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Abstract

This work deals with the design and the implementation of a novel multi-engine and multi-
robot architecture of a three-dimensional physics simulator. Such architecture proves to be
more flexible than existing state-of-the-art simulators and we have employed this tool to de-
velop controllers for heterogenous swarms of robots. We have validated the functionalities
of the simulator through an experiment of object retrieval which requires the cooperation of
a flying robot to detect the target and of a ground-based robot to retrieve it and bring it to a
goal area.
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Chapter 1

Introduction

This work deals with the design and the implementation of a novel multi-engine and multi-
robot architecture of a three-dimensional physics simulator.

The aim of this first chapter is to introduce the basic concepts of physics simulation and
to underline its importance in robotics applications. Subsequently, the context in which the
simulator has been developed, the Swarmanoid Project, is briefly presented. The final part
of the chapter is dedicated to the statement of goals and original contributions of the thesis.

As stated by Ljung (1999),

“When we interact with a system, we need some concept of how its variables
relate to each other. With a broad definition, we shall call such an assumed rela-
tionship among observed signals a model of the system.”

Mathematical models encode scientific knowledge about a particular system in a rigorous
way. On the basis of the predictions that it provides, the correctness of a model can be
verified, thus allowing to compare models and to keep the best ones (Gillies, 1993).

Simulators are computer programs that integrate modeling systems for which simple an-
alytical solutions can not be found. Simulation allows one to quickly analyze a large number
of model scenarios in situations in which their enumeration is practically impossible.

Furthermore, as reported by Frigg and Hartmann (2006),

“In situations in which the underlying model is well confirmed and understood,
computer experiments may even replace real experiments, which has economic
advantages and minimizes risk (as, for example, in the case of the simulation of
atomic explosions).”

During World War II, the first computers were built to make large-scale calculations feasible
in a relatively short time: The Manhattan Project was the first to develop a model of the
process of nuclear detonation in a computer.

1



2 CHAPTER 1. INTRODUCTION

Since then, the importance of simulators has grown rapidly, and nowadays proves to
be an invaluable tool in many fields of science such as computational physics, chemistry,
biology, economics, social sciences and engineering.

Obviously, simulators play an essential role in the development of robot controllers too.
Simulated experiments are usually many orders of magnitude faster than real ones and sim-
ulated robots do not suffer hardware failures or battery exhaustion, unless this is explicitly
desired. Moreover, simulations do not need to take into account purely technical issues such
as calibration of sensors and actuators.

Despite these advantages, there is no guarantee that the controllers developed in simula-
tion work as expected in real robots. Unfortunately, no general method to achieve a seamless
transition exists.

A first tempting approach to tackle the problem is trying to model sensors and actua-
tors of the robots as precisely as possible with the aim of rendering the difference between
simulation and reality negligible. For instance, popular software engines, such as Open Dy-
namics Engine and Vortex, follow this idea. Anyway, it is practically unfeasible to perfectly
simulate reality (Frigg and Hartmann, 2006), and the cost to make the model more faithful
is often a substantial slowdown of the simulation.

At the opposite end of the spectrum, physics simulation could be avoided completely.
Some sensors such as ground sensors, light sensors and infra-red proximity sensors can
be implemented by sampling real readings taken from various positions and orientation
with respect to other objects of the environment. The final result of this activity is a large
numerical table containing the recorded samples that is fairly easy to import and fast to
access at runtime. Nevertheless, obtaining such a table requires a long and error-prone work
and with different robots the same sensors are likely to give significantly different readings.
Furthermore, this technique does not appear applicable to sensors such as digital cameras.

A widespread complementary method to facilitate the difficulties to transfer controllers
to real robots is adding noise to sensors reading and actuators outputs (Jacobi, 1997). It is a
reasonable practice because real sensors and actuators are noisy. Additionally, noise injection
softens the natural differences between sensors and actuators. The computational impact of
noise addition is negligible but, thanks to it, resulting controllers are more robust and more
easily transferable.

The Swarmanoid Project

Flexibility, robustness, decentralization and self-organization (Camazine et al., 2003) are the
principles at the basis of swarm robotics (Bonabeau et al., 1999), a paradigm for developing
robotics systems that in the last fifteen years is experiencing a growing interest among re-
searchers. Swarm robotics aims at building swarms of small-scale and simple robots able to
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collectively accomplish tasks such as exploration, object transportation, foraging and struc-
ture building taking inspiration from social insects. No robot in the swarm has a global
knowledge of the environment or of the status of the swarm itself. Instead, each robot ex-
ploits only local information and a global behavior emerges from the interactions among the
individuals.

The Swarmanoid Project is a futuristic project within the framework of swarm robotics
that temporally and logically follows the Swarmbots Project — for a review of the project re-
fer to (Dorigo et al., 2004) and (Mondada et al., 2004). As its predecessor, the Swarmanoid
Project is a project funded by the European Commission. It involves five research laborato-
ries across Europe: IRIDIA at Université Libre de Bruxelles in Belgium, Istituto di Scienze
e Tecnologie della Cognizione at Consiglio Nazionale delle Ricerche in Italy, Laboratoire de
Systèmes Robotiques and Laboratory of Intelligent Systems at Ecole Polytechnique Federale
de Lausanne in Switzerland and Istituto Dalle Molle di Studi sull’Intelligenza Artificiale at
Università della Svizzera italiana in Switzerland.

The main scientific objective of the Swarmanoid Project is the design, implementation,
and control of an innovative distributed robotic system comprising heterogeneous, dynam-
ically connected small autonomous robots so as to form a so called Swarmanoid. The Swar-
manoid is comprised of a relatively large number of autonomous robots of three types:

Eyebots fly or attach to the ceiling. Thanks to their positioning capabilities and to the cam-
era they are equipped with, these robots are able to quickly explore the environment
and locate target objects and areas.

Handbots are intended to retrieve and manipulate objects located on walls, shelves, or ta-
bles. They can climb walls and obstacles by means of a rope they can shoot and attach
to the ceiling.

Footbots are wheeled robots equipped with a rigid gripper used to assemble with other
footbots, transport handbots or target objects.

The subject of the next sections is to present the hardware capabilities of the robots and to
describe the goals of the Swarmanoid Project.

Hardware

A set of basic subsystems is common to all robots. In this way, while the development
of the robots is facilitated, researchers are provided with a coherent tool set to build their
controllers upon.

The common set of capabilities comprises the following:

• the main processor board: the Freescale i.MX31 ARM 11 processor, a low-energy 533 MHz
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processor with a complete collection of subsystems such as USB host controller and in-
tegrated camera interface;

• the main core board built around the processor which provides 128 MB of DDR RAM

and 32 MB of flash;

• a set of DsPIC 33 micro controllers for sensors and actuators;

• wireless communication in two fashions: WiFi, mainly intended for (relatively) long
range inter-robot communication, and Bluetooth, for basic robot setup and short range
inter-robot communication.

Footbot Hardware

In the Swarmbots Project the basic robot platform is the s-bot, a small scale robot with a full
set of sensors and actuators. S-bots are able to connect to each other with a rigid gripper so
as to form a Swarmbot. The success of the Swarmbots Project and especially of this platform
suggested to base the footbot design on the s-bot. The evolution of the s-bot brought to the
marXBot, a modular robot with higher computational power, more sensors with improved
accuracy, better vision system, optimized battery usage and supporting WiFi, Bluetooth and
RFID wireless communication.

The footbot has been therefore based on the marXBot and Figure 1.1 details the most
significant components of the footbot: the powerful treel drive; the 2.0 mega-pixels UXGA
camera; the four microphones; the ring of infrared sensors for close presence and ground
detection. The footbot is also equipped with a rotating long-range1 infrared distance sensor.
A big problem in collective robotics, particularly when performing long lasting experiments,
is the frequency of recharge and the amount of time lost in it. To address this problem,
the footbot has a hot-swappable battery. A super-capacitor keeps the robot alive while the
battery is being exchanged. The exchange itself is performed autonomously by the robot
thanks to the use of an automatic battery exchange station.

Handbot Hardware

The handbot is the most innovative robot of the Swarmanoid Project. It is intended to be
a relatively low-cost, energy saving, light weight robot able to manipulate target objects
located on the ground or on shelves.

At the time of writing, a full design of the handbot is not available due to the complexity
of the issues to overcome. State-of-the-art climbing robots are by far less complex and face
serious limitations with respect to the tasks the handbot is intended to perform. Anyway,

1Up to 1.5 m.
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(a) (b)

(c) (d)

Figure 1.1: Footbot design: (a) the footbot and its components, (b) the ring of infrared sen-
sors, (c) the rotating long-range infrared distance sensor and (d) the battery exchange station.

a tentative design has been studied and, as it can be recognized in Figure 1.2, the handbot
should resemble a lobster.

Moving on the ground is made possible thanks to the intervention of footbots which,
by gripping the handbot, transport it to the target area. The more footbots are needed to
transport the handbot, the more difficult the task becomes.

Climbing is necessary to reach objects located on shelves. A rope with magnetic attach
is the candidate method to move on walls. The rope is shot with a mechanical device that
allows also to rewind it. The magnetic attach requires the ceiling to be ferro-magnetic, but
this limitation in the environmental setup is not too constraining. When artificial adhesives
such as those inspired from geckos (Menon et al., 2004) will be finally available, they will
replace the magnetic attach. Anyway the shooting/attaching logic is expected not to change
substantially.

Manipulation of objects requires a more evoluted gripper than the one mounted on the
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(a) (b)

(c) (d)

(e) (f)

Figure 1.2: Handbot design: (a) the handbot with two vacuum suctions cups per hand, (b)
with four, (c) an handbot stabilizing with hands while climbing a wall, (d) footbots attached
to the handbot to transport it to a target area, (e) the rope launcher, and (f) a closeup of the
vacuum suction cups.

footbot, and in fact we should better call it a rudimental hand instead of a mere gripper. The
best solution proposed so far involves the use of vacuum suction cups because this allows the
hands to be exploited both to grip and to stabilize while climbing a wall, if smooth enough.
The use of two or four suction cups is currently under consideration.

The handbot will be equipped with a large number of sensors and actuators. A cam-
era will allow vision to recognize target objects, while precise gripping along with obstacle
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(a) (b)

Figure 1.3: Eyebot design: (a) the eyebot prototype hovering platform and (b) the designed
aerodynamic ducts.

avoidance will be done thanks to several proximity sensors. Accelerometers and position
and force sensors will be placed everywhere on the body of the handbot to make it feasible
to sense its own current position and orientation. Eventually, a docking sensor will inform
the robot of the gripping outcome.

Eyebot Hardware

Similarly to the handbot, the design of the eyebot platform is challenging. The current design
status is quite advanced: Figure 1.3 shows a prototype of the robot that already presents the
final hovering system.

Besides the usual requirements of low battery consumption, small size and light weight,
the eyebot runs the serious risk of plunging and damaging. Therefore stability is a key
feature of the flying system, and the available prototype already provides it at a good degree.

Furthermore, for added safety, the platform will be protected by a surrounding rigid
aerodynamic duct to allow small collisions and also provide an increase in rotor efficiency.
In addition, the duct provides a good medium to mount the external sensors and internal
avionic equipment.

Battery power is expected to be saved with three alternative mechanisms: by attaching
to the ceiling with a device similar to the magnet of the handbot, by landing temporarily in a
clear space of no interest for the task being performed, or by changing batteries in a charging
station analogous to the one of the footbot.

Eyebots will carry many sensors to help driving the robot, such as an inertial measure-
ment unit and a differential pressure sensor. An high resolution omni-directional camera
will be mounted on the robot to ease the exploration of the environment. A ring of colored
LEDs will be available for basic visual communication among robots, and WiFi will be used
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also to send visual information to all the robots in the swarm.

Project Goals

The ultimate goal of the Swarmanoid Projects is to show a new way of designing robotic
systems that can live along with humans in human modified environments performing tasks
of general utility.

Besides the development of the hardware platforms, the Swarmanoid Project aims at
studying new control methodologies for the three types of robots following a kind of “holis-
tic” approach. In the traditional methodology, first a controller for a single robot is devel-
oped, then swarm behavior with similar robots is inserted, and then finally interaction with
the other types of robots is added. We will avoid as much as possible this approach, favor-
ing the opposite one. Since one of main points of interest of the project is the heterogeinity
among robots, controllers for the three families of robots are developed in parallel, so that
the possible cooperative issues are tackled and solved in a smoother and more natural way.
Furthermore, many interesting control issues are worth studying, such as the coordination of
individual local perception by the robots into a coherent representation of the environment,
and the study of mechanisms for adaptive task allocation in heterogeneous teams.

Another source of innovative challenges, which have never been addressed before, in-
volves the study of communication in an heterogeneous swarm of robots. For instance, the
emergence of communication in a robotic system in which hardware differences plays a cen-
tral role is a completely new question. Moreover, implicit communicative strategies such as
stigmergy (Grassé, 1959) have never been studied in heterogeneous swarms of robots. Finally,
also studying explicitly how to efficiently share information among robots with so strongly
different capabilities is a novel issue considered in the Swarmanoid Project.

Goal of This Work

In light of the importance of simulating reality in robotics applications discussed at the be-
ginning of the chapter, and due to the fact that the hardware platforms are not available
yet, the handiest tool to pursue the control goals of the Swarmanoid Project is a software
simulator.

The aim of this work is to describe the architecture of the simulator that has been devel-
oped for the Swarmanoid Project, named Swarmanoid Simulator. The hardware characteris-
tics of the robot platforms and the project goals trigger a number of challenges in designing
a successful simulator.

First of all, multiple different robots must be simulated in a complex 3D environment.
While footbots act mainly in a plain environment, the ground, the dynamics of handbots
and eyebots can be faithfully modeled only in a three-dimensional space. Moreover, the
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dynamics of the handbot is in principle very complex, due to the particular shape of the
grippers and the way we intend to exploit them.

Furthermore, due to the heterogeneous expertise of the researchers working in the project,
the simulator must offer to the user maximum flexibility both in the choice of the relevant
aspects to simulate for a given experiment, and in the development of robot controllers fol-
lowing the preferred approach (for instance, behavior based (Arkin, 1998) vs. evolutionary
techniques (Nolfi and Floreano, 2000)).

Another important design aspect is that performance is a critical issue, especially when
controllers are obtained with evolutionary techniques. The simulator must be very fast and
optimized, possibly letting the user decide where it is worth paying the highest simulation
cost and, on the other hand, where approximation is allowed.

Fundamental importance has also the requirement of allowing the user to seamlessly
transfer controllers developed in simulation into the real robots. This implies that on the
one hand the same code must compile both for the simulator and for the robotic hardware
platform without any corrective intervention by the researcher, and on the other hand that
sensors and actuators of the robots need to be simulated properly, although, as already dis-
cussed, there exists no such thing as a perfect simulator.

In the following chapters, we present the resulting architecture of the Swarmanoid Sim-
ulator, which solves the issues here highlighted.

After illustrating the most popular and relevant simulators available for robotic applica-
tions, in Chapter 2 we also justify our choice of designing a completely custom architecture.

Subsequently, the discussion of Chapter 3 describes thoroughly all the relevant aspects of
the architecture of the Swarmanoid Simulator. We claim that our architecture, being multi-
robot, multi-physics engine and highly modular, proves to be more general than the existing
ones, and that thanks to this generality it can be successfully reused for other projects.

Chapter 4 presents the simulator from the point of view of the user. We illustrate the
software environment and show how to create a controller and configure the simulator to
run an experiment. A demostrative experiment with a footbot and an eyebot is reported
in which the cooperation of the two robots is required to grip an object and bring it to a
target area. More specifically, the eyebot, after identifying the object in the arena, drives the
footbot to it by means of a colored laser beam working as a pointing signal on the ground.
The footbot, once reached the object, grips it and then it communicates to the eyebot the
retrieval. Eventually, the eyebot leads the footbot to the target area with the laser beam.

Chapter 5 summarizes the main achievements of the presented work and outlines future
directions for its improvement.
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Chapter 2

State of the Art of Robot Simulation

Among the plethora of existing simulators, we have chosen to develop a completely new
one. This chapter describes the existing simulator architectures and shows the motivations
that pushed us to develop a new and more flexible architecture1.

2.1 Existing Simulators

As explained in Chapter 1, computer simulation plays a central role in the development
and evaluation of robotic systems. In fact, it can allow fast and extensive testing of robot
hardware designs and control policies considering a large variety of environments.

On the downside, the intrinsic complexity of a (multi-)robot system and of the real-world
environment it is supposed to act upon makes sometimes hard the design of realistic simula-
tion models to derive sound evaluations and predictions of the robotic system under study.

2.1.1 Discrete-time and continuous-time simulation

Computer simulation can be classified in several ways. In the domain of multi-robot systems
the large majority of the simulators adopts a dynamic model in which the system changes in
response to input signals, and makes use of random number generators to model chance or
random events.

In continuous-time simulation the model of the simulated system evolves according to a
continuous time flow and the simulation is stepped in small time increments (usually con-
stant) that discretize the time flow.

On the other hand, in discrete-event simulation, time evolution is triggered by the happen-
ing of events inside the system.

1The contents of this chapter are inspired by the Swarmanoid Project deliverable D3 on the simulation plat-
form, which we have contributed to write.

11
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In a continuous-time simulation system, evolution is based on the numerical solution of
differential equations. At each iteration step, the state equations are solved and the results
are used to change the state of the system and the output of the simulation. This simulation
model is particularly appropriate to simulate systems, or parts of systems, that are explicitly
governed by the laws of physics. This is usually the case of multi-robot systems embedded
in complex real-world environments, undergoing robot-to-robot and robot-to-environment
physical interactions.

2.1.2 Simulators for multi-robot systems

The comparative study by Seugling and Rölin (2006), who took into account a number of
features and performance indices of eight popular physics engines free for non-commercial
use, shows significant differences among the considered engines. According to the study,
Novodex, which is a commercial software produced by AGEIA, is the best physics engine,
closely followed by Open Dynamics Engine (ODE), which is an open source software dis-
tributed with the GNU Lesser General Public License. On the other hand, it is well-known
that the commercial Vortex software from CM-labs provides unsurpassed precision, stability,
and accessories.

A brief review of some among the most interesting tools available for physics-based
multi-robot simulation in 3D environments here follows. All the considered tools have im-
plementations for both Linux and Windows machines. A more general and complementary
discussion on development tools for multi-robot systems can be found in the recent overview
paper of Kramer and Scheutz (2007), where several simulators and programming interfaces
for robotics have been compared and evaluated with respect to available features, usability,
and impact. A list of available resources for development and simulation in robotics can be
found at http://robotica.cz/software/en.

Player/Stage/Gazebo (Gerkey et al., 2003) (http://playerstage.sourceforge.net)

The Player Project aims at producing free software to enable research in robot and
sensor systems. Software code is developed by an international team of robotics re-
searchers and used at many laboratories around the world (the web site gets an average
of 2000 downloads per month). Player is a multi-threaded robot device that provides
full access and control of a robotic platform and of all its sensors and actuators. At
the moment Player supports a wide variety of existing mobile robots and accessories.
Client programs can be written in any language, run both locally or remotely, and con-
nect to the server via TCP sockets. Player supports multiple concurrent client connec-
tions to devices, offering the possibility for distributed and collaborative sensing and
control. Stage is a multiple robot simulator. It simulates a population of mobile robots
moving in and sensing a two-dimensional bitmapped environment. Various sensor
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models are provided, including sonar, scanning laser rangefinder, pan-tilt-zoom cam-
era with color blob detection and odometry. Stage devices present a standard Player
interface so few or no changes are required to move between simulation and hardware.
Gazebo is a multi-robot simulator that extends Stage’s capabilities for 3D outdoor en-
vironments. It generates both realistic sensor feedback and physically plausible inter-
actions between objects using ODE’s libraries for the simulation of rigid-body physics.
Gazebo presents a standard Player interface in addition to its own native interface.
Controllers written for the Stage simulator can generally be used with Gazebo without
modification (and vice-versa). The simulated scenario is input using an XML syntax.
User visualization is based on the use of OpenGL libraries.

USARSim (Carpin et al., 2007) (http://usarsim.sourceforge.net)
Urban Search and Rescue Simulation (USARSim) is a high fidelity multi-robot sim-
ulator that was originally developed in the context of the search and rescue (SAR)
research activities of the Robocup contest. It is now becoming one of the most com-
plete general-purpose tools for robotics in research and educations. Its development is
driven by a large community of researchers. It builds upon a widely used and afford-
able state-of-the-art commercial game engine, the Unreal Engine 2.0, produced by Epic
Games, which provides high accuracy of physics simulation, a number of geometri-
cal and physical models, good computational speed, and usage flexibility. Robots are
fully customizable and can be effectively controlled by a client program through a TCP
socket connection. USARSim provides a large collection of robot models, including
wheeled, legged, flying, and underwater ones, and of fully configurable sensors and
actuators with associated noise models. Quantitative evaluations show a close cor-
respondence between results obtained within USARSim and with the corresponding
real world system or sensor. USARSim can be interfaced with the Player middleware
to seamlessy control real robots and to the Mobility Open Architecture Simulation and
Tools framework (MOAST) which provides a hierarchical control system. USARSim
comes with a number of high definition test scenarios taken from indoor and outdoors
situations ranging from the NIST test arenas for urban SAR to speedways.

Webots (Michel, 2004) (http://www.cyberbotics.com)
Webots is a commercial robotic simulator developed by the Cyberbotics Ltd. It has an
ODE-based accurate physics simulation and provides several models for real robots
such as Sony Aibo, Khepera, or Pioneer2. The robots and the environment are de-
scribed using the VRML standard for graphical models, extended by nodes for the We-
bots elements, sensors, and physical attributes. Mobile robots with any physical char-
acteristics can be designed, including flying, wheeled, and legged ones. Controllers
can be programmed in C++ or Java and connected to third party software through a
TCP/IP interface. An extensive library of tunable sensors and actuators is provided,
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including distance and global positioning sensors, compass, cameras, radio transmit-
ters, incremental encoders, etc. A powerful graphical visualization is realized with the
use of OpenGL libraries. Webots numbers a large community of users across the globe
and undergoes continual updating.

UberSim (Go et al., 2004) (http://www.cs.cmu.edu/∼robosoccer/ubersim)
This simulator is developed at Carnegie Mellon with the intent to create an open source
high-fidelity simulator for dynamic robot soccer scenarios that enables rapid develop-
ment of control systems that can be transferred to real robots with a minimum of over-
head. UberSim makes use of ODE to provide realistic dynamics including motions
and physical interactions. UberSim is targeted towards providing parametrized robot
classes that are easy to extend and reconfigure. Exploiting ODE’s capabilities, it pro-
vides the definition and use of robot shapes and actuators which are generic enough
to allow simulation of a wide range of robot types. Own robots can be modeled by
programming their structure in C classes. UberSim has a client/server based archi-
tecture, where clients communicate with the server over TCP sockets. In the current
release only few sensors are defined and no graphical interface is provided for user
interaction at simulation time.

Breve (Klein, 2002) (http://www.spiderland.org)
It is a simulation package designed for realistic simulations of large distributed and
artificial life systems in continuous 3D worlds with continuous time. Simulations are
written by defining the behaviors and interactions of agents using a simple object-
oriented programming language called Steve. Breve makes use of the ODE physics
engine libraries to provide facilities for rigid body simulation, collision detection/re-
sponse, and articulated body simulation. It is intended to permit the rapid construction
of complex multi-agent simulations in realistic physical environments. Breve includes
an OpenGL display engine that allows observers to manipulate the perspective in the
3D world and view the agents from any location and angle. Users can interact at run-
time with the simulation using a web interface. Multiple simulations can interact and
exchange individuals over the network. Code development is mainly done by one sin-
gle researcher. Breve is the simulation package used in the context of the SwarmRobot
project aimed at building large-scale robotic swarms (http://www.swarmrobot.org).

2.2 Why Yet Another Simulator?

The Swarmanoid Project as described in Chapter 1 presents many challenges for the devel-
opment of a simulator. We opted for a fully custom design, instead of using as reference
platform one of the available simulators described in the previous section, such as Gazebo,
USARSim, or Webots. In the following we describe the motivations supporting our choice.
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First of all, in order to simulate the specific characteristics of the robots composing the
Swarmanoid and their sensors and actuators, even when using an existing simulator plat-
form we need in any case to (re)implement from scratch the majority of the modules. For
instance, none of the mentioned simulators include modules that could help to simulate the
handbot climbing along the vertical dimension by shooting a rope that gets magnetically at-
tached to the ceiling. Therefore, in the case of choosing building on an existing simulator, we
would have found ourselves in the position of implementing from scratch and/or heavily
adapting most of the simulation modules, somehow vanishing in this way the benefits of
using a preexisting simulator, but at the same time being also forced to adapt to a general
software structure selected by a third party.

Computational performance is always a critical issue for a simulator. It is reasonable
to believe that a simulator based on a good ad hoc design can provide better performance
than a general purpose one. In our case running times are expected to play a critical role
for the usability of the simulator. In fact, from one hand, we will have to deal with multiple
highly heterogeneous robots interacting in realistic abstractions of real-world scenarios, and
from the other hand, we plan to heavily use computationally-demanding evolutionary al-
gorithms to synthesize robot controllers. Therefore we do need to have at hand a simulator
showing a fully satisfactory trade-off between high simulation fidelity and fast execution
time. The most computationally intensive part of a realistic 3D simulator consists in the cal-
culations carried out by the physics engine. The more accurate is the model adopted to deal
with physical interactions, the more computational resources are required. In most of the
available simulators only one physics engine is made available. Accuracy is selected on a
global level. At the local level it is only possible to temporarily switch on and off, or change
the level of accuracy of the operations of the physics engine for a specific object (e.g., for a
temporarily inactive object, or for an object of minor interest).

On the other hand, in our design we devised an innovative solution which can provide a
better accuracy-computation trade-off. We allow the use of multiple physics engines in the
same simulation run, with each engine taking care of a specific portion of the space and/or
of a specific subset of the robots. For instance, if in a certain simulation experiment the role of
the eyebots is marginal, such that it does not make much difference whether their behavior
is simulated with high physical accuracy or not, physics of eyebots at the ceiling level can be
managed by a simplified engine while a more accurate physics engine can be used for the
footbots, optimizing in this way the use of computational resources without losing relevant
information.

Moreover, the architecture provides a common developing platform for all the researchers
cooperating in the Swarmanoid Project. Thanks to its flexibility, each user can define its own
models for robot actuators and sensors, or even realize a completely new physics engine.
The plugin system implemented in the simulator allows a straightforward integration of the
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newly coded modules in the framework.



Chapter 3

The Swarmanoid Simulator

Chapter 2 pointed out the reasons why a new and more flexible architecture is required for
the development of robot controllers in the Swarmanoid Project.

The topic of this chapter is the actual architecture of the simulator. After a first overall
view of the way the architecture is divided into modules and of the mutual connections
among them, the discussion continues detailing the internals of each module.

3.1 Architecture

From a very abstract point of view, the traditional simulation algorithm involves the follow-
ing operations:

1. Initialize Simulation
Create the simulated arena, place all simulated objects in their initial positions, create
robot controllers, initialize physics engine and visualization.

2. Arena Visualization
The status of the arena is shown on the screen and/or written to a file.

3. Run Controllers
Each robot controller is executed. Internally, a controller reads the sensor inputs and,
according to the control logic, outputs values to the actuators.

4. Physics Update
The physics engine updates position and heading of each simulated object in the arena
and resolves collisions.

5. Next Simulation Step
Return to point 2.

17



18 CHAPTER 3. THE SWARMANOID SIMULATOR

Physics Engines

Common Interface

Visualizations

Specific

Generic

Generic

Specific

Robot Controller

Sensors

Swarmanoid Space

2D Kinematics 2D Dynamics 3D Dynamics

Actuators Text

OpenGL

OGRE

Figure 3.1: Overall architecture of the Swarmanoid Simulator.

Usually the assumption is made that all simulated objects live inside a space, which is
accessed both by the physics engine and the visualizations. Moreover, it can be stated that
the nature of the physics equations coded in the physics engine defines such space: a 2D
physics engine, that is a physics engine that implements bidimensional equations, constrains
the space to be bidimensional. Visualisation can be either 2D or 3D, but the actual actions of
the robots are nevertheless bidimensional. Likewise, a 3D physics engine, such as one based
on Vortex or ODE, will push towards a 3D space.

To allow the user to optimize the experiment by focusing on the accurate simulation
of the relevant aspects while letting the others be approximated (see Chapter 1), the Swar-
manoid Simulator has been designed to support the possibility of running different physics
engines independently during an experiment. For example, the user can select footbots to
run in a 2D physics engine, while having handbots and eyebots updated by another one, or
even other two, separated 3D physics engines. This key feature has been obtained by decou-
pling the space in which all objects live from the physics engines. Such global space goes
under the name of Swarmanoid Space. Figure 3.1 depicts the architecture of the Swarmanoid
Simulator. The 3D Swarmanoid Space can be found at the center of the picture. Physics
engines access it to update its status and visualizations display it.

Robots interact with the environment through simulated sensors and actuators. As al-
ready discussed in Chapter 1, the ease to transfer controllers developed in simulation to real
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robots heavily depends on how sensors and actuators have been modeled. The architecture
of the Swarmanoid Simulator does not favor any approach (physics-based or sample-based),
thus letting the developer choose the best approach in each case.

Anyway, a classification of sensors and actuators has been studied to provide a coherent
structure for their development. Some sensors and actuators rely on physics equations: for
instance, the torque sensor computes the torque between the body and the turret of a footbot,
while wheels update the position of a footbot according to Newton’s Laws. Other sensors,
such as the camera, simply rely on positional information to compute their readings. Like-
wise, some actuators, such as the LEDs actuators, do not need any physical information to
perform their actions.

Sensors and actuators that rely on physics models must be reimplemented for each dif-
ferent physics engine. For this reason, we call them specific. On the other hand, sensors and
actuators that do not need any interaction with the physics engines are termed generic.

A strong attention has been paid to design a highly modular architecture. Since the
Swarmanoid Project is a project that involves many researchers, modularity is a key feature
to ensure cooperation and reuse of code. Each box in Figure 3.1 has been implemented as
a plugin. The user can code his own version of the module, and easily inform the system
about its existence. Compatibility and interoperability are guaranteed by the interfaces that
will be described in the following sections.

On the basis of this general presentation of the architecture, it is now possible to illustrate
the abstract simulation algorithm of the Swarmanoid Simulator:

1. Initialize Simulation

1-1 Create the simulated arena

1-2 Place all the simulated objects in their initial positions in the Swarmanoid Space

1-3 Create robot controllers

1-4 Initialize physics engines and assign robots to them

1-5 Initialize visualizations

2. Arena Visualization (for each visualisation)

2-1 Display the status of the Swarmanoid Space.

3. Physics Update (for each physics engine)

3-1 Each robot controller is executed. Internally, a controller reads the sensor inputs
and, according to the control logic, outputs values to the actuators.

3-2 The physics engine updates position and heading of the assigned simulated object
and resolves local collisions. Then, it translates local coordinates to global ones.
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Figure 3.2: The package diagram of the Swarmanoid Simulator.

4. Next Simulation Step

4-1 Return to point 2.

3.2 Code Organization

Figure 3.2 reports the software packages in which the code has been divided and their mu-
tual dependencies. The division in packages has been designed with the intentions of maxi-
mizing code reuse while keeping the functionalities logically separated.

Package Common contains classes and functions used in the other packages, therefore
they all depend on it. In Common we can find string utilities, common definitions, logging
facilities, mathematical definitions and functions, and so on. The most important part of this
package is the definition of the common control interface, which is covered in Section 3.3.

Package Real robot contains the compilation environment and the software interfaces of
the three hardware platforms. Its purpose is to provide a tool set to compile software for the
real robots. In this package, the common control interface is implemented using functions in
the robot APIs. Since the hardware platforms are not yet available at the time of writing (for
more details refer to Chapter 1), in this document we will not describe the internals of this
software package.

The actual code of the simulator, the achitecture of which is the topic of this document,
is contained in package Simulator. In this package the common control interface is imple-
mented to provide simulated sensors and actuators. Moreover the Swarmanoid Space, the
physics engines and the visualizations as depicted in Figure 3.1 are all included in this soft-
ware package. The core class of the simulator is CSimulator, as it is possible to observe in
Figure 3.3. Its role is to implement the abstract algorithm illustrated in Section 3.1. The other
interfaces of the architecture are thoroughly described in Sections 3.4 through 3.6.

Finally, a package has been created to contain all user code. The aim of package User



3.3. COMMON INTERFACE 21

CSimulator

CPhysicsEngine CRender

CControllerManager CSwarmanoidSpace

Figure 3.3: The class diagram of the core classes of the Swarmanoid Simulator.

is to collect in a structured way controllers and other software developed by the users so
that knowledge, experiments and solutions are shared in a natural way. On the other hand,
to prevent a user to erroneously damage the work of other users by deleting and/or mod-
ifying files in an arbitrary and uncontrollable way, each user is provided a subpackage to
develop his own pieces of software. In this way package User allows cooperation among the
developers while keeping them independent. The internals of package User are presented in
Section 4.1.

3.3 Common Interface

One of the requirements of the Swarmanoid Simulator is a seamless transition between simu-
lation and reality. In other words, it should be possible to develop a controller in simulation
and directly transfer it to the real robots, without any change in the structure of the code.
Anyway, this does not imply that the behavior produced by a given controller in simulation
will correspond to what observed with the real robot. The successful transfer of developed
behaviors must be ensured by a careful modeling of the robot features. Here, we just refer
to the possibility to directly compile a controller against both the simulation and the real
environment. For this purpose, an interface (referred to as Common Interface) completely
independent from the simulation engine has been developed.

Figure 3.4 presents a schematic class diagram of the Common Interface, which encom-
passes a robot interface, a controller interface and sensors and actuators interface. The Com-
mon Interface provides virtual access to all the features necessary to develop a controller in a
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Figure 3.4: A schematic class diagram of the Common Interface

transparent way with respect to the simulated or the real world. In the following, we briefly
describe each component of the Common Interface.

Robot Common Interface

The robot common interface is undifferentiated with respect to the different robotic plat-
forms developed within the Swarmanoid Project (see Figure 3.4). This interface provides
an abstraction for the modalities to access the different features of a robot. From the con-
trol point of view, a robot is a set of devices (usually referred to as sensors and actuators)
that should be used to define the rules that govern the behavior of the robot. A common
interface for the robot is useful to define how a controller can access to its devices. More-
over, it defines also how to initialize the robot itself along with all the devices useful for a
certain experiment. In fact, as pointed out in Chapter 1, the robots developed within the
Swarmanoid Project are rather complex artifacts, composed of different mechatronics parts
that need special initialization procedures whenever they are going to be used. Otherwise,
if certain devices are not necessary for a given experiment, they can be left uninitialized, al-
lowing also to reduce the energy consumption and to increase battery lifetime. It is therefore
important to provide an interface to the robot that allows to initialize and access only those
devices that are actually used in a certain experiment.

Controller Common Interface

The controller interface is an abstraction that provides common methods for the interaction
between control rules and the simulation environment or the real robotic platforms (see Fig-
ure 3.4). The controller does not have direct access to the devices of the robot, but it should
request them to the robot interface. This choice is suggested by the need to provide a generic
framework for the different control design methodologies (e.g., behavior based or evolution-
ary robotics design).

The controller interface basically provides three main methods: Init, ControlStep
and Destroy. Every user-defined controller must implement these functions, which are
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executed in the same way on the simulated and on the real robots.

Sensors and actuators common interfaces

Sensors and actuators constitute respectively the inputs and the outputs of a controller.
Within the common interface, these interfaces provide the abstraction of any devices that
can be implemented on the real robots (see Figure 3.4). The generic sensor and actuator in-
terface does not refer to a single sensor (for instance, one of the two wheels of the footbot),
but it rather refers to a set of sensors/actuators (for example all proximity sensors around
the turret of a footbot). In this way, it is possible to define group-level functions, such as
GetAllSensorReadings or SetAllActuatorOutputs, which in many cases allow to
speed up the computation and simplify modeling the devices in simulation.

From the general interfaces, we derive the detailed interface for each particular device. In
Figure 3.4 only some example interfaces are displayed, such as the one for the footbot wheels
or the one for the eyebot altitude sensor. At this level, each interface corresponds to a partic-
ular device. We will also develop interfaces that refer to particular modalities of accessing a
device. For instance, the omni-directional camera can grab images that can be used in many
different ways. More specifically, we have developed an interface for color blob extraction
that abstracts a given image filtering algorithm, which is implemented in hardware and is
simulated in some way. Similarly, it could be possible to implement an interface for display-
ing a preferential direction with the footbot’s LED ring, which corresponds in hardware to a
particular activation of the LEDs, while in simulation it could just store and modify a value
for the desired direction.

To be able to upload the controllers developed in simulation onto the real robots, it is
necessary that all sensors and actuator interfaces an implementation for the real robot. Typi-
cally, a single implementation is sufficient, but for complex devices such as the camera, there
can be different algorithms implementing the same feature which could be tested in paral-
lel. On the contrary, in simulation usually there are different ways of simulating a particular
device, depending on the desired accuracy. For this reason, various implementation of the
same interface can be developed. Moreover, the simulation of certain devices depends on
the physics engine currently used. As a consequence, the implementation of a specific de-
vice is necessarily polymorphic, because the actions required to simulate it change with the
physics engine.

3.4 Swarmanoid Space

The Swarmanoid Space is the 3D space where the simulation is performed. All the simulated
robots as well as all the features that characterize the experimental arena (e.g. holes, walls,
obstacles, light or sound sources) are stored in it, so the Swarmanoid Space acts as a common



24 CHAPTER 3. THE SWARMANOID SIMULATOR

y

z

x

y

x

y

x

y

z

x

3D Dynamics2D Dynamics

Swarmanoid Space

2D Kinematics

Figure 3.5: The Swarmanoid Space provides a global 3D coordinate space for all the entities.
The physics engines perform their calculations in a local reference frame, and then local
coordinates are transformed into global ones.

3D reference frame. Section 3.5 explains that physics engines possess a local coordinate
frame to update the entities assigned to them. All the calculations are performed with respect
to the local coordinate frame. Subsequently, local coordinates are translated to global ones
(e.g. the Swarmanoid Space, see also Figure 3.5).

Therefore, thanks to the Swarmanoid Space, every simulated object (referred to as entity)
has a unique global position in the space. In addition, the Swarmanoid Space stores the
global simulation clock. At each tick of the clock, every physics engine is called once, and
then the visualisations display the new status.

The translation mechanism, along with time synchronization with the global clock, en-
sures coherence. Visualisations exploit the information in the Swarmanoid Space to provide
an overall picture of the running experiment.

Furthermore, generic sensors and actuators are allowed to access information in the
Swarmanoid Space. The proximity sensors, for example, are provided functions to retrieve
all the entities with a certain distance from a point in the space or an entity. Other functions
have been implemented to check physical occlusions from a point to another. These last
functions, anyway, call the corresponding functions in the physics engine(s) which an entity
is bound to.
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Figure 3.6: A schematic class diagram of the Swarmanoid Space.

In order to ease and optimize the access to such information, entities are indexed into
scene graphs. Scene graphs are tree-like data structures used to store two types of information
in an optimized way: positional information and structural information.

Positional information is encoded in an oct-tree (Salomon, 2004), a well-known tree struc-
ture which partitions the coordinate space so that entity location and range searches can be
performed with a complexity of O(log n), rather than O(n)1, which is the complexity of an
approach based on a simple list of entities.

When robots are connected to each other, e.g. a footbot grips an handbot or a target ob-
ject, we talk about structural information. Trees are the best solution in this case too. The
root of the tree is defined as the gripped object, and the gripping object is a leaf. A complex
tree structure emerges from the fact that preys and handbots can be gripped by more than
one footbot at the same time and footbots can grip also other footbots. In a footbot-only
structure, the footbot which is not gripping anything is the root of the tree. Furthermore, we
assume that handbots manipulate only one object at a time. This way to implement grip-
ping excludes loops but for the kind of experiments we think to study this is an acceptable
limitation.

Entities are organized in a class structure schematically depicted in Figure 3.6. The
base class is CSwarmanoidSpaceEntity, which contains the most abstract definition of
an entity. It basically reduces to identifier, position and heading of the entity and an as-
sociation to the physics engines in charge of updating it. In general, these classes only
store data that is useful for visualization or modeling of generic sensors and actuators.
All the physics characteristics such as mass, speed or acceleration are stored inside class
CPhysicsEngineEntity (refer to Section 3.5).

CRobotEntity adds to the base class the association to an object of type CCI Controller,
which is explained in Section 3.3. CFootBotEntity, CHandBotEntity and CEyeBotEntity

1Where n is the number of nodes in the tree.
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are an extension of CRobotEntity, which store the specific data of each robot, such as the
LEDs color and the gripper aperture status for the footbot.

As already stated, the Swarmanoid Space stores also other arena objects as entities. For
instance, CLightBulbEntity is a model of the light emitter. Sound emitters, obstacles, and
similar objects can be modeled analogously.

The structure tree of assembled entities is implemented in class CCompoundEntity.
This class represents a compound object, that is a set of connected entities. When entities
are assembled into a compound, such object acts as a whole. Connections are assumed to be
rigid. Although in principle any object can be connected to each other, from an implementa-
tion point of view, only objects possessing a gripper (such as footbots or handbots) or objects
possessing a gripping strip (such as footbots and handbots) are allowed to connect.

3.5 Physics Engines

In general terms, the component in a simulation program that computes how physical ob-
jects move and interact with each other according to the laws of classical physics is termed a
physics engine.

Implementing a realistic physics engine is not a trivial task due to the intrinsic instabil-
ities and limitations in the equations used to describe the dynamics of complex bodies in
real-world environments2.

When using a physics engine, an object is explicitly modeled in terms of attributes such
as mass, velocity, friction forces, and elasticity. Its shape can be abstracted by using reg-
ular primitives from solid geometry or can be represented by triangle meshes, which can
in principle be used to represent any shape. Clearly, the more accurate and faithful is the
description, the more complex and computationally expensive is the solution of the motion
equations.

The behaviour of a physics engine consists of two main phases, collision detection and dy-
namic simulation. At each time step, all the possible collisions and constraints are considered
by the engine solver and new positions, velocities and accelerations are calculated accordingly
after integration of the equations of motion.

There exists a number of different ways to represent and implement motion equations,
friction forces, collision detection, and equation integration, resulting in a number of differ-
ent physics engines.

The main novel aspect of the architecture of the Swarmanoid Simulator is the possibility
to implement physics engines as plugins and run them in parallel. The degree of flexibility
and generality deriving from such design choice allows the user to decide which physics

2An overview of physics engines together with a collection of references can be found in (Seugling and Rölin,
2006).
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Figure 3.7: The class diagram of the physics engine interface related to the associated classes
of the Swarmanoid Space.

engine to use to simulate a set of robots, so that experiments can be optimized and accuracy
is ensured where it is really needed.

Section 3.4 explains that the global reference frame where all simulated objects act is the
3D Swarmanoid Space. A physics engine has the task of updating the set of robots assigned
to it. In the architecture no hypothesis is done about the kind of rules that the physics en-
gine should follow. Three-dimensional as well as bidimensional (even monodimensional)
engines can be freely inserted in the system. Each engine let the robots act in a local (i.e. spe-
cific to the engine) coordinate frame whose dimensionality is decided by the physics equa-
tions implemented in it. Subsequently, a geometrical transformation maps local coordinates
into global ones, as schematically depicted in Figure 3.5.

The fact that multiple physics engines can run independently from each other raises the
issue whether to handle or not collisions among robots belonging to different physics en-
gines. The simplest and cleanest solution is to consider every physics engine as a closed
world, thus preventing robots associated to different engines to collide because they live in
two “parallel worlds”. If, by chance, two robots belonging to different physics engines hap-
pen to occupy very close positions in the 3D space, they simply interpenetrate. Even if this
seems to be a big constraint, or, worse, a design mistake, in fact this feature provides a way
to further optimize experiments. Knowing in advance that two groups of robots will not
interact (e.g. collide or grip each other) in an experiment, as it is usually the case of footbots
(acting only on the ground) and eyebots (mainly flying or attached to the ceiling), there is
no reason to assign both groups to the same physics engine. Moreover, less robots assigned
to an engine means faster collision detection, thus leading to overall better performance. On
the other hand, if we want two groups of robots to interact, such as footbot and handbots,
the two groups must belong to the same physics engine.

As Figure 3.7 shows, the software interface of the physics engines is essential. In sub-
stance it consists of the two thin interfaces CPhysicsEngine and CPhysicsEngineEntity.

The first, CPhysicsEngine, defines the main functions of an engine, that basically are
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concentrated in the Update method. At each time step, the simulator calls this method to
ask the engine to calculate new positions and headings for the entities assigned to it. The as-
sociation with CSwarmanoidSpace allows the physics engine to retrieve useful information
from the scene graphs, if needed.

On the other hand, the role of CPhysicsEngineEntity is to provide a basic definition
of the entity as seen inside a physics engine. This interface has been designed to be absolutely
minimal to keep the constraints it imposes on the development of a physics engine null
or negligible. For this reason, no default link with CPhysicsEngine has been defined
in any of the two interfaces, leaving complete freedom to the developer to implement the
best linking strategy (e.g. lists, maps, or trees). Each physics engine entity is associated to
its own alter ego in the Swarmanoid Space through an association with the corresponding
CSwarmanoidSpaceEntity.

3.5.1 2D Kinematic physics engine

At the lower-end in terms of realism, there are physics engines that are kinematic. In these
physics engines only first-order (velocity-driven) dynamics is considered, objects are ab-
stracted by their center of mass, collisions are purely elastic, and friction forces are not taken
into account.

We have developed a bidimensional kinematic engine because of its high performance.
Despite its simplicity, most of the dynamics of footbots are acceptably simulated, thus mak-
ing it almost always useless to use a more accurate engine. This is obviously false for eyebots
and handbots, whose dynamics strongly depend on gravity and inertial effects. Neverthe-
less, when the simulation of their dynamics is not important for the purpose of the exper-
iment, a kinematic model of handbots and eyebots proves to be very useful to shorten the
running time.

The kinematic engine let the robots move on a plane that can be placed in the 3D space
by specifying the main axis it should be perpendicular to (either x, y or z) and its distance
from the origin. Figure 3.8 depicts a situation in which three instances of the kinematics
engine have been created: one for the ground, one for the wall, and one for the ceiling. All
the instances are run independently from each other by the architecture.

Figure 3.9 depicts the simple geometrical models for collision detection. Footbots are
composed by a big central circle (the body), two smaller circles (the wheels) and a square (the
gripper). The model of an eyebot is even more essential: just a circle. Eventually, handbots
do not have a defined stable shape yet, although it is highly probable that they will resemble
a lobster (see Figure 1.2 and refer to Chapter 1 for more details about the design status of the
handbot robotic platform). For this reason, only the most basic model, a rectangle, has been
so far implemented.

Gripping in this engine is supported in a very basic way. Footbots are provided a gripper
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Figure 3.9: 2D kinematic collision models: (a) footbot, (b) eyebot, and (c) handbot.

that can only attach to target objects termed preys which possess a special gripping strip
around their bodies. Furthermore, footbots cannot grip other footbots. This is a simplistic
approach to maintain performance good. Also, rigid body dynamics require masses and
accelerations to be simulated properly, but, as we have already illustrated, in a kinematic
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physics engine acceleration and masses are not taken into account.

3.5.2 2D Dynamic physics engine

It is currently under development a bidimensional dynamic physics engine that will have
most of the features of the kinematic engine, such as collisions models and placement logic,
with the addition of a complete implementation of Newton’s Laws. Rigid body dynamics
will be also fully supported to allow arbitrary gripping structures thus fully taking advan-
tage of the structural scene graph constructed in the Swarmanoid Space (see Section 3.4).
Many ideas about rigid body dynamics and specific sensors/actuators will be inspired by
TwoDee (Christensen, 2005), a bidimensional dynamic simulator developed for the Swarm-
bots Project.

3.5.3 3D Dynamic physics engine

A fully featured three-dimensional dynamic physics engine is also being designed. It will
be based on ODE, an open source software, and it will model in an accurate way footbots on
rough terrain, handbots with their complex climbing and manipulating abilities, and eyebot
hovering dynamics.

For eyebots, an ODE based physics engine supporting the prototype robot is already
available in the OMISS simulator3, though it has not been integrated in the architecture yet.

3.6 Visualizations

The evaluation of an experiment requires a mechanism to visualize what is happening in the
arena, often measuring the value of some interesting parameters.

The most widespread way to show the actions of the robots is simply to graphically
render the arena and its contents either as the experiment is carried out or in the form of
a video clip to watch after the end of the experiment. On the other hand, non-graphical
visualizations (i.e. providing structured numerical data) play an important role to allow a
quantitative evaluation of an experiment. Furthermore, the organization and the nature of
the recorded information depends on the focus of the experiment.

The role of proper visualization is therefore as important as the one of physics simulation
itself. Moreover, the degree of flexibility that it demands is definitely higher, because non-
graphical visualization logic dramatically depends on the focus of the experiment, which in
turns dictates the interesting values to record.

The modular architecture of the Swarmanoid Simulator has been designed to let the de-
veloper insert visualizations as plugins in the same way sensors, actuators and physics en-

3Available online at http://iridia.ulb.ac.be/wiki/index.php/OMiss - The ODE based simulator.
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Figure 3.10: Visualization code class diagram.

gines are treated. Similarly, a software interface named CRender has been kept as thin as
possible to leave the developer free to define the most appropriate visualization logic.

CRender basically consists of two methods: Draw and Terminate. The former is in
charge of actually displaying the status of the Swarmanoid Space. The method is called in
the simulation loop, and everything happening inside is completely transparent to the rest of
the simulator. On the other hand, the latter method, Terminate, is in charge of intercepting
the desire of the user to stop the simulation before the maximum clock tick count has been
reached, for example when the main graphical window is closed.

Figure 3.10 displays the class diagram of the visualization code. In the following sections
we will present these modules.

3.6.1 Text-based visualization

The simplest visualization offered by the Swarmanoid Simulator is a plain text tabular rep-
resentation of the objects in the space. CTextRender offers the most basic set of functions
on top of which a more refined output can be obtained by extending the class at will.

The class writes the table to the screen or to a file. A sample output of the file is reported
in Figure 3.11. As shown, the output is organized in a simple tabular format, perfectly suit-
able to be input to mathematical programs such as Matlab, Octave, Excel or Gnuplot, or also
string filters such as grep and awk.

The columns of the table, as it is easy to understand by reading Figure 3.11, have follow-
ing meaning:

# clock The current clock tick count. The actual duration of the clock tick in milliseconds is
specified in the XML file as described in Section 4.2.

Entity type The type of the entity, such as a footbot, a handbot, an eyebot, a block (i.e. ob-
stacle), and so on.
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# clock Entity type Entity id X Y Z Alpha Beta Gamma
10 Block wall1 0 5 1.5 0 0 0
10 Block wall2 5 0 0.25 0 0 0
10 Block wall3 10 5 0.25 0 0 0
10 Block wall4 5 10 0.25 0 0 0
10 Block ceiling 1 5 3 0 0 0
10 Block column1 2 0 1.5 0 0 0
10 Block column2 2 10 1.5 0 0 0
10 Block obstacle 4.5 1.5 0.25 0 0 45
10 Block table_plane 8 4 0.5 0 0 0
10 Block table_leg1 8.97 4.47 0.25 0 0 0
10 Block table_leg2 8.97 3.52 0.25 0 0 0
10 Block table_leg3 7.03 4.47 0.25 0 0 0
10 Block table_leg4 7.03 3.52 0.25 0 0 0
10 Block le1_base 4 7 0.25 0 0 0
10 Footbot fb_l1 3 6 0 0 0 45.5
10 Footbot fb_l2 3 7 0 0 0 0.455
10 Footbot fb_l3 3 8 0 0 0 -44.5
10 Footbot fb_l4 5 6 0 0 0 135
10 Footbot fb_l5 5 7 0 0 0 -180
10 Footbot fb_l6 5 8 0 0 0 -135
10 Eyebot yb1 2.97 3 1.5 0 0 -178
10 Eyebot yb2 4.97 5 2.25 0 0 -178
10 Eyebot yb3 4.97 3 1.5 0 0 -178
10 Eyebot yb4 5 7.03 2.25 0 0 91.8
10 Handbot hb1 1 3 0.25 0 0 0
10 Handbot hb2 1 5 0.25 0 0 0
10 Handbot hb3 1 8 0.25 0 0 0

Figure 3.11: Sample output of the basic text visualization.

Entity id The identificative name of the entity.

X, Y, Z The position of the entity in the Swarmanoid Space.

Alpha, Beta, Gamma The value of the Euler angles storing the orientation of the entity ex-
pressed in degrees.

3.6.2 Graphical visualization: OpenGL

Graphical rendering plays an important role to visually check the outcome of an experiment,
for instance to verify that the behavior of a robot corresponds to what expected. Further-
more, the ability to produce video clips proves precious when presenting an experiment to
an audience.
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The OpenGL renderer provides a simple three-dimensional visualization of the simu-
lated arena. Code is based on OpenGL, as the name suggests, a fast library for 3D rendering
used in many different fields, from modeling to video games. The internal code structure is
purposely straightforward and the robot models are built composing basic primitives such
as boxes, cylinders and spheres.

This renderer is suitable to quickly display an experiment when there is no need of fancy
graphical presentation. “Visual” debugging of some critical parts of the system is possible
simply by extending this renderer to display more information. For example, the collision
detection library implemented for the 2D kinematic physics engine was debugged allowing
the OpenGL renderer to display also the collision models of the robots.

Some sample frames taken with this visualization are displayed in Figure 3.12. Although
code structure is simple, this module provides a good number of useful functions. For in-
stance, it is possible to move the camera by dragging the mouse and to record the current
camera position. The user can store up to ten camera viewpoints and later recall them by
pressing on the keyboard CTRL-0 . . . CTRL-9. Furthermore, video frames can be stored on
the hard disk, thus allowing to mount video clips with an external program. To speed the
computation up on slow computers, window size can be set, and textures and shadows can
be toggled.

3.6.3 Graphical visualization: OGRE

The basic graphics offered by OpenGL are not always enough for the development of robot
controllers. In fact handbots, with their highly complex dynamics involving wall climbing
and object manipulation, often require a proper visual modeling to satisfyingly distinguish
the movements of the hands. Devising a precise model of the handbot in OpenGL is a com-
plicated task, due to the limited set of primitives it provides. Furthermore, it is often useful
to be able to select robots, open windows displaying their status, moving them in other lo-
cations, and similar actions.

The need of more accurate graphics and the desire to add more refined functions to the
graphical user interface, while keeping the OpenGL renderer simple, led to the design of a
completely new renderer.

The OGRE library is a 3D graphics library built on top of OpenGL. It provides higher
level functions than those found in OpenGL. For instance, it is possible to import a 3D mesh
model of an object, access in an evoluted way the input from keyboard and mouse, and build
seamlessly intuitive graphical interfaces.

For these reasons, the new renderer has been implemented using the OGRE library. Some
sample frames are displayed in Figure 3.13. They show the 3D models of footbots (Fig-
ure 3.13a), handbots (Figure 3.13b) and eyebots (Figure 3.13c), along with the high level
graphical user interface.
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The OGRE renderer, similarly to the OpenGL one, allows to store frames to mount video
clips. In addition, it offers the possibility to select a robot and watch its status (sensor read-
ings, speed, etc.). Moving a robot is not possible yet but it is a feature under development at
the time of writing.
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(a)

(b)
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Figure 3.12: OpenGL visualization example: (a) footbot, (b) handbot, and (c) eyebot.
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(a)

(b)

(c)

Figure 3.13: OGRE visualization example: (a) footbot, (b) handbot, and (c) eyebot.



Chapter 4

The Simulator at Work

Showing the simulator at work is the aim of this chapter. The subject of Section 4.1 is the user
environment, that is how the user can create a controller for a simulated robot. Section 4.2
describes the structure of the XML file that configures the simulator to run an experiment.
Finally, Section 4.3 reports the results of an experiment of prey retrieval by a footbot and an
eyebot in which cooperation between the two robots is required to accomplish the task.

4.1 User Environment

When the Swarmanoid Simulator is downloaded from the repository for the first time, the
initial step to start using it is to build the code.

An automatic script called build framework is provided in the base directory of the
framework. By running it, all the code in packages Common, Real robot and Simulator is
compiled. When the compilations finishes, the user is asked by the script to create a personal
directory in package User to store his own code. Subsequently, the newly created folder is
also stored in the common software repository of the Swarmanoid Project. In this way, future
contributions of the new user will be automatically shared with the other users.

A fresh creation of the user directory already contains many sample files to ease the first
attempts to use the framework. For example, the user can execute the provided set of sample
experiments to verify the success of the installation. Moreover, the sample controllers and
the configuration files allow the user to start modifying an already working environment,
allowing him to learn by doing.

Furthermore, the compilation environment is based on Autotools, a portable tool set for
automating the compilation on different computer platforms. As a consequence, compiling
the framework and subsequently adding controllers and other code can be done very eas-
ily. Moreover, the libraries used to code the simulator and the choice of Autotools make it
feasible to port the framework on many platforms. At the time of writing only Linux is sup-
ported, but we plan to port our code to other popular operating systems such as MacOS X

37
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and Microsoft Windows.

4.1.1 The Contents of the User Directory

The user directory contains the following files and directories:

configure.ac
This file configures an automatically created script called configure that checks for
the presence of the required libraries and functions, and initializes the basic Makefile
structure.

Makefile.am
A file named Makefile.am is present in each directory that stores code files. It con-
tains the list of files to compile so that Automake can create the actual Makefiles used
to build the code.

bootstrap.sh
This is a custom script provided to wrap the call to the standard script configure.

build.sh
This script internally calls bootstrap.sh and then runs the compilation of the code.

simulation main.cpp
This file contains the main function of the simulator. We have decided to insert this
file in the directory of the user so as to allow him to modify it at will, for example
wrapping it with other analysis tools.

simulation build
This directory contains all the user code compiled for the simulator.

real robot build
This directory contains all the user code compiled for the real robot.

controllers
This directory contains all the controllers of the user.

It is important to note that the described directory structure can be modified at will by the
user, although for some particular modifications a big deal of technical experience is a re-
quirement to accomplish this task flawlessly. Anyway, if the user respects this directory
structure, the automatic tools provided by the framework let him focus on the development
of the controllers.
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4.1.2 Writing a New Controller

The creation of a new controller is the topic of this section. The configuration of the simulator
to run an experiment is covered in Section 4.2.

Thanks to the code examples provided by default at the moment of creating the user
directory, writing a new controller is not a complicated task. Usually it is enough to choose
an appropriate sample controller as a template and modify it. Here, anyway, we assume to
write a new controller from the very beginning.

The following listing shows a sample header file for the a new footbot controller that
uses only the wheels:

#ifndef _CSAMPLEFOOTBOTCONTROLLER_H_

#define _CSAMPLEFOOTBOTCONTROLLER_H_

#include "ci_controller.h"

#include "footbot/ci_footbot_wheels_actuator.h"

#include "config.h"

class CSampleFootBotController: public CCI_Controller {

// Associations

private:

CCI_FootBotWheelsActuator* m_pcFootBotWheelsActuator;

// Attributes

// Operations

public:

virtual int Init ( const TConfigurationTree t_tree );

virtual void ControlStep ( );

virtual void Destroy ( );

};

#endif

The interface is very simple: we have two methods, called Init and Destroy, that respec-
tively initialize and destroy the object. They do not coincide with the constructor and the
destructor, because the construction/destruction logic is left to the framework to manage;
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anyway, from the point of view of the user, Init contains the code to retrieve references
to sensors and actuators, to create structures such as neural networks, and so on. Further-
more, this method receives as input an XML data structure that is the configuration subtree
specified for this controller in the configuration file (refer to Section 4.2 for details).

On the other hand, ControlStep is in charge of reading sensor input and, on the basis
of it, choosing the next actions, that is writing values to the actuators.

The following listing shows a skeleton of implementation of the header that also de-
mostrates how to obtain a reference to actuators and sensors:

#include "sample_footbot_controller.h"

using namespace swarmanoid;

using namespace ahss;

using namespace std;

int CSampleFootBotController::Init(const TConfigurationTree t_tree)

{

m_pcFootBotWheelsActuator =

(CCI_FootBotWheelsActuator*)(GetRobot( )->

GetActuator( "footbot_wheels" ));

return CCI_Controller::RETURN_OK;

}

void CSampleFootBotController::ControlStep ( )

{

m_pcFootBotWheelsActuator->

SetFootBotWheelsAngularVelocity( 0.314, 0.628 );

}

void CSampleFootBotController::Destroy ( )

{}

REGISTER_CONTROLLER( CSampleFootBotController,

"sample_footbot_controller" )

As explained in Section 3.3, an object of type CCI Robot is a container of sensors and actu-
ators. Therefore in method Init a reference to the wheels actuator is obtained by means of
method CCI Robot::GetActuator. The string value passed to it is a type label associated
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with the actuator at the moment of registering it; as it will be shown in Section 4.2, such type
label is also used in the XML configuration file to let the simulator initialize the actuator.

In order to inform the framework of the existence of the controller, we have to register
it. The registration logic is the same for all the plugins in the architecture, such as sensors,
actuators, physics engines and visualizations. The last line of the listing performs the regis-
tration, passing to the macro the name of the created class and an identificative label that, as
it will be shown in Section 4.2, will be used as XML tag to reference this controller.

4.2 Definition of an Experiment

To configure the simulator for running an experiment, it is sufficient to write the wanted
parameters in an XML file, the structure of which is explained in this section.

The following listing shows that the XML file is divided into several parts, each of which
is in charge of configuring a subsystem of the simulator:

<ahss-config>

<!-- ********************************* -->

<framework>

...

</framework>

<!-- ********************************* -->

<controllers>

...

</controllers>

<!-- ********************************* -->

<arena size="10,10,3" optimization="2D" >

...

</arena>

<!-- ********************************* -->

<engines>

...

</engines>

<!-- ********************************* -->
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<arena_physics>

...

</arena_physics>

<!-- ********************************* -->

<visualisations>

...

</visualisations>

</ahss-config>

The order in which the tags appear in the file is not important, as the simulator analyzes
them by name.

Tag <framework> defines a section in charge of initializing the parameters that interest
the architecture in general. For example, it may appear as shown:

<framework>

<clocktick>100</clocktick>

<maxclock>500</maxclock>

<controller_path>

/path/to/swarmanoid_dev/user/pincy/simulation_build/\

controllers/mycontroller1/.libs:/path/to/swarmanoid_dev/\

user/pincy/simulation_build/controllers/mycontroller2/.libs

</controller_path>

</framework>

Tags <clocktick> and <maxclock> together define the total duration of an experiment.
In fact, <clocktick> sets the duration of a clock tick in milliseconds1, while <maxclock>
indicates the maximum number of clock ticks2 after which the experiment is considered
finished. The total duration of an experiment in milliseconds is thus given by the following
formula:

duration = clocktick ×maxclock

Finally, tag <controller path> contains a colon separated list of directories where con-
1At each clock tick the robot control steps are executed.
2Therefore, also the maximum number of control decisions.
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troller libraries are compiled.

Tag <controllers> contains the list of controllers used in the experiment. As ex-
plained in Section 4.1, each controller is registered in the system with a user defined tag, so
this portion of the XML is the place where these tags are used. Each controller is configured
by specifying an identifier and the filename of the library containing the compiled code. Fur-
thermore, inside each <controllers> portion, the list of the actuators/sensors used by the
controller is reported, so that the simulator can initialize them properly. Each actuator/sen-
sor is first identified by its type (for instance <footbot proximity> or <pie camera>)
and then, inside its portion, the desired implementation is selected. The final part of the con-
troller definition named <parameters> is left to define by the user, who can insert there
any relevant parameter for the internal logic of the controller. If needed, it is possible to
insert the same controller type more than once, with the condition that the specified identi-
fier is unique for each instance. This is useful when the user, for example, wants to use the
same controller with different values in the <parameter> tag, and assign to some robots an
instance and to other robots other instances. An example:

<controllers>

<footbot_sample_controller id="fc"

library="footbot_sample_controller">

<actuators>

<footbot_wheels>

<implementation>

dummy_footbot_wheels

</implementation>

</footbot_wheels>

<footbot_gripper>

<implementation>

dummy_footbot_gripper

</implementation>

</footbot_gripper>

</actuators>

<sensors>

<pie_camera>

<implementation>
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generic_pie_camera

</implementation>

</pie_camera>

<footbot_proximity>

<implementation>

generic_footbot_polynomial_proximity

</implementation>

</footbot_proximity>

</sensors>

<parameters>

<min_distance>7</min_distance>

<wheels_speed>10</wheels_speed>

</parameters>

</footbot_sample_controller>

...

</controllers>

The definition of the objects populating the simulated arena takes place in the section
delimited by the tag <arena>. The tag possesses two required attributes: size, which
specifies the size of the arena in meters along the main axes of the Swarmanoid Space3, and
optimization, which instructs the arena to store data to favor either 2D physics engines
such as the kinematic one, or 3D. When only 2D engines are used, or when the majority of
the robots is in 2D engines, the optimization value should be set to 2D, while in the opposite
case it should be set to 3D. The rest of the <arena> part is filled with a list of entities. For
every entity at least position and orientation are specified; some entities may have more
parameters, as shown in the following listing:

<arena size="10,10,3" optimization="2D" >

<footbot id="fb">

<position>9, 9, 0</position>

3The arena is a cube.
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<orientation>0, 0, 45</orientation>

<controller>fc</controller>

</footbot>

<eyebot id="eb">

<position>5, 5, 1</position>

<orientation>0, 0, 0</orientation>

<controller>ec</controller>

</eyebot>

<block id="obstacle">

<position>5, 5, .25</position>

<orientation>0, 0, 0</orientation>

<size>.5, .05, .5</size>

</block>

<cylindric_prey id="cp">

<position>8, 8, 0</position>

<orientation>0, 0, 0</orientation>

<radius>0.10</radius>

<height>0.10</height>

</cylindric_prey>

...

</arena>

The specification of footbots and eyebots, for instance, involves the indication of the identi-
fier of the controller to use for each of them. The obstacle object is defined through a block,
a stretchable brick-like entity used to model walls, obstacles, and other similar objects. This
entity needs the specification of the size along the main axes of the Swarmanoid Space sim-
ilarly to the size of the arena. Finally, to insert a cylindric prey, that is a target grippable
object, it necessary also to indicate its radius and height. As we will see later in this section
when we will describe tag <arena physics> that assigns entities to physics engines, the
identifiers of the entities must be unique.

Physics engine are configured in a similar way to controllers and entities:
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<engines>

<dummy_engine id="ground">

<subclock>1</subclock>

<perpendicular_axis>z</perpendicular_axis>

<distance>0</distance>

</dummy_engine>

<dummy_engine id="sky">

<subclock>1</subclock>

<perpendicular_axis>z</perpendicular_axis>

<distance>1</distance>

</dummy_engine>

</engines>

<dummy engine> is the name of the kinematic physics engine inside the simulator, mainly
due to its straighforward internal logic. In the above listing two kinematic engines are cre-
ated. The first, the ground, is located on the x, y plane. On the other hand, the sky is par-
allel to the ground but translated one meter above it. The identifier is specified as usual,
always with the constraint of uniqueness. Tag <subclock> is another optimization param-
eter that sets how many times the physics engine is called for each simulation clock tick. It
is usually set to one, meaning that for each main clock tick the engine updates the physics
status just once. Setting this value to something greater than one increases the accuracy of
the physics engine in collision detection, although at the cost of a decrease in performance.
<perpendicular axis> can be set to x, y or z and, as the tag name suggests, indicates
the axis to which the plane of the engine must be perpendicular. Likewise, tag <distance>
fixes the signed distance between the plane and the origin.

As anticipated, tag <arena physics> assigns entities to physics engines. An entity
can be assigned to any number of physics engines, zero included. The mapping logic is
deducible from the following example:

<arena_physics>

<engine id="ground">

<entity id="obstacle" />

<entity id="fb" />
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<entity id="cp" />

</engine>

<engine id="sky">

<entity id="eb" />

</engine>

</arena_physics>

Finally, visualizations are defined in the last tag, exactly <visualizations>. More
than one module can be inserted in it, as the following example shows:

<visualisations>

<text_render id="text_world">

<file>experiment_output.txt</file>

<precision>2</precision>

</text_render>

<opengl_render id="mainwindow">

<window_size>1024, 768</window_size>

<window_title>Sample Experiment</window_title>

<camera_view_XYZ_0>3.30811, 3.36071, 1.9</camera_view_XYZ_0>

<camera_view_HPR_0>39, -34, 0</camera_view_HPR_0>

<camera_view_XYZ_1>6.2875, 3.33551, 1.25</camera_view_XYZ_1>

<camera_view_HPR_1>125, -21.5, 0</camera_view_HPR_1>

<camera_view_XYZ_2>7.05332, 6.88148, 0.83</camera_view_XYZ_2>

<camera_view_HPR_2>-155, 0, 0</camera_view_HPR_2>

<use_textures>true</use_textures>

<write_frames>false</write_frames>

<frame_directory>Movies</frame_directory>

<frame_filename>frame_</frame_filename>

</opengl_render >

</visualisations>

In the above listing, two visualizations are specified: a basic text one, and the 3D OpenGL
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graphical one. The first accepts as parameters the file name to write the data to and the
number of desired decimal numbers. The second, <opengl render>, sets the window size
and title, three camera view points, toggles the use of surface textures to true and video
frame storing to false, although a default location and the basename for frames is shown
in tags <frame directory> and <frame filename>.

4.3 A Sample Experiment

In this final section of the chapter we present a sample experiment to show in practice how
controllers are developed with the Swarmanoid Simulator.

The experiment involves an eyebot and three footbots. The aim of the collective task is to
retrieve a target object, that, following the social insect metaphor, we will term prey. After the
retrieval, the task is considered accomplished when the object is brought to an area termed
nest.

Moreover, to make this experiment more compliant with the control objectives of the
Swarmanoid Project illustrated in Chapter 1, we require the robots to cooperate by enriching
the task as follows.

First of all, in the arena two preys of different colors are present. Both the footbot and the
eyebot can perceive them, but only one of the two preys is the right one to pick. The choice
of the prey to pick is performed at random by the eyebot at the beginning of the experiment.
Therefore, the footbot, even if it is able to perceive both preys, is not able to solve the task
alone and needs to communicate with the eyebot.

Furthermore, we want to pursue as much as possible the biological inspiration, avoiding
an explicit exchange of structured information with WiFi or Bluetooth. Therefore, communi-
cation between the eyebot and the footbots is obtained only by means of visual information.
More specifically, footbots inform the eyebot about their status by means of the colored LEDS
they are equipped with, while the eyebot guides the footbots to the prey and to the nest us-
ing a laser beam that projects a colored spot on the ground, easily perceivable by the cameras
of the footbots.

The setup of the experimental arena is depicted in Figure 4.1. We can recognize the
eyebot, the three footbots, the two preys and the nest.

The robot controllers have been developed following the behavior based approach. The
resulting behavior diagrams for the footbots and the eyebot are reported in Figure 4.2 and 4.3,
respectively.

Initially, footbots are in Search for Laser behavior and the eyebot is in Search for Prey be-
havior: in other words, the eyebot looks for the chosen prey having the laser switched off,
while the other robots randomly wander in the arena waiting for the laser to be turned on.

When the eyebot perceives the prey, it switches to Go to Prey behavior: the laser is turned
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Figure 4.1: The initial setup of the experimental arena.
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Figure 4.2: The behavior diagram of the footbot controller.
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Figure 4.3: The behavior diagram of the eyebot controller.

on and the eyebot goes towards the prey. When close enough to it, the eyebot stops and waits
for the footbots to arrive and grip the prey, switching to Wait for Footbot Gripping behavior.

In the meantime, footbots still search for the red colored spot on the ground, which is
the projection of the laser on the ground. Eventually, one or more robots perceive it, thus
changing their behavior to Go to Laser. Once a robot finally reaches the laser, it perceives also
the nearby prey and approaches it, trying to grip it as soon as the distance is appropriate
(Grip Prey behavior).

When a footbot successfully grips a prey, it changes its behavior to Go to Nest and sets its
LEDs color to blue. This is a signal for the other footbots to switch to Avoid Gripping Footbot
behavior, that is to stop trying to reach the laser or the prey and avoid the signaller as it
carries the prey to the nest. The blue LEDs also inform the eyebot of the fact that finally a
footbot is gripping the prey and that it should be brought to the nest. Therefore, when the
eyebot perceives the blue lights of the footbot, it switches to behavior Search for Nest, to look
for the green area. The footbot gripping the prey follows the laser. If the eyebot, for some
reason, loses sight of the footbot, it simply stops, waiting for the footbot to arrive.

Eventually, the eyebot perceives the green area and drives the footbot there. When the
prey is inside the nest, the task is accomplished. Figures 4.4-4.7 depict the highlights of the
experiment.
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Figure 4.4: The eyebot waiting for a footbot to grip the prey.

Figure 4.5: The footbot gripping the prey.
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Figure 4.6: The eyebot driving the footbot to the nest.

Figure 4.7: The prey is brought to the nest.



Chapter 5

Conclusions and Future Work

This final chapter summarizes the discussion of the previous chapters underlining the orig-
inal contributions, and proposes possible improvements to the presented work.

Simulation studies play a central role in the development of robot prototypes as well
as in the study of the properties of swarms, especially in terms of scalability and learning
of control policies. The goals of the Swarmanoid Simulator consist in providing a software
platform that:

• models the robots of the Swarmanoid and the environment they act upon according
to multiple and selectable levels of detail, and provides for each level a faithful and
consistent representation of the corresponding physical environment being simulated;

• is computationally efficient, to allow one to run simulations of complex real-world
scenarios including a relatively large number of robots;

• allows an easy code migration from the simulator to the robot controllers to shorten
implementation and debugging time;

• permits an efficient and comprehensive monitoring of the behaviors and performance
of the robots through effective visualization and tracing interfaces;

• is highly modular, to facilitate independent code development from the different part-
ners of the Swarmanoid Project;

• can be efficiently used for an effective evolution and evaluation of the different hard-
ware alternatives and control policies that will be proposed during the project devel-
opment.

In this document we have described the design choices that we have implemented to
develop a software simulator that meets all the above requirements. Since none of the com-
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mercial and free software simulators for multi-robot environments already available could
effectively meet our needs, we opted for a full custom design and implementation.

The Swarmanoid Simulator has the following design characteristics. It is a continuous-
time simulator specifically conceived to simulate the three different types of robots compos-
ing the Swarmanoid: eyebots, handbots and footbots, and their environment. These three
types of robots fill the 3D space: eyebots either fly or stay attached to the ceiling, footbots
move and act at the ground level, and handbots go upward from the ground and act at the
level of the walls. Each robot is characterized by a physical structure, by a set of sensors
and actuators, and by a controller module. The Swarmanoid Simulator provides multiple
physics engines to cover different possibilities of modeling object interaction and movement
in 2D and 3D representations of the physical world. A simulation run can include the con-
current use of one or more physics engines, with each engine devoted to model with the
desired level of detail the Newtonian physics for the objects falling within a specific area or
volume of the 3D environment space. The architecture is highly modular to allow the user
to easily add and select actuators, sensors, physics engines, and renderers. The simulation
scenario is configured using an intuitive XML syntax, while the most of the code is written
in C++. The Swarmanoid Simulator design includes also multiple levels of graphical visual-
ization based on the use of popular open source 3D graphical renderers such as 3D OpenGL
and OGRE. A seamless transition between simulation and real robots is provided to the user
since the interface for robot controllers is common to both simulated and real robots. In
this way, a controller developed for a simulated robot needs only to be recompiled before
it can be run on the real robot platform. A demostrative experiment has been presented to
show the capabilities of the tool. Concurring with the goals of the Swarmanoid Project, the
experiment involves a footbot and an eyebot that must cooperate to solve the task.

Future Work

Due to the high modularity and flexibility of its architecture, the Swarmanoid Simulator is
constantly a work-in-progress. We plan to continue adding new modules as new research
questions will require to adapt our tools.

At the time of writing, two physics engines are under study. First of all, we are designing
a dynamic 2D physics engine that will extend the capabilities of the kinematic engine with
full support of friction and rigid body dynamics. This engine will prove useful to model
footbots connecting to each other or to handbots on the ground.

On the other hand, to model accurately eyebots and handbots, we are also implementing
a 3D dynamic engine based on ODE.

The improvement of sensors and actuators is planned as soon as the robotic platforms
are available. Sampling techniques will be employed when possible to increase realism and
to save computational power.
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For what concerns the architecture itself, we are considering the hypothesis of allowing
robots to change the physics engine in charge of updating their status to another at run-
time. This addition would not require any major modification to what we have already
implemented and would allow to fully exploit the optimization opportunities given by the
possibility to run concurrently different engines with different physics accuracies. The sce-
nario in which this improvement will be more useful is the transport of a handbot by a
swarm of footbots to a target area, where the handbot shoots the rope, climbs the wall and
retrieves an object. In the first phase, the transport, the handbot is idle, therefore a precise
modeling of it is not required: a 2D physics engine is largely sufficient. On the other hand, in
the second phase, the handbot dynamics require a three-dimensional engine. The proposed
enhancement of the architecture would solve the problem in the best possible way.
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swarm-bot. Diplôme d’Etudes Approfondies en Sciences Appliquées thesis, IRIDIA, Uni-
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