.p30.v16 11701.53 10 133.01 28 “ ” rat783.p10.v16 3524.52 22 2790.46 48 6131
kroA100.p50.v33 17470.58 20 88.65 23 “ ” d198.p30.v33 10714.47 48 388.99 49 “ ” rat783.p10.v33 3499.64 45 5529.84 50 “ ”
kroA100.p50.v50 17990.17 34 75.38 46 “ ” d198.p30.v50 11414.01 50 386.73 51 “ ” rat783.p10.v50 3217.89 46 5962.09 48 “ ”
kroA100.p50.v66 16547.76 51 96.61 53 “ ” d198.p30.v66 12755.91 48 382.89 50 “ ” rat783.p10.v66 3443.11 40 5976.19 42 “ ”
kroA100.p50.v83 15846.55 11 19.43 58 “ ” d198.p30.v83 10989.88 16 113.56 53 “ ” rat783.p10.v83 2961.02 36 5151.16 44 “ ”
kroA100.p10 9084.80 36 97.84 37 “ ” d198.p40.v16 12538.54 32 378.7 34 “ ” rat783.p20.v16 5021.14 35 4712.38 46 “ ”
kroA100.p20 11778.00 28 89.83 40 “ ” d198.p40.v33 13259.88 38 328.9 46 “ ” rat783.p20.v33 4879.48 42 5383.5 49 “ ”
kroA100.p30 13795.36 38 97.68 40 “ ” d198.p40.v50 11088.61 44 319.83 54 “ ” rat783.p20.v50 4944.03 45 5494.68 51 “ ”
kroA100.p40 15381.14 1 73.77 29 “ ” d198.p40.v66 13317.83 50 386.57 51 “ ” rat783.p20.v66 4543.35 49 6031.97 51 “ ”
kroA100.p50 16681.61 22 97 31 “ ” d198.p40.v83 11909.48 21 142.42 56 “ ” rat783.p20.v83 5278.60 39 5343.46 46 “ ”
eil101.p10.v16 194.51 31 70.88 45 102 d198.p50.v16 13768.76 32 340.35 37 “ ” rat783.p30.v16 5916.00 28 4506.42 38 “ ”
eil101.p10.v33 180.15 29 61.96 49 “ ” d198.p50.v33 13747.73 39 347.13 44 “ ” rat783.p30.v33 5925.74 45 6081.33 46 “ ”
eil101.p10.v50 151.86 30 91.38 48 “ ” d198.p50.v50 12375.01 48 383.12 50 “ ” rat783.p30.v50 5969.87 38 5036.68 47 “ ”
eil101.p10.v66 181.71 47 100.49 49 “ ” d198.p50.v66 12385.83 42 318.32 52 “ ” rat783.p30.v66 5955.31 46 6025.3 47 “ ”
eil101.p10.v83 220.36 45 101.37 46 “ ” d198.p50.v83 13849.37 54 390.69 55 “ ” rat783.p30.v83 5842.49 33 4288.22 47 “ ”
eil101.p20.v16 296.69 43 89.85 49 “ ” d198.p10 7650.94 10 383.74 35 “ ” rat783.p40.v16 6683.81 23 6082.74 30 “ ”
eil101.p20.v33 319.11 47 98.25 50 “ ” d198.p20 9919.90 5 372.93 34 “ ” rat783.p40.v33 6846.09 4 687.02 41 “ ”
eil101.p20.v50 298.27 38 68.32 56 “ ” d198.p30 11117.27 29 312.89 38 “ ” rat783.p40.v50 6843.67 42 5622.41 46 “ ”
eil101.p20.v66 285.47 49 100.19 51 “ ” d198.p40 12187.15 3 25.67 38 “ ” rat783.p40.v66 6880.52 39 4842.51 50 “ ”
eil101.p20.v83 308.84 23 54.41 47 “ ” d198.p50 13502.58 31 381.25 39 “ ” rat783.p40.v83 6239.47 8 977.54 51 “ ”
eil101.p30.v16 378.51 46 99.83 48 “ ” lin318.p10.v16 19629.48 45 911.89 51 1011 rat783.p50.v16 7337.81 23 5323.79 27 “ ”
eil101.p30.v33 385.33 49 91.87 55 “ ” lin318.p10.v33 19357.58 39 795.46 51 “ ” rat783.p50.v33 7378.40 40 5924.48 42 “ ”
eil101.p30.v50 385.72 14 27.12 52 “ ” lin318.p10.v50 18532.24 49 966.67 52 “ ” rat783.p50.v50 7602.76 32 4686.82 43 “ ”
eil101.p30.v66 390.74 48 94.87 52 “ ” lin318.p10.v66 18545.92 13 303.72 43 “ ” rat783.p50.v66 7453.93 46 5903.61 48 “ ”
eil101.p30.v83 383.55 37 79.27 49 “ ” lin318.p10.v83 20357.57 24 527.25 45 “ ” rat783.p50.v83 7416.97 18 2208.26 49 “ ”
eil101.p40.v16 433.43 26 66 39 “ ” lin318.p20.v16 26162.23 39 897.05 46 “ ” rat783.p10 3440.87 24 5968.88 26 “ ”
eil101.p40.v33 469.71 43 95.87 46 “ ” lin318.p20.v33 25489.35 48 1004.72 49 “ ” rat783.p20 4857.52 7 5849.77 28 “ ”
eil101.p40.v50 424.77 45 95.15 49 “ ” lin318.p20.v50 25203.28 51 1003.2 52 “ ” rat783.p30 5893.63 26 5924.7 27 “ ”
eil101.p40.v66 475.40 9 16.58 55 “ ” lin318.p20.v66 23982.01 52 968.84 55 “ ” rat783.p40 6666.42 1 5705.13 31 “ ”
eil101.p40.v83 392.49 44 86.03 53 “ ” lin318.p20.v83 22659.58 36 767.78 48 “ ” rat783.p50 7346.53 29 5951.31 32 “ ”
eil101.p50.v16 493.19 22 61.43 37 “ ” lin318.p30.v16 28519.06 12 945.23 39 “ ” dsj1000.p10.v16 8348796.60 29 7033.6 41 10000
eil101.p50.v33 509.28 37 75.09 51 “ ” lin318.p30.v33 30516.39 46 984.4 48 “ ” dsj1000.p10.v33 7697726.28 35 7513.74 47 “ ”
eil101.p50.v50 505.83 35 82.97 44 “ ” lin318.p30.v50 30317.57 25 484.17 53 “ ” dsj1000.p10.v50 7986595.96 43 9229.47 47 “ ”
eil101.p50.v66 468.49 51 101.49 52 “ ” lin318.p30.v66 30239.58 36 663.55 55 “ ” dsj1000.p10.v66 8321199.24 34 8414.45 40 “ ”
eil101.p50.v83 465.03 22 39.18 57 “ ” lin318.p30.v83 28867.86 41 782.67 54 “ ” dsj1000.p10.v83 7741932.44 22 5562.1 40 “ ”
eil101.p10 201.61 18 96.67 30 “ ” lin318.p40.v16 32625.38 13 958.13 33 “ ” dsj1000.p20.v16 11002618.72 36 9467.29 38 “ ”
eil101.p20 288.27 22 96.24 35 “ ” lin318.p40.v33 33232.49 43 1008.6 44 “ ” dsj1000.p20.v33 10775932.04 36 8555.22 42 “ ”
eil101.p30 355.95 29 97.18 36 “ ” lin318.p40.v50 33408.37 25 481.85 53 “ ” dsj1000.p20.v50 11099510.72 44 9835.26 45 “ ”
eil101.p40 414.84 29 90.32 34 “ ” lin318.p40.v66 33937.32 43 966.23 54 “ ” dsj1000.p20.v66 10464092.81 26 5693.44 46 “ ”
eil101.p50 465.96 30 90.33 34 “ ” lin318.p40.v83 34088.45 23 443.12 54 “ ” dsj1000.p20.v83 11016257.59 38 9610.05 41 “ ”
ch150.p10.v16 2641.00 43 211.75 46 225 lin318.p50.v16 35388.85 28 930.67 31 “ ” dsj1000.p30.v16 13018989.62 13 3906.66 32 “ ”
ch150.p10.v33 2358.79 51 211.74 54 “ ” lin318.p50.v33 34950.54 34 912.65 38 “ ” dsj1000.p30.v33 13237395.32 36 8121.27 45 “ ”
ch150.p10.v50 2536.87 10 44.35 50 “ ” lin318.p50.v50 34501.05 40 874.58 47 “ ” dsj1000.p30.v50 12474427.16 35 7553.77 47 “ ”
ch150.p10.v66 2499.40 42 210.2 45 “ ” lin318.p50.v66 35841.49 48 957.67 52 “ ” dsj1000.p30.v66 13363286.41 43 9243.32 47 “ ”
ch150.p10.v83 2584.48 39 219.89 41 “ ” lin318.p50.v83 35602.99 51 969.28 54 “ ” dsj1000.p30.v83 12465217.77 39 8306.3 47 “ ”
ch150.p20.v16 3739.19 48 221.58 50 “ ” lin318.p10 18012.75 13 883.33 28 “ ” dsj1000.p40.v16 14698262.25 23 7675.73 32 “ ”
ch150.p20.v33 3612.21 38 163.47 53 “ ” lin318.p20 25393.27 13 747.61 31 “ ” dsj1000.p40.v33 14781265.97 38 9782.92 40 “ ”
ch150.p20.v50 3652.77 49 202.77 55 “ ” lin318.p30 29250.48 26 957.45 34 “ ” dsj1000.p40.v50 14600198.67 19 4365.39 44 “ ”
ch150.p20.v66 3491.84 40 168.43 53 “ ” lin318.p40 32798.12 33 991.58 35 “ ” dsj1000.p40.v66 15124600.00 35 8343.21 42 “ ”
ch150.p20.v83 3581.89 44 211.21 47 “ ” lin318.p50 35010.69 29 990.85 34 “ ” dsj1000.p40.v83 14341220.65 34 7251.32 47 “ ”
ch150.p30.v16 4172.97 36 209.8 39 “ ” att532.p10.v16 39506.27 45 2544.86 51 2830 dsj1000.p50.v16 15842221.27 5 9036.06 31 “ ”
ch150.p30.v33 4235.27 50 219.55 52 “ ” att532.p10.v33 37525.77 49 2724.85 52 “ ” dsj1000.p50.v33 15829449.32 14 3927.15 33 “ ”
ch150.p30.v50 4206.13 48 219.12 53 “ ” att532.p10.v50 35792.71 42 2373.37 50 “ ” dsj1000.p50.v50 15995734.38 40 9200.55 44 “ ”
ch150.p30.v66 4069.44 54 219.78 56 “ ” att532.p10.v66 35366.58 25 1577.11 45 “ ” dsj1000.p50.v66 15917561.02 27 5893.02 46 “ ”
ch150.p30.v83 4137.79 46 187.63 56 “ ” att532.p10.v83 35489.79 26 1704.97 43 “ ” dsj1000.p50.v83 15223680.09 44 9446.47 47 “ ”
ch150.p40.v16 4654.73 30 212.05 38 “ ” att532.p20.v16 48497.67 41 2523.11 47 “ ” dsj1000.p10 8170111.35 1 8630.59 23 “ ”
ch150.p40.v33 5108.15 37 195.24 43 “ ” att532.p20.v33 48736.35 1 122.23 48 “ ” dsj1000.p20 10826795.74 1 9148.94 28 “ ”
ch150.p40.v50 5009.68 46 211.45 50 “ ” att532.p20.v50 47561.67 38 2058.16 52 “ ” dsj1000.p30 12901577.35 25 8704.97 30 “ ”
ch150.p40.v66 4939.47 38 164.5 52 “ ” att532.p20.v66 48693.10 40 2399.24 48 “ ” dsj1000.p40 14438800.04 12 9900.4 30 “ ”
ch150.p40.v83 4759.95 41 174.58 54 “ ” att532.p20.v83 48858.97 44 2670.55 47 “ ” dsj1000.p50 15809154.06 1 9528.45 30 “ ”

Table A.6: Detailed results of pACS+1-shift-P for PTSP instances with 0.1 ≤ p ≤ 0.5.



Appendix B

Hybrid Metaheuristics for the
Vehicle Routing Problem with
Stochastic Demands

This section analyzes the performance of metaheuristics on the vehicle routing problem
with stochastic demands (VRPSD). The problem is known to have a computationally
demanding objective function, and for this reason the optimization of large instances
could be an infeasible task. Fast approximations of the objective function are therefore
appealing because they would allow for an extended exploration of the search space.
We explore the hybridization of the metaheuristic by means of two objective functions
which are approximate measures of the exact solution quality. Particularly helpful for
some metaheuristics is the objective function derived from the TSP, a closely related
problem. In the light of this observation, we analyze possible extensions of the meta-
heuristics which take the hybridized solution approach VRPSD-TSP even further and
report about experimental results on different types of instances. We show that, for
the instances tested, two hybridized versions of iterated local search and evolutionary
algorithm attain better solutions than state-of-the-art algorithms.

B.1 Introduction

Vehicle routing problems (VRPs) concern the transport of items between depots and
customers by means of a fleet of vehicles. Solving a VRP means finding the best
set of routes servicing all customers and respecting the operational constraints, such as
vehicles capacity, time windows, driver’s maximum working time. VRPs are a key issue
in supply-chain and distribution systems today, and they are becoming increasingly
complex. For this reason there is an ever increasing interest in routing models that
are dynamic, stochastic, rich of constraints, and thus have more and more complex
objective functions.

Models that focus particularly on the stochasticity of information are mainly known
in the literature as Stochastic VRPs (SVRPs), and the problem we are addressing in
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this section belongs to this class. In SVRPs elements of the problem such as the
set of customers visited, the customers demands, or the travel times, are modeled as
stochastic variables with known probability distributions, and the objective function
is usually the expected cost of the planned routes. Note, however, that in SVRPs one
needs to specify not only the concept of ‘planned routes’, but also the way planned
routes are to be modified in response to the realization of the stochastic information.

A common feature of SVRPs is that they all have at least one deterministic coun-
terpart, which is the VRP that one obtains by considering zero-variance probability
distributions for the stochastic elements of the problem. SVRPs are thus NP-hard
problems, like most VRPs. An important point that increases the difficulty of SVRPs
is that they have an objective function (expected cost) which is much more computa-
tionally expensive than their deterministic counterparts. For this reason, a key issue in
solving SVRPs by heuristics and metaheuristics is the use of fast and effective objective
function approximations that may accelerate the search process. Due to the analogy
between stochastic and deterministic VRPs, a reasonable choice for the objective func-
tion approximation of a given SVRP is the objective of the corresponding deterministic
problems.

In this section, we investigate the use of objective function approximations derived
from deterministic problems in the context of the VRPSD. This is an NP-hard problem,
and despite the fact that it has a quite simple formulation, it arises in practice in many
real world situations. One example is garbage collection, where it is indeed impossible
to know a priori how much garbage has to be collected at each place. Another example
where the demand is uncertain is the delivery of petrol to petrol stations. In fact, when
a customer issues the order it is still unknown how much he will sell in the time between
the order and the delivery.

In the VRPSD, a vehicle of finite capacity is leaving from a depot with full load,
and has to serve a set of customers whose exact demand is only known on arrival at
the each customer location. A planned route in this context is very simple: a tour
starting from the depot and visiting all customers exactly once; this is also called an
a priori tour, and it will be addressed as such in the remainder of the section. The a
priori tour is a sort of skeleton that fixes the order in which customers will be served,
but the actual route the vehicle would travel would include return trips to the depot
for replenishments when needed. The points at which return trips are performed are,
in general, stochastic. The objective function to be minimized is the expected cost of
the a priori tour.

Due to the nature of the a priori tour, a feasible solution for the VRPSD may
also be seen as a feasible solution for a traveling salesman problem (TSP) on the
set of customers (depot included). Moreover, if the vehicle has infinite capacity, the
consequent VRPSD is, in fact, a TSP. Due to these analogies, a natural approximation
of the VRPSD objective function is the length of the a priori tour.

In this section we consider basic implementations of five metaheuristics: simulated
annealing [129], tabu search [91], iterated local search [137], ant colony optimization
[72] and evolutionary algorithms [11]. Our main goal is to test the impact on meta-
heuristics of interleaving the exact VRPSD objective function with the a priori tour
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length as an approximation of it. This mixture changes the search landscape during the
search for good quality solutions and can be seen as an innovative type of hybridization
of a metaheuristic’s search process that has not been yet explored in the literature. In
particular, we investigate two types of hybridization: first, we consider a local search
algorithm (OrOpt) for which a quite good approximation for the exact VRPSD objec-
tive function is available, and we compare metaheuristics using this underlined local
search by applying both VRPSD approximation and TSP approximation. Second, we
further exploit the TSP analogy, by choosing the 3-opt local search operator, which is
very good for the TSP, but for which there is no immediate VRPSD approximation.

The remainder of this section is organized as follows. In Section B.2 we give the
formal description of the VRPSD, we describe in detail the objective function, the state
of the art about the VRPSD, and the relevant aspects of generating a benchmark of
instances for this problem, taking into account the existing literature. Section B.3 de-
scribes at high level the metaheuristics and the other algorithms analyzed. Section B.4
reports details about tested instances, parameters used for the metaheuristics, com-
putation times allowed. Sections B.5 and B.6 describe the computational experiments
respectively on the first type of hybridization (the use of the TSP objective function
in OrOpt) and on the second type of hybridization (the use of the 3-opt local search
with the TSP objective function). Section B.7 summarizes the main conclusions that
can be drawn from the experimental results.

B.2 The Vehicle Routing Problem with Stochastic De-
mands

The VRPSD is defined on a complete graph G = (V,A,D), where V = {0, 1, ..., n} is a
set of nodes (customers) with node 0 denoting the depot, A = {(i, j) : i, j ∈ V, i 6= j}
is the set of arcs joining the nodes, and D = {dij : i, j ∈ V, i 6= j} are the travel
costs (distances) between nodes. The cost matrix D is symmetric and satisfies the
triangular inequality. One vehicle with capacity Q has to deliver goods to the customers
according to their demands, minimizing the total expected distance traveled, and given
that the following assumptions are made. Customers’ demands are stochastic variables
ξi, i = 1, ..., n independently distributed with known distributions. The actual demand
of each customer is only known when the vehicle arrives at the customer location. It
is also assumed that ξi does not exceed the vehicle’s capacity Q, and follows a discrete
probability distribution pik = Prob(ξi = k), k = 0, 1, 2, ...,K ≤ Q. A feasible solution
to the VRPSD is a permutation of the customers s = (s(1), s(2), . . . , s(n)) starting at
the depot (that is, s(1) = 0), and it is called an a priori tour. The vehicle visits the
customers in the order given by the a priori tour, and it has to choose, according to the
actual customer’s demand, whether to proceed to the next customer or to go to depot
for restocking. Sometimes the choice of restocking is the best one, even if the vehicle is
not empty, or if its capacity is bigger than the expected demand of the next scheduled
customer; this action is called ‘preventive restocking’. The goal of preventive restocking
is to avoid the risk of having a vehicle without enough load to serve a customer and
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thus having to perform a back-and-forth trip to the depot for completing the delivery
at the customer.

The expected distance traveled by the vehicle (that is, the objective function),
is computed as follows. Let s = (0, 1, . . . , n) be an a priori tour. After the service
completion at customer j, suppose the vehicle has a remaining load q, and let fj(q)
denote the total expected cost from node j onward. With this notation, the expected
cost of the a priori tour is f0(Q). If Lj represents the set of all possible loads that a
vehicle can have after service completion at customer j, then, fj(q) for q ∈ Lj satisfies

fj(q) = Minimum{fp
j (q), f r

j (q)}, (B.1)

where

fp
j (q) = dj,j+1 +

∑
k:k≤q

fj+1(q − k)pj+1,k

+
∑

k:k>q

[2dj+1,0 + fj+1(q +Q− k)]pj+1,k,
(B.2)

f r
j (q) = dj,0 + d0,j+1 +

K∑
k=1

fj+1(Q− k)pj+1,k, (B.3)

with the boundary condition fn(q) = dn,0, q ∈ Ln. In (B.2-B.3), fp
j (q) is the expected

cost corresponding to the choice of proceeding directly to the next customer, while
f r

j (q) is the expected cost in case preventive restocking is chosen. As shown by Yang
et al. in [183], the optimal choice is of threshold type: given the a priori tour, for each
customer j there is a load threshold hj such that, if the residual load after serving j is
greater than or equal to hj , then it is better to proceed to the next planned customer,
otherwise it is better to go back to the depot for preventive restocking. This property
of the VRPSD is illustrated by Figure B.1. The computation of f0(Q) runs in O(nKQ)
time; the memory required is O(nQ), if one is interested in memorizing all intermediate
values fj(q), for j = 1, 2, ..., n and q = 0, 1, ..., Q, and O(Q) otherwise. Algorithm 20 is
an implementation of the recursion (B.2-B.3) for the computation of f0(Q) and of the
thresholds.

According to the above definition, the VRSPD is a single-vehicle routing problem.
Note that there would be no advantage in considering a multiple-vehicle problem by
allowing multiple a priori tours, since, as proved by Yang et al. [183], the optimal
solution is always a single tour.

The literature about VRPSD and SVRPs in general is quite rich. Formulations of
SVRPs include the Traveling Salesman Problem with Stochastic Customers (TSPSC),
the Traveling Salesman Problem with Stochastic Travel Times (TSPST), the Vehicle
Routing Problem with Stochastic Customers (VRPSC), the Vehicle Routing Problem
with Stochastic Customers and Demands (VRPSCD). For a survey on the early ap-
proaches to these problems, see [87] and [29]; for a more recent survey, especially on
mathematical programming approaches used for SVRPs, see [128]. In the following we
summarize the main contributions to solve VRPSD and similar problems, relevant to
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Figure B.1: The bold line is the cost function fj(q), that is, the total expected cost from
node j onward. The quantity q is the residual capacity of the vehicle just after having
serviced customer j. The function fp

j (q) would be the expected cost in case the vehicle
proceeded directly to customer j+ 1 without first going to de depot for replenishment.
The function (constant in q) f r

j (q) would be the expected cost in case the vehicle always
went to the depot for restocking, before going to the customer j + 1. The figure shows
that if the residual capacity q is under the threshold hj , then it is more convenient to
restock, otherwise it is more convenient to proceed to the next customer.

Algorithm 20 Computation of the VRPSD objective function f0(Q)
for (q = Q,Q− 1, ..., 0) do
fn(q) = dn,0

for (j = n− 1, n− 3, ..., 1) do
compute f r

j using fj+1(·) (by means of Equation (B.3))
for (q = Q,Q− 1, ..., 0) do

compute fp
j (q) (by means of Equation (B.2))

compare f r
j and fp

j (q) for finding the threshold hj

compute fj(q) using fj+1(·) (by means of Equation (B.1))
end for

end for
end for
compute f0(Q)
return f0(Q)
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this section. Jaillet [118, 119] and Jaillet-Odoni [120] derive analytic expressions for
the computation of the expected length of a solution for the Probabilistic Traveling
Salesman Problem and variations of it;

Bertsimas [25] proposes the cyclic heuristic for the VRPSD, by adapting to a
stochastic framework one of the heuristics presented by Haimovitch and Rinnooy Kan
[106] in a deterministic context; later, Bertsimas et al. [26] improve this heuristic by
applying dynamic programming, to supplement the a priori tour with rules for selecting
returns trips to the depot, similarly to the preventive restocking strategy; their compu-
tational experience suggests that the two versions of the cyclic heuristic provide good
quality solutions when customers are randomly distributed on a square region;

Gendreau, Laporte and Séguin [86] present an exact stochastic integer programming
method for VRPSCD (the same method can be applied to VRPSD as well); by means of
the integer L-shaped method [131] they solve instances with up to 46 and 70 customers
and 2 vehicles, for the VRPSCD and VRPSD, respectively; in [88], they also develop
a tabu search algorithm called TABUSTOCH for the same problem; this algorithm is
to be employed when instances become too large to be solved exactly by the L-shaped
method;

Teodorović and Pavković [175] propose a Simulated Annealing algorithm to the
multi-vehicle VRPSD, with the assumption that no more than one route failure is
allowed during the service of each vehicle.

Gutjahr [100] applies S-ACO to the Traveling Salesman Problem with Time Win-
dows, in case of stochastic service times. S-ACO is a simulation-based Ant Colony
optimization algorithm, that computes the expected cost of a solution (the objective
function), by Monte Carlo sampling.

Secomandi [162, 163] applies Neuro Dynamic Programming techniques to the
VRPSD; he addresses the VRSPD with a re-optimization approach, where after each
new exact information about customers demand is updated, the a priori tour planned
on the not yet served customers is completely re-planned; this approach may find so-
lutions with a lower expected value with respect to the preventive restocking strategy,
but it is much more computationally expensive; moreover, the a priori tour may be
completely different from the actual tour followed by the vehicle, and this situation is
often seen as a disadvantage by companies;

Yang et al. [183] investigate the single- and multi-vehicle VRPSD; the latter is
obtained by imposing that the expected distance traveled by each vehicle does not
exceed a given value; the authors test two heuristic algorithms, the route-first-cluster-
next and the cluster-first-route-next, which separately solve the problem of clustering
customers which must be served by different vehicles and the problem of finding the
best route for each cluster; both algorithms seem to be efficient and robust for small
size instances, as shown by comparisons with branch-and-bound solutions to instances
with up to 15 customers; The authors also adapt to the stochastic case (both single-
and multi-vehicle VRPSD) the OrOpt local search due to Or [147], by proposing a fast
approximation computation for the change of the objective function value of a solution
modified with a local search move.

The OrOpt local search and objective function approximation are used here as
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Figure B.2: How an a priori tour is modified after performing an OrOpt move, where
the set of consecutive customers Sk (here, k = 3) is moved forward in the tour.

building blocks of our metaheuristics, therefore we will describe them in detail in the
following subsection.

B.2.1 The OrOpt local search

A basic move of the OrOpt local search, as suggested by Yang et al. in [183], works
as follows. Given a starting a priori tour, sets Sk of k consecutive customers with
k ∈ {1, 2, 3} are moved from one position to another in the tour, like in Figure B.2.
In the following we describe the two types of approximation schemes used for the
computation of the move cost. The first one, that we call VRPSD, is the one proposed
in [183], and the second one, that we call TSP, only computes the length change of the
a priori tour.

B.2.1.1 VRPSD approximation scheme

The move cost is computed in two stages: i) compute the saving from extracting the set
of customers from the tour; ii) compute the cost of inserting it back somewhere else in
the tour. Let i and i+k+1 be the nodes immediately preceding, respectively following,
Sk in the tour, and let j be the node immediately after which Sk is to be inserted, as
shown in Figure B.2. Here, we assume that j is after i in the a priori tour. Let fi(q)
and fi+k+1(q) be the expected cost-to-go from nodes i, respectively i + k + 1 onward
before the extraction of Sk. Apply one dynamic programming recursion step starting
with cost vector fi+k+1(·) at node i + k + 1 back to node i, without considering the
sequence Sk. Let f ′i(·) be the resulting cost vector at node i, that is, after extracting Sk

from the tour. Then, define the approximate extraction saving as a simple average over
q of fi(q) − f ′i(q). The computation of the approximate insertion cost of Sk between
nodes j and j+1 in the tour, is done analogously, if we assume that the insertion point
(node j) is after the extraction point (node i). Let fj(q) be the cost-to-go at node j
before inserting Sk, and f ′′j (q) be the cost-to-go at node j after inserting the Sk. The
total approximate cost of an OrOpt move is computed by subtracting the approximate
extraction saving from the approximate insertion cost, as follows

∆VRPSD =

∑Q
q=0[(f

′′
j (q)− fj(q))− (fi(q)− f ′i(q))]

Q+ 1
. (B.4)
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Note that the cost vectors are assumed to be already available from the computation
of the expected cost for the starting tour, thus, they do not need to be computed when
evaluating Equation (B.4). The only computations that must be done here are the
evaluation of cost vectors f ′i+1(·) and f ′′j (·), requiring O(KQ) time, and the average of
Equation (B.4), requiring O(Q) time. Therefore, with the proposed VRPSD approx-
imation, the cost of an OrOpt move can be computed in O(KQ) time. Although it
is possible that tours which are worsening with respect to the evaluation function are
accepted because recognized as improving by the approximate evaluation, in practice
this approximation scheme behave quite well. For a deeper discussion on the issues
related with this scheme we refer the reader to the original paper [183].

B.2.1.2 TSP approximation scheme

In the TSP approximation scheme the cost of an OrOpt move coincides with the dif-
ference between the length of the tour before the move and after the move:

∆TSP = di,i+k+1+dj,i+1+di+k,j+1−di,i+1−di+k,i+k+1−dj,j+1, (B.5)

where, as before, i and j are the extraction, respectively insertion point of a string of k
consecutive customers (see Figure B.2). Clearly, ∆TSP is computable in constant time.

The OrOpt neighborhood examination follows the same scheme proposed in [183],
and illustrated by Algorithm 21. Briefly, all possible sequences of length k ∈ {1, 2, 3}
are considered for insertion in a random position of the tour after the extraction point.
Then, only the ‘best’ move among those of length k is chosen. The ‘best’ move is the
move corresponding to the most negative move cost, which is computed by Equation
(B.4) in the VRPSD approach and by Equation (B.5) in the TSP approach.

B.2.2 Benchmark

In the literature there is no commonly used benchmark for the VRPSD, therefore
we have generated our own testbed. We have tried to consider instances which are
‘interesting’ from different points of view, by controlling four factors in the generation
of instances: customer position, capacity over demand ratio, variance of the stochastic
demand, and number of customers.

Instances may be divided into two groups, uniform and clustered, according to the
position of customers. In uniform instances, the position of customers is chosen uni-
formly at random on a square of fixed size. In clustered instances, coordinates are
chosen randomly with normal distributions around a given number of centers. This re-
sults in clusters of nodes, a typical situation for companies serving customers positioned
in different cities.

The ratio between the total (average) demand of customers and the vehicle’s ca-
pacity is an important factor that influences the ‘difficulty’ of a VRPSD instance [86].
The bigger the ratio, the more ‘difficult’ the instance. Here, the vehicle capacity Q is
chosen as follows

Q =
⌈

total average demand · r
n

⌉
, (B.6)
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Algorithm 21 OrOpt(p), with p ∈ {V RPSD, TSP}
1: let k = 3 and λ be an initial route
2: compute the expected cost of route λ by means of Algorithm 20
3: for all Sk, a set of successive nodes from λ do
4: if p = V RPSD then
5: compute ∆V RSPD by means of Equation (B.4)
6: else if p = TSP then
7: compute ∆TSP by means of Equation (B.5)
8: end if
9: end for

10: if none of the sets Sk corresponds to a negative cost then
11: go to Step 15
12: else
13: select the set Sk that results in the most negative cost and perform the associated

OrOpt move
14: end if
15: if k = 1 then
16: stop
17: else
18: decrease k by 1, and go to Step 3
19: end if

where the parameter r may be approximately interpreted as the average number of
served customers before restocking.

Each customer’s demand is an integer stochastic variable uniformly distributed on
an interval. The demand interval for each customer i is generated using two parameters:
the average demand Di, and the spread Si, so that the possible demand values for
customer i are the 2Si + 1 integers in the interval [Di − Si, Di + Si]. The spread is a
measure of the variance of the demand of each customer.

The particular parameters used to generate the test instances for our experiments
are reported in Section B.4.

B.3 The metaheuristics

We aim at an unbiased comparison of the performance of well-known five different
metaheuristics for this problem. In order to obtain a fair and meaningful analysis of
the results, we have restricted the metaheuristic approaches to the use of the common
OrOpt local search. In the following we briefly and schematically describe the main
principles of each metaheuristic and give the details of the implementations for the
VRPSD.
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• Simulated Annealing (SA)

Determine initial candidate solution s
Set initial temperature T according to annealing schedule
While termination condition not satisfied:

Probabilistically choose a neighbor s′ of s
If s′ satisfies probabilistic acceptance criterion (depending on T ):

s := s′

Update T according to annealing schedule

The initial temperature Ti is given by the average cost of a sample of 100 solutions
of the initial tour multiplied by µ; every ψ·n iterations the temperature is updated
by T ← α × T (standard geometric cooling); after ρ · ψ · n iterations without
improvement, the temperature is increased by adding Ti to the current value; the
solution considered for checking improvements is the best since the last re-heating.

• Tabu Search (TS)

Determine initial candidate solution s
While termination criterion is not satisfied:

Choose the best neighbor s′ of s that is either non-tabu or
satisfies the aspiration criterion, and set s := s′

Update tabu attributes based on s′

The neighborhood of the current solution s is explored. The non-tabu neighbors
are considered for the selection of the next current solution. If the value of a
tabu neighbor is better than the best found solution, then this neighbor is also
considered for selection (aspiration criterion). The best considered neighbor, i.e.
the one with the lowest value, is selected. In order to avoid cycling around the
same set of visited solutions, we found convenient to have a variable neighborhood :
for any current solution s, instead of considering the whole neighborhood, we
choose a subset of it according to a probability distribution. We experimentally
verified that the used variable neighborhood is able to avoid cycles and to explore
a larger part of the search space.

• Iterated Local Search (ILS)

Determine initial candidate solution s
Perform local search on s
While termination criterion is not satisfied:

r := s
Perform perturbation on s
Perform local search on s
Based on acceptance criterion, keep s or revert to s := r

The perturbation consists in a sampling of n neighbors according to the 2-opt
exchange neighborhood [124]; each new solution is evaluated with by exact cost
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function (Procedure 1) and if a solution is found that has cost smaller than the
best solution found so far plus ε, the sampling ends; otherwise, the best solution
obtained during the sampling is returned; the acceptance criterion keeps s if it is
the best solution found so far.

• Ant Colony Optimization (ACO)

Initialise weights (pheromone trails)
While termination criterion is not satisfied:

Generate a population sp of solutions by a
randomised constructive heuristic

Perform local search on sp
Adapt weights based on sp

Pheromone trails are initialised to τ0; sp solutions are generated by a constructive
heuristic and refined by local search; a global update rule is applied r times; sp
solutions are then constructed by using information stored in the pheromone
matrix; after each construction step a local update rule is applied to the element
τi,j corresponding to the chosen customer pair: τi,j = (1− ψ) · τi,j + ψ · τ0, with
ψ ∈ [0,1]; after local search, weights are again updated by the global update rule:
τi,j = (1 − ρ) · τi,j + ρ · q

Cbs , with ρ ∈ [0,1] and Cbs the cost of the best-so-far
solution; (note that heuristic information is only used in the initialisation phase).

• Evolutionary Algorithm (EA)

Determine initial population sp
While termination criterion is not satisfied:

Generate a set spr of solutions by recombination
Generate a set spm of solutions from spr by mutation
Perform local search on spm
Select population sp from solutions in sp, spr, and spm

At each iteration two solutions are chosen among the best ones to generate a new
solution spr through Edge Recombination [182] (a tour is generated using edges
present in both two other tours, whenever possible); The mutation swaps adja-
cent customers (without considering the depot) with probability pm; finally, the
solution improved by local search replaces the worst solution in the population.

The initial solution(s) for all metaheuristics are obtained by the Farthest Insertion
constructive heuristic [125]; it builds a tour by choosing as next customer the not yet
visited customer which is farthest from the current one. Here, we consider a randomised
version of this heuristic (RFI) which picks the first customer at random, and after the
tour has been completed, shifts the starting customer to the depot.

In order to use a reference algorithm for comparison among metaheuristics (see
Section B.4), we also implemented a simple random restart algorithm which uses the
RFI heuristics plus local search and restarts every-time a local optimum is found, until
the termination condition is reached; the best solution found among all the restarts is
picked as the final solution; we call such algorithm RR.
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B.4 Experimental Setup

Here we report two computational experiments with two different goals: i) we analyse
metaheuristics performance to test the hypothesis of the relation between the TSP
and VRPSD; ii) we study the performance of enhanced versions of the best algorithms
found in the first set of experiments. Moreover, we relate these results with parameters
of the instance.

We consider instances with 50, 100 and 200 customers and with customers uniformly
distributed or grouped in clusters. In uniform instances, the position of customers is
chosen uniformly at random in the square [0, 99]2. Clustered instances are generated
with two clusters, with centres randomly chosen in the square [0, 99]2. The variance of
the normal distribution used to generate customers coordinates around the centres is
equal to (0.8/

√
n) ·(max. coordinate). This corresponds to variance values of about 11,

8, and 6, respectively for instances with 50, 100, and 200 customers. The position of
the depot is fixed at (1,1). The average number of customers served before restocking is
maintained fixed to 4, thus yielding ratios for total demand over vehicle capacity in the
range from 12 to 50. Typical values for this ratio in the VRPSD literature are below
3, however higher values are closer to the needs of real contexts [34]. In all instances,
average demands Di at each customer i are taken with equal probability from [1, 49]
or [50, 100]. With regard to demand spread, instead, instances may be divided in two
groups: low spread instances, in which each customer i has Si chosen at random in
[1, 5], and high spread instances, in which each customer i has Si chosen at random in
[10, 20]. For each combination of size, distribution of customers and demand spread 75
instances were generated, making a total of 900 instances.

The metaheuristic parameters were chosen in order to guarantee robust perfor-
mances over all the different classes of instances; preliminary experiments suggested
the following settings:

SA: µ = 0.05, α = 0.98, ψ = 1, and ρ = 20;

TS: pnt = 0.8 and pt = 0.3;

ILS: ε = n
10 ;

ACO: m = 5, τ0 = 0.5, ψ = 0.3, ρ = 0.1, q = 107, and r = 100;

EA: spm = 10, pm = 0.5.

Given the results reported in [43, 44], we decided to only perform one run for each
metaheuristic on each instance.1 The termination criterion for each algorithm was set
to a time equal to 30, 120 or 470 seconds for instances respectively of 50, 100 or 200
customers. Experiments were performed on a cluster of 8 PCs with AMD Athlon(tm)

1In [43] it is formally proved that if a total of N runs of a metaheuristics can be performed for
estimating its expected performance, the best unbiased estimator, that is the one with the least variance,
is the one based on one single run on N randomly sampled (and therefore typically distinct) instances.
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XP 2800+ CPU running GNU/Linux Debian 3.0 OS, and all algorithms were coded in
C++ under the same development framework.

In order to compare results among different instances, we normalised results with
respect to the performance of RR. For a given instance, we denote as cMH the cost of
the final solution of a metaheuristic MH, cRFI the cost of the solution provided by the
RFI heuristic, and CRR by cost of the final solution provided by RR; the normalised
value is then defined as

Normalized Value for MH =
cMH − cRR

cRFI − cRR
. (B.7)

Besides providing a measure of performance independent from different instance hard-
ness, this normalisation method gives an immediate evaluation of the minimal require-
ment for a metaheuristic; it is reasonable to request that a metaheuristic performs at
least better than RR within the computation time under consideration.

B.5 First hybridization: using approximate move costs in
local search

The main goal of this first experiment is to see whether approximating the exact but
computationally demanding objective with the fast computing length of the a priori
tour is convenient or not. Our hypothesis is that the speedup due to the use of a fast
approximation of the objective is an advantage especially during the phase of local
search, when many potential moves must be evaluated before one is chosen.

In order to test the advantage of a speedup across the metaheuristics, we apply
to each of them the OrOpt local search described in Section B.2.1, and we test two
versions for each metaheuristic according to the type of approximation scheme used
in the local search, VRPSD-approximation or TSP-approximation. This set up allows
to use statistical techniques for a systematic experimental analysis. In particular, we
consider a two-way factor analysis, where metaheuristics and type of objective function
are factors and instances are considered as blocks [66].

The first plot of Figure B.3 is the boxplot of the results over all instances after the
normalisation. Negative values indicate an improvement over random restart and the
larger is the absolute value the larger is the improvement. It emerges that, in average,
ILS, EA and TS are able to do better than RR while SA and TS perform worse. We
check whether these results are also statistically significant. The assumptions for a
parametric analysis are not met, hence we rely on non-parametric methods.

The central plot of Figure B.3 shows the interaction between the two factors, meta-
heuristic and approximation scheme. Interaction plots give an idea of how different
combinations of metaheuristic and approximation scheme affect the average normalised
result. The lines join the average value for each metaheuristic. If lines are not parallel
it means that there is an interaction effect, that is, metaheuristics perform differently
with different approximation scheme. From the plot, we see that a certain interaction
effect is present between the two factors, hence, it would be appropriate to report the
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effects of one factor separately for each level of the other. In the third plot of Figure
B.3 we report, however, together both VRPSD and TSP approximation schemes, but
we distinguish the effects of this factor on each metaheuristic. The plot presents the si-
multaneous confidence intervals for the all-pairwise comparison of algorithms. Interval
widths are obtained by the Friedman two-way analysis of variance by ranks [64], after
rejecting the hypothesis that all algorithms perform the same. The difference between
two algorithms is statistically significant at a level of confidence of 5% if their intervals
do not overlap.

From the interaction and the all-pairwise comparison plots of Figure B.3 we can
conclude that:

• The improvements of EA, ILS, and TS over RR are statistically significant.

• The presence of an interaction effect between metaheuristic and approximation
scheme shows that EA, ILS and ACO perform better with TSP-approximation
while the opposite result holds for TS and SA. While EA, ILS and ACO use the
local search as a black-box, TS and SA employ their own strategy for examining
the neighborhood in the local search. This result indicates that, for becoming
competitive, these two methods require a good approximation of the objective
function.

• The metaheuristics which perform better are EA, ILS and TS. Furthermore, EA
and ILS take significant advantage from TSP-approximation scheme.

B.6 Second hybridization: further exploiting the TSP
analogy

Given the results in the previous section, it is reasonable to investigate what happens if
we exploit even more the hybridization based on the TSP objective function. For this
purpose, we consider one of the best performing TSP state-of-the-art metaheuristics,
and we observe that it is based on iterated local search with the 3-opt local search
operator [170]. We, therefore, hybridize the best algorithms determined in the previous
section (ILS, EA) with the 3-opt local search for TSP. We do not hybridize TS, in-
stead, since we observed that it exhibits better results with the VRPSD-approximation
rather than with the TSP-approximation. The new algorithms that we consider are the
following.

TSP-soa If the solution found solving the TSP was comparable in quality to those
found by our metaheuristics, there would be no point in investigating algorithms specific
for the VRPSD. We consider therefore a transformation of the problem into TSP by
focusing only on the coordinates of the customers (depot included). We then solve the
TSP with a TSP state-of-the-art algorithm [170] and shift the TSP solution found to
start with the depot thus yielding a VRPSD solution. This solution is finally evaluated
by the VRPSD objective function (Procedure 1). The algorithm for TSP is an iterated
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local search algorithm that uses a 3-opt exchange neighborhood, and a double bridge
move as perturbation, i.e., it removes randomly four edges from the current tour and
adds four other edges, also chosen at random, that close the tour.

ILS-hybrid It is obtained by modifying the acceptance criterion in TSP-soa, that is,
the best solution according to Procedure 20 is chosen rather that the best TSP solution.

EA-hybrid It is derived from EA-tsp by replacing the local search with a 3-opt local
search based on TSP objective function. The recombination and mutation operators
are maintained unchanged, since these are deemed the components that determined
the success of EA in Figure B.3. The selection operator remains also unchanged, and
is based on the VRPSD objective function computed by Procedure 1.

In order to have a comparison with previous methods from the VRPSD literature,
we also test the effective CYCLIC heuristic [25], that we implemented as follows:

• solve a TSP over the n customers, plus the depot, by using the TSP-soa algorithm;

• consider the n a priori tours obtained by the cyclic permutations si = (0, i, i +
1, ..., n, 1, ..., i− 1), i = 1, 2, ..., n;

• evaluate the n a priori tours by the VRPSD objective function (Procedure 1) and
choose the best one.

For the comparison of these algorithms we designed an experimental analysis based
on a single factor layout with blocks [66]. Since the assumption for parametric tests
are again violated, we use the Friedman two-way analysis of variance by ranks.

In Figure B.4, B.5, B.6 we present the simultaneous confidence intervals after re-
jecting the hypothesis that all algorithms perform the same. We distinguish results by
presenting the instances grouped according to the three main features defined in Section
B.4. Since these the analysis is repeated on the same data, we adjust the “family-wise”
level of confidence for each test dividing it by a factor of three [165].

The main indication arising from the results is that a mere TSP algorithm is not
sufficient to produce high quality solutions for the VRPSD instances under any of the
circumstances tested. VRPSD problem-specific algorithms, which take into account the
stochasticity of the problem, yield always better solutions. Nevertheless, the best per-
formances are achieved by hybridization of TSP and VRPSD approaches. EA-hybrid
and ILS-hybrid in many cases perform statistically better than all other algorithms and,
when significant, differences are also practically relevant. On the contrary, the difference
between these two approaches is statistically significant only in one case. The compar-
ison with the CYCLIC heuristic indicates that the algorithms we presented improve
considerably the solution for VRPSD with respect to previous known approaches.

Considering the characteristics of the instances, the position of customers seems not
to have an impact on the rank of algorithms. On the contrary, the different position
occupied by the algorithms in the ranks with respect to instance size indicates that
the larger the instances the higher is the importance of speed over precision in the
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evaluation of neighbors in local search. This expected result is exemplified by the
worsening of the average rank of EA-tsp as size increases.

Finally, spread of demand has also a considerable influence. With small spread
it is convenient to consider the costs of “preventive restocking” and thus the use of
Procedure 1 is appropriate. With large spread, on the contrary, the higher uncertainty
of the right point in the tour for “preventive restocking” makes the evaluation of solution
by means of Procedure 20 not far from that provided by a TSP evaluation, with the
negative impact of a higher computational cost.

B.7 Conclusions

The main contribution of this section is the study of the hybridization of objective
function approximations on five well known metaheuristics to solve the VRPSD. In
particular, we introduced a TSP-approximation, which uses the length of the a pri-
ori tour as an approximation of the exact but computationally demanding VRPSD
evaluation. We showed its superiority with respect to a known VRPSD-approximation.

More precisely, first we considered a local search algorithm (OrOpt) for which a good
approximation for the exact VRPSD objective function is available, and we compared
metaheuristics using this local search by applying both the VRPSD-approximation and
the TSP-approximation. Secondly, we exploited further the TSP analogy, by choosing
the 3-opt local search operator, which is very good for the TSP, but for which there is
no immediate VRPSD approximation.

With the first type of hybridization, we have shown that metaheuristics using the
local search as a black-box (EA, ILS and ACO) perform better when using the TSP-
approximation, while metaheuristics that use their own strategy for examining the
neighborhood in the local search, perform better with the more precise but more com-
putationally expensive VRPSD-approximation. With the second type of hybridization
based on the use of the 3-opt local search, we considerably improved the performance
of the best metaheuristics for VRPSD, and we were unable to discover significant dif-
ferences between the two best algorithms, EA and ILS.

All the metaheuristics implemented found better solutions with respect to the
CYCLIC heuristic (which is known from the literature to perform well on different
types of instances) and with respect to solving the problem as a TSP. This latter
point is important because it demonstrates that the stochasticity of the problem and
the finite demand over capacity ratio is not negligible and that the development of
VRPSD-specific algorithms is needed. We proposed a TSP-VRPSD hybrid approach
that clearly outperforms the current state-of-the-art.
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Figure B.3: Aggregate results over all 900 instances. From top to bottom: boxplot
of normalised results; interaction plot for the two factors: metaheuristic and objective
function approximation scheme; error bars plot for simultaneous confidence intervals
in the all-pairwise comparison. The boxplot is a restricted to values in [−10.5, 5], few
outliers fell outside this interval. In the error bar plot, ranks range from 1 to 12, the
number of algorithms considered in the experiment.
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Figure B.4: All-pairwise comparisons by means of simultaneous confidence intervals on
uniform and clustered instances.
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Figure B.5: All-pairwise comparisons by means of simultaneous confidence intervals on
instances with different demand spread.



B.7. CONCLUSIONS 165

Average rank

ILS−hybrid
ILS−tsp

EA−hybrid
EA−tsp

TS−vrpsd
CYCLIC

TSP−soa
50 customers

ILS−hybrid
ILS−tsp

EA−hybrid
EA−tsp

TS−vrpsd
CYCLIC

TSP−soa
100 customers

1 2 3 4 5 6 7

ILS−hybrid
ILS−tsp

EA−hybrid
EA−tsp

TS−vrpsd
CYCLIC

TSP−soa
200 customers
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et de Développements en Intelligence Artificielle, Univeristé Libre de Bruxelles,
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