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et de Développements en Intelligence Artificielle

Self-organizing flocking in

behaviorally heterogeneous swarms

Alessandro Stranieri

Promoteur:

Prof. Marco DORIGO

Co-promoteur:

Dr. Mauro BIRATTARI

Rapport d’avancement de recherche

Année Académique 2010/2011



ii



iii

Abstract

In this dissertation, we study self-organized flocking in a swarm of be-

haviorally heterogeneous mobile robots: aligning and non-aligning robots.

Aligning robots are capable of agreeing on a common heading direction with

other neighboring aligning robots. Conversely, non-aligning robots lack this

capability. Studying this type of heterogeneity in self-organized flocking is

important as it can support the design of a swarm with minimal hardware re-

quirements. Through systematic simulations, we show that a heterogeneous

group of aligning and non-aligning robots can achieve good performance in

flocking behavior. We further show that the performance is affected not only

by the proportion of aligning robots, but also by the way they integrate in-

formation about their neighbors as well as the motion control employed by

the robots.
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Chapter 1

Introduction

The aim of the work described in this dissertation is to present the study

conducted on the possibility for a swarm of robots to move cohesively, to

flock, even when not all of them are able to align with their neighbors.

This chapter constitutes an introduction to this work. In Section 1.1 we

introduce flocking as an object of study in robotics and we motivate our

proposed study. Section 1.2 is dedicated to the works in flocking that are

related to the one presented here.

1.1 Flocking

Flocking is the cohesive and aligned motion of a group of animals along a

common direction. The most striking characteristic of flocking is probably

the fact that, although the fluid and coordinated motion may seem under

the control of a single mind, evidence actually supports the idea that each

individual acts according to simple behavioral rules and exploits only local

information. Figure 1.1 provides a beautiful example of a formation of birds

moving cohesively in formation, as a single entity.

It is no wonder that this emergent behavior has attracted the attention

of researchers in the computer science crowd, as well as in the robotics one.

Modeling the simple behaviors that enable a group of animals to move in

very elegant coordinated fashion, can in fact allow the design of groups of

artificial agents which are able to move along the same direction, without

the need of central coordination.

All studies about flocking within computer science and robotics root

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Birds flocking in formation.

back to the seminal work of Reynolds (1987). He was the first to simulate

flocking of birds based on three behaviors: separation — individuals try to

keep a minimum distance between their neighbors, cohesion — individuals

try to stay together with their neighbors, and alignment — individuals try

to match their velocities to the average speed of their neighbors. The vast

majority of the studies about flocking assume that all the robots in the

swarm are behaviorally identical and exploit the three behaviors described

above.

In this dissertation, we consider flocking in a behaviorally heterogeneous

swarm of robots. All robots in the swarm use the separation and the cohesion

behavioral rule. However, only a fraction of the robots, which we call the

aligning robots, uses the alignment behavior. The rest of the robots, which

we call the non-aligning robots, do not use the alignment behavior.

The motivation that inspired this work derives from the idea that study-

ing heterogeneity in alignment in self-organized flocking is very important

from the practical point of view. The alignment behavior is more demand-

ing in terms of robotics hardware requirements than the separation and

cohesion behaviors. In fact, it requires either an elaborate sensing device,

through which robots can detect the orientation of neighboring robots or,

as explained in this dissertation, a communication device. Therefore, un-

derstanding if a swarm can achieve flocking with only a few aligning robots

can support the design of swarms with minimal hardware requirements. A
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Figure 1.2: Flocking boids-like artificial agents.

long-term vision of this work involves in fact the possibility of having a re-

duced set of robots capable of sophisticated navigation which lead through

unknown and complex environments a larger group of robots specialized on

a different task.

The idea presented in this dissertation is tested by conducting simulation-

based experiments and we measure self-organized flocking performance in

terms of the degree of group order, group cohesiveness and average group

speed. With respect to these criteria, we found that the swarm achieves

good flocking performance when the proportion of aligning robots is high.

Conversely, this performance decreases as the proportion gets lower. To

tackle this problem, we propose a new model of robot motion. In the new

model, non-aligning robots modulate their forward speed, instead of moving

at a fixed forward speed as the other robots.

1.2 Related Works

Flocking is a widely observed phenomenon in social animals (Camazine et al.

2001) such as locusts (Buhl et al. 2006), birds (Ballerini et al. 2007) or hu-

man beings (Dyer et al. 2008). Animal groups show a great diversity in

their population due to the differences in age, morphology (Krause et al.
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1998), nutritional state (Krause 1993), personality (Michelena et al. 2010),

and leadership status (Reebs 2000) of the individuals. This diversity mainly

results in behavioral differences among the individuals. Couzin et al. (2002)

showed that behavioral differences between the individuals in a group change

both the dynamics and the organization of the group. Subsequently, Couzin

et al. (2005) conducted a seminal study about leadership in animal groups.

They modeled a heterogeneous group of individuals of which only a few

are aware of a target direction. They showed that the few informed in-

dividuals are able to move the whole group along the target direction. In

Janson et al. (2005), the authors propose a model to explain how scouts bees

are able to direct large swarms of uninformed bees towards a new nesting

site. Even when the proportion of scout bees is low, they are able to lead

the swarm by flying through it at a slightly faster speed. Sayama (2009)

presented the preliminary results obtained in simulation using the Swarm

Chemistry framework. They studied the movement of a swarm consisting

of two different chemical species, and found that a chaser-escapee relation-

ship between the two different populations of agents is established. More

recently, Diwold et al. (2011) showed how a swarm can still fly towards a

common direction even when the agents are not all aligned, and when the

location of the nesting site is not known with precision.

In robotics, most of the studies about flocking assume a homogeneous set

of behaviorally equivalent individuals. One of the earliest studies in robotics

was performed by Matarić (1994). She devised a set of “basis behaviors”

to implement flocking in a group of robots: safe-wandering, aggregation,

dispersion and homing. With the proposed set of behaviors, robots are able

to move cohesively towards a homing direction. Kelly & Keating (1996), fol-

lowing a behavior-based approach, designed a leader-following behavior to

realize flocking. Hayes & Dormiani-Tabatabaei (2002) proposed a flocking

behavior having collision avoidance and alignment behaviors based on local

range and bearing measurements. Spears et al. (2004) proposed a framework

based on artificial physics. The robots were able to form a regular lattice

structure using attraction/repulsion virtual forces and move along a direc-

tion indicated by a light source in the environment. Holland et al. (2005)

proposed a flocking behavior for unmanned ground vehicles based on sep-

aration, cohesion and alignment behaviors. Turgut et al. (2008) proposed

a flocking behavior based on separation/cohesion and alignment behaviors.
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They implemented this behavior in robots with limited sensing capabilities

and conducted a systematic study on the effect of sensing noise in heading

measurement on flocking. In a recent study, Moeslinger (2011) proposed a

flocking behavior for robots with limited sensing capabilities. It is based

on only attraction and repulsion behaviors. By adjusting the sizes of at-

traction and repulsion zones, they achieved flocking for a small group in a

constrained environment.

Other works in robotics considered a group of behaviorally heterogeneous

robots. Momen et al. (2007) studied flocking with a heterogeneous robotic

swarm inspired by mixed-species foraging flocks of birds (Graves & Gotelli

1993). Using simulations, they showed some aspects of mixed-species flock-

ing, such as behavioral differences in their attraction and repulsion rules.

Çelikkanat & Şahin (2010), inspired by Couzin et al. (2005) extended the

flocking behavior proposed by Turgut et al. (2008) and created a heteroge-

neous robot swarm by informing some of the robots about a target direc-

tion. Recently, in another follow-up study, Ferrante et al. (2010) introduced

a new communication strategy to improve flocking performance in case of

both static and changing target directions.

Most of the studies in swarm robotics about self-organized flocking have

not considered diversity in alignment capabilities.

The rest of this dissertation is organized as follows. Chapter 2 contains

the description of the flocking model and the robots used to implement

it. In Chapter 3, we describe the simulation environment used to run our

experiments, the experimental setup and the results obtained. Finally, we

draw the conclusions of this work and propose future directions of research

in Chapter 4.
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Chapter 2

Method

This section is dedicated to the description of the method used to carry out

the proposed study. In Section 2.1, we first describe the framework used to

model the behaviors employed by the robots. Section 2.2 describes how we

compute linear and angular speed of the robots. Section 2.3 contains the

description of how the behaviors are implemented on the robots.

2.1 Artificial physics

We follow a design method based on the artificial physics framework in-

troduced by Spears et al. (2004). According to this method, robots exert

virtual forces on each other. In Figure 2.1 we try to give an idea of how

the framework is used in this work. At each time step a robot computes the

force acting on it. The robot then converts this force into linear and angular

speed, which are sent to the wheel actuators.

In order to explain how we implement heterogeneous flocking, we start

with the description of our flocking model in the homogeneous case. Using

this framework, an homogeneous swarm consists of robots employing both

alignment, cohesion and separation behaviors. Figure 2.2 provides a visual

representation of the behaviors.

In the homogeneous case, all robots compute the forces according to the

same rule:

f = αp + βh,

We define p as the proximal control vector and h as the alignment control

7
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Figure 2.1: In the artificial physics framework used in this work, robots
exert forces on each other and move according to the resulting forces acting
on them, represented here by the blue arrows.

vector. The proximal control vector p accounts for attraction and repulsion

rules, that is for keeping the robot together with its neighbors and to avoid

collisions. The alignment control vector h is used to make the aligning robots

match the average heading direction of its neighboring aligning robots. The

parameters α and β are used to adjust the contribution of the corresponding

vectors.

In this study, we consider a behaviorally heterogeneous swarm of robots

and we now refer to two different kinds of robots: aligning and non-aligning

robots. Given the model above, as one can intuitively imagine, the rule

according to which non-aligning robots compute the force acting on them

becomes simpler:

f = αp.

Furthermore, the modified model can then be represented as in Figure 2.3.

In the two following sub-sections we describe how the two force components,

p and h are computed.
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Figure 2.2: Behaviorally homogeneous flocking in the virtual physics frame-
work.

2.1.1 Proximal control

Let mp denote the number of neighbors of a robot within a range Dp. Let

also di and φi denote the relative range and bearing of the ith neighbor,

respectively. The proximal control vector p is given by:

p =

mp∑
i=1

pi(di)e
jφi .

pi is calculated as a function of di using a force function derived from the

Lennard-Jones potential function, which results in the formation of regular

structures as shown in Hettiarachchi & Spears (2009):

pi(di) = 12ε

[
ddes

12

d13i
− ddes

6

d7i

]
.

The parameter ε determines the strength of the attractive and repulsive

force, and ddes is the desired distance between the robots. Figure 2.4 pro-

vides an example of how a robot computes the proximal vector.
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Figure 2.3: Behaviorally heterogeneous flocking. A fraction of the agents
(in red) employs the sole proximal control behavior.

2.1.2 Alignment control

Let θ0 denote the orientation of a given robot. Furthermore, let ma denote

the number of aligning robots within the range Da of this robot, and θi, i ∈
{1, . . . ,ma} their orientation. All orientations are expressed in the body-

fixed reference frame of the robot under consideration1. The robot calculates

the alignment control vector, that is, the average orientation of the ma

robots, including its own:

h =

∑ma
i=0 e

jθi

‖
∑ma
i=0 e

jθi‖
,

where ‖ · ‖ denotes the norm of a vector. Figure 2.5 provides an example of

how a robot computes the alignment vector.

1In our study, we define two reference frames, both of which use the right-hand con-
vention. One is the reference frame common to all of the robots, which is available due to
the light source. The other is the body-fixed reference frame specific to each robot. The
body-fixed reference frame is fixed to the center of a robot: its x-axis points to the front
of the robot and its y-axis is coincident with the rotation axis of the wheels.
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Figure 2.4: Proximal control behavior representation.

2.2 Motion control

The force computed with the rules described in the previous section must

then be converted in forward and angular speed. For this study we consider

two motion control rules. The two rules differ in the way the forward speed

u and the angular speed ω are determined. This section is dedicated to the

description of these two rules.

2.2.1 CMC

The first rule is denoted as constant forward speed motion control (hence-

forth CMC). In CMC, robots are always moving at a constant forward speed,

but can change their angular speed.

The forward speed is kept constant at

u = U .

The angular speed is proportional to the angular component of the total

force f . Hence, it ignores the magnitude ‖f‖ of the force:

ω = K 6 f .
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Figure 2.5: Alignment control behavior representation.

It is important to notice, that according to this rule, the values of α and

β are not independent, and only their ratio matters. In fact, in this rule the

magnitude of the resulting f vector is ignored and adding weighted vectors

does not change the angle.

2.2.2 VMC

According to the second rule considered, denoted as variable forward speed

motion control (henceforth VMC), robots move not only at a variable an-

gular speed but also at a variable forward speed.

First, let fx = ‖f‖ cos( 6 f) and fy = ‖f‖ sin( 6 f) denote the projection of

the total force f on the x-axis and y-axis of the robot body-fixed reference

frame respectively. Accordingly, the forward speed u is directly proportional

to the x component of the total force and the angular speed ω is directly

proportional to the y component of the force. Hence:

u = K1fx

ω = K2fy.
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K,K1,K2 are constants, whose values are given in Table 3.1.

Contrarily as the CMC case, here the values of α and β matter, as the

magnitude of the force vector as an influence on both linear and angular

speed.

In this work, we consider and study two different cases in which we vary

the motion control rule applied to the non-aligning robots. In the first case,

referred as the CMC-CMC case, all robots share the same motion control

rule, that is, CMC. In the second case, referred as the CMC-VMC case,

aligning robots use CMC, whereas non-aligning robots use VMC (Figure

2.6).

Figure 2.6: Heterogeneity in motion control rule. Non aligning robots here
employ the VMC motion control rule.

2.3 Flocking With Robots

In this section we describe the robotic platform, whose simulated version is

used to carry out our study, and how the forces described in the sections

above are computed.
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2.3.1 The Foot-bot

In this study, the swarm is composed of simulated versions of the foot-bot

robot developed by Bonani et al. (2010), which is showed in Figure 2.7.

Figure 2.7: The Foot-bot.

The foot-bot is a differentially-driven mobile robot with the following

sensors and actuators: i) A light sensor used to measure the orientation of

robot (θ0) with respect to a light source present in the environment perceived

by all robots. ii) A range and bearing sensing and communication device

(henceforth called RAB), with which a robot can communicate with its

neighbors and perceive their range and bearing measurements (Roberts et al.

2009). iii) Two wheels actuators, that are used to control independently the

left and right wheels speed of the robot.

At each time-step, each foot-bot performs two behaviors: the proximal

control behavior and the alignment control behavior. These behaviors are

used to compute the respective force vectors.

To achieve proximal control with the foot-bot, the RAB is used for mea-

suring the relative range and bearing di and φi of the ith neighbor. For

achieving alignment control, we use communication to simulate orientation

sensing as in Turgut et al. (2008). In particular, each aligning robot sends its

orientation, expressed in the global reference frame, using the communica-

tion unit present in the RAB. At the same time, it receives the orientation θi



2.3. FLOCKING WITH ROBOTS 15

of its ith neighboring aligning robot. It transforms this angle into its body-

fixed reference frame. In this way, we are able to simulate a robot sensing

the orientation of its neighboring aligning robots.

To achieve motion control, we first limit the forward speed within [0, Umax ],

and the angular speed within [−Ωmax , Ωmax ]. We then use the differential

drive model used in Turgut et al. (2008) to convert the forward speed u and

the angular speed ω into the linear speeds of the left (NL) and right (NR)

wheel:

NL =

(
u+

ω

2
l

)
,

NR =

(
u− ω

2
l

)
,

where l is the distance between the wheels.

The values of the constants that we used in our experiments are given

in Table 3.1.
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Chapter 3

Experiments and Results

This chapter is dedicated to the description of the results obtained in this

study. Section 3.1 describes the simulation framework, the experimental set-

up and the metrics used to evaluate the flocking performance. In Section

3.2 we show the results obtained.

3.1 Experiments

3.1.1 The simulator

In robotics, the use of simulation tools is essential for the development of

controllers. One of the main reasons is that they allow to test controllers

without the risk of damaging the hardware. A simulation environment allows

to prevent those situations to happen before they actually happen on the

physical robots.

Another characteristic that makes simulations convenient is the speed of

execution. In fact, a software can simulate hours of real time in some min-

utes, removes all the down times (example: time to replace robots’ batteries

or to set the environment up), and allows parallel execution of the same

experiment on different computers. Additionally, figures collection and sta-

tistical analysis are usually easier in a simulated environment than in a real

one.

As additional benefit for swarm robotics studies, a simulator allows to

test algorithms and proof empirically their working principles with a huge

amount of robots, which might not be available in reality.

On the downside, the intrinsic complexity of a (multi-)robot system and

17
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Figure 3.1: Overall architecture of the simulator.

of the real-world environment, makes sometimes hard the design of realistic

simulation models to derive sound evaluations and predictions of the robotic

system under study. In other words, the fact that a robot controller shows

a given behavior in simulation does not mean that the same controller on

the real robot will perform in the same way. This is due to the fact that

a behavior arises from the interaction between the robot and its environ-

ment, and the simulated environment is different with respect to the real

one. Adding noise to the simulations (e.g. to sensor readings and actua-

tors outputs) helps bridging the gap between simulation and reality (Jacobi

1997).

We execute simulation-based experiments with a swarm of foot-bots us-

ing the ARGoS (Autonomous Robots Go Swarming) simulator (Pinciroli

et al. 2011), an open-source1, plug-in based, multi-physics engine simulator.

The simulator was developed for the Swarmanoid project and is a custom

software, written in C++ language, which implementation relies on free and

open-source resources. An example of a swarm of simulated Foot-bots is

given in Figure 3.2.

Despite the availability of several simulation software for robotics stud-

ies, the decision of writing a new simulator for the Swarmanoid project from

scratch was taken. The main reason is the fact that Swarmanoid proposes a

1http://iridia.ulb.ac.be/argos/
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novel set of robots, two of which (eye-bot and hand-bot ) have peculiarities

that exist only in the context of the project. Thus, in order to simulate the

specific characteristics of the robots composing the Swarmanoid by using

an existing simulator platform, we would have needed in any case to imple-

ment from scratch the majority of the modules. For instance, none of the

currently available simulators include modules that could help to simulate

the hand-bot climbing along the vertical dimension by shooting a rope that

gets magnetically attached to the ceiling.

Therefore, in the case of choosing to adapt an existing simulator to our

needs, we would have found ourselves in the position of implementing from

scratch, and/or heavily adapting, most of the simulation modules. This

choice would have vanished the benefits of using a preexisting simulator,

and at the same time forced us to adapt to a general software structure

selected by a third party.

The conceptual architecture of ARGoS is shown in Figure 3.1. The

simulator architecture is organized around one single component, the Swar-

manoid Space. This is a central reference system representing the state of

the simulation at each simulation step. It contains information about the

position and orientation of each of the simulated entities: robots and all

other objects that are present in the simulated environment.

The other components of the simulator interact mainly with the Swar-

manoid Space. Physics engines calculate physical movements and inter-

actions based on the actions of the different simulated entities; they then

update the Swarmanoid Space with the new state of the simulated system.

Renderers allow the visualization of the content of the Swarmanoid Space

at each simulation step. Sensors and actuators can interact either with the

Swarmanoid Space or directly with the physics engines.

This architecture, with the Swarmanoid Space as central reference point,

has been thought to give high modularity to the software: each of the sensors,

actuators, renders and physics engines are implemented as plug-ins and can

be easily changed, selected and tuned through an XML configuration file.

Another core feature of the simulator is the Common Interface. This is

a collection of interfaces that defines the functions that are available to a

robot controller for interacting with sensors and actuators. The common in-

terface is the same on the real robots as it is in ARGoS. This has been done

to allow having the same controller code working in ARGoSand on the real
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robots. The controller, in fact, ignores whether it is interacting with simu-

lated sensors and actuators or real ones. This speeds up the development

of the controllers as it is not necessary to port the code from the simulated

version to the real robot version.

Figure 3.2: A swarm of simulated Foot-bots in ARGoS.

3.1.2 Experiment set-up

At the beginning of each experiment, N mobile robots are randomly placed

(position and orientation-wise) with a proportion ρ ∈ [0, 1] of aligning

robots. The density of robots is kept fixed and equal to 6 robots per square

meter on a square shaped area. A light source is placed at a fixed position in

the environment, far away from the swarm, to provide the common reference

frame.

In the experiments, noise is added to the orientation measurement and

the angle of the proximal control vector. Noise is modeled as a uniformly

distributed random variable within the range [−σπ, σπ].

We conduct experiments considering the two different cases of motion

control.

CMC-CMC In this case, all robots use CMC. Here, we study the effect

of the ratio β1
α1

, and we do not change α1 and β1 independently, since

CMC does not utilize the magnitude of f , but only its angular com-

ponent. As such, multiplying both α1 and β1 with the same constant
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Variable Description Value(s) / Range

N Number of robots {25, 100}
ρ Prop. of aligning robots {0.4, 0.8}

β1/α1 Alig. robots parameters {1, 2, 4, 6, 8, 10}
α2 Non alig. robots parameter {1, 2, 4, 6, 8, 10}
U Maximum forward speed 1.5 cm/s

K CMC angular gain 0.5 1/s

K1 VMC linear gain 0.25 s/kg

K2 VMC angular gain 0.1 s/(kg · m)

l Inter-wheel distance 0.1 m

Umax VMC max forward speed 20 cm/s

Ωmax VMC max angular speed π/2 rad/s

ε Strength of pot. function 0.5

ddes Inter-robot distance 0.6 m

σ Amount of noise 0.1

T Experiment duration 600 secs

Table 3.1: Experimental values or range of values for all constants and
variables

value will produce no difference in the robot motion. For the same

reason, α2 does not effect the robot motion.

CMC-VMC In this case, aligning robots use CMC whereas non-aligning

robots are using VMC. For the non-aligning robots, the magnitude

of f plays a role in their motion. Thus, additionally to the effect of

changing β1
α1

of the aligning robots, we study the effect of changing α2

of the non-aligning robots.

We show the results in heterogeneous self-organized flocking with medium

(N = 25) and large (N = 100) swarm sizes and with low (ρ = 0.4) and high

(ρ = 0.8) proportions of aligning robots. We study the effect of changing the

ratio β1
α1
∈ {1, 2, 4, 6, 8, 10} and, for the heterogeneous case, we also study

the effect of changing α2 ∈ {1, 2, 4, 6, 8, 10}, but we report here only the

results obtained with the best case, that is, α2 = 10 (refer to Stranieri et al.

(2011) for the complete set of results ). In our supplementary page (Stranieri

et al. 2011), we also report the flocking performance as a function of ρ ∈
{0.2, 0.4, 0.6, 0.8, 1.0}.

For each experimental setting, we execute R runs and report median and
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inter-quartile range of the results. The duration of one run is T simulated

seconds.

We study how the heterogeneous flocking performance is influenced by:

i) the way robots implement their motion (CMC-CMC motion versus CMC-

VMC motion), ii) the parameters that affect the strength of the proximal

control vector and of the alignment control vector, that is, β1
α1

and α2, and

iii) the ratio of aligning robots ρ .

We also experiments in the VMC-VMC case, but we didn’t obtain any

positive results, even with ρ = 1.

3.1.3 Metrics

In this study, we are interested in having a swarm of robots that move

cohesively as a single group. Furthermore, the swarm should be aligned

towards the same direction and move towards it as fast as possible. We use

three metrics to measure the degree of attainment of these objectives: order,

group cohesion and rescaled group speed.

Order: The order metric ψ measures the angular order of the robots (Vicsek

et al. 1995), ψ ≈ 1 when the group shares a common heading and

ψ � 1 when each robot is pointing in a different direction. The order

is defined as:

ψ =
1

N
‖
N∑
i=1

ejθi‖.

Group cohesion: To measure group cohesion ξ, we determine the number

of groups g present at the end of each experiment (Couzin et al. 2005).

Group cohesion is computed as:

ξ = 2−min(2, g).

and therefore takes values in {0, 1}.

Rescaled Group speed: We calculate the average group speed as:

s = ‖cT − c0
T

‖,

where cT and c0 are the position of the center of mass of the swarm

at the end and at the beginning of the experiment, respectively. We
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Figure 3.3: CMC-CMC case experiments for N = 25 and ratio of aligning
robots ρ = 0.8. Thick lines show the median values, whereas the gray areas
show the 25% and the 75% inter-quartile range of the data. For group
cohesion, filled circles correspond to median values and empty circles to the
25% percentile score of the data.

then rescale the average group speed:

sr =
s

U
,

where U is the maximum forward speed of CMC.

3.2 Results

In this section we describes the results obtained in our study. This sections

is sub-divided in two further parts, according to the two different motion

control combination considered.

3.2.1 CMC-CMC case

We first focus on the ρ = 0.8 case, for both N = 25 (Figure 3.3) and

N = 100 (Figure 3.4). Results show that the swarm is cohesive in most

runs. However, order and speed are high only when β1
α1
≥ 2. Furthermore,
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Figure 3.4: CMC-CMC case experiments for N = 100 and ratio of aligning
robots ρ = 0.8.

while order is high at different values of the ratio β1
α1

, speed increases with

increasing values of β1
α1

, until it saturates at around β1
α1

= 6. This shows that,

when the alignment control vector is higher, robots tend to move faster. This

is explained by the fact that the alignment control vector is more stable, over

time, than the proximal control vector. Thus, the higher the weight of the

alignment control vector, the more the robots tends to move forward rather

than to turn. This allows the swarm to move faster, until speed saturates

at the maximum forward speed U .

When the proportion of aligning robots is ρ = 0.4, performance gets

sensibly worse (Figures 3.5 and 3.6). In both cases (N = 25 and N = 100),

we observe two possible outcomes: for small values of the ratio β1
α1

, the

swarm remains cohesive, but does not move. This happens because the

relative contribution of the alignment control vector is not enough for the

aligning robots to pull the entire swarm towards the agreed goal direction.

For larger values of the ratio β1
α1

, group speed and order get higher. However,

in at least 25% of the runs, the swarm splits. This happens because, in those

runs, clusters of non-aligning robots are present. Since the motion of these

robots is governed only by the proximal control vector, they are not able
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Figure 3.5: CMC-CMC case experiments for N = 25 and ratio of aligning
robots ρ = 0.4.

to match the higher speed of the aligning robots since they tend to turn

more rather than to move forward, thus they remain disconnected from the

group, as exemplified in Figure 3.7.

In Stranieri et al. (2011), we also report the performance as function of

ρ. We consider the case β1
α1

= 10, as it generally provides the best overall

results. As shown in Stranieri et al. (2011), the flocking performance is

acceptable in terms of the metrics used for ρ ≥ 0.6 in both cases N = 25

and N = 100.

3.2.2 CMC-VMC case

In the CMC-VMC case, results with ρ = 0.8 (Figures 3.8 and 3.9), are

similar to the results obtained, with the same ratio, in the CMC-CMC case.

The results with ρ = 0.4 are much better in the CMC-VMC case (Figures

3.10 and 3.11) with respect to the CMC-CMC case (Figures 3.5 and 3.6).

With both swarm sizes we have that, when β1
α1

> 2, the swarm is able to

effectively flock together at the cost of a reduced speed.

InStranieri et al. (2011), we also report the flocking performance as a

function of ρ for β1
α1

= 10 and α2 = 10. Differently from the CMC-CMC
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Figure 3.6: CMC-CMC case experiments for N = 100 and ratio of aligning
robots ρ = 0.4.

Figure 3.7: A condition of unsuccessful flocking behavior. The swarm after
while splits in different groups. The aligning robots are able effectively flock,
whereas the non-aligning ones are unable to keep the pace.

case, in the CMC-VMC case the performance of flocking degrades more

gracefully as the proportion of non-aligning robots decreases.

The improved capability of the swarm to stay together is due to the
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Figure 3.8: CMC-VMC case experiments for N = 25 and ratio of aligning
robots ρ = 0.8.
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Figure 3.9: CMC-VMC case experiments for N = 100 and ratio of aligning
robots ρ = 0.8.
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Figure 3.10: CMC-VMC case experiments for N = 25 and ratio of aligning
robots ρ = 0.4.
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Figure 3.11: CMC-VMC case experiments for N = 100 and ratio of aligning
robots ρ = 0.4.
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advantage of using VMC in the non-aligning robots. In fact, non-aligning

robots are able to respond to the high variations in the proximal control

vector much more when they can also change their forward speed. As such,

they are also able to stay together with the aligning robots, both when they

are alone and when they are in small or big clusters. Finally, the reduced

speed and the high variation of speed among runs is due to the following

fact. In presence of a low proportion of aligning robots, we observed that

the group heading direction is stable over short periods of time but changes

over long periods of time due to the disturbances caused by the non-aligning

robots. This results in a non-linear trajectory executed by the entire swarm,

which is different for each run. Since the rescaled group speed is computed

assuming a linear trajectory, this measurement has large variation in the

total displacement changes from run to run.
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Chapter 4

Conclusions and Future

Work

In this work, we studied self-organized flocking in a swarm composed of

behaviorally heterogeneous mobile robots. The swarm is composed of align-

ing robots, which are able to agree on a common heading direction, and

non-aligning robots which lack this capability. We furthermore propose a

new model for achieving motion in self-organized flocking. According to

this model, aligning robots only change their angular speed, whereas non-

aligning robots change both their forward and their angular speed.

We study the performance in terms of group alignment order, cohesive-

ness and speed. Results show that self-organized flocking is also possible

when some individuals in the swarm lack the capability to agree on a com-

mon direction. More in particular, we showed that: i) a higher proportion of

aligning robots always corresponds a to better performance; ii) performance

is affected by the relative contribution of alignment and proximal control,

and iii) for smaller proportions of aligning robots, flocking is possible only

when the non-aligning robots also change their forward speeds .

Possible directions for future work are the following: First, we plan to

study energy efficiency within the same framework of study. In particular,

the use of a heterogeneous group of aligning and non-aligning robots poses

a trade-off between efficiency of the motion and energy utilized. In fact,

we observed that, in order for the swarm to hold cohesiveness, the non-

aligning robots spend a lot of energy to vary their speed more reactively.

Second, we would like to study the correlation between spatial aspects of the

31
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swarm composition. In particular, we would like to study whether particular

configurations (i.e., topology, connectivity, . . . ) have different effects on the

flocking performance. Third, we plan to perform experiments involving two

different types of real robots.
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