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et de Développements en Intelligence Artificielle

On the Performance of Particle
Swarm Optimizers

par

Marco A. Montes de Oca Roldán

Directeur de Mémoire:
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Abstract

Since the introduction of the first Particle Swarm Optimization algorithm by
James Kennedy and Russell Eberhart in the mid-90’s, many variants of the
original algorithm have been proposed. However, there is no general agreement
on which variant(s) could be considered the state-of-the-art in the field. This
is, in part, due to a general lack of cross-comparisons among variants in the
literature.

The work reported in this document was carried out with the goal of identi-
fying the best-performing particle swarm optimization algorithms. For practical
reasons, we could not compare all the available algorithmic variants. Instead,
we focused on those that have been the most widely used variants. We also
considered algorithms that incorporate some of the latest developments in field.

The comparison of the chosen particle swarm optimization algorithms was
based on run-length and solution-quality distributions. These analytical tools
allow the comparison of stochastic optimization algorithms in terms of the prob-
ability of finding a solution to an optimization problem within some minimum
acceptable solution quality and time bounds. This kind of analysis is helpful for
measuring the solution-quality vs. computational effort tradeoff each algorithm
presents.

Particle swarm optimizers are population-based optimization algorithms that
rely on a population structure referred to as topology. We conduct an analy-
sis of the effects that different population topologies (the most commonly used
ones) have in their performance. We show how some topologies are better suited
for application scenarios in which only short runs are allowed or affordable, and
how other topologies are better suited for situations in which the only important
factor is solution quality.

Run-length and solution-quality distributions also serve as diagnostic tools
that help in the design of improved algorithms. After analyzing the behavior
of some variants with these tools, we found opportunities for improvement and
the resultant variants are presented and discussed.

i



ii



Acknowledgments

Even though theses are attributed to a single person, most of them are the
result of many hours of discussion between different people. This thesis is not an
exception. As the author of this thesis, I have been lucky for working at IRIDIA
(Institut de Recherches Interdisciplinaires et de Devéloppments en Intelligence
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Chapter 1

Introduction

The introduction of the first Particle Swarm Optimization (PSO) algorithm by
Kennedy and Eberhart [23] [11], gave birth to a field with the same name. Since
then, it has received a growing interest from the industrial and academic worlds.

It has been already eleven years since the birth of the Particle Swarm Op-
timization field and during this time, tens of algorithmic variants have been
proposed. For years, authors have been comparing their variants only with
one particle swarm optimization algorithm. In most cases, as expected, they
“outperformed” the reference algorithm. We believe that this hinders the true
advancement of the field: how can we build on previous efforts if the state-of-
the-art is not well identified? Surprisingly, there are no comparisons among
particle swarm optimization algorithms in the current literature.

1.1 Objective

The main objective of this work is to identify the algorithmic variants that can
be considered as the state-of-the-art in the field.

To fulfill this objective, we carried out a comparison among the most widely
used particle swarm optimization algorithms. We identify the best performing
algorithms taking into account the possible application scenarios in which the
algorithms may be used. In other words, we identify the circumstances under
which the top performing algorithms work at their best. This gives the possi-
bility of choosing different algorithms given different application requirements.

1.2 Methodology

The empirical methodology that we used to perform the comparison is the one
proposed by Hoos and Stützle [17]. It is based on the estimation of the run-
length and solution-quality distributions exhibited by stochastic optimization
algorithms when solving specific problems.

The run-time distribution is the cumulative distribution function of the ran-
dom variable describing the time needed by a stochastic optimization algorithm
to find a solution of a specific quality. Likewise, the solution-quality distribution

1



is the cumulative distribution function of the random variable that represents
the solution quality achieved by an algorithm exactly after some computational
effort limit.

Run-time and solution-quality distributions provide information about the
behavior of stochastic optimization algorithms that is useful for making com-
parisons and for devising improvements. Specifically, they can tell us how prone
an algorithm is to stagnating. An algorithm with propensity to stagnate will
show a slowly-increasing or a non-increasing probability (towards the right tail
of the distribution) of finding a solution of a given quality over the allocated
time limit.

The estimation of run-time and solution quality distributions does not im-
pose a major burden in the process of collecting data. All we need to do is
to run the algorithm several times and record information relative to solution
improvement. In every run, we need to record the time or the number of critical
operations, and the solution quality whenever a new best solution is found by
the algorithm.

1.3 Contributions

To the best of our knowledge, this document is the first one in the literature that
reports a comparison among the most widely used particle swarm optimization
algorithms. A detailed analysis of the performance of each algorithm, allowed
us to propose two improved variants.

The first variant is one that incorporates an adaptive restart mechanism.
It is based on the fact that, in some cases, many short runs are better than a
single long run of a stochastic optimization algorithm [17]. The second variant
borrows some ideas from recent developments in Ant Colony Optimization [9].
It is a particle swarm optimizer that uses the information gathered throughout
the optimization process, to guide the search into the most promising regions
of the search space.

1.3.1 Publications

Part of the material presented in Chapter 4 will be published in:

• M. A. Montes de Oca, T. Stützle, M. Birattari, and M. Dorigo (2006), A
Comparison of Particle Swarm Optimization Algorithms Based on Run-
Length Distributions. Proceedings of the Fifth International Workshop on
Ant Colony Optimization and Swarm Intelligence ANTS 2006, Brussels,
Belgium. M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R.
Poli, and T. Stützle (Eds.), LNCS 4150. Springer, Berlin, Germany.

Additionally, part of the material presented in Chapter 5 will also be pub-
lished in:

• M. Iqbal and M. A. Montes de Oca (2006), An Estimation of Distribution
Particle Swarm Optimization Algorithm. Proceedings of the Fifth Inter-
national Workshop on Ant Colony Optimization and Swarm Intelligence
ANTS 2006, Brussels, Belgium. M. Dorigo, L. M. Gambardella, M. Birat-
tari, A. Martinoli, R. Poli, and T. Stützle (Eds.), LNCS 4150. Springer,
Berlin, Germany.
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1.4 Structure

This document is organized as follows: in Chapter 2, we present a detailed
description of the Particle Swarm Optimization field describing, also, the specific
algorithmic variants included in our comparison; in Chapter 3, we describe the
empirical evaluation methodology we used to assess the performance of the
different particle swarm optimizers included in the comparison; in Chapter 4
we present the comparison among the evaluated algorithms and an analysis of
different inertia weight schedules in the particle swarm optimizer with time-
decreasing inertia weight; in Chapter 5, we present two improved variants that
build on what we learned from the analysis carried out in Chapter 4; finally, in
Chapter 6, we summarize the main points discussed in the body of this thesis.
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Chapter 2

Particle Swarm
Optimization

In this chapter, a detailed description of the Particle Swarm Optimization (PSO)
field is presented. In order to have a clearer picture of its development, we first
present some of its antecedents and the theories that served as inspiration for its
first proponents. We then describe the first algorithmic variants. We continue
by presenting the algorithmic variants that are part of our empirical comparison
(to be presented in Chapters 4 and 5). Finally, we briefly describe some of the
advances done in other aspects of the technique.

2.1 Antecedents

PSO has its roots in computer graphics, simulation and theories of social adap-
tation. In the following, we describe some of the ideas drawn from these areas
that gave birth to PSO.

2.1.1 Particle Systems

In the early 1980’s, tridimensional computer-generated graphics started being
introduced into TV and film productions. Rigid objects were, and are still,
modeled by sets of polygons arranged in such a way as to give the impression of
depth. Many objects can be represented in this way, but many others cannot.
Examples of such objects are fire, smoke, water and clouds.

To tackle this problem, Reeves [43] proposed particle systems to model
“fuzzy” dynamic objects. A particle system is composed of several tiny ele-
ments that move in space. These elements have a set of attributes such as an
initial position, an initial velocity, a lifetime, an initial size, an initial color, etc.
Their kinematics is governed by classical physics laws. A set of rules determine
other aspects of the dynamics of a particle system; for example, its color or the
size of the particles.

During simulation, each particle is independent of all other particles and
moves in a (commonly) three dimensional space. Particles’ trajectories are ulti-
mately the result of the interaction of their initial attributes and the environment
physics.
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2.1.2 Simulated Bird Flocks

Particle systems can exhibit a complex behavior if a script handles each particle’s
movement or embedded behavior (e.g., color change). Scripts can also take into
account some conditions present in the environment. In this way, the behavior
of particles can be reactive.

Reynolds [44] used a particle system to simulate the collective behavior of a
flock of birds using the reactive script technique mentioned above. In his sim-
ulations, particles (representing birds) had a “body” made of a polygon mesh.
Static rigid objects were also part of the simulated environment. The novelty
in Reynolds’ work was that it considered particles as part of the environment.
Since the behavior of a particle was controlled by a script and each particle
was independent from the others, the interaction between particles gave as a
result an “emergent” collective behavior that resembled a flock of birds. The
behavioral rules found by Reynolds served as a starting point for the design of
PSO.

In Reynolds’ model there are three categories of behavioral rules. In order
of decreasing precedence, they are:

• Collision Avoidance. These allow a bird-oid (boid) avoid collisions with
their close neighbors.

• Velocity Matching. Boids try to keep up with their neighbors.

• Flock Centering. These rules maintain the flock aggregated.

The original PSO algorithm is based on the last two categories since particles
do not have volume and therefore, there is no need to take care about collisions.
Recent work considers the first category to avoid the group of particles to col-
lapse. We will later describe this idea in more detail.

2.1.3 Social Adaptation

A key hypothesis in the development of the first PSO algorithm is that the
exchange of information among members of the same species provides an evolu-
tionary advantage [23]. Examples of phenomena that motivate this hypothesis
are fish schooling, bird flocking, animal herding and human social behavior.

Kennedy [21, 22] argues that the search strategy followed by particles in
PSO obeys the principles, we humans, use to improve our own performance
when solving a problem cooperatively. In particular, the idea that we humans
tend to imitate the behavior of others we observe are rewarded in some way. He
affirms that in the original PSO algorithm, particles don’t just try to imitate
the behavior of other particles. They have their own beliefs and they also tend
to stick with the best ones. Social adaptation happens when a particle perceives
that other particle’s beliefs are better than its own.

2.2 The Original Particle Swarm Optimization

Algorithm

The PSO concept is a result of mixing the ideas presented in the last section. In
a PSO algorithm a number of solutions to an optimization problem are updated
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according to some form of interaction among them. This is very similar to what
happens in a particle system in a computer graphics environment, in which
particles react to what other particles do. The rules devised by Reynolds to
simulate a flock of birds inspired the rules that governs the update rules in a
PSO algorithm. Having a rough historical perspective of the development of
the PSO technique, let us now go into its details.

In order to optimize an unconstrained d-dimensional objective function f :
Rd → R, the original PSO algorithm [11, 23] is initialized with a population
of complete solutions (called particles) {p1, . . . , pk} = P , randomly located in
the solution space. The objective function determines the quality of a particle’s
position, that is, the quality of the solution it represents.

A particle pi at time step t has a position vector ~xti and an associated velocity
vector ~vti . Every particle “remembers” the position in which it has received the
best evaluation of the objective function. This memory is represented by vector
~pbesti. This vector is updated every time particle pi finds a better position.

At the swarm level, the vector ~gbest stores the best position any particle
has ever visited. This means that if we face a minimization problem, then
f( ~gbest) ≤ f( ~pbesti) ∀pi ∈ P . A similar idea is used for maximization problems.

The algorithm iterates updating particles’ velocity and position until a stop-
ping criterion is met, usually a sufficiently good solution value or a maximum
number of iterations or function evaluations. The update rules are:

~vt+1
i = ~vti + ϕ1 · ~U1(0, 1) ∗ ( ~pbesti − ~xti) + ϕ2 · ~U2(0, 1) ∗ ( ~gbest− ~xti) , (2.1)

~xt+1
i = ~xti + ~vt+1

i , (2.2)

where ϕ1 and ϕ2 are two constants called the cognitive and social coefficients
respectively, ~U1(0, 1) and ~U2(0, 1) are two d-dimensional uniformly distributed
random vectors (generated every iteration) in which each component goes from
zero to one, and ∗ is an element-by-element vector multiplication operator. The
values of ϕ1 and ϕ2 are parameters of the algorithm, but in the original version
they are given a value of 2.

In Algorithm 1 we show a pseudocode version of the original PSO algorithm.
Of course, in a real implementation, every time a particle is evaluated, the value
returned by the objective function is stored in variables. In Algorithm 1 this
level of detail is not present.

In the original PSO algorithm a particle has two attractors: its own previous
best position, and the swarm’s global best position. Previous experience with
population-based optimization algorithms dictated that a strong bias towards
the best solution so far may lead to premature convergence; therefore, the so-
called local version of the PSO algorithm was devised.

2.2.1 Local Particle Swarm Optimizer

An early variant of the original PSO algorithm was proposed by Eberhart and
Kennedy [11] in which a particle does not accelerate towards the swarm’s global
best solution. Instead, it accelerates towards the best solution found within its
local topological neighborhood. A particle pi has a topological neighborhood
Ni ⊆ P (remember that P is the set of particles in the swarm) of particles.
Note that this definition does not restrict a particle pi of being a neighbor of
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Algorithm 1 Pseudocode version of the original PSO algorithm

{Initialization}
for i = 1 to k do

Create particle pi
Initialize its vectors ~xi and ~vi to random values
Set ~pbesti = ~xi

end for
Set ~gbest = ~x0

{Main Loop}
Set t = 0
while gbest is not good enough or t < tmax do
{Evaluation Loop}
for i = 1 to k do

if f(~xi) is better than f( ~pbesti) then

Set ~pbesti = ~xi
end if
if f( ~pbesti) is better than f( ~gbest) then

Set ~gbest = ~pbesti
end if

end for
{Update Loop}
for i = 1 to k do

Generate ~U1(0, 1) and ~U2(0, 1)

Set ~vi = ~vi + ϕ1 · ~U1(0, 1) ∗ ( ~pbesti − ~xi) + ϕ2 · ~U2(0, 1) ∗ ( ~gbest− ~xi)
Set ~xi = ~xi + ~vi

end for
Set t = t+ 1

end while

itself. It is called topological, because it does not consider the actual spatial
arrangement of the particles in the search space.

In the local version of the PSO algorithm, Equation 2.1 becomes

~vt+1
i = ~vti + ϕ1 · ~U1(0, 1) ∗ ( ~pbesti − ~xti) + ϕ2 · ~U2(0, 1) ∗ ( ~lbesti − ~xti) , (2.3)

where ~lbesti = argmin
pj∈Ni

f( ~pbestj) for minimization problems1. Note that the

original version of the PSO is just a special case of the local version using a
fully connected topology.

The definition of the topological neighborhood is dependent on the way the
algorithm is implemented. In the original proposal, all particles were assumed to
be stored in a cyclic bidimensional array. To determine the vector ~lbesti, particle
pi compares its solution against those of particles stored in indices i−m to i+m,
with m being the so-called “radius” of the neighborhood.

The topological arrangement just described, is known as the circle or ring
topology, but there are others such as the wheel topology in which all individuals

1From now on, all descriptions will assume minimization problems. Similar reasoning can
be used for maximization problems.
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are connected to a single central particle. Figure 2.1 shows some topological
arrangements used in PSO.

(a) Fully connected (b) Ring

(c) Wheel

Figure 2.1: Some commonly used topologies in PSO algorithms. Nodes represent

particles and edges represent inter-particle influences. A particle’s neighborhood is

composed of all the particles reachable by an edge.

2.3 Particle Swarm Optimizers

One of the most active areas of research in PSO has been that of algorithmic
modifications. This has resulted in several algorithmic variations of the original
PSO algorithm. In the following subsections we will describe the algorithmic
variants that are part of our empirical comparison. In our eyes, they are among
the most influential and promising algorithmic variations. The order of descrip-
tion is (to some extent) chronological. This will help the reader to appreciate
the significance of some of the ideas introduced by each variant.

2.3.1 Canonical Particle Swarm Optimizer

Clerc and Kennedy [7] introduced a constriction factor into the velocity update
rule of the original PSO algorithm. The purpose of this factor is to avoid
particles’ velocities to increase towards infinity, a phenomenon present in the
original PSO [12, 49].

9



This constriction factor is added in Equation 2.3 giving

~vt+1
i = χ ·

(
~vti + ϕ1 · ~U1(0, 1) ∗ ( ~pbesti − ~xti) + ϕ2 · ~U2(0, 1) ∗ ( ~lbesti − ~xti)

)
,

(2.4)
with

χ =
2 · k∣∣∣2− ϕ−
√
ϕ2 − 4ϕ

∣∣∣
, (2.5)

where k ∈ [0, 1], ϕ = ϕ1 +ϕ2 and ϕ > 4. Usually, k is set to 1 and both ϕ1 and
ϕ2 are set to 2.05, giving as a result χ equal to 0.729 [12, 56].

Even though Clerc and Kennedy proposed a way to choose some of the free
parameters of the original PSO and not really a different algorithm, it has been
so widely used that it is known as the canonical PSO.

2.3.2 Time-Varying Inertia Weight Particle Swarm Opti-
mizer

Shi and Eberhart [48, 50] noticed that by eliminating the first term of Equa-

tion 2.1, the particle swarm searched within the region around particles’ ~lbesti
vectors; hence, they concluded that the velocity term gives the swarm the op-
portunity to explore other regions.

Given the fact that it is widely accepted that an optimization algorithm
should balance its diversification–intensification behavior, Shi and Eberhart in-
troduced the idea of a control factor called inertia weight. The velocity update
rule was modified as follows

~vt+1
i = w(t) ·~vti +ϕ1 · ~U1(0, 1) ∗ ( ~pbesti−~xti) +ϕ2 · ~U2(0, 1) ∗ ( ~lbesti−~xti) , (2.6)

where w(t) is the inertia weight which is usually a time-dependent function.
In this PSO variant, ϕ1 and ϕ2 are both set to 2 just as in the original PSO
algorithm. Note that the canonical PSO is a special case of the inertia weight
variant in which w(t) = 0.729 and the coefficients ϕ1 and ϕ2 are set to 0.729 ·
2.05 = 1.49445.

Intuition dictates that w(t) should be a time-decreasing function of time
since we want the algorithm to explore the search space during the first iter-
ations and to focus on the promising regions afterwards. This approach was
the one proposed by Shi and Eberhart and was proved to be useful [48, 49, 50].
Nevertheless, Zheng et al. [58, 59] studied the effects of using a time-increasing
inertia weight function showing also that, in some cases, it provides a faster con-
vergence rate. An investigation on the nonlinearity of a time-decreasing inertia
weight function was conducted by Chatterjee and Siarry [6].

The function used to schedule the inertia weight is defined as

w(t) =
tmax − t
tmax

· (inertiamax − inertiamin) + inertiamax , (2.7)

where tmax marks the time at which w(t) = inertiamin, inertiamax and inertiamin
are the maximum and minimum values the inertia weight can take, respectively.

The most widely used approach, is the one that uses a decreasing inertia
weight with a starting value of 0.9 and 0.4 as the final one. Zheng et al., use
the opposite settings. In this case, Equation 2.7 is used in the same way, except
that inertiamax and inertiamin are interchanged.
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2.3.3 Stochastic Inertia Weight Particle Swarm Optimizer

Eberhart and Shi [13] proposed another variant in which the inertia weight is
randomly selected according to a uniform distribution in the range [0.5,1.0].
This range was inspired by Clerc and Kennedy’s constriction factor because the
expected value of the inertia weight in this case is 0.75 ≈ 0.729. In this version,
the acceleration coefficients are set to 1.494 as a result of the multiplication
χ·ϕ1,2. Although this variant was originally proposed for dynamic environments,
it has also been shown to be a competitive optimizer for static ones [42].

2.3.4 Fully Informed Particle Swarm Optimizer

In PSO, population topologies serve as a method to select the vector ~lbesti that
will guide particle i in its search. The function of vector ~lbesti is that of an
attractor. But the attraction point need not be a position previously visited by
a particle. In the spirit of the PSO paradigm, it just needs to be a “good” (in
terms of the value of the objective function) point.

Based on this reasoning, Mendes et al. [33] proposed the fully informed par-
ticle swarm (FIPS), in which a particle uses information from all its topological
neighbors. This variant also uses Clerc and Kennedy’s constriction factor since
it does not enforce that the value ϕ (see Section 2.3.1) should be split only
between two attractors.

For a given particle, the way ϕ (i.e., the sum of the acceleration coefficients)
is decomposed is ϕk = ϕ/|Ni| ∀pk ∈ Ni whereNi is the neighborhood of particle
i. As a result, the new velocity update equation becomes

~vt+1
i = χ


~vti +

∑

pk∈Ni
ϕk · W( ~pbestk) · ~Uk(0, 1) ∗ ( ~pbestk − ~xti)


 , (2.8)

where W : Rd → R is a weighting function. The goal of W( ~pbesti) is to provide

information about the quality of the attractor ~pbesti. The normalized objective

function value of vector ~pbesti could serve well, for example.
The effects of using different topologies on the performance and behavior of

PSO algorithms are presented in Section 2.4.2.

2.3.5 Self-Organizing Hierarchical Particle Swarm Opti-
mizer with Time-varying Acceleration Coefficients

We mentioned in Section 2.3.2 that Shi and Eberhart noticed a convergent
behavior of the particle swarm if the previous velocity term was eliminated
from the velocity update rule. Ratnaweera et al. [42], contrary to the approach
taken by Shi and Eberhart, kept this modification and exploited it.

In HPSOTVAC, if any component of a particle’s velocity vector becomes
zero, it is reinitialized to a value proportional to the maximum allowable ve-
locity Vmax. To amplify the local search behavior of the swarm, HPSOTVAC
linearly adapts the value of the acceleration coefficients ϕ1 and ϕ2. The cogni-
tive coefficient, ϕ1, is decreased from 2.5 to 0.5 and the social coefficient, ϕ2, is
increased from 0.5 to 2.5.

To avoid the problem of setting a proper reinitialization velocity, HPSOT-
VAC linearly decreases it from Vmax at the beginning of the run to 0.1 ·Vmax at
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the end. As in the time-decreasing inertia weight variant, a low reinitialization
velocity near the end of the run, allows particles to move slowly near the best
region they found.

2.3.6 Adaptive Hierarchical Particle Swarm Optimizer

Proposed by Janson and Middendorf [19], the adaptive hierarchical PSO (AH-
PSO) is an example of a PSO with dynamic adaptation of the population topol-
ogy. Contrary to other approaches, such as the one of Suganthan [54] in which
the Euclidean distance between particles was used to decide when to add (or
delete) a particle from another particle’s neighborhood, Janson and Middendorf
do not use a time-intensive operation as a criterion to adapt the topology.

In addition, in AHPSO, the topology is a tree-like structure in which particles
with better objective function evaluations are located in the upper nodes of the
tree. At each iteration, a child particle updates its velocity considering its
own previous best performance and the previous best performance of its parent.
Additionally, before the velocity updating process takes place, the previous best
fitness value of any particle is compared with that of its parent. If it is better,
child and parent swap their positions in the hierarchy.

The branching degree of the tree is a factor that can balance the diversi-
fication-intensification behavior of the algorithm. To dynamically adapt the
algorithm to the stage of the optimization process, the branching degree is
decreased by kadapt degrees until a certain minimum degree dmin is reached.
This process takes place every fadapt number of iterations.

2.4 Some Advances in Other Aspects of Particle

Swarm Optimization

Research in PSO has not only focused on the development of algorithmic vari-
ants but also on other fundamental aspects. For example, much effort has been
devoted to the problem of choosing an optimal set of parameters for PSO algo-
rithms. There has also been research on the effects of using different population
topologies. There have been hybridizations with other optimization techniques
and many applications have been proposed.

In this section, we will briefly describe some of the most important results
that have been obtained in these areas.

2.4.1 Convergence Analysis and Parameter Selection

Since its birth, PSO research was of an empirical nature. There was no informed
way to tune parameters and they were usually set after some trial and error tests.
Moreover, there was no clue about how the algorithm actually worked or if it
was able to converge at all.

Early on, it was clear that (sometimes) particles increased their velocities
very fast. This caused the particle swarm to “explode” [7]. The first approach
to cope with this problem was to clamp the maximum allowable velocity to a
predefined value. Empirical evidence suggested that a good choice was to set
Vmax = Xmax where Xmax is the limit of the search range [49].
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The problem of increasing velocities is that particles may go outside the
search range and never come back again. If a particle swarm explodes, there
is no hope of solving the problem at hand. This motivated researchers to look
closer at particles’ behavior.

The first efforts to formally analyze the behavior of a particle in a search
space were conducted by Ozcan and Mohan [36, 37]. Their study was focused
on a simplified version of the original version of the PSO algorithm. They found
that the behavior of particles is strongly governed by the value ϕ = ϕ1 + ϕ2.
Specifically, they found that depending on the value this parameter could take,
a particle will move over the optimum following a sinusoidal trajectory with
different amplitudes and frequencies. In one particular case, the amplitude of a
particle’s sinusoidal trajectory increases, drifting it to the infinity.

We already mentioned Clerc and Kennedy’s work [7] on PSO convergence
analysis and their addition of the constriction factor to the classical velocity
update equation. A detailed exposition of the mathematical process through
which Equations 2.4 and 2.5 were derived is not presented here. The interested
reader is referred to the original article. It is important to note, however, that
the use of the word convergence in Clerc and Kennedy’s work can be misleading
for those readers who are familiar with optimization theory. The constriction
factor forces the swarm to converge to a stable point in the search space which
might or might not be a local optimum. It a mechanism intended to avoid the
explosion of the swarm.

Trelea [56] presented another approach to determine convergent behavior
and gave some guidelines to the selection of the constriction factor and the
acceleration coefficients.

The formal analyses carried out up to now, have considered a simplified
particle swarm model in which randomness is eliminated and there is no inter-
action between particles. As a result, even though there are some interesting
theoretical results, empirical work is still needed to tune the parameters of a
PSO algorithm for solving a particular problem.

Poli et al. [39, 40] applied genetic programming techniques to evolve the
velocity and position update rules of a particle swarm when solving specific
problems. This work can be considered the “extreme” with respect to algorithm
tuning since, in fact, specific variants are devised for specific problems.

2.4.2 Population Topologies

The behavior of a particle swarm is the result of the trajectories followed by
particles through the search space, which in turn are the result of particles’ past
success and that of their neighbors. For an adequate performance, it is essential
to properly select particles’ neighbors. Instead of choosing a neighbor based
on its position in space (which implies the use of costly procedures, such as
the computation of the Euclidean distance), a mechanism that permits a cheap
neighbor selection is that of a population topology.

The early proposal of a local version of the original PSO algorithm reflects
the realization that a bad topology may result in poor performance. A group
of researchers, led by Mendes [25, 31, 32, 33], have studied the effects of using
different population topologies in the performance of the canonical PSO as well
as in the fully informed particle swarm. Their results show that there are in-
teractions between the population topology and the problem being solved. For

13



some kind of problems, a fully connected topology works best, for others, a
ring topology does. In a recent study in which dynamically changing topologies
as well as randomly generated topologies were tested, Mohais et al. [34] con-
clude that random topologies have the same or even better performance than
nonrandom topologies.

2.4.3 Hybridizations

As any other stochastic optimization technique, PSO has some strengths and
weaknesses. An active research area in the field of optimization in general,
is the hybridization of algorithms. The underlying hypothesis is that two or
more algorithms’ strengths can be combined to produce a single more powerful
algorithm.

Many works in this research area have dealt with the integration of some
operators from evolutionary algorithms into PSO. For example, Angeline [2]
proposed the use of selection in PSO to improve its effectiveness. In his proposal,
the best half of the particles population was selected and copied into the worst
half. Different mutation operators have also been tried in PSO [15, 47, 53] to
preserve some diversity among particles. A reproduction scheme in PSO was
introduced by Løvbjerg et al. [27]. They use the arithmetic crossover operator
which is commonly used in real-valued genetic algorithms. Additionally they
divide the population into subpopulations in order to preserve some diversity.

Another approach towards the hybridization of algorithms is to use one
algorithm as a component of another one. One example of such approach is the
work of Juang [20] in which a genetic algorithm uses a PSO algorithm to enhance
the elite of the population. The inspiring metaphor is that individuals can
become fitter (from an evolutionary perspective) during their lifetime and that
not only genetic material inherited from their parents determine their chance of
survival.

Finally, we would like to mention that PSO has also been enriched with con-
cepts derived from the other prominent exponent of swarm intelligent systems;
namely, Ant Colony Optimization (ACO) [9]. Holden and Freitas [16] combined
the power of PSO for optimizing real-valued functions with the power of ACO
for optimizing discrete variables. The resulting algorithm was capable of deal-
ing with discrete and continuous variables at the same time. They applied this
algorithm to the discovery of classification rules for hierarchical data.
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Chapter 3

An Empirical Evaluation
Methodology of Stochastic
Optimization Algorithms

In this chapter, we describe the empirical evaluation methodology we used to
assess the performance of the different Particle Swarm Optimization (PSO)
algorithms we included in our study. This empirical methodology is the one
proposed by Hoos and Stützle [17] and is based on what they call run-time
and solution-quality distributions. We describe this methodology along with its
motivation and advantages. We first explain the foundations of the method
and give some examples of its application. After that, we compare the adopted
methodology with the one that is currently in use by the PSO community.

3.1 Stochastic Optimization Algorithms and
their Run-Time and Solution-Quality

Distributions

Most stochastic optimization algorithms try to find an optimal solution to a
problem in an iterative way. Therefore, and since the exploration of the search
space is heuristic, we normally do not know when to stop a run of the optimiza-
tion algorithm. The problem is that we might either, stop the run prematurely
without getting any useful result, or that we may be wasting computing time by
making the algorithm run for longer when it has already reached a sufficiently
good solution.

However, there may be situations in which we have some knowledge about
the problem. Normally, we can use this knowledge to establish sensible termi-
nation criteria. For example, we might know the objective function value of the
optimal solution or we might have an estimation of it. In this case, we can stop
a run of an optimization algorithm whenever the objective function value of the
solution found by the algorithm is close enough to the goal.

There may be other cases in which the evaluation of the objective function is
so costly, that we cannot afford many function evaluations in our search for the
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optimal solution. In this case, a maximum number of objective function evalua-
tions may be the termination criterion. We can generalize this case to situations
in which we cannot spare resources (including time) in the optimization process.

For convenience, let us label this cases as scenarios under which we may
apply a stochastic optimization algorithm:

Scenario 1. We have some knowledge (e.g., in the form of an estimation of the
objective function value of the optimal solution) about the problem and
our main concern is to find, as fast as possible, a solution whose quality
is close enough to the goal.

Scenario 2. We have scarce resources and we want the best possible solution
given a fixed time or computational effort limit.

In case of scenario 1, the time required by an implementation of a stochastic
optimization algorithm to find a solution of a certain quality can be modeled
as a random variable. Indeed, if we run a stochastic optimization algorithm
twice or more times using as stopping criterion a minimum acceptable solution
quality, we will see that the time we have to wait for the algorithm to return a
solution is different from run to run. Similarly, in cases type 2, if we run the
same algorithm several times using a maximum number of objective function
evaluations as stopping criterion, the quality of the returned solution will vary
from run to run. The quality of the solution returned by the algorithm given
a fixed time or computational effort limit can also be modeled as a random
variable.

The probability distributions of the run-time and solution-quality of a sto-
chastic optimization algorithm applied to a particular problem can give useful
information about the performance of the algorithm. Additionally, they can help
in the identification of weaknesses of the algorithm and thus, they can be used
as analysis tools of stochastic optimization algorithms. Since these probability
distributions cannot be analytically derived, we discuss the issue of empirically
estimating them in the following sections.

3.1.1 Estimating Run-Time Distributions

Let Tq be the random variable describing the time needed by a stochastic opti-
mization algorithm to find a solution of quality q. The cumulative distribution
function RTq(t) of Tq is called the run-time distribution and it is defined as

RTq(t) = P (Tq ≤ t) , (3.1)

where the right-hand side represents the probability that Tq takes a value less
than or equal to t.

There is an alternative way of measuring computational effort besides using
computing time, and that is counting the number of times the most expensive
operations are performed. In most practical applications, the evaluation of the
objective function is the most expensive operation and therefore, it is common
practice to use this number as a measure of computational effort. When using
the number of critical operations instead of time, we are interested in what is
called a run-length distribution.

Formally, a run-length distribution is defined as

RLq(l) = P (Lq ≤ l) , (3.2)
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where Lq is the random variable describing the number of critical operations
needed by a stochastic optimization algorithm to find a solution of quality q.
P (Lq ≤ l) is the probability that Lq takes a value less than or equal to a certain
number of critical operations l.

In order to estimate the run-time or run-length distribution of an algorithm
on a particular problem, it suffices to run the algorithm several times and record
information relative to solution improvement. In every run, we need to record
the time or the number of critical operations, and the solution quality whenever
a new best solution is found by the algorithm.

Assuming that the data have been collected by running n times (using a
different random number generator seed in every run) the same algorithm on the
same problem, the empirical run-time distribution can be computed as follows

R̂Tq(t) =
1

n

n∑

i=1

I(rti(q) ≤ t) , (3.3)

where I is an indicator function defined as

I(x ≤ y) =

{
1 if, indeed, x ≤ y
0 otherwise

, (3.4)

and rti(q) is the time required by the i-th run to find a solution of quality at
least as good as q.

The empirical run-length distribution is estimated in a very similar way as
the run-time distribution. It requires to substitute rti(q) for rli(q) in Equa-
tion 3.3. The function rli(q) is defined as the number of critical operations
needed by the i-th run to find a solution of quality q or better.

The solution quality threshold q can be specified as an absolute value or as a
relative one. Relative solution quality thresholds can be specified as percentage
deviations from the known or estimated optimum value. In this case, q [%] =
100 · (f(s) − f(sopt))/f(sopt), where f(s) is the value of a certain solution s,
and f(sopt) is the value of the optimum. In order to avoid a division by zero,
the objective function can be biased by some constant factor c, so that f(s) =
g(s) + c, where g is the original objective function.

It is impossible to estimate the run-time distribution over the full domain
of RTq, that is, R+. This is obvious since we cannot run an algorithm for
eternity. In practice, we have to set a maximum time limit, or in the case of
run-length distributions, a maximum number of critical operations. However,
for most practical cases, a sufficiently large limit will suffice to have an idea of
the performance behavior of the algorithm under study.

Figure 3.1 shows an example of empirical run-length distributions of a sto-
chastic optimization algorithm1. It shows run-length distributions at different
solution qualities. These empirical distributions were computed using 100 inde-
pendent trials each running for 1 000 000 function evaluations.

In run-time or run-length plots, the x-axis represents time or the number of
critical operations respectively, and the y-axis represents the probability of solv-
ing the problem at the desired quality level. We defer the topic of interpreting
run-time or run-length distribution plots to Section 3.1.3.

1Details about the problem and the algorithm are unimportant for the presentation pur-
pose.
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Figure 3.1: Example of an empirical run-length distribution. The plots correspond

to run-length distributions at different solution qualities.

3.1.2 Estimating Solution-Quality Distributions

The solution-quality distribution of a stochastic optimization algorithm applied
to a particular problem is defined as

SQt(q) = P (Qt ≤ q) , (3.5)

where Qt is a random variable that represents the solution quality achieved
by an algorithm exactly after some effort limit t (time or number of critical
operations). P (Qt ≤ q) is the probability that Qt takes on a value less than
or equal to q. If q is specified as the percentage deviation from a goal, the
smaller q, the better. From the definition, it is clear that SQt is the cumulative
probability distribution of Qt.

In order to estimate the solution-quality distribution, we need exactly the
same data for estimating the run-time distribution. The expression we need to
compute the empirical solution-quality distribution is also very similar:

ŜQt(q) =
1

n

n∑

i=1

I(sqi(t) ≤ q) , (3.6)

where n is the number of independent trials, I is an indicator function as defined
in Equation 3.4, sqi(t) is the solution quality achieved by the i-th run at time
(or number of function evaluations) t.

Figure 3.2 shows examples of solution-quality distributions at different com-
putational effort limits. These solution-quality distributions correspond to a
20-particle canonical particle swarm optimizer using a ring population topology
applied to a 30-dimensional Rastrigin problem.

18



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

P
ro

ba
bi

lit
y 

of
 s

ol
vi

ng
 th

e 
pr

ob
le

m

Relative solution quality [%]

Solution quality distribution

100
1000

10000
100000

1000000

Figure 3.2: Example of an empirical estimation of solution-quality distributions. The

plots correspond to the solution-quality distributions at different effort limits (mea-

sured as objective function evaluations) of a 20-particle canonical particle swarm opti-

mizer using a ring population topology applied to a 30-dimensional Rastrigin problem.

In solution-quality distribution plots, the x-axis corresponds to the solution
quality (either absolute or relative), and the y-axis corresponds to the probabil-
ity of finding a solution of a required quality given some fixed effort limit.

3.1.3 Interpretation of Run-Time Distributions

Let us suppose for a moment that we are interested in the run-time behavior
of a deterministic optimization algorithm applied to some problem. From the
very nature of the algorithm, we would observe that the time or effort needed
to find a solution of a particular quality is always the same no matter how
many times we run the algorithm2. In a run-time or run-length distribution
graph, we would see a vertical line directly above the time or effort required to
find the solution of the desired quality. Of course, this will be the case if the
deterministic algorithm is capable of finding a solution of the desired quality in
first place.

The case described above is an extreme case in the shape of run-time distri-
butions. Another extreme case is when an algorithm is incapable of finding at
least one solution of the desired quality within the time or effort limits allocated
for the empirical estimation. In this case, we can draw either of the following
conclusions: (i) the algorithm is simply not capable of finding a solution of the
desired quality within the allocated estimation range, or (ii) a solution of the
desired quality does not exist. However, as we will see, there is sometimes a
“trend” in the shape and position of run-time or run-length distributions that

2Neglecting random effects due to other factors, such as CPU load.
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can help us guess how a distribution would look like for another solution quality
threshold. In any case, since the necessary data to estimate a run-time or run-
length distribution is the same for any solution quality, we can always confirm
our guesses.

There is a third case in which the estimated distribution seems to be in-
complete. This sometimes happens when some runs simply “got lost” and did
not find a solution of the desired quality within the allocated time or effort
limit. This phenomenon is of particular interest when we want to improve the
performance of an algorithm. We will discuss more about this later in this
section.

In general, we can expect run-time or run-length distributions to have shapes
that go from almost vertical to almost horizontal both in cut or uncut forms.
Figure 3.3 shows some examples of empirical run-length distributions of different
shapes.

Run-time distributions provide information about the behavior of a stochas-
tic optimization algorithm in two main respects at least. First, they can tell us
how easy/hard is to find the desired solution quality in the specific problem the
algorithm is applied to, and second, they can tell us how prone the algorithm
is to stagnating. Run-time distributions are therefore, useful for comparing the
performance of stochastic optimization algorithms.

If the probability of finding a desired solution quality is one after just a few
objective function evaluations, we can say that the requirement was easy for
the algorithm to fulfill. On the other hand, if the probability is one but after
many more evaluations, we can say that the requirement is difficult to fulfill.
Figure 3.4 shows examples of run-length distributions for easy, moderate and
difficult solution quality requirements. In general, the easier the requirement,
the more to the left the distribution will tend to appear. Likewise, the harder
the requirement, the more to the right a distribution will appear.

Note that in order to be considered easy, moderately difficult or hard, the
bulk of the distribution needs to be concentrated in the same region (e.g., Fig-
ure 3.3(a)). If a distribution covered uniformly the x-axis, we could not say
anything about the easiness/hardness of the solution quality requirement.

With respect to the propensity of an algorithm to stagnate on a particular
problem, run-time or run-length distributions help us to qualitatively determine
the severity of the stagnation. An algorithm with propensity to stagnate will
show a slowly-increasing or a non-increasing probability (towards the right tail
of the distribution) of finding a solution of a given quality over the allocated time
limit. Cut distributions such as the ones shown in Figure 3.3(c) are examples of
algorithms with severe stagnating behavior. These algorithms sometimes find a
solution in a reasonable time, but there are also occasions in which, even after
letting them run for much longer, no solution is found. A possible explanation
to this phenomenon is that the algorithm gets trapped in a region of the search
space that contains no solutions (with the desired quality level).

An example of a slowly-increasing run-time distribution is shown in Fig-
ure 3.5. In this graph, we can see how in three out of four desired solution
qualities, the algorithm that produced the data for these distributions suffers
from a strong stagnating behavior. Note how the probability increases but at
an extremely slow rate (recall that the x-axis is in logarithmic scale). The prob-
ability of finding a solution of 0.001% away from the optimum is about 0.26
after 10 000 function evaluations, and only 0.34 after 100 000 evaluations.
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(b) Gradually increasing distributions
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(c) Cut distributions

Figure 3.3: Empirical run-length distributions of different shapes. Figure 3.3(a)shows

a steep distribution across different solution qualities. Figure 3.3(b) shows a gradually

increasing distribution across solution qualities. Figure 3.3(c) shows cut distributions

across solution qualities.
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Figure 3.4: Run-length distributions showing easy, moderate and difficult solution

quality requirements. The leftmost distribution corresponds to the easy case, the

one in the center corresponds to the moderately difficult case, and the rightmost

distribution corresponds to the hardest requirement.
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Figure 3.5: Example of a run-length distribution showing an algorithm with strong

stagnating behavior. Three out of four solution qualities show how the algorithm that

produced these distributions exhibits strong stagnating behavior. Note the logarithmic

scale in the x-axis.
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We said before that run-time or run-length distributions provide us infor-
mation that could be used to improve the performance of an algorithm. If after
estimating the run-time or run-length distribution of an algorithm we see that
it tends to stagnate, we could either complement it with an extra diversification
mechanism or we could promote its intensification behavior. How the analysis of
run-time distributions can suggest improvement strategies is presented in more
detail in Chapter 5.

3.1.4 Interpretation of Solution-Quality Distributions

If we run a deterministic optimization algorithm twice or more times with a
maximum effort limit, it will always return a solution with a certain quality
level. Therefore, the solution-quality distribution of a deterministic optimiza-
tion algorithm will resemble a step function that will have a zero value for
solution qualities that are better than the best solution quality achievable by
the algorithm given a maximum computational effort limit3.

A stochastic optimization algorithm is expected to exhibit solution-quality
distributions with increasing probability towards quality levels away from the
optimum. A slowly increasing probability is evidence of a high variability in
the solution quality achievable by the algorithm given a fixed effort limit. It
is also expected that if the algorithm is given more resources (i.e., more time
or more objective function evaluations) to use, the probability of finding high
quality solutions increases. Here, the phenomenon of stagnation can be detected
if the solution-quality distributions (for two very different computational effort
limits) superimpose or if they are very near from each other. Figure 3.6 shows
one example of each of these two cases.

In general, if we need high quality solutions, we must be prepared to allocate
more resources to the optimization algorithm. Of course, as we have seen, if
the optimization algorithm exhibits a strong stagnating behavior, resources may
end up being wasted.

Solution-quality distributions can also reveal an interesting phenomenon.
An algorithm can get trapped in a suboptimal region of the search space from
time to time and its solution-quality distributions can tell us the quality level
of this region and with what probability the algorithm is capable of escaping
from it. Figure 3.7 shows a series of solution-quality distributions in which it
is clear the quality level of the “trap” in the search space and the probability
of escaping from it for different effort limits. In this example, the “trap” lies
somewhere in between 0.003 and 0.004% away from the known optimum. The
escape probabilities are 0.56, 0.54, 0.36, and 0.08 for 1 000 000, 100 000, 10 000,
and 1 000 maximum objective function evaluations respectively. For 100 maxi-
mum objective function evaluations the algorithm is not even able to reach the
“trap” region and therefore there is no escape probability associated with it.

3Recall, that if solution qualities are specified as percentage deviations, lower percentages
represent better solutions.

23



 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1  10  100

P
ro

ba
bi

lit
y 

of
 s

ol
vi

ng
 th

e 
pr

ob
le

m

Relative solution quality [%]

Solution quality distribution

SQD

(a) Slowly increasing distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1  10  100

P
ro

ba
bi

lit
y 

of
 s

ol
vi

ng
 th

e 
pr

ob
le

m

Relative solution quality [%]

Solution quality distribution

100 fes
1000 fes

10000 fes
100000 fes

1000000 fes

(b) Stagnation behavior

Figure 3.6: High variability of solution quality levels and stagnation in solution-

quality distributions. Figure 3.6(a) shows a slowly increasing solution-quality distri-

bution. Sign of a high variability in achievable solution quality levels. Figure 3.6(b)

shows how the distributions for 10 000 function evaluations or more, superimpose each

other. A sign of stagnating behavior. The label “fes” refers to the number of function

evaluations
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Figure 3.7: A solution-quality distribution revealing a “trap”’ in the search space

and the escape probability for different effort limits. The “trap” lies somewhere be-

tween 0.003 and 0.004% away from the known optimum. The escape probabilities are

0.56, 0.54, 0.36, and 0.08 for 1 000 000, 100 000, 10 000, and 1 000 maximum objective

function evaluations respectively.

3.2 Run-Time and Solution-Quality Distributions
and Current Evaluation Practices

Within the PSO community, as well as within the optimization community
in general, people are interested in optimization algorithms that return high-
quality solutions with the least possible computational effort. Having this goal
in mind, researchers evaluate the performance of stochastic optimization algo-
rithms by asking the following three questions:

• How many critical operations or iterations does the algorithm need to
achieve a certain solution quality level?

• How often is the algorithm capable of achieving the required solution qual-
ity goal?

• What is the solution quality the algorithm is capable of achieving given a
fixed effort limit?

The first and second questions are related to application scenarios type 1
(see Section 3.1), and the third question is related to application scenarios type
2. In this respect, current practices do not differ from the methodology adopted
for our study. Both methodologies have the same concerns; however, they differ
in the way they try to give answer the above posted questions.

To evaluate an algorithm considering application scenarios type 1, current
evaluation practices fix a goal in the solution quality level of a problem that
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the algorithm is supposed to reach. Then the algorithm is run a number of
times and the average number of iterations or function evaluations needed to
reach the goal is reported. Some measure of dispersion, such as the standard
deviation, is also commonly reported. Based on the results, statements such
as “parameterization A yields a faster algorithm than parameterization B”, or
“algorithm A is faster than algorithm B” are not rare.

There is a high risk of drawing wrong conclusions from this kind of evalu-
ation. A fast convergence rate for goal A does not necessarily implies a fast
convergence rate for goal B. To alleviate this problem, researchers generate
solution-quality development over time (SQT) plots. These plots show the aver-
age solution quality achieved at some iteration or function evaluation number.
These plots provide much more information than fixed-time statistics and allow
a fairer comparison. There is a problem with average-based SQT plots. We have
seen before that some runs cannot get to some (usually high-quality) solutions.
A possible solution is to average over successful runs (runs that indeed reached
the goal) only, but this measure can be misleading. Another problem is that
the average is very sensitive to extreme values.
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Figure 3.8: Example of solution quality development over time plots based on run-

time and solution-quality distributions. It shows the 0.5- (median), 0.75- and 0.9-

quantiles of the bi-variate distribution of (Tq, Qt).

The solution based on run-time and solution-quality distributions is to gen-
erate SQT plots based on certain quantiles of the distribution of the composite
(Tq, Qt) random variable. Recall that Tq is a random variable describing the
time needed by a stochastic optimization algorithm to find a solution of quality
q, and Qt is a random variable that represents the solution quality achieved by
an algorithm exactly after some effort limit t. These plots are insensitive to
extreme values and implicitly deal with unsuccessful runs. Figure 3.8 shows an
example SQT plot based on the 0.5- (median), 0.75- and 0.9-quantiles of the
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bi-variate distribution of (Tq , Qt).
From the analysis of the plots, it can be seen that 90% of the time, the algo-

rithm will achieve a solution that is, in terms of quality, closer than 0.01% away
from the optimum in runs that use up to 1 000 000 function evaluations. This
information would be impossible to obtain using only solution quality statistics
at fixed points in time or average-based SQTs.

The second question in the list is usually answered by counting the number
of times the algorithm succeeded in reaching the predefined goal and dividing
this number by the total number of trials. The result is usually referred to as the
success rate. Another possible interpretation of run-time or run-length distribu-
tions is as the development of the success rate over time. Indeed, estimating a
run-time or run-length distribution is equivalent to computing the success rate
of achieving a certain solution quality level, but at different effort limits.

In current evaluation practices the third question is addressed in a similar
way as the first question. The algorithm is run for a fixed number of iterations or
function evaluations and the achieved solution quality is averaged. This measure
is very often used to draw conclusions in algorithms comparisons. Statements
such as “algorithm A outperformed algorithm B because A got an average so-
lution quality of 0.001 while B only got 0.1” are very tempting when looking
at this kind of statistics. Using solution-quality distributions we are able see
the distribution and therefore we can be more careful when making this kind of
statements.
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Chapter 4

Empirical Evaluation of
Particle Swarm Optimizers

In this chapter, an empirical evaluation of the particle swarm optimizers de-
scribed in Section 2.3 is presented. We begin the presentation by describing
the experimental setup we used in our evaluation. Then, a comparison among
the evaluated algorithms is presented. The last section is devoted to the anal-
ysis of different inertia weight schedules in the particle swarm optimizer with
time-decreasing inertia weight.

4.1 Experimental Setup

Our experimental setup was designed with one objective in mind. We wanted
to test several particle swarm optimizers under the assumption that no a priori
knowledge about the structure of the problem was available. This is the situation
that we face when we are given a real-world problem.

In general, our first approach would be to use the state-of-the-art algorithm
with what are considered “normally good” parameters. For this reason, in our
experimental setup, each algorithm used the same parameterization across all
benchmark problems.

The set of benchmark problems and the actual algorithms’ parameter values
that we used in our experiments are described below.

4.1.1 Benchmark Problems

The benchmark functions that we used in the study presented in this document
are among the most widely used for assessing the performance of evolutionary
algorithms. Even though some of them are considered “easy” problems, they
help us understand how algorithms explore the search space. It is clear that the
goal is not to solve benchmark problems to optimality, but rather to understand
how different particle swarm optimizers behave under different circumstances.

All the benchmark functions that we used in our evaluation have their global
optimum displaced and biased. In most of the cases, we used exactly the same
values that were proposed in the set of benchmark functions used for the special
session on real parameter optimization of the IEEE Congress of Evolutionary
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Computation 2005 [55]. The exact displacement values can be found in Ap-
pendix A.

In our experiments, we used 30-dimensional functions except in the case of
Easom and Schaffer functions that are two-dimensional by definition. In the
following, we describe in some detail each of the benchmark functions used in
our study.

Ackley Function

This function is named after Ackley [1] who invented it. The original version
was a two-dimensional function and it was later generalized to n dimensions by
Bäck [3]. The general form is defined as

f(~x) = −20e−0.2
√

1
n

P
n
i=1 x

2
i − e 1

n

Pn
i=1 cos(2πxi) + 20 + e , (4.1)

where ~x is an n-dimensional vector that is normally located within the range
[−32.0, 32.0]n. The global minimum is located at the origin and its value is zero.
Figure 4.1 shows the Ackley function in two dimensions. On the left, that is, in
Figure 4.1(a) we can see the shape of the function over the whole search range.
In Figure 4.1(b) we can observe a zoom near the global optimum.
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Figure 4.1: Ackley Function. In (a) a two-dimensional Ackley function over the whole

search range. In (b) a zoom of the region that contains the global optimum.

The Ackley function is a nonlinear multimodal function with regularly dis-
tributed local optima.

Easom Function

This function was proposed by Easom [10] to evaluate global optimization tech-
niques. It is a n-dimensional function with a single minimum that is also the
global optimum. The mathematical expression that defines it is

f(~x) = −
n∏

i=1

cos(xi) · e−
Pn
i=1(xi−π)2

, (4.2)

where ~x is an n-dimensional vector normally located within the range [−10.0, 10.0]n.
The global minimum is located at the point (π, . . . , π) and its value is −1. Fig-
ure 4.2 shows a two-dimensional Easom function.
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Figure 4.2: Easom Function. In (a) a two-dimensional Easom function over the whole

search range. In (b) a zoom of the region that contains the global optimum.

The Easom function is characterized by a large plateau compared to the
size of the region that contains the global minimum. It is usually used in its
two-dimensional form.

Griewank Function

The mathematical formula that defines this function is

f(~x) =
1

4000

n∑

i=1

x2
i −

n∏

i=1

cos

(
xi√
i

)
+ 1 , (4.3)

where ~x is an n-dimensional vector located within the range [−600.0, 600.0]n.
The global minimum is located at the origin and its value is zero. Figure 4.3
shows a two-dimensional Griewank function.
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Figure 4.3: Griewank Function. In (a) a two-dimensional Griewank function over the

whole search range. In (b) a zoom of the region that contains the global optimum.

This function has many regularly distributed local minima. However, as n
increases the number of local minima decreases [57].
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Rastrigin Function

Named after Rastrigin [41], this function is mathematically defined as

f(~x) = 10n+

n∑

i=1

(
x2
i − 10 cos(2πxi)

)
, (4.4)

where where ~x is an n-dimensional vector located within the range [−5.12, 5.12]n.
The global minimum is located at the origin and its function value is zero.
Figure 4.4 shows a two-dimensional Rastrigin function.
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Figure 4.4: Rastrigin Function. In (a) a two-dimensional Rastrigin function over the

whole search range. In (b) a zoom of the region that contains the global optimum.

This function is based on the Sphere function (see Section 4.1.1 below) with
a modulator term α cos(2πxi) which induces a “wave” over its surface. The
location of local minima is regularly distributed.

Rosenbrock Function

This function was invented by Rosenbrock [45], and is mathematically defined
as

f(~x) =

n−1∑

i=1

(
100(xi+1 − x2

i )
2 + (xi − 1)2

)
, (4.5)

where ~x is an n-dimensional vector located within the range [−30.0, 30.0]n. The
global optimum is located at (1, . . . , 1) with a function value of zero. Figure 4.5
shows a two-dimensional Rosenbrock function.

This function exhibits a parabolic-shaped deep valley. In the optimization
literature it is considered a difficult problem due to the nonlinear interaction
between variables [35].

Salomon Function

This function is rotation-invariant and was proposed by Salomon [46]. It is
defined as

f(~x) = 1− cos


2π

√√√√
n∑

i=1

x2
i


+ 0.1

√√√√
n∑

i=1

x2
i , (4.6)
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Figure 4.5: Rosenbrock Function. In (a) a two-dimensional Rosenbrock function over

the whole search range. In (b) a zoom of the region that contains the global optimum.

where ~x is an n-dimensional vector located within the range [−100.0, 100.0]n.
The global optimum is located at the origin with a function value of zero. Fig-
ure 4.6 shows a two-dimensional Salomon function.
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Figure 4.6: Salomon Function. In (a) a two-dimensional Salomon function over the

whole search range. In (b) a zoom of the region that contains the global optimum.

Schaffer Function

This function is also known as Schaffer’s F6 or as the sine envelope sine wave.
It is mathematically defined as

f(~x) = 0.5 +
sin2

(√
x2

1 + x2
2

)
− 0.5

(1 + 0.001(x2
1 + x2

2))
2 , (4.7)

where ~x is an two-dimensional vector located within the range [−100.0, 100.0]n.
The global optimum is located at the origin with a function value of zero. Fig-
ure 4.7 shows the Schaffer function.
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Figure 4.7: Schaffer Function. In (a) a two-dimensional Schaffer function over the

whole search range. In (b) a zoom of the region that contains the global optimum.

Even though it is a two-dimensional problem, the global optimum of this
function is usually hard to identify because the local gradients do not provide
much information about the location of the global optimum.

Schwefel Function

This function is also known as Schwefel’s sine root function. It is defined as

f(~x) =

n∑

i=1

−xi sin
(√
|xi|
)
, (4.8)

where ~x is an n-dimensional vector located within the range [−512.0, 512.0]n.
The global optimum is located at (420.9687, . . . , 420.9687) with a function value
of zero. Figure 4.8 shows a two-dimensional Schwefel function.
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Figure 4.8: Schwefel Function. In (a) a two-dimensional Schwefel function over the

whole search range. In (b) a zoom of the region that contains the global optimum.

The main difficulty of this function is that the second best minimum is
very far from the global optimum. In this function, contrary to the case of all
the previous functions, the search range is very important. Outside the search
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range, the Schwefel function can take on values lower than the optimum of
interest within the search range.

Sphere Function

This function is defined as

f(~x) =
n∑

i=1

x2
i , (4.9)

where ~x is an n-dimensional vector located within the range [−100.0, 100.0]n.
The global optimum is located at the origin with a function value of zero. Fig-
ure 4.9 shows a two-dimensional Sphere function. The Sphere function is a
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Figure 4.9: Sphere Function. In (a) a two-dimensional Sphere function over the whole

search range. In (b) a zoom of the region that contains the global optimum.

highly convex, unimodal test function. Not performing well in this function
is considered bad since any gradient descent method would solve this problem
effectively.

Step Function

This function is mathematically defined as

f(~x) = 6n+

n∑

i=1

bxic , (4.10)

where ~x is an n-dimensional vector located within the range [−5.12, 5.12]n. The
global optimum is located at ([−5.12, 5.0), . . . , [−5.12, 5.0)) with a function value
of zero. Figure 4.10 shows a two-dimensional Step function.

The step function is a piece-wise continuous step function with many flat
surfaces. Flat surfaces are considered a problem since they do not provide any
information about the location of the global optimum. The size of the region
where the global optimum is located is small compared to the size of the entire
search range. This can be seen in Figure 4.10(b).
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Figure 4.10: Step Function. In (a) a two-dimensional Step function over the whole

search range. In (b) a zoom of the region that contains the global optimum.

4.1.2 Parameter Settings

In accordance to our goals, we decided to test the particle swarm optimizers that
we included in our study without tuning their set of parameters specifically
for each test problem. Instead, all algorithms were run with the same set of
parameters over all test problems. The specific parameter settings were those
that are normally used in the literature.

Since in our study we vary some parameters to measure their effects on the
algorithms’ performance, the remaining parameters remained fixed. The choice
was based on existing literature. Table 4.1 lists the algorithms’ fixed parameter
settings that we used in our experiments.

The maximum number of function evaluations to find a solution of a certain
quality was set to 1 000 000. In order to estimate the run-length and solution-
quality distributions with acceptable accuracy, we ran the algorithms 100 times
on each problem.

As we said before, we assigned different values to the algorithms’ free pa-
rameters to measure their effects on the algorithms’ final performance. These
parameters were the number of particles and the swarm’s population topology.
We tried three different population sizes: 20, 40 and 60 particles, and three
topologies: fully connected topology, ring topology and a square topology. The
fully connected and ring topologies were described in Chapter 2. Here we will
describe the square topology and the specific configurations we used.

The square topology can be thought to be a graph in which each node is con-
nected to four neighbors forming a lattice with periodic boundaries. Figure 4.11
shows an example of a 5× 4 square topology.

Square topologies can have different configurations for the same number of
particles. For example, a population of 40 particles can be arranged in config-
urations of 5 × 8 or 4 × 10 particles. It is not clear which one yields the best
results, but trying to be consistent with the idea of a “square” topology, we
tried to keep the lattice as balanced as possible. The configurations that we
used for 20, 40 and 60 particles were 5× 4, 5× 8 and 6× 10 respectively.

Before presenting our results, it is important to note that we verified that
our implementations could find similar results to those reported by their original
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Table 4.1: Algorithms’ fixed parameter settings.

Algorithm Settings
Canonical Particle Swarm
Optimizer

Acceleration coefficients ϕ1 and ϕ2 are set to
2.05. The constriction factor χ is set to 0.729.
The maximum velocity Vmax is clamped to
±Xmax, where Xmax is the maximum of the
search range.

Time-Decreasing Inertia
Weight Particle Swarm
Optimizer

Acceleration coefficients ϕ1 and ϕ2 are set to
2.0. The inertia weight decreases linearly from
an initial value of 0.9 to a final one of 0.4.
The final value is reached at the end of the
run. The maximum velocity Vmax is clamped
to ±Xmax.

Time-Increasing Inertia
Weight Particle Swarm
Optimizer

Acceleration coefficients ϕ1 and ϕ2 are set to
2.0. The inertia weight value is increased lin-
early from an initial value of 0.4 to a final one
of 0.9. The final value is reached at the end
of the run. The maximum velocity Vmax is
clamped to ±Xmax.

Stochastic Inertia Weight
Particle Swarm Optimizer

Acceleration coefficients ϕ1 and ϕ2 are set to
2.05. The inertia weight value is drawn from
a uniform distribution in the range [0.5, 1.0].
The maximum velocityVmax is clamped to
±Xmax.

Fully Informed Particle
Swarm Optimizer

ϕ (i.e., the sum of the acceleration coefficients)
is equal to 4.1 and the constriction factor χ is
set to 0.729. The maximum velocity Vmax is
clamped to ±Xmax.

Self-Organizing Hierarchi-
cal Particle Swarm Opti-
mizer with Time-varying
Acceleration Coefficients

ϕ1 is linearly decreased from 2.5 to 0.5 and ϕ2

is increased from 0.5 to 2.5. The reinitializa-
tion velocity is linearly decreased from Vmax
at the beginning of the run to 0.1 ·Vmax at the
end. The maximum velocity Vmax is clamped
to ±Xmax.

Adaptive Hierarchical
Particle Swarm Optimizer

Acceleration coefficients ϕ1 and ϕ2 are set to
2.05. The constriction factor χ is set to 0.729.
The initial branching factor is set to 20, and
parameters dmin, fadapt, and kadapt were set
to 2, 1000 ∗m, and 3 respectively, where m is
the number of particles.
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Figure 4.11: Example of a 5 × 4 square topology. Each particle is connected to four

neighbors and the lattice thus formed has periodic boundaries.

authors. The interested reader is referred to the following URL to access the
validation data: http://iridia.ulb.ac.be/supp/IridiaSupp2006-003/index.html.

4.2 Evaluation of Performance using Run-Length
and Solution-Quality Distributions

In this section, we present the empirical performance evaluation of the particle
swarm optimizers presented in Chapter 2. In the figures, they are referenced in
the following way: the canonical particle swarm is referred to simply by Canon-
ical, the increasing inertia weight particle swarm is referred to as Increasing-
IW, the decreasing inertia weight particle swarm is labeled as Decreasing-IW,
the stochastic inertia weight particle swarm is referred to as Stochastic-IW, the
fully informed particle swarm is labeled as FIPS, the hierarchical particle swarm
with time-varying acceleration coefficients is referred to as HPSOTVAC, and the
adaptive hierarchical particle swarm is labeled AHPSO.

The comparison of the particle swarm optimizers’ performance is carried
out using the methodology presented in the previous chapter. The run-length
and solution-quality distributions we discuss in this section were obtained using
swarms of 20 and 60 particles. We focus our attention to the distributions
obtained on four benchmark functions only (those that offered the most varied
results). The run-length and solution-quality distributions presented in this
section correspond to a specific solution quality and a certain maximum number
of function evaluations. The complete set of results are available online at
http://iridia.ulb.ac.be/supp/IridiaSupp2006-005/index.html.

The results obtained by AHPSO are compared with those of the other al-
gorithms irrespective the specific population topology they used. That is, the
results obtained by AHPSO are the same across topologies. We made this deci-
sion because AHPSO does not use a fixed topology (like the rest of PSOs), but
it adapts it during the optimization process. This permits the measurement of
the effects of an adaptive topology approach.
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4.2.1 Particle Swarm Optimizers’ Performance on the
Ackley Function

Figure 4.12 shows the run-length distributions obtained by the seven particle
swarm optimizers included in our comparison on the Ackley function. The
solution quality requirement for these distributions was of 0.01% away from the
global optimum. In absolute values (see Equation A.2), this solution quality
corresponds to a solution whose objective function value is less than or equal
to −139.996. The biased value of the global optimum is −140 as shown in
Appendix A.

The only variants that (regardless the number of particles or the population
topology) can find consistently the demanded solution quality are the decreasing
inertia weight PSO and HPSOTVAC. Of these two variants, HPSOTVAC is
much faster than the time decreasing inertia weight PSO (with the inertia weight
decreasing schedule mentioned in Table 4.1). This statement does not even need
to be based on some statistical test. The closest difference between the fastest
and slowest runs of these two variants is of approximately 300 000 function
evaluations (see Figure 4.12(d)).

Both, the number of particles and the population topology, have a strong
effect on the algorithms’ run-length distributions. Increasing the number of
particles alleviates, in some degree, the algorithms’ stagnating behavior. The
same is true when we change from the fully connected topology to the ring or
square topology, but most notably to the ring topology. Different algorithms are
sensitive to these changes in different degrees. For example, the fully informed
particle swarm is extremely sensitive to a change from a fully connected topology
to a ring topology. In the first case, it fails completely, while in the second case,
it is the fastest algorithm with a relatively high probability of success. This
is also confirmed in Figure 4.14(b), which shows the median solution quality
development over time for 20 particles and the ring topology.

Figure 4.13 shows the solution-quality distributions obtained by the evalu-
ated PSOs. These distributions correspond to 100 000 objective function evalu-
ations. The solution quality range is set to the interval [0.01, 10]% or in absolute
values, [−139.9996,−136].

Since these plots correspond to 100 000 objective function evaluations, the
decreasing inertia weight PSO shows a very poor performance. We know, from
the inspection of the run-length distributions shown before, that after 1 000 000
function evaluations this variant finds a solution quality of 0.01% with probabil-
ity equal to 1.0. Therefore, it finds solutions with deviations from the optimum
greater than 0.01% with an equal probability.

At solution qualities between 0.6% and 1.0% away from the optimum, almost
all algorithms tend to get trapped somewhere in the search space. With 20
particles and the fully connected topology, almost all algorithms get stuck with
a low probability of escaping from this region (see Figure 4.13(a)). This situation
improves when the algorithms used either more particles, or the ring topology
(see Figures 4.13(b) and 4.12(e)).
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Figure 4.12: Run-Length Distributions on the Ackley Function. The solution quality demanded is of 0.01% away from the global optimum.

Figures (a), (b), and (c) show the run-length distributions obtained with 20 particles. Figures (d), (e), and (f) show the run-length distributions

obtained with 60 particles. Columns show the effect of using different population topologies.
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Figure 4.13: Solution-Quality Distributions on the Ackley Function. These results were obtained after 100 000 objective function evaluations.

Figures (a), (b), and (c) show the solution-quality distributions obtained with 20 particles. Figures (d), (e), and (f) show the solution-quality

distributions obtained with 60 particles. Columns show the effect of using different population topologies.
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Figure 4.14: Solution quality development over time on the Ackley function. Figures (a), (b), and (c) show the solution quality development over

time that is obtained with 20 particles. Figures (d), (e), and (f) show the solution quality development over time that is obtained obtained with 60

particles. Columns show the effect of using different population topologies. These results are based on medians.
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It is interesting to note that the HPSOTVAC variant is negatively affected
with an increase in the size of the population. When HPSOTVAC ran with
20 particles, the probability was near 1.0 independently of the topology being
used. With 60 particles, the probability of finding a solution with a percentage
deviation lower than 0.003% is 0.0 (compare Figure 4.13(a) with Figure 4.12(d),
and so on). All other PSOs (except the decreasing inertia weight variant, which
has no significative change) benefit from an increase in the population size.

Figure 4.14 shows the solution-quality development over time plots of the
evaluated PSOs on the Ackley function. These plots depict median values.

The fastest PSO variant in finding high quality solutions for the Ackley
function is the fully informed particle swarm. This is only true when using 20
particles and the ring topology. However, we know from our previous observa-
tions, that it is not the most reliable algorithm. However, the fastest algorithm
in finding a solution quality 0.01% away from the optimum with a probability
of 1.0, is still the FIPS variant but using 60 particles and the ring topology (see
Figure 4.12(e)).

4.2.2 Particle Swarm Optimizers’ Performance on the
Easom Function

Figure 4.15 shows the empirical run-length distributions of the compared PSOs,
obtained at a quality level of 0.0001% away from the optimum, on the Easom
function. In absolute values, this solution quality is equivalent to an objective
function value of −0.999999. The optimum has a function value of −1.0.

All algorithms are capable of finding a solution of this required solution
quality. Given the characteristics of the Easom function, this means that none
of the tested algorithms gets trapped when there is a large plateau and just
a small area with the global optimum. This conclusion is valid for the two-
dimensional Easom function. In preliminary experiments, a high-dimensional
Easom function proved to be very difficult for all the tested PSOs.

The decreasing inertia weight variant is the variant with the slowest conver-
gence towards the required solution quality: approximately one order of magni-
tude slower than the slowest of the other six PSOs (median speed). This variant
is also the only one with a slowly-increasing probability of success, most notably
when it uses 60 particles and a square topology (see Figure 4.15(f)). This might
be caused by some “lucky” runs which found the solution region early while
they were still in exploratory behavior.

The effect of the population topology is not so strong as is the effect of the
number of particles. Increasing the number of particles results in an overall
slowdown. As explained in the previous chapter, this can be seen as run-length
distributions shifted to the right (compare Figure 4.15(a) with Figure 4.15(d),
and so on).

A change in the population topology seems to just change the relative perfor-
mance of the canonical, FIPS and stochastic inertia weight variants. AHPSO
is, by definition, not affected by a change in the population topology. In all
cases, irrespective to the topology or the number of particles, the increasing in-
ertia weight is the fastest particle swarm optimizer to find the required solution
quality.

Figure 4.16 shows the solution-quality distributions, at 1 000 objective func-
tion evaluations, obtained by the evaluated PSOs on the Easom function.
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Figure 4.15: Run-Length Distributions on the Easom Function. The solution quality demanded is of 0.0001% away from the global optimum.

Figures (a), (b), and (c) show the run-length distributions obtained with 20 particles. Figures (d), (e), and (f) show the run-length distributions

obtained with 60 particles. Columns show the effect of using different population topologies.
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Figure 4.16: Solution-Quality Distributions on the Easom Function. These results were obtained after 1000 objective function evaluations. Fig-

ures (a), (b), and (c) show the solution-quality distributions obtained with 20 particles. Figures (d), (e), and (f) show the solution-quality distributions

obtained with 60 particles. Columns show the effect of using different population topologies.
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Figure 4.17: Solution quality development over time on the Easom function. Figures (a), (b), and (c) show the solution quality development over

time that is obtained with 20 particles. Figures (d), (e), and (f) show the solution quality development over time that is obtained obtained with 60

particles. Columns show the effect of using different population topologies. These results are based on medians.
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The solution quality range is set to the interval [100, 0.01]% or in absolute
values, [0.0,−0.9999]. Given the fact that the Easom function cannot take a
value greater than 0.0, all algorithms have a probability of 1.0 of finding this
solution quality level.

The increasing inertia weight variant finds good solution qualities with high
probabilities after just 1000 function evaluations. Using the fully connected
topology gives this variant a special “greediness” that allows it to find higher
quality solutions than the rest of the PSOs. FIPS is also affected in the same way
although not very much when using 60 particles. AHPSO performs very well
although its adaptation from a highly connected topology to a loosely connected
one makes it the second best performer in this function.

In Figure 4.17, we show the median solution quality development over time,
of the evaluated PSOs, on the Easom function. From this figure, a strong con-
vergent behavior is beneficial for having a good performance in this function.
It seems that big step sizes, favored by an explorative behavior, cause the algo-
rithms to miss the region where the optimum is. Drastically reducing particles
velocities seems to be a good strategy to force them to take short step sizes and
this increases their probability of success.

4.2.3 Particle Swarm Optimizers’ Performance on the
Griewank Function

The empirical run-length distributions of the tested PSOs on the Griewank
function are shown in Figure 4.18. The required solution quality is of 0.001%
away from the optimum. This solution quality is equivalent to an objective
function value of −179.9982. The optimum has a function value of −180.0.

No algorithm was capable of finding a solution of the required quality with
a probability of 1.0 with a population size of 20 particles. In fact, it is the only
case in our test suite in which this phenomenon is present. All algorithms get
trapped in the search space. With 60 particles, only FIPS finds the required
solution quality with probability 1.0, while the canonical PSO and HPSOTVAC
reach a probability of 0.99.

The interaction between the population topology and the number of parti-
cles is very clear. All algorithms (except AHPSO, due to its adaptive topology
mechanism) benefit from a topology that facilitates an explorative behavior.
The explorative behavior of the algorithms is also boosted with a large popu-
lation size. This gives as a result the best performance (in terms of reliability)
when algorithms used 60 particles and the ring topology (see Figure 4.18(e)).

Figure 4.19 shows the solution-quality distributions of the tested PSOs at
1 000 000 function evaluations. All algorithms suffer from severe stagnation,
specially when they reach a solution quality of about 0.003%. HPSOTVAC
dominates the rest of the algorithms when using 20 particles, that is, it is finds
high quality solutions with greater probabilities than the others, regardless the
population topology. It is also the dominant variant when using 60 particles,
except when using the ring topology, in which it was FIPS the dominant algo-
rithm.

Figure 4.20 shows the median quality development over time. Even though
it is not the most reliable algorithm, the fastest algorithm is FIPS with 20
particles and the ring topology. The slowest algorithm is the decreasing inertia
weight variant.
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Figure 4.18: Run-Length Distributions on the Griewank Function. The solution quality demanded is of 0.001% away from the global optimum.

Figures (a), (b), and (c) show the run-length distributions obtained with 20 particles. Figures (d), (e), and (f) show the run-length distributions

obtained with 60 particles. Columns show the effect of using different population topologies.
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Figure 4.19: Solution-Quality Distributions on the Griewank Function. These results were obtained after 1 000 000 objective function evaluations.

Figures (a), (b), and (c) show the solution-quality distributions obtained with 20 particles. Figures (d), (e), and (f) show the solution-quality

distributions obtained with 60 particles. Columns show the effect of using different population topologies.
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Figure 4.20: Solution quality development over time on the Griewank function. Figures (a), (b), and (c) show the solution quality development over

time that is obtained with 20 particles. Figures (d), (e), and (f) show the solution quality development over time that is obtained obtained with 60

particles. Columns show the effect of using different population topologies. These results are based on medians.
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4.2.4 Particle Swarm Optimizers’ Performance on the
Rastrigin Function

Figure 4.21 shows the run-length distributions of the tested PSOs on the Rast-
rigin function at a solution quality level of 20.0% away from the optimum. This
solution quality requirement is equivalent to a solution whose objective function
value is −264.0. The optimum has a function value of −330.0.

Only two variants are capable of achieving the required solution quality
with probability 1.0, in a consistent way, irrespective to the population size
or topology. These algorithms are the decreasing inertia weight variant and
HPSOTVAC. The slowest of these two variants is the decreasing inertia weight
variant.

On this function, the population topology that yields the best overall perfor-
mance is the square topology. With this topology, almost all algorithms increase
the probability of finding the required solution quality. The exceptions are AH-
PSO and FIPS. FIPS achieves its best performance with the ring topology. An
interesting case is the one of the increasing inertia weight variant. The prob-
ability of finding a solution of the required solution abruptly increases around
800 000 function evaluations. At this point in time, the inertia weight takes a
value of 0.8 according to Equation 2.7 and the settings used. This abrupt change
indicates that the probability density function is multimodal with a high peak
near this region. A possible explanation of this behavior is that this variant
gets trapped in some local minimum very rapidly, and only when the particles’
velocity is increased beyond some threshold, the swarm is capable of escaping
from it.

Figure 4.22 shows the solution-quality distributions of all the tested PSOs at
1 000 000 function evaluations. The only variant that is capable of finding high
quality solutions (e.g., 1% away from the optimum), is HPSOTVAC. The second
best algorithm in this respect is the time decreasing inertia weight variant.

Increasing the number of particles does not have a big impact on most of
the algorithms’ performance. The exception is HPSOTVAC. When HPSOTVAC
uses 60 particles, it gets trapped in a region whose solution quality level is around
0.3% away from the optimum (absolute value of -329.01). The probability of
escaping from this region depends on the population topology, being the fully
connected topology the one that shows the highest one.

In Figure 4.23, we show the solution quality development over time graphs of
the studied PSOs. With the fully connected topology, FIPS starts improving the
quality of the found solutions quickly but stagnates very soon too. The increas-
ing inertia weight improves the solution a bit slower that FIPS and stagnates
later at around 20% away from the optimum. HPSOTVAC and the decreasing
inertia weight variant are among the slowest variants up to 10 000 function eval-
uations. The shape of their curves, reveals that they are not too greedy at first
but in the long run they are best performers.
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Figure 4.21: Run-Length Distributions on the Rastrigin Function. The solution quality demanded is of 20.0% away from the global optimum.

Figures (a), (b), and (c) show the run-length distributions obtained with 20 particles. Figures (d), (e), and (f) show the run-length distributions

obtained with 60 particles. Columns show the effect of using different population topologies.

5
2



 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1  10  100

P
ro

ba
bi

lit
y 

of
 s

ol
vi

ng
 th

e 
pr

ob
le

m

Relative solution quality [%]

Canonical
Decreasing-IW

Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(a) 20 particles, Fully connected topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1  10  100

P
ro

ba
bi

lit
y 

of
 s

ol
vi

ng
 th

e 
pr

ob
le

m

Relative solution quality [%]

Canonical
Decreasing-IW

Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(b) 20 particles, Ring topology
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(c) 20 particles, Square topology
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(d) 60 particles, Fully connected topology
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(e) 60 particles, Ring topology
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Figure 4.22: Solution-Quality Distributions on the Rastrigin Function. These results were obtained after 1 000 000 objective function evaluations.

Figures (a), (b), and (c) show the solution-quality distributions obtained with 20 particles. Figures (d), (e), and (f) show the solution-quality

distributions obtained with 60 particles. Columns show the effect of using different population topologies.
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(a) 20 particles, Fully connected topology
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(b) 20 particles, Ring topology
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(c) 20 particles, Square topology
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(d) 60 particles, Fully connected topology
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(e) 60 particles, Ring topology
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Figure 4.23: Solution quality development over time on the Rastrigin function. Figures (a), (b), and (c) show the solution quality development over

time that is obtained with 20 particles. Figures (d), (e), and (f) show the solution quality development over time that is obtained obtained with 60

particles. Columns show the effect of using different population topologies. These results are based on medians.
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4.3 Quantitative Evaluation of Particle Swarm
Optimizers’ Performance

In the previous section, we presented some of the run-length and solution quality
distributions the compared particle swarm optimizers exhibit for certain solu-
tion qualities and computational effort limits, respectively. Even though they
provide a wealth of information about the behavior and performance of the
algorithms, we cannot use them directly to have a clear picture of the algo-
rithms’ relative performance across several benchmark functions. In order to
do that, and to quantitatively describe the performance of stochastic optimi-
zation algorithms, one needs to focus on some specific descriptive statistics of
the run-length and solution-quality distributions, such as their means, standard
deviations, maximums, minimums, medians, and so on.

In this section we present an analysis based on the median solution quality
achieved by an algorithm after some specific number of function evaluations. We
decided to base our analysis on medians because, as seen in the run-length and
solution-quality distributions, algorithms exhibit a high performance variability.
An analysis based on medians is more robust and stable than an analysis based
on means.

Our experimental design considers particle swarm optimizers with 20, 40
and 60 particles using fully connected. ring and square topologies. The set of
benchmark functions is composed of 10 functions with different characteristics
each. Additionally, we want to know the relative performance of these optimiz-
ers when they are given budgets of 1000, 10 000, 100 000 and 1 000 000 function
evaluations. Thus, we have a factorial design with 3 primary factors: the tested
algorithm (with 7 levels), the number of particles (with 3 levels), and the popu-
lation topology (with 3 levels), and 2 blocking factors: the benchmark function
(with 10 levels), and the budget (with 4 levels).

Our analysis is based only on the 40 particles case. It was a compromise that
helped us focus our analysis to the effects of the population topology. The choice
of 40 particles was made on the assumption that a medium-sized population is
a sensible choice to balance fast convergence and high population diversity.

We begin the presentation of our analysis by describing the effects of differ-
ent population topologies on the performance of the compared particle swarm
optimizers. We also measure the sensitiveness of the different algorithms to a
change in the population topology. We then determine the best performing par-
ticle swarm optimizers identifying, at the same time, the conditions and factors
that make them work best.

4.3.1 Effects of Population Topologies on Particle Swarm
Optimizers’ Performance

Since no assumptions about normality or otherwise on the solution-quality dis-
tributions were justified, we ranked the algorithms’ performance according to
the median solution quality they were able to achieve achieved after a certain
number of function evaluations. In the case two or more algorithms achieved
the same solution quality value, that is, if there was a “tie”, they were assigned
an average rank. For example, if ranks 4, 5 and 6 have the same solution quality
value, we give each observation the rank 5. The actual values of the medians
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are reported in Appendix B on Tables B.1, B.2 and B.3.
The tables shown below, report the ranks obtained by the compared particle

swarm optimizers on every benchmark function. Each cell contains four entries
which correspond to the rank obtained by the corresponding optimizer after
1 000, 10 000, 100 000 and 1 000 000 function evaluations, respectively. Bench-
mark functions are divided into four groups: high dimensional multimodal func-
tions, high dimensional unimodal functions, low dimensional multimodal func-
tions, and low dimensional unimodal functions. The rightmost column shows
the average rank, obtained by the corresponding optimizer over all benchmark
functions after a certain number of function evaluations (FES).

Table 4.2 shows the ranking across benchmark functions and function eval-
uations of the compared optimizers using a fully connected topology. The ar-
rangement allows the reader to have an idea about the relative performance
of each algorithm on every function over the whole optimization process. It is
evident that there is no algorithm that dominates the others all the time on all
benchmark functions. The only case in which one algorithm dominates the oth-
ers is when solving the Rosenbrock function. In this case, the canonical particle
swarm optimizer is ranked first all the time. The other extreme case, in which
an algorithm is always ranked last, is the case of AHPSO solving the Salomon
function. In all other cases, every algorithm is, at least, better than another
one on some function at some point in time.

The decreasing inertia weight particle swarm is always ranked last, or second
to last, during the first 100 000 function evaluations. It has a very slow conver-
gence during the first phases, compared to the other PSOs. However, it achieves
the best rank, on all the benchmark functions except on Griewank, Rastrigin (in
which it is ranked second), and Rosenbrock problems, after 1 000 000 function
evaluations.

The first places, at 1 000 function evaluations, are shared between the in-
creasing inertia weight particle swarm and FIPS. With the exception of Schwefel,
Salomon, and Rosenbrock functions, these two variants are always ranked first
or second places. The situation changes completely for FIPS at 10 000 func-
tion evaluations. At this point, FIPS is already ranked the second worst. At
1 000 000 function evaluations, FIPS is the worst of all algorithms except in the
Easom function, in which it shares the same rank with the other optimizers. On
the contrary, the increasing inertia weight variant remains the top optimizer not
only at 10 000 function evaluations, but also at 100 000. At 1 000 000 function
evaluations it becomes the second best, behind the decreasing inertia weight
particle swarm.

Similarly to the decreasing inertia weight particle swarm, HPSOTVAC im-
proves its ranking after several function evaluations. In fact, these two op-
timizers share out the first ranks at 1 000 000 function evaluations, except in
the Rosenbrock function. HPSOTVAC is the top optimizer for Griewank and
Rastrigin functions.

Figure 4.24 shows the particle swarm optimizers’ relative average ranking as
a function of the number of function evaluations. In this figure, the interaction
between the algorithms’ ranking and the number of function evaluations, is
easily visualized.
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Table 4.2: Ranking of particle swarm optimizers based on the median solution quality achieved after a certain number of function evaluations. Fully

connected topology case. Each cell contains the rank obtained by the corresponding optimizer after 1 000, 10 000, 100 000 and 1 000 000 function

evaluations (FES).

Fully connected topology case
High dimensional Low dimensional

Multimodal Unimodal Multimodal Unimodal
FES Ackley Step Griewank Rastrigin Schwefel Salomon Sphere Rosenbrock Schaffer Easom Avg. Rank

Canonical

103 3 4 3 5 3 4 3 1 4 5 3.50
104 3 2.5 2 3 4 1 2 1 1 3 2.25
105 4 3 5 5 4 3 3 1 3 3.5 3.45
106 5 5 6 6 5 4 5 1 3.5 4 4.45

Decreasing-IW

103 7 7 6 7 7 6 7 5 7 7 6.60
104 7 7 7 7 6 6 7 6 7 7 6.70
105 7 6 6 7 6 6 7 6 6 7 6.40
106 1 1.5 5 2 1 1 2.5 6 3.5 4 2.75

Increasing-IW

103 2 2 1 2 1 3 2 4 1 1 1.90
104 1 1 1 1 1 2 1 4 4 3 1.90
105 1 1 2 1 2 1.5 3 4 3 3.5 2.20
106 2 1.5 2 3 3 2.5 2.5 5 3.5 4 2.90

Stochastic-IW

103 5 5 5 6 5 5 5 2 3 4 4.40
104 4 4 4 4 2 3 4 3 2 3 3.40
105 3 2 3 3 3 1.5 1 3 3 3.5 2.60
106 4 3 3 4 4 2.5 2.5 2 3.5 4 3.25

FIPS

103 1 1 2 1 6 1 1 6 2 2 2.30
104 5 6 6 6 7 4 6 7 5.5 3 5.55
105 6 7 7 6 7 5 6 7 7 3.5 6.15
106 7 7 7 7 7 6 7 7 7 4 6.60

HPSOTVAC

103 6 6 7 4 2 2 6 7 6 6 5.20
104 6 5 5 5 5 5 5 5 5.5 6 5.25
105 2 5 1 2 1 4 5 5 3 3.5 3.15
106 3 4 1 1 2 5 6 4 3.5 4 3.35

AHPSO

103 4 3 4 3 4 7 4 3 5 3 4.00
104 2 2.5 3 2 3 7 3 2 3 3 3.05
105 5 4 4 4 5 7 3 2 3 3.5 4.05
106 6 6 4 5 6 7 2.5 3 3.5 4 4.70
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Figure 4.24: Relative average ranking of particle swarm optimizers over time. Fully

connected topology case. Average ranking over benchmark functions as a function of

the number of function evaluations in a run.

It is clear how the decreasing inertia weight is the worst ranked algorithm
most of the time but is first at the very end. It is also interesting to see how the
opposite strategy (i.e., increasing the value of the inertia weight over time), is
ranked first all the time except at the very end, when they exchange positions.

Something that was not clear on Table 4.2, is how the canonical particle
swarm and the stochastic inertia weight particle swarm have a “mirror” behav-
ior, that is, the canonical particle swarm optimizer starts being better ranked
than the stochastic inertia weight variant but ends up being worse ranked. In
principle, these two variants should behave similarly since the stochastic inertia
weight variant is directly inspired on the canonical particle swarm.

A possible explanation to this phenomenon, is that having a fixed inertia
weight, sometimes, overconstrains the particle swarm preventing it from contin-
uing exploring the search space.

Table 4.3 shows the particle swarm optimizers’ ranking across benchmark
functions and function evaluations using a square topology. A less connected
topology than the fully connected topology does not permit a direct and in-
stantaneous influence of the very best particle on other particles. The square
topology, giving 4 neighbors to every particle, allows the particle swarm to ex-
hibit a more explorative behavior. AHPSO which adapts its topology from a
highly connected one to a loosely connected one, is expected to benefit from the
early convergent behavior the influence of the very best particle offers.

The promotion of a more explorative behavior in an already-explorative par-
ticle swarm optimizer, such as the decreasing inertia weight variant, affects neg-
atively its relative ranking. With the square topology, the decreasing inertia
weight particle swarm is no longer the top ranked optimizer in some problems
at 1 000 000 function evaluations.
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Table 4.3: Ranking of particle swarm optimizers based on the median solution quality achieved after a certain number of function evaluations.

Square topology case. Each cell contains the rank obtained by the corresponding optimizer after 1 000, 10 000, 100 000 and 1 000 000 function

evaluations (FES).

Square topology case
High dimensional Low dimensional

Multimodal Unimodal Multimodal Unimodal
FES Ackley Step Griewank Rastrigin Schwefel Salomon Sphere Rosenbrock Schaffer Easom Avg. Rank

Canonical

103 5 5 4 4 3 4 4.5 3 3 3 3.85
104 3 3 4 3 3 2 3.5 2 2 3 2.85
105 1 1 2 5 4 2 2 4 3 3.5 2.75
106 2.5 2.5 3 6 5 1.5 3 2 4 4 3.35

Decreasing-IW

103 7 7 7 7 7 6 7 4 7 6 6.50
104 7 7 7 7 6 6 7 6 7 7 6.70
105 7 7 7 7 6 6 7 6 7 7 6.70
106 2.5 2.5 3 2 1 3.5 3 4 4 4 2.95

Increasing-IW

103 3 3 3 2 1 3 3 2 1 1 2.20
104 4 2 3 2 2 4 5 3 4 3 3.20
105 2 3 2 2 2 2 2 2 3 3.5 2.35
106 2.5 2.5 3 3 3 3.5 3 5 4 4 3.35

Stochastic-IW

103 6 5 5 5 4 5 4.5 5 4 4 4.75
104 5 4 5 1 4 3 3.5 4 3 3 3.55
105 3 2 2 4 3 2 2 3 3 3.5 2.75
106 2.5 2.5 3 4 4 1.5 3 3 4 4 3.15

FIPS

103 1 1 1 1 6 1 1 6 5 5 2.80
104 1 5 1 5 7 1 2 7 5 3 3.70
105 5 6 6 3 7 5 6 7 6 3.5 5.45
106 6 7 7 5 7 6 7 7 4 4 6.00

HPSOTVAC

103 4 5 6 6 2 2 6 7 6 7 5.10
104 6 6 6 6 5 5 6 5 6 6 5.70
105 4 5 4 4 1 4 5 5 3 3.5 3.85
106 5 5 3 1 2 5 6 6 4 4 4.10

AHPSO

103 2 2 2 3 5 7 2 1 2 2 2.80
104 2 1 2 1 1 7 1 1 1 3 2.00
105 6 4 5 6 5 7 4 1 3 3.5 4.45
106 7 6 6 7 6 7 3 1 4 4 5.10
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A related phenomenon to the one we described above is that the increasing
inertia weight variant no longer dominates the others at 1 000 function evalua-
tions as it did in the fully connected topology case. In its stead, FIPS is ranked
first in 5 of the 6 high dimensional multimodal functions and in the Sphere
function. Contrary to what happened with the fully connected topology, FIPS
now maintains this top ranking at 10 000 function evaluations in 4 cases. How-
ever, the facilitation of explorative behavior provided by the square topology is
not sufficient for FIPS to improve its ranking at 100 000 and 1 000 000 function
evaluations.

The canonical particle optimizer seems to take advantage of a different topol-
ogy and now it is among the top ranked algorithms in four benchmark functions.
However, the complete dominance it had in the Rosenbrock function is now
transferred to AHPSO. The improvement on the ranking obtained by AHPSO
is consequence of the exploitation of a convergent behavior caused by a highly
connected topology during the first iterations of the algorithm. This explains
why, now, AHPSO is the second best and best algorithm at 1 000 and 10 000
function evaluations respectively, and among the worst afterwards.

Figure 4.25, shows the relative average ranking over time of the compared
particle swarm optimizers using a square topology.
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Figure 4.25: Relative average ranking of particle swarm optimizers over time. Square

topology case. Average ranking over benchmark functions as a function of the number

of function evaluations in a run.

The behavior of the decreasing inertia weight variant is practically the same
as the one it had when it used a fully connected topology. During the first
100 000 function evaluations, it is the worst ranked. At the end, it is the top
ranked. The early dominance of the increasing inertia weight optimizer is now
shared with AHPSO. However, its ranking deteriorates afterwards, and becomes
the second worst algorithm just before FIPS.
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Table 4.4: Ranking of particle swarm optimizers based on the median solution quality achieved after a certain number of function evaluations. Ring

topology case. Each cell contains the rank obtained by the corresponding optimizer after 1 000, 10 000, 100 000 and 1 000 000 function evaluations

(FES).

Ring topology case
High dimensional Low dimensional

Multimodal Unimodal Multimodal Unimodal
FES Ackley Step Griewank Rastrigin Schwefel Salomon Sphere Rosenbrock Schaffer Easom Avg. Rank

Canonical

103 5 4.5 4 4 3 4 4 3 3 4 3.85
104 3 4 4 3 4 2 3 3 4 2.5 3.25
105 2 4 1.5 5 5 1 1.5 2 3.5 3.5 2.90
106 3.5 2.5 2.5 6 7 1 3 2 4 4 3.55

Decreasing-IW

103 7 7 7 7 7 6 7 4 7 7 6.60
104 7 7 7 7 7 6 7 7 7 7 6.90
105 7 7 7 7 7 6 7 7 7 7 6.90
106 3.5 2.5 5.5 3 3 3 3 4 4 4 3.55

Increasing-IW

103 3 2 3 2 1 3 3 2 2 1 2.20
104 4 3 3 2 2 4 4 4 5.5 2.5 3.40
105 3 2.5 1.5 4 2 4 3.5 4 3.5 3.5 3.15
106 3.5 5.5 2.5 4 4 3 3 5 4 4 3.85

Stochastic-IW

103 6 6 5 5 4 5 5 6 4 4 5.00
104 5 5 5 4 3 3 5 5 3 2.5 4.05
105 4 2.5 3 3 4 2 3.5 3 3.5 3.5 3.20
106 3.5 2.5 2.5 5 5 3 3 3 4 4 3.55

FIPS

103 2 3 2 3 6 1 2 5 5 5 3.40
104 1 2 2 5 6 1 2 2 2 5 2.80
105 1 1 4 2 6 3 1.5 5 3.5 3.5 3.05
106 1 5.5 2.5 2 1 5 3 6 4 4 3.40

HPSOTVAC

103 4 4.5 6 6 2 2 6 7 6 6 4.95
104 6 6 6 6 5 5 6 6 5.5 6 5.75
105 5 6 5 1 1 5 6 6 3.5 3.5 4.20
106 6 2.5 5.5 1 2 6 7 7 4 4 4.50

AHPSO

103 1 1 1 1 5 7 1 1 1 2 2.10
104 2 1 1 1 1 7 1 1 1 2.5 1.85
105 6 5 6 6 3 7 5 1 3.5 3.5 4.60
106 7 7 7 7 6 7 6 1 4 4 5.60
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The canonical particle swarm does not go beyond rank 4 when using the
square topology, even after worsening its rank after 100 000 function evalua-
tions. While in the case of the fully connected topology, its rank worsened just
after 10 000 function evaluations. The canonical particle swarm seems to take
advantage of the explorative behavior encouraged by the square topology.

Table 4.4 shows the particle swarm optimizers’ ranking across benchmark
functions and function evaluations using the ring topology.

The ring topology, offering only two sources of influence to any particle in
a swarm, stimulates a more explorative behavior than the fully connected and
square topologies. In our comparison, AHPSO has the advantage of not relying
on a fixed topology. It is among the top ranked algorithms when solving either
unimodal or low dimensional problems. However, it is ranked among the worst
when solving high dimensional multimodal problems at 100 000 and 1 000 000
function evaluations.

The decreasing inertia weight particle swarm is again the worst ranked during
the first 100 000 function evaluations and at 1 000 000 it is no longer the top
ranked. The relative ranking of FIPS is the one that most dramatically changed.
FIPS is among the top ranked optimizers, at least once at some point in time,
in all functions except in the Rosenbrock function.

Figure 4.26 shows the particle swarm optimizers’ relative average ranking
over time when using the ring topology.
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Figure 4.26: Relative average ranking of particle swarm optimizers over time. Ring

topology case. Average ranking over benchmark functions as a function of the number

of function evaluations in a run.

The top ranked algorithm during the first 10 000 function evaluations is AH-
PSO. At 100 000 function evaluations, the top ranked algorithm is the canonical
particle swarm and at the very end, that is, at 1 000 000 function evaluations,
the top ranked algorithm is FIPS. The stochastic inertia weight and the canon-
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ical particle swarm do not swap positions this time and they get the same rank
at 1 000 000 function evaluations, together with the decreasing inertia weight.
HPSOTVAC is the top ranked algorithm when solving the Rastrigin function;
however, it is relegated to the worst ranks, on average.

Table 4.5 shows the relative average ranking, of the compared algorithms,
obtained with each population topology (sorted from high to low connectivity)
and the overall average ranking together with its standard deviation and the
corresponding coefficient of variation.

The data in this table reveals the sensitivity that each algorithm has to a
topology change. Note that, since AHPSO does not use any of the topologies the
other algorithms do, the variation in its relative ranking should be understood
as the indirect effect of a topology change on the other optimizers in AHPSO’s
ranking.

The sensitivity to a topology change depends on the budget of number of
function evaluations. In almost all algorithms, the effect of a topology change
after 1000 function evaluations is the weakest. The exception is AHPSO, in
which it is the strongest one.

The most sensitive algorithm to a topology change is FIPS. Considering the
topologies’ connectivity, the relative average ranking of FIPS decreases as the
connectivity decreases, except in the case of 1000 function evaluations, in which
the tendency is on the opposite direction. FIPS seems to strongly benefit from
the boost in the explorative behavior a loosely connected topology provides.
For already-explorative variants (such as HPSOTVAC or the decreasing inertia
weight variant), the contrary is true. Their relative average ranking increases
as the connectivity decreases. As a consequence, their coefficients of variation
increase with the number of function evaluations.

The overall ranking of the increasing inertia weight variant, which almost
dominates the others when using a fully connected topology, also increases as
the connectivity decreases.

63



Table 4.5: Relative average ranking of particle swarm optimizers based on the median solution quality achieved after a certain number of function

evaluations. Aggregated results. Each cell contains the rank obtained by the corresponding optimizer after 1 000, 10 000, 100 000 and 1 000 000

function evaluations (FES).

Algorithm
Population topology

FES Fully Connected Square Ring Average Rank Standard Deviation Coefficient of Variation[%]

Canonical

103 3.50 3.85 3.85 3.73 0.20 5.41
104 2.25 2.85 3.25 2.78 0.50 18.08
105 3.45 2.75 2.90 3.03 0.37 12.15
106 4.45 3.35 3.55 3.78 0.59 15.49

Decreasing-IW

103 6.60 6.50 6.60 6.57 0.06 0.88
104 6.70 6.70 6.90 6.77 0.12 1.71
105 6.40 6.70 6.90 6.67 0.25 3.77
106 2.75 2.95 3.55 3.08 0.42 13.5

Increasing-IW

103 1.90 2.20 2.20 2.10 0.17 8.25
104 1.90 3.20 3.40 2.83 0.81 28.75
105 2.20 2.35 3.15 2.57 0.51 19.90
106 2.90 3.35 3.85 3.37 0.48 14.12

Stochastic-IW

103 4.40 4.75 5.00 4.72 0.30 6.39
104 3.40 3.55 4.05 3.67 0.34 9.28
105 2.60 2.75 3.20 2.85 0.31 10.96
106 3.25 3.15 3.55 3.32 0.21 6.28

FIPS

103 2.30 2.80 3.40 2.83 0.55 19.44
104 5.55 3.70 2.80 4.02 1.40 34.91
105 6.15 5.45 3.05 4.88 1.63 33.29
106 6.60 6.00 3.40 5.33 1.70 31.89

HPSOTVAC

103 5.20 5.10 4.95 5.08 0.13 2.48
104 5.25 5.70 5.75 5.57 0.28 4.95
105 3.15 3.85 4.20 3.73 0.53 14.32
106 3.35 4.10 4.50 3.98 0.58 14.66

AHPSO

103 4.00 2.80 2.10 2.97 0.96 32.39
104 3.05 2.00 1.85 2.30 0.65 28.43
105 4.05 4.45 4.60 4.37 0.28 6.51
106 4.70 5.10 5.60 5.13 0.45 8.78
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4.3.2 Identification of the Best Performing Particle Swarm
Optimizers

Knowing the relative average rank of a particle swarm optimizer is helpful only
we if we know which topology gives the best results in terms of actual solution
qualities. It might be the case, for example, that the top ranked algorithm using
a ring topology yields worse results than the worst ranked algorithm using a fully
connected topology. Relative rankings do not say anything about the actual
solution quality achieved by the algorithms using one or another topology.

Our goal now is to determine which particle swarm optimizers (from among
those we selected, of course) are the best performing and what are the conditions
and factors that make them perform at their best. The specific conditions and
factors we are talking about are the point in time at which they reach their peak
performance, the population topology that makes them get the best results, and
the kind of problem they solve best.

Table 4.6 shows various matrices (one matrix per algorithm) that indicate,
through an asterisk, on which problem, a given particle swarm optimizer was
ranked among the top 3 best optimizers. As a ranking pool, we used all the
18 possible combinations between algorithms and topologies (6 algorithms ×
3 topologies), plus AHPSO which exhibits an adaptive topology mechanism.
Sometimes, most commonly on Schaffer and Easom functions, two or more
algorithms found solutions with the same quality level. If this quality level was
among the top 3 best solution qualities, all these algorithms were considered to
be part of the top 3 group. In the rightmost column, the number of times a
given algorithm (after a certain number of function evaluations) appears in the
top 3 group, is reported.

The matrices in this table show that some algorithms are always (i.e., regard-
less the number of function evaluations) in the top 3 group for some functions.
This happens, for example, in the case of the canonical particle swarm optimizer,
the stochastic inertia weight variant, both with a fully connected topology and
with AHPSO on the Rosenbrock function. Another example is the increasing in-
ertia weight particle swarm with a fully connected topology on the Step, Sphere,
and Easom functions.

There are other cases in which an algorithm appears in the top 3 group
most of the time. Examples are the canonical particle swarm optimizer with a
fully connected topology on the Sphere, Schaffer and Easom functions, or the
fully informed particle swarm with a ring topology on the Ackley and Easom
functions.

Note that this “dominance” appears only in two of the high dimensional
multimodal functions (Ackley and Step), in high dimensional unimodal func-
tions (Sphere and Rosenbrock) and in low dimensional functions (Schaffer and
Easom).

The number of times a given algorithm appears in the top 3 group, tends to
increase as the number of function evaluations also increases. However, in some
cases, specially those in which an algorithm uses a fully connected topology,
the opposite is what happens. This is the case of the canonical, the increasing
inertia weight, the stochastic inertia weight, the fully informed particle swarm
optimizers with the fully connected topology, and the fully informed particle
swarm with a square topology and AHPSO.
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Table 4.6: Frequency and distribution of appearances in the top 3 group

Algorithm Topology FES Ackley Step Griewank Rastrigin Schwefel Salomon Sphere Rosenbrock Schaffer Easom Count

Canonical

Fully Connected

103 - - - - - - - * - - 1
104 - * * * - * * * * * 8
105 - - - - - - * * * * 4
106 - - - - - - * * * * 4

Square

103 - - - - - - - - - - 0
104 - - - - - - - - - * 1
105 * * * - - * * - * * 7
106 * * * - - * * - * * 7

Ring

103 - - - - - - - - - - 0
104 - - - - - - - - - * 1
105 - - * - - * * - * * 5
106 * * * - - * * - * * 7

Decreasing-IW

Fully Connected

103 - - - - - - - - - - 0
104 - - - - - - - - - - 0
105 - - - - - - - - - - 0
106 * * - - - * * - * * 6

Square

103 - - - - - - - - - - 0
104 - - - - - - - - - - 0
105 - - - - - - - - - * 1
106 * * * - * * * - * * 8

Ring

103 - - - - - - - - - - 0
104 - - - - - - - - - - 0
105 - - - - - - - - * * 2
106 * * * - - * * - * * 7

Increasing-IW

Fully Connected

103 * * * * * - * - * * 8
104 * * * * * * * - - * 8
105 * * - - - * * - * * 6
106 - * - - - - * - * * 4

Square

103 - - - - * - - - * * 3
104 - - - - - - - - - * 1
105 - - * * - * * - * * 6
106 * * * - - * * - * * 7
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Table 4.6 – continued from previous page

Algorithm Topology FES Ackley Step Griewank Rastrigin Schwefel Salomon Sphere Rosenbrock Schaffer Easom Count

Ring

103 - - - - * - - - - - 1
104 - - - - - - - - - * 1
105 - - * - - - * - * * 4
106 * * * - - * * - * * 7

Stochastic-IW

Fully Connected

103 - - - - - - - * - - 1
104 - * - - * * - * * * 6
105 - * - - - * * * * * 6
106 - * - - - - * * * * 5

Square

103 - - - - - - - - - - 0
104 - - - - - - - - - * 1
105 - - * * - * * - * * 6
106 * * * - - * * - * * 7

Ring

103 - - - - - - - - - - 0
104 - - - - - - - - - * 1
105 - - * - - * * - * * 5
106 * * * - - * * - * * 7

FIPS

Fully Connected

103 * * * * - * * - * * 8
104 - - - - - - - - - * 1
105 - - - - - - - - - * 1
106 - - - - - - - - * * 2

Square

103 * * * * - * * - - - 6
104 * - * - - - - - - * 3
105 - - - * - - - - * * 3
106 - - - - - - - - * * 2

Ring

103 - - - - - - - - - - 0
104 * - - - - - - - - * 2
105 * - * - - * * - * * 6
106 * * * - * * * - * * 8

HPSOTVAC

Fully Connected

103 - - - - - * - - - - 1
104 - - - - - - - - - * 1
105 - - - - * - - - * * 3
106 - * * * - - - - * * 5
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Table 4.6 – continued from previous page

Algorithm Topology FES Ackley Step Griewank Rastrigin Schwefel Salomon Sphere Rosenbrock Schaffer Easom Count

Square

103 - - - - - - - - - - 0
104 - - - - - - - - - * 1
105 - - - - * - - - * * 3
106 - * * * - - * - * * 6

Ring

103 - - - - - - - - - - 0
104 - - - - - - - - - - 0
105 - - - - * - - - * * 3
106 - * * * * - - - * * 6

AHPSO Adaptive

103 - - - - - - - * - - 1
104 - * - * * - * * * * 7
105 - - - - - - * * * * 4
106 - - - - - - * * * * 4
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Figure 4.27 shows the frequency with which each algorithm appears in the
top 3 group per number of function evaluations. Shade differences represent
different population topologies.

On the top-left figure, it can be seen how after 1000 function evaluations,
the increasing inertia weight and the fully informed particle swarm optimizers
are in the top 3 group 8 times (out of 10 possible). These two same algorithms,
but using a square topology, are the other algorithms with more appearances
in the top 3 group. The only algorithm using a ring topology that appears at
least once, is the increasing inertia weight algorithm.

On the top-right figure, the two algorithms with the highest frequency of
appearance (8 times) are the increasing inertia weight and the canonical parti-
cle swarm optimizers. They are followed by AHPSO with 7 times and by the
stochastic inertia weight variant with 6 times. Except for AHPSO, all these
algorithms used a fully connected topology. FIPS with a square topology and
with a ring topology appeared three and two times, respectively. At 10 000 func-
tion evaluations, FIPS with a fully connected topology is no longer among the
best algorithms. The frequency of appearance of FIPS with a square topology
dropped from 6 at 1000 function evaluations to just 3 at 10 000.

Its clear that for budgets of relatively few function evaluations, algorithms
with a strong convergent behavior obtain the best results. The best algorithms
up to 10 000 function evaluations are those that at least start (in case they adapt
it, like AHPSO) with a strongly connected topology, and reduce the particles’
previous velocity effect with a small inertia weight.

On the bottom-left figure, almost all algorithms appear at least once in
the top 3 group. The algorithm with the highest frequency is the canonical
particle swarm optimizer with a square topology. The increasing inertia weight
with a fully connected or square topology appears 6 times, as well as FIPS
with a ring topology and the stochastic inertia weight with a fully connected
or square topology. FIPS is the algorithm that uses a ring topology with the
highest frequency. There is no clear dominance of any topology. However,
algorithms using the ring topology increased substantially the number of times
they appeared in the top 3 group.

On the bottom-right figure, all algorithms appear, at least, a couple of times
in the top 3 group. The two functions in which all algorithms appear in the
top 3 group are Schaffer and Easom (see Table 4.6). In fact, these produce a
ceiling effect [8] at a frequency count of two. In any case, the relative frequency
difference is still meaningful. The two algorithms with the highest frequency
are the decreasing inertia weight using a square topology, and FIPS with the
ring topology.

From the two bottom figures, it is clear that for medium-long and long
budgets, algorithms with medianly or loosely connected topologies yield the
best results. In the bottom-left figure, no algorithm with a fully connected
topology have a higher frequency than an algorithm with a square topology. In
the bottom-right figure, algorithm with the square and ring topologies share out
the highest frequencies.

In terms of accumulated frequencies across number of function evaluations,
the two algorithms with the highest ones are the increasing inertia weight par-
ticle swarm optimizer with a fully connected topology (26 times out of 40 pos-
sible) and the stochastic inertia weight variant with a fully connected topology
(18 times).
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4.4 Different Inertia Weight Schedules in the
Time-Decreasing Inertia Weight
Particle Swarm Optimizer

The analysis carried out in the last sections, on the performance of different
particle swarm optimizers, revealed that, in most cases, the time-decreasing in-
ertia weight variant is capable of achieving high quality solutions although it
is normally among the slowest variants. Another interesting fact is that the
time-increasing inertia weight variant is, in many cases, among the fastest vari-
ants. Its problem is that it has a strong stagnating behavior. Combining the
fast convergence properties of the time-increasing inertia weight variant with
the reliability and the high-quality reaching properties of the decreasing iner-
tia weight variant would certainly produce a high performance particle swarm
optimizer (compared with those optimizers included in our study, of course).

The time-decreasing inertia weight variant was designed with an adaptive
diversification-intensification behavior in mind. A decreasing inertia weight
would give the particle swarm the opportunity to roughly explore the search
space at the beginning of the run and the ability to move slowly at the end, in
the most promising region. However, the inertia weight schedule was originally
proposed to decrease its value from a maximum to a minimum over the whole
optimization process. We hypothesized that speeding up the inertia weight
schedules would force the decreasing inertia weight particle swarm optimizer to
converge faster, while retaining its high-quality reaching properties.

In this section, we present the effects of different inertia weight schedules on
the performance of the time-decreasing inertia weight particle swarm optimizer.
As we did earlier, we only discuss the run-length and solution-quality distribu-
tions obtained in some of the benchmark problems. The remaining results are
available online at http://iridia.ulb.ac.be/supp/IridiaSupp2006-005/index.html.

The inertia weight schedule we used in the experiments, whose results we
present in this section, is based on Equation 2.7. We introduce a slight modifi-
cation of it, so that whenever the inertia weight reaches its minimum value, it
remains there. The modified equation is

w(t) =

{ tmax−t
tmax

· (iwmax − iwmin) + iwmax if t ≤ tmax
iwmin otherwise

, (4.11)

where tmax marks the time at which w(t) = iwmin, iwmax and iwmin are the
maximum and minimum values the inertia weight can take, respectively.

Besides presenting the run-length and solution-quality distributions obtained
for each inertia weight schedule, we also present the development of the swarm’s
instantaneous speed over time and the development of the average distance
between particles and the swarm’s centroid. These two measures give an idea
of the exploring/exploiting behavior of the algorithms.

The swarm’s instantaneous speed at time step t is computed using

sst =
1

n

n∑

i=1

|~vti | , (4.12)

where n is the number of particles in the swarm and ~vti is the velocity vector of
the ith particle at time step t.
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To monitor the diversity of the population at a given time step t, we use the
average distance between particles and the swarm’s centroid. It is computed
using

dt =
1

n

n∑

j=1

∣∣∣∣∣~x
t
j −

1

n

n∑

i=1

~xti

∣∣∣∣∣ , (4.13)

where n is the number of particles in the swarm and ~xti is the position vector of
the ith particle at time step t.

A fast-moving disperse swarm is an indicator of an explorative behavior in a
particle swarm optimizer. A slowly-moving contracted particle swarm is an indi-
cator of a particle swarm optimization algorithm in exploitation mode. During
a run, we monitor these two measures to understand the effect of the decreas-
ing inertia weight, and its different schedules, on the exploration/exploitation
behavior of the algorithm.

4.4.1 Effects of Different Inertia Weight Schedules on the
Easom Function

Figure 4.28 shows the empirical run-length distributions of the decreasing inertia
weight particle swarm optimizer with different inertia weight schedules. The
demanded solution quality was of 0.0001% away from the global optimum.

Irrespective of the number of particles and the population topology, the effect
of different inertia weight schedules is the same. The more aggressive a schedule
is, the higher is the speed up in the optimizer’s performance. No degradation in
the probability of finding the required solution can be perceived. The difference
in the speed up (measured as the distance between distributions along the x-
axis) between each schedule, is influenced by the number of particles and the
population topology. With 20 particles, the difference is higher than with 60
particles, and it is also higher using the fully connected topology than using the
ring topology. The speed up, in most of the cases, is substantial.

Figures 4.29 and 4.30 show the particles’ average distance to the swarm’s
centroid and their average instantaneous speed, respectively. In all cases, faster
inertia weight schedules provoke faster reductions of the swarm’s average speed
and faster spatial contractions of the particle swarm. The effects of an increment
in the number of particles are similar to those of a decrement in the connec-
tivity of the population topology: both, the speed and the distance towards
the swarm’s centroid, do not decrease at the same rate. With more particles
or loosely connected topologies, the decrements in the particles’ speed and the
shrinkage of the particles’ distance to the swarm’s centroid are slower.

Figure 4.31 shows the solution-quality distributions obtained by the decreas-
ing inertia weight particle swarm optimizer with different inertia weight sched-
ules after 1000 function evaluations. Fast inertia weight schedules provoke an
increment in the probability of finding high quality solutions after 1000 function
evaluations. An increment in the number of particles reduces the probability
significantly. A change in the population topology towards loosely connected
topologies, also provokes a decrement in the probability of finding good solu-
tions, although not as significantly as an increment in the number of particles.

Figure 4.32 shows the curves of the median solution quality development
over time for different inertia weight schedules. The fastest configuration is the
one using 20 particles and a fully connected topology.
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(a) 20 particles, Fully connected topology
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(b) 20 particles, Ring topology
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(c) 20 particles, Square topology
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(d) 60 particles, Fully connected topology
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(e) 60 particles, Ring topology
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Figure 4.28: Run-length distributions obtained with different inertia weight schedules on the Easom function. The solution quality demanded is

of 0.0001% away from the global optimum. Figures (a), (b), and (c) show the run-length distributions obtained with 20 particles. Figures (d), (e),

and (f) show the run-length distributions obtained with 60 particles. Columns show the effect of using different population topologies.
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(a) 20 particles, Fully connected topology
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(b) 20 particles, Ring topology
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(c) 20 particles, Square topology
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(d) 60 particles, Fully connected topology

 0

 20

 40

 60

 80

 100

 100  1000  10000  100000  1e+06

A
ve

ra
ge

 d
is

ta
nc

e

Number of function evaluations

100
1000

10000
100000

1000000

(e) 60 particles, Ring topology

 0

 20

 40

 60

 80

 100

 100  1000  10000  100000  1e+06

A
ve

ra
ge

 d
is

ta
nc

e

Number of function evaluations

100
1000

10000
100000

1000000

(f) 60 particles, Square topology

Figure 4.29: Development of the particles’ average distance to the swarm’s centroid for different inertia weight schedules on the Easom function.

Figures (a), (b), and (c) show the results with 20 particles. Figures (d), (e), and (f) show the results with 60 particles. Columns show the effect of

using different population topologies.
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(a) 20 particles, Fully connected topology
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(b) 20 particles, Ring topology
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(c) 20 particles, Square topology
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(d) 60 particles, Fully connected topology
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(e) 60 particles, Ring topology
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(f) 60 particles, Square topology

Figure 4.30: Development of the particles’ average instantaneous speed for different inertia weight schedules on the Easom function. Figures (a),

(b), and (c) show the results obtained with 20 particles. Figures (d), (e), and (f) show the results obtained with 60 particles. Columns show the

effect of using different population topologies.
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(a) 20 particles, Fully connected topology
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(b) 20 particles, Ring topology
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(c) 20 particles, Square topology
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(d) 60 particles, Fully connected topology
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(e) 60 particles, Ring topology
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(f) 60 particles, Square topology

Figure 4.31: Solution-quality distributions for different inertia weight schedules on the Easom function. These results were obtained after 1000

objective function evaluations. Figures (a), (b), and (c) show the solution-quality distributions obtained with 20 particles. Figures (d), (e), and (f)

show the solution-quality distributions obtained with 60 particles. Columns show the effect of using different population topologies.
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(a) 20 particles, Fully connected topology
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 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100  1000  10000  100000  1e+06

R
el

at
iv

e 
so

lu
tio

n 
qu

al
ity

 [%
]

Number of function evaluations

Solution quality over time

100
1000

10000
100000

1000000

(c) 20 particles, Square topology
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(d) 60 particles, Fully connected topology
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Figure 4.32: Solution quality development over time for different inertia weight schedules on the Easom function. Figures (a), (b), and (c) show the

solution quality development over time that is obtained with 20 particles. Figures (d), (e), and (f) show the solution quality development over time

that is obtained obtained with 60 particles. Columns show the effect of using different population topologies. These results are based on medians.
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4.4.2 Effects of Different Inertia Weight Schedules on the
Rastrigin Function

Figure 4.33 shows the run-length distributions obtained by the decreasing in-
ertia weight particle swarm optimizer with different inertia weight schedules
at a solution quality of 20.0% away from the global optimum. Similarly to
the case with the Easom function, faster schedules make the algorithm behave
more greedily. In some cases, this greediness results in a substantial speed up.
For example, when the schedule is decreased from 1 000 000 to 100 000 function
evaluations. However, as more aggressive the schedules are, the stronger the
stagnating behavior the algorithm exhibits. The severity of the stagnating be-
havior is alleviated by both, an increase in the number of particles, and a loosely
connected topology.

Figures 4.34 and 4.35 show the particles’ average distance to the swarm’s
centroid and their average instantaneous speed, respectively. The rate at which
the particles’ average speed and their distance to the swarm’s centroid decrease,
is faster when using a faster schedule. Comparing Figures 4.33(a), 4.33(b),
and 4.33(c), for example, two things are clear. First, when using either a ring or
square topology, the algorithm does not collapse as it does when using the fully
connected topology. Second, at any point in time, the dispersion of the swarm
increases as the connectivity of the topology increases. In terms of speed, the
difference between topologies is not as high as with the dispersion, and the speed
does not drop to zero when the algorithm uses the ring and square topologies as
it does when using the fully connected topology. The effect of an increase in the
number of particles is not as dramatic as is the effect of a different population
topology.

Figure 4.36 shows the solution-quality distributions for different inertia weight
schedules obtained after 1 000 000 function evaluations. Irrespective of the num-
ber of particles and the population topology, the highest probability of finding
good quality solutions is exhibited by the configuration with the slowest sched-
ule. The worst is exhibited by the configuration with the fastest one.

Figure 4.37 shows the solution quality development over time curves for
different inertia weight schedules. Even though slow schedules perform very
poorly during the first phase in the optimization process, they are the ones
that are capable of finding the best quality solutions. The graphs shown in
Figure 4.37 show clearly the trade-off between fast convergence and high quality
reaching capabilities.
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(a) 20 particles, Fully connected topology
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(c) 20 particles, Square topology
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(d) 60 particles, Fully connected topology
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Figure 4.33: Run-length distributions obtained with different inertia weight schedules on the Rastrigin function. The solution quality demanded

is of 20.0% away from the global optimum. Figures (a), (b), and (c) show the run-length distributions obtained with 20 particles. Figures (d), (e),

and (f) show the run-length distributions obtained with 60 particles. Columns show the effect of using different population topologies.
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(a) 20 particles, Fully connected topology
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(d) 60 particles, Fully connected topology
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Figure 4.34: Development of the particles’ average distance to the swarm’s centroid for different inertia weight schedules on the Rastrigin function.

Figures (a), (b), and (c) show the results with 20 particles. Figures (d), (e), and (f) show the results with 60 particles. Columns show the effect of

using different population topologies.
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(a) 20 particles, Fully connected topology
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(b) 20 particles, Ring topology
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(c) 20 particles, Square topology
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(d) 60 particles, Fully connected topology
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Figure 4.35: Development of the particles’ average instantaneous speed for different inertia weight schedules on the Rastrigin function. Figures (a),

(b), and (c) show the results obtained with 20 particles. Figures (d), (e), and (f) show the results obtained with 60 particles. Columns show the

effect of using different population topologies.
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(a) 20 particles, Fully connected topology
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(b) 20 particles, Ring topology
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(c) 20 particles, Square topology
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(d) 60 particles, Fully connected topology
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(e) 60 particles, Ring topology
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Figure 4.36: Solution-quality distributions for different inertia weight schedules on the Rastrigin function. These results were obtained after 1 000 000

objective function evaluations. Figures (a), (b), and (c) show the solution-quality distributions obtained with 20 particles. Figures (d), (e), and (f)

show the solution-quality distributions obtained with 60 particles. Columns show the effect of using different population topologies.
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(a) 20 particles, Fully connected topology
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(b) 20 particles, Ring topology
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(c) 20 particles, Square topology
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(d) 60 particles, Fully connected topology
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Figure 4.37: Solution quality development over time for different inertia weight schedules on the Rastrigin function. Figures (a), (b), and (c) show

the solution quality development over time that is obtained with 20 particles. Figures (d), (e), and (f) show the solution quality development over

time that is obtained obtained with 60 particles. Columns show the effect of using different population topologies. These results are based on

medians.
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4.4.3 Effects of Different Inertia Weight Schedules on the
Rosenbrock Function

Figure 4.38 shows the run-length distributions obtained by the decreasing in-
ertia weight particle swarm optimizer using different inertia weight schedules.
The demanded solution quality was of 10.0% away from the optimum. In the
results obtained using the fully connected topology, the most aggressive sched-
ules allow the algorithm to find the desired solution quality level in a faster way.
However, in all cases, the algorithm has a strong stagnating behavior, which is
not alleviated by an increase in the number of particles. With the ring and
square topologies, the algorithm gets better results. There is no clear domi-
nance among fast and not-so-fast schedules. However, the slowest schedule is
always dominated.

Figure 4.39 shows the development over time of the particles’ average dis-
tance to the swarm’s centroid. These graphs show how the more connected the
population topology, the more contracted the swarm gets. In the case of the
ring topology, there is even a significant expansion of the swarm between the
first 100 and 1000 function evaluations. The average distance to the swarm’s
centroid reaches a minimum and then starts to grow again, most notably with
the fully connected and square topologies. With the ring topology, the average
distance never reaches the zero value. The rate at which the distance decreases
depends on the inertia weight schedule. The fastest the schedule, the fastest is
the contraction of the swarm. An increase in the number of particles increases
the maximum average distance to the swarm’s centroid. In other words, bigger
swarms are sparser.

Figure 4.40 shows the average particles’ speed development over time. The
faster the schedule, the faster the decrement of the speed. In the case of the
two fastest schedules, however, the speed decay rate is almost the same after
some 1000 function evaluations. The speed also decays up to a minimum and
either stays there constant (as in the case of the fully connected topology), or
increases (as in the case of the square topology).

Figure 4.41 shows the solution-quality distributions obtained for different
inertia weight schedules on the Rosenbrock function. When the algorithm used
either a ring or a square topology, the worst results were obtained when the
algorithm used the slowest schedule. On the contrary, when the algorithm
used the fully connected topology, the best results were obtained when the
algorithm used the slowest schedule. Depending on the topology and the number
of particles, the best results were obtained when the algorithm used different
schedules. For example, with 20 particles and the ring topology the schedule
that got the best results was the one that reached the minimum inertia weight
after 100 000 function evaluations. With 60 particles and the ring topology the
best results were those the algorithm obtained using the inertia weight that
reached the minimum inertia weight after 10 000 function evaluations.

Figure 4.42 shows the graphs of the solution quality development over time.
The fastest configuration of the algorithm is the one with 20 particles and the
square topology. In this problem, a topology whose connectivity is between a
strong one and a loose one gives the best results. Incrementing the number of
particles only delays the convergence of the algorithm to high quality solutions,
and in this case, the performance obtained with 20 and 60 particles is not so
different.
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(a) 20 particles, Fully connected topology
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(b) 20 particles, Ring topology
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(c) 20 particles, Square topology
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(d) 60 particles, Fully connected topology
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(e) 60 particles, Ring topology
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(f) 60 particles, Square topology

Figure 4.38: Run-length distributions obtained with different inertia weight schedules on the Rosenbrock function. The solution quality demanded

is of 10.0% away from the global optimum. Figures (a), (b), and (c) show the run-length distributions obtained with 20 particles. Figures (d), (e),

and (f) show the run-length distributions obtained with 60 particles. Columns show the effect of using different population topologies.
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(a) 20 particles, Fully connected topology
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(b) 20 particles, Ring topology
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(c) 20 particles, Square topology

 0

 20

 40

 60

 80

 100

 120

 140

 100  1000  10000  100000  1e+06

A
ve

ra
ge

 d
is

ta
nc

e

Number of function evaluations

100
1000

10000
100000

1000000

(d) 60 particles, Fully connected topology
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Figure 4.39: Development of the particles’ average distance to the swarm’s centroid for different inertia weight schedules on the Rosenbrock function.

Figures (a), (b), and (c) show the results with 20 particles. Figures (d), (e), and (f) show the results with 60 particles. Columns show the effect of

using different population topologies.
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(a) 20 particles, Fully connected topology
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(b) 20 particles, Ring topology
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(c) 20 particles, Square topology
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(d) 60 particles, Fully connected topology
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(e) 60 particles, Ring topology
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Figure 4.40: Development of the particles’ average instantaneous speed for different inertia weight schedules on the Rosenbrock function. Figures (a),

(b), and (c) show the results obtained with 20 particles. Figures (d), (e), and (f) show the results obtained with 60 particles. Columns show the

effect of using different population topologies.
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(a) 20 particles, Fully connected topology
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(b) 20 particles, Ring topology
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Figure 4.41: Solution-quality distributions for different inertia weight schedules on the Rosenbrock function. These results were obtained after

1 000 000 objective function evaluations. Figures (a), (b), and (c) show the solution-quality distributions obtained with 20 particles. Figures (d), (e),

and (f) show the solution-quality distributions obtained with 60 particles. Columns show the effect of using different population topologies.
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Figure 4.42: Solution quality development over time for different inertia weight schedules on the Rosenbrock function. Figures (a), (b), and (c)

show the solution quality development over time that is obtained with 20 particles. Figures (d), (e), and (f) show the solution quality development

over time that is obtained obtained with 60 particles. Columns show the effect of using different population topologies. These results are based on

medians.
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4.4.4 Quantitative Evaluation of the Effects of Different
Inertia Weight Schedules in the Time-Decreasing
Inertia Weight Particle Swarm Optimizer

We present a comparison of the different possible configurarions of the time-
decreasing inertia weight particle swarm optimizer. First, we present an analysis
of the sensitivity of the different configurations to a change in the population
topology. After that, we present a comparison taking into account all the con-
figurations, to discover which configurations are the best performing and under
which conditions. The procedure employed to get the data presented in the
following tables and figures was the same we used in Section 4.3. The actual
values of the medians are reported in Appendix C on Tables C.1, C.2 and C.3

Table 4.7 shows the relative ranking each configuration gets on each bench-
mark function. In the rightmost column, the average ranking across all bench-
mark functions is reported. These data correspond to the case in which the
algorithm uses a fully connected topology.

The configuration using the fastest inertia weight schedule is the best ranked
one up to 1000 function evaluations. It is ranked as the very best configuration
in all benchmark functions except in the case of the Rosenbrock function, in
which it is ranked third. For longer runs, it becomes worse and worse ranked,
in a nondecreasing way, in almost all functions.

For runs composed of 1 000 000 function evaluations, the best ranked con-
figuration is the one with the slowest inertia weight schedule. It is ranked first
(alone or in shared rankings with other configurations) in all benchmark func-
tions except in the Griewank function.

In Figure 4.43(a), in which the average rank obtained by each configuration
using the fully connected topology, is plotted against the number of function
evaluations, we can see how different schedules are ranked first after different
number of function evaluations. For 1000 function evaluations, the best ranked
configuration is the one with the schedule in which the inertia weight reaches its
minimum value after just 100 function evaluations. For 10 000 function evalua-
tions, the best ranked configuration is the one in which the inertia weight reaches
its minimum value after 1000 function evaluations. The pattern continues for
the other configurations, but at 1 000 000 function evaluations the best ranked
configuration is the one with the slowest schedule. The order in which configu-
rations are ranked at 1000 function evaluations is reversed at 1 000 000 function
evaluations. The meaning of this is clear. For short runs, aggressive schedules
get the best results, but for long runs, slow schedules get better results. It is a
tradeoff between speed and quality.

In Table 4.8 the relative ranking obtained by each configuration, using the
square topology, is shown. Similarly to the previous case, the configuration with
the fastest schedule is ranked first at 1000 function evaluations in all functions
except Rosenbrock. The configuration with the slowest schedule shares the best
ranking with other configurations and now, it is relegated to the worst rankings
in the Salomon and Rosenbrock functions. In Figure 4.43(b), we see how the
configuration with the most aggressive schedule is not inly the best ranked at
1000 function evaluations, but also at 10 000. At 100 000 function evaluations,
the best ranked configuration is the one using the next fastest schedule. At
1 000 000 function evaluations, the best ranked configuration is the one with the
second slowest schedule.
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Table 4.7: Ranking of decreasing inertia weight optimizers with different schedules based on median solution qualities. Fully connected topol-

ogy case. Each cell contains the rank obtained by the corresponding configuration after 1 000, 10 000, 100 000 and 1 000 000 function evaluations (FES).

Schedule

Fully connected topology case
High dimensional Low dimensional

Multimodal Unimodal Multimodal Unimodal
FES Ackley Step Griewank Rastrigin Schwefel Salomon Sphere Rosenbrock Schaffer Easom Avg. Rank

100

103 1 1 1 1 1 1 1 3 1 1 1.20
104 2 1 1 2 2 1 1 2 2 2 1.60
105 2 2 4 4 4 3 2.5 3 2.5 2.5 2.95
106 4 3 4 5 5 3.5 4 5 3 3 3.95

1000

103 2 2 2 2 2 2 2 1 2 2 1.90
104 1 2 2 1 1 2 2 1 1 2 1.50
105 2 2 2.5 3 3 2 2.5 2 2.5 2.5 2.40
106 4 3 2.5 4 4 3.5 4 4 3 3 3.50

10 000

103 3 3 3 3 3.5 3 3 2 5 3 3.15
104 3 3 3 3 3 3 3 3 3 2 2.90
105 2 2 2.5 2 2 1 2.5 1 2.5 2.5 2.00
106 4 3 2.5 3 3 3.5 4 2 3 3 3.10

100 000

103 4 4.5 4 4 5 4 4 4 3 5 4.15
104 4 4 4 4 4 4 4 4 4 4 4.00
105 4 4 1 1 1 4 2.5 4 2.5 2.5 2.65
106 2 3 1 2 2 3.5 1.5 3 3 3 2.40

1 000 000

103 5 4.5 5 5 3.5 5 5 5 4 4 4.60
104 5 5 5 5 5 5 5 5 5 5 5.00
105 5 5 5 5 5 5 5 5 5 5 5.00
106 1 3 5 1 1 1 1.5 1 3 3 2.05
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Table 4.8: Ranking of decreasing inertia weight optimizers with different schedules based on median solution qualities. Square topology case. Each

cell contains the rank obtained by the corresponding configuration after 1 000, 10 000, 100 000 and 1 000 000 function evaluations (FES).

Schedule

Square topology case
High dimensional Low dimensional

Multimodal Unimodal Multimodal Unimodal
FES Ackley Step Griewank Rastrigin Schwefel Salomon Sphere Rosenbrock Schaffer Easom Avg. Rank

100

103 1 1 1 1 1 1 1 2 1 1 1.10
104 1 1 1 1 2 1 1 2 1 2 1.30
105 1.5 2 1.5 4 4 2 2 3 2.5 2.5 2.50
106 3 3 2.5 5 5 2.5 3 4 3 3 3.40

1000

103 2 2 2 2 2 2 2 1 2 2 1.90
104 2 2 2 2 1 2 2 1 3 2 1.90
105 1.5 2 1.5 3 2 2 2 1 2.5 2.5 2.00
106 3 3 2.5 4 3 2.5 3 2 3 3 2.90

10 000

103 3 4 3 3 3 3 3 3 3 4 3.20
104 3 3 3 3 3 3 3 3 2 2 2.80
105 3 2 3 2 3 2 2 2 2.5 2.5 2.40
106 3 3 5 3 4 2.5 3 1 3 3 3.05

100 000

103 5 4 4 5 4.5 4 4 5 5 5 4.55
104 4 4 4 4 4 4 4 4 4 4 4.00
105 4 4 4 1 1 4 4 4 2.5 2.5 3.10
106 3 3 2.5 2 2 2.5 3 3 3 3 2.70

1 000 000

103 4 4 5 4 4.5 5 5 4 4 3 4.25
104 5 5 5 5 5 5 5 5 5 5 5.00
105 5 5 5 5 5 5 5 5 5 5 5.00
106 3 3 2.5 1 1 5 3 5 3 3 2.95
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Table 4.9: Ranking of decreasing inertia weight optimizers with different schedules based on median solution qualities. Ring topology case. Each

cell contains the rank obtained by the corresponding configuration after 1 000, 10 000, 100 000 and 1 000 000 function evaluations (FES).

Schedule

Ring topology case
High dimensional Low dimensional

Multimodal Unimodal Multimodal Unimodal
FES Ackley Step Griewank Rastrigin Schwefel Salomon Sphere Rosenbrock Schaffer Easom Avg. Rank

100

103 1 1 1 1 1 1 1 2 1 1 1.10
104 1 1 1 2 1 1 1 2 2.5 2 1.45
105 2 1.5 2 4 2 2 2 2 2.5 2.5 2.25
106 3 3 2.5 5 3 3 3 4 3 3 3.25

1000

103 2 2 2 2 2 2 2 1 2 2 1.90
104 2 2 2 1 2 2 2 1 2.5 2 1.85
105 1 1.5 2 3 4 2 2 3 2.5 2.5 2.35
106 3 3 2.5 4 5 3 3 3 3 3 3.25

10 000

103 3 3 3 3 3 3 3 4 5 3 3.30
104 3 3 3 3 3 3 3 3 1 2 2.70
105 3 3 2 2 3 2 2 1 2.5 2.5 2.30
106 3 3 2.5 3 4 3 3 2 3 3 2.95

100 000

103 4 4.5 4 4 5 5 5 3 4 5 4.35
104 4 4 4 4 4 4 4 4 4 4 4.00
105 4 4 4 1 1 4 4 4 2.5 2.5 3.10
106 3 3 2.5 2 2 3 3 1 3 3 2.55

1 000 000

103 5 4.5 5 5 4 4 4 5 3 4 4.35
104 5 5 5 5 5 5 5 5 5 5 5.00
105 5 5 5 5 5 5 5 5 5 5 5.00
106 3 3 5 1 1 3 3 5 3 3 3.00
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Figure 4.43: Relative average ranking of decreasing inertia weight optimizers with

different schedules. Average ranking over benchmark functions as a function of the

number of function evaluations in a run.
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In the case of the ring topology, Table 4.9 shows the relative ranking obtained
by the different configurations in all benchmark problems. Figure 4.43(c) shows
the average ranking obtained by each configuration against the number of func-
tion evaluations. Similarly to the case of the square topology, the best ranked
configuration at 1000 and 10 000 function evaluations is the one with the fastest
schedule. Now, however, it is still the best ranked at 100 000 function evalua-
tions. The best ranked configuration at 1 000 000 function evaluations is, again,
the one with the second slowest schedule. The ring topology does not favor
convergent behavior and thus, the best ranked configuration is the one with the
most aggressive inertia weight schedule.

Table 4.10 shows the average ranking obtained by each configuration at dif-
ferent numbers of function evaluations, and the average ranking across topolo-
gies. The standard deviation and, specially, the coefficient of variation indicates
the sensitiveness of each configuration to a change in the population topology.
The sensitiveness depends on the moment at which it is measured.

There are four cases in which there is no variation in the relative ranking.
The configuration with the schedule that reaches the minimum value at 1000
function evaluations, the one whose minimum inertia weight value is reached at
100 000, and the one with the slowest schedule. These configurations are very
stable at short, medium, and medium-long runs, respectively.

The configuration with the largest variation is the one with the slowest
schedule at 1 000 000 function evaluations. It reflects the fact that with the
square and ring topologies, this configuration “has not enough time” to find
high quality solutions as a consequence of the boost in the explorative behavior
caused by these topologies. In other words, the effect of the convergent behavior
induced by the decreasing inertia weight, is exceeded by the explorative behavior
induced by a loosely connected topology.

Table 4.11 shows the distribution of appearances of the different configu-
rations in the top 3 group. Three times a configuration appears in the top 3
group in all the functions: twice with the fastest inertia weight schedule, at
1000 and 10 000 function evaluations and once with the second fastest schedule
at 10 000 function evaluations. In all cases, except in those using the fastest
inertia weight schedule and the second fastest schedule with the fully connected
topology, the number of times a configuration appears in the top 3 group in-
creases as the number of function evaluations increases. In the exception cases,
the tendency is the inverse, and the frequency of appearance decreases as the
number of function evaluations increases.

Figure 4.44 shows the frequency with which each configuration appears in
the top 3 group per number of function evaluations. Shade differences represent
different population topologies.

On the top-left figure, after 1000 function evaluations, the configurations
that dominate are those with the fastest schedules and the fully connected topol-
ogy.

On the top-right figure, at 10 000 function evaluations, those configurations
with the fastest schedules and the fully connected topology continue dominating
but, more configurations with square and ring topologies appear in the graph.
Important to note is the decreasing pattern (the slower the schedules the lower
the frequency of appearance) in configurations using the fully and square topolo-
gies.
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Table 4.10: Relative average ranking of decreasing inertia weight optimizers with different schedules based on the median solution quality achieved

after a certain number of function evaluations. Aggregated results. Each cell contains the rank obtained by the corresponding optimizer after 1 000,

10 000, 100 000 and 1 000 000 function evaluations (FES).

Schedule
Population topology

FES Fully Connected Square Ring Average Rank Standard Deviation Coefficient of Variation[%]

100

103 1.20 1.10 1.10 1.13 0.06 5.09
104 1.60 1.30 1.45 1.45 0.15 10.34
105 2.95 2.50 2.25 2.57 0.35 13.82
106 3.95 3.40 3.25 3.53 0.37 10.43

1000

103 1.90 1.90 1.90 1.90 0.00 0.00
104 1.50 1.90 1.85 1.75 0.22 12.45
105 2.40 2.00 2.35 2.25 0.22 9.69
106 3.50 2.90 3.25 3.22 0.30 9.37

10 000

103 3.15 3.20 3.30 3.22 0.08 2.37
104 2.90 2.80 2.70 2.80 0.10 3.57
105 2.00 2.40 2.30 2.23 0.21 9.32
106 3.10 3.05 2.95 3.03 0.08 2.52

100 000

103 4.15 4.55 4.35 4.35 0.20 4.60
104 4.00 4.00 4.00 4.00 0.00 0.00
105 2.65 3.10 3.10 2.95 0.26 8.81
106 2.40 2.70 2.55 2.55 0.15 5.88

1 000 000

103 4.60 4.25 4.35 4.40 0.18 4.10
104 5.00 5.00 5.00 5.00 0.00 0.00
105 5.00 5.00 5.00 5.00 0.00 0.00
106 2.05 2.95 3.00 2.67 0.53 20.05
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Table 4.11: Frequency and distribution of appearances of decreasing inertia
weight optimizers with different schedules in the top 3 group.

Schedule Topology FES Ackley Step Griewank Rastrigin Schwefel Salomon Sphere Rosenbrock Schaffer Easom Count

100

Fully Connected

103 * * * * * * * * * * 10
104 * * * * * * * * * * 10
105 * * - - - - * * * * 6
106 - * - - - * * - * * 5

Square

103 * * * * * * * - * * 9
104 * * * * - * * - - * 7
105 * * * - - * * - * * 7
106 * * * - - * * - * * 7

Ring

103 - - - - * - - - * * 3
104 - - - - - - - - - * 1
105 - - * - - - * - * * 4
106 * * * - - * * - * * 7

1000

Fully Connected

103 * * * * - * * * - - 7
104 * * * * * * * * * * 10
105 * * - - - * * * * * 7
106 - * - - - * * - * * 5

Square

103 - - - - - - - - - - 0
104 - - - - * - - * - * 3
105 * * * - - * * - * * 7
106 * * * - - * * - * * 7

Ring

103 - - - - - - - - - - 0
104 - - - - - - - - - * 1
105 - - * - - - * - * * 4
106 * * * - - * * * * * 8

10 000

Fully Connected

103 - - - - - - - * - - 1
104 - - - - - - - - * * 2
105 * * - - - * * * * * 7
106 - * - - - * * - * * 5

Square

103 - - - - - - - - - - 0
104 - - - - - - - - - * 1
105 * * * * - * * - * * 8
106 * * * - - * * - * * 7
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Table 4.11 – continued from previous page

Schedule Topology FES Ackley Step Griewank Rastrigin Schwefel Salomon Sphere Rosenbrock Schaffer Easom Count

Ring

103 - - - - - - - - - - 0
104 - - - - - - - - - * 1
105 - - * - - - * - * * 4
106 * * * - - * * * * * 8

100 000

Fully Connected

103 - - - - - - - - - - 0
104 - - - - - - - - - * 1
105 - * - * * - * - * * 6
106 * * - * - * * - * * 7

Square

103 - - - - - - - - - - 0
104 - - - - - - - - - - 0
105 - - - * * - * - * * 5
106 * * * - - * * - * * 7

Ring

103 - - - - - - - - - - 0
104 - - - - - - - - - * 1
105 - - * - * - - - * * 4
106 * * * - - * * * * * 8

1 000 000

Fully Connected

103 - - - - - - - - - - 0
104 - - - - - - - - - - 0
105 - - - - - - - - - - 0
106 * * - * * * * - * * 8

Square

103 - - - - - - - - - - 0
104 - - - - - - - - - - 0
105 - - - - - - - - * * 2
106 * * * * * * * - * * 9

Ring

103 - - - - - - - - - - 0
104 - - - - - - - - - - 0
105 - - - - - - - - * * 2
106 * * * - * * * - * * 8
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On the bottom-left figure, at 100 000 function evaluations, the dominance
exhibited by the configurations using a fully connected topology and fast sched-
ules, is lost. There is a significant increase in the frequency of appearance of
configurations using the square and ring topologies.

On the bottom-right figure, at 1 000 000 function evaluations, the dominance
now is from the configurations with slow schedules and square and ring topolo-
gies. Those configurations with fast schedules are among the least frequent in
the top 3 group.

To conclude, if it is decided to use the time-decreasing inertia weight particle
swarm optimizer and the application requirements impose the need of a limited
number of function evaluations, aggressive decreasing inertia weight schedules
together with a fully connected topology are the best choice. If the main concern
is the solution-quality, moderately slow schedules and moderately connected
topologies offer the best results. It depends on the application scenario the
compromise to be taken: speed or quality.

4.5 Summary

In Section 4.2, we have presented and discussed the run-length and solution-
quality distributions obtained on four problems of our benchmark set. In Sec-
tion 4.3, we presented a quantitative analysis for discovering the sensitiveness
of each particle swarm optimizer to a change in the population topology. We
also ranked the 19 variants that result from all the 18 possible combinations
between algorithms and topologies (6 algorithms × 3 topologies), plus AHPSO.
This ranking allowed us to identify the best performing particle swarm optimiz-
ers considering different function evaluation budgets. We can summarize the
main conclusions derived from these two sections as follows:

1. Depending on the problem and the demanded solution quality, different
algorithms exhibit a stagnating behavior with different degrees of severity.
This stagnating behavior can be alleviated by incrementing the population
size or changing the population topology to a loosely connected one. In-
creasing the population size results in a larger diversity, and thus, it gives
the algorithms the opportunity of better exploring the search space. With
a loosely connected topology, a particle is not directly and instantaneously
influenced by the very best solution found so far and this facilitates their
explorative behavior. An increment in the explorative capabilities of an
algorithm comes at a price. Even though the probability of solving the
problem increases, the speed is slowed down. This is evidenced when,
in some problems, the solution quality achieved after a fixed number of
function evaluations, drops with larger population sizes or with a loosely
connected topology.

Related points:

• The number of algorithms using the ring topology in the top 3 group
increases as the number of function evaluations increases. This is a
sign of the slowness of convergence towards good quality solutions
during the first iterations of the algorithms using the ring topology.
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• In many cases, the only particle swarm optimizers that (regardless the
number of particles or the population topology) can find, with high
probability, the demanded solution qualities are the decreasing inertia
weight variant and HPSOTVAC. Of these two variants, HPSOTVAC
is faster than the decreasing inertia weight variant (with the inertia
weight schedule that reaches its minimum value at 1 000 000 func-
tion evaluations). The shapes of the curves of the solution quality
development over time for HPSOTVAC and the decreasing inertia
weight variant, reveal that they are among the worst particle swarm
optimizers during the first 10 000 function evaluations; however, they
find some of the best solutions after 1 000 000 function evaluations.

2. Different algorithms are sensitive to a change in the population topology
in different degrees. The sensitiveness also depends on the moment in time
it is measured.

Related points:

• The most sensitive particle swarm optimizer is FIPS. For runs of just
a few function evaluations, FIPS’s best performance is obtained with
the fully connected topology. For longer runs, this algorithm im-
proves its performance as the connectivity of its topology decreases.

3. In situations where the number of function evaluations must be main-
tained to the minimum, particle swarm optimizers with convergent prop-
erties (with highly connected topologies or low inertia weights) get the
best results. For medium-long and long runs, algorithms with explorative
properties (those with medianly or loosely connected topologies, or large
inertia weights) perform best.

Related points:

• For medium-long and long function evaluation budgets, all algorithms
(except AHPSO, due to its adaptive topology mechanism) benefit
from a topology that facilitates an explorative behavior.

• The overall ranking of the increasing inertia weight variant increases
as the connectivity of the topology decreases.

• The improvement on the ranking obtained by AHPSO is consequence
of the exploitation of a convergent behavior caused by a highly con-
nected topology during the first iterations of the algorithm.

• AHPSO is among the top ranked algorithms in either unimodal or
low dimensional problems.

In Section 4.4, we presented the effects of different inertia weight schedules in
the decreasing inertia weight particle swarm optimizer. The motivation to carry
out these experiments was to see whether we could speed up the convergence
of this variant while retaining its high-quality reaching capabilities. We can
summarize our conclusions as follows:

1. Faster inertia weight schedules provoke faster decelerations and spatial
contractions of the particle swarm.
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2. Faster inertia weight schedules provoke the algorithm to exhibit a stronger
stagnating behavior. Related points:

• With slow inertia weight schedules, the algorithm perform poorly
during the first function evaluations. However, with them, it is ca-
pable to find higher quality solutions.

• Aggressive inertia weight schedules yield the best results for short
runs. For long runs, slow schedules provide the best results. In
general, it is a tradeoff between speed and quality.

3. For slow inertia weight schedules, the effect of the convergent behavior
induced by the decreasing inertia weight, is exceeded by the explorative
induced by a loosely connected topology.
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Chapter 5

Improved Particle Swarm
Optimizers

In Chapter 4, we evaluated and compared some of the most widely used par-
ticle swarm optimization algorithms. The analysis based on run-length and
solution-quality distributions provided us with a wealth of information about
the behavior of the different algorithms. In this section, we present two im-
proved variants that build on what we learned from that analysis, and that
tackle some of the detected weaknesses.

The first variant is one that incorporates an adaptive restart mechanism.
It is based on the fact that, in some cases, many short runs are better than a
single long run of a stochastic optimization algorithm [17]. The second variant
borrows some ideas from recent developments in Ant Colony Optimization [9].
It is a particle swarm optimizer that uses the information gathered throughout
the optimization process, to guide the search into the most promising regions of
the search space. In both cases, the improvement is evaluated using the same
tools we used in the last chapter, that is, using run-length and solution-quality
distributions.

5.1 Time-Decreasing Inertia Weight Particle

Swarm Optimizer with Adaptive Restarts

In Chapter 3, we described how run-length and solution-quality distributions
can reveal the severity of the stagnating behavior exhibited by a stochastic
optimization algorithm. In this section, we describe a way to improve the per-
formance of algorithms with strong stagnating behavior without introducing in
them any algorithmic modification but controlling the way they are run.

5.2 Effects of Random Restarts on Run-Time

Distributions

We will adopt, for a moment, the terminology commonly used in survival anal-
ysis and we will refer to the event of finding a solution of the desired quality
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level as “death” and to the waiting time as “survival” time.
The survival function is then defined as

STq(t) = 1−RTq(t) = P (Tq > t) , (5.1)

that is, the probability of having to wait more than a time t to find a solution
of quality q. Now, imagine an algorithm whose run-time distribution exhibits
the following property:

P (Tq > t+ s|Tq > t) = P (Tq > s) , (5.2)

where s > 0. This property is called memorylessness, and it means that, if
we have already waited t time without getting the desired solution quality, the
probability of having to wait at least s extra time, is the same probability of
having to wait an original s time.

If an algorithm is restarted n times, it exhibits this property. To see why
this is true, suppose that an algorithm is capable of finding a required solution
quality q with probability p at time t. Now, If we restarted the algorithm at
this time, a new optimization process would begin from scratch, making the
algorithm to indeed “forget” its past.

Let X be a random variable representing the number of restarts needed to
find a solution of quality q. If the probability of success of each run is p. Then,
the probability that n = 0, 1, 2, . . . restarts are needed to get one success is

P (X = n) = p · (1− p)n , (5.3)

and its cumulative distribution function is defined as

P (X ≤ n) = 1− (1− p)n+1 . (5.4)

To have a clearer picture of the effect of restarts in the performance of a
stochastic optimization algorithm, let us consider again the example we used
in Chapter 3. Figure 5.1 shows an example of a slowly-increasing run-time dis-
tribution. In three of the four desired solution qualities, the algorithm that
produced the data for these distributions suffers from a strong stagnating be-
havior. Note how the probability increases but at an extremely slow rate (recall
that the x-axis is in logarithmic scale). The probability of finding a solution of
0.001% away from the optimum is about 0.26 after 10 000 function evaluations,
and only 0.37 after 1 000 000 evaluations.

If we restarted the algorithm say, every 10 000 function evaluations, then
after just 100 000 function evaluations (i.e., after 10 restarts), we would have a
probability of finding the desired solution quality equal to

P (X ≤ 10) = 1− (1− 0.26)11 = 0.95 .

Without restarts, we would only achieve a probability of 0.34. It is clear the
improvement achieved by just restarting the algorithm.

Only some probability distributions exhibit the memorylessness property:
the exponential and geometric distributions. The process described above ex-
hibits a geometric distribution. Indeed, it is an analog of the continuous ex-
ponential distribution. Because of this, if we apply restarts to an algorithm
with an exponential run-time distribution, no improvement in its performance
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Figure 5.1: Example of a run-length distribution showing an algorithm with strong

stagnating behavior. Three out of four solution qualities show how the algorithm that

produced these distributions exhibits strong stagnating behavior. Note the logarithmic

scale in the x-axis.

is achieved. On the other hand, if an algorithm exhibits a run-time distribu-
tion that approaches 1.0 faster than the exponential distribution, using restarts
would only deteriorate its performance.

A strategy to avoid the problem of restarting an algorithm with a cumulative
distribution function that grows faster than the exponential distribution, is to
restart the algorithm only when it starts showing signals of stagnation. In
our implementation, we monitor the average swarm’s velocity and restart the
algorithm when it reaches a level below 1.0% of its maximum allowable speed.
We call this strategy adaptive to contrast it with a fixed restarting strategy that
would require us to choose in advance the exact time to restart the algorithm.

5.2.1 Evaluation of Performance

In this section, we present the results we obtained after including an adaptive
restart mechanism into the decreasing inertia weight particle swarm optimizer
using a greedy configuration (a fully connected topology and a small number
of particles). Since the greedy configuration converges faster than any other
one, it is with this configuration that the effects of random restarts are better
noticed. The inertia weight schedule serves as a way to control the convergence
rate and therefore, to see how the adaptive mechanism reacts to different condi-
tions. It is important to stress that the theory behind the effects of restarts on
the performance of stochastic optimization algorithms remains valid for other
configurations as well.

In the following paragraphs, we present the run-length distributions ob-
tained by the modified algorithm on four of the benchmark problems in our
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test suite. The results obtained on the rest of the problems and with other con-
figurations are available online at http://iridia.ulb.ac.be/supp/IridiaSupp2006-
005/index.html.

Results on the Schaffer Function

Figure 5.2 shows the run-length distributions obtained with different inertia
weight schedules and adaptive restarts on the Schaffer function. There are five
graphs each corresponding to different inertia weight schedules.

We saw in the last chapter how slow inertia weight schedules do not force
particles to reduce their speed in an aggressive way. Due to this fact, the
adaptive restart mechanism is never triggered (Figures (d) and (e)). When the
algorithm uses faster inertia weight schedules (Figures (a), (b), and (c)), the
mechanism is triggered. The result is an increment in the probability of finding
the desired solution quality level. The point in time at which the curves start
diverging depends on the inertia weight schedule. The faster the schedule, the
earlier the deviation of the two curves.

Results on the Rastrigin Function

Figure 5.3 shows the run-length distributions obtained with different inertia
weight schedules and adaptive restarts on the Rastrigin function.

In this figure, we can observe the same phenomenon that we described above.
The adaptive mechanism seems to properly detect the moment at which the al-
gorithm should be restarted. In the cases of the slowest schedules, the run-length
distributions are very steep and the restarting mechanism never gets activated,
as expected (Figures (d) and (e)). With the faster schedules (Figures (a), (b),
and (c)), the adaptive mechanism “waits” until the algorithm’s probability of
success starts to decline abruptly.

Results on the Sphere Function

In Figure 5.4, where the run-length distributions obtained by the algorithm on
the Sphere function are shown, we can see what happens when the adaptive
restart mechanism is triggered prematurely. In this case, the algorithm (with-
out restarts) is still capable of finding the required solution quality even after
slowing down the particles’ speed below the 1% of its maximum allowable value
(Figures (a), (b), (c), and (d)). Since this is the criterion for triggering a restart,
the result is a deterioration of the algorithm’s performance.

Results on the Rosenbrock Function

Figure 5.5 shows the run-length distributions obtained with different inertia
weight schedules and adaptive restarts on the Rosenbrock function.

It can be seen that in this case, as was in the case of the Sphere function,
restarts are also triggered prematurely. However, in this case, the algorithm
(without restarts) stagnates. The version with restarts, although slower, finds
a solution with the required solution quality with probability equal to 1.0. It is,
therefore, evident that even if the restart mechanism is triggered prematurely,
the resultant algorithm is capable, may be in the long run, of finding a solution
of the required quality.
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Figure 5.2: Run-length distributions obtained with different inertia weight schedules and adaptive restarts on the Schaffer function. The solution

quality demanded is of 0.0001% away from the global optimum. The succession of graphs shows the effects of the adaptive restart mechanism in the

performance of the decreasing inertia weight optimizer with different inertia weight schedules.
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Figure 5.3: Run-length distributions obtained with different inertia weight schedules and adaptive restarts on the Rastrigin function. The solution

quality demanded is of 20.0% away from the global optimum. The succession of graphs shows the effects of the adaptive restart mechanism in the

performance of the decreasing inertia weight optimizer with different inertia weight schedules.
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Figure 5.4: Run-length distributions obtained with different inertia weight schedules and adaptive restarts on the Sphere function. The solution

quality demanded is of 0.01% away from the global optimum. The succession of graphs shows the effects of the adaptive restart mechanism in the

performance of the decreasing inertia weight optimizer with different inertia weight schedules.
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Figure 5.5: Run-length distributions obtained with different inertia weight schedules and adaptive restarts on the Rosenbrock function. The solution

quality demanded is of 10.0% away from the global optimum. The succession of graphs shows the effects of the adaptive restart mechanism in the

performance of the decreasing inertia weight optimizer with different inertia weight schedules.
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The idea of applying restarts in stochastic optimization algorithms is not
new. It has been common practice in the mainstream Evolutionary Algorithms
field (see, e.g. [14, 18, 28, 29]). However, to the best of our knowledge, it has
not been applied in Particle Swarm Optimization before. More importantly,
however, is that we showed how run-length and solution quality distributions,
serve as analytic tools that help us choose or devise improvement strategies.

Choosing the optimal restart schedule is not trivial. One needs to know the
run-length distribution of the algorithm one wants to use on the problem of
interest. However, in practical applications, estimating the run-length distribu-
tion makes no sense at all, since it would imply to solve the problem repeatedly
and our goal is normally to solve it just once. An adaptive restart strategy
monitors performance of the algorithm and restarts it if some criteria are met.
This is a much more flexible approach that can be easily used in practice.

The major problem of adaptive restart strategies is that, as we saw in our
results, it depends on the problem being solved. In other words, what works
fine for solving some problems might not work at all for some others.

One of the major implications of our results is that by applying restarts to
an algorithm, its performance can be improved significantly. This fact should
be taken into account when comparing algorithms and when choosing one for
solving a particular problem.

5.3 Estimation of Distribution Particle Swarm
Optimizer

In the classical particle swarm optimization algorithm (see Section 2.2), particles
exploit their individual memory and that of their neighbors, to explore the
search space. However, the swarm as a whole has no means to exploit its
collective memory (represented by the set of vectors ~pbesti, that represent the
particles’ previous best positions) to guide its search. We believe this causes a
re-exploration of already known bad regions of the search space, wasting costly
function evaluations. In our approach, we use the swarm’s collective memory to
probabilistically guide the particles’ movement towards the estimated promising
regions in the search space. In this way, many function evaluations could be
saved from being wasted.

In Chapter 2, where we presented the particle swarm optimization approach
and some algorithmic variants, we saw how the behavior of every particle is par-
tially determined by its previous experience (through vector ~pbesti). This mem-
ory allows a particle to search somewhere around its own previous best position
and the best position ever found by a particle in its neighborhood. However,
during a search different particles move and test (i.e., evaluate the objective
function) over and over again the same, or approximately the same, region in
the search space without producing any individual improvement. While this is
part of the search process and allows the swarm to explore the search space, it
is also a waste of computing power when the explored regions have been visited
before by the swarm without success. This happens because the swarm as a
single entity is memoryless.

In this section, we present a generic extension to the Particle Swarm Op-
timization paradigm that allows a particle swarm to estimate the distribution

111



of promising regions (and thus, “learn” from previous experience) of the fitness
landscape by exploiting the information it gains during the optimization pro-
cess. This distribution is in turn used to try to keep the particles within the
promising regions. It is a modular extension that can be used in any parti-
cle swarm variant that uses a position update rule based on previously found
solutions. The estimation of the distribution is done by means of a mixture
of normal distributions taking into account the set of pbest vectors. It bor-
rows some ideas from recent developments in Ant Colony Optimization [9], in
which an archive of solutions is used to select the next point to explore in the
search space. The underlying assumption of independence between variables
common to many Estimation of Distribution Algorithms (EDAs) for continuous
optimization problems [38] is also present in our approach.

The following section briefly presents some background information about
EDAs and establishes the relationship between our approach and pure EDAs.

5.3.1 Estimation of Distribution Optimization Algorithms

Evolutionary Algorithms that use information obtained during the optimization
process to build probabilistic models of the distribution of good regions in the
search space and that use these models to generate new solutions are called
Estimation of Distribution Algorithms (EDAs) [38]. The fully joint probabil-
ity distribution characterizes the problem being solved. Depending on whether
there is a priori knowledge about the underlying distribution or not, one can
either use a suitable parameterization to get fast convergence rates or use ma-
chine learning methods to approximate this unknown distribution, respectively.
The latter case is the most commonly found in practice.

EDAs differ in three fundamental aspects: (i) in the way they gather infor-
mation during the optimization process, (ii) in the way they use the gathered
information to build probabilistic models, and (iii) in the way they use these
models to generate new solutions. An experimental comparison of some of the
best known EDAs has been done by Kern et al. [26].

A pseudo-code view of the algorithmic structure behind most EDAs can
be seen in Algorithm 2. An EDA starts with a solution population X0 and a
solution distribution model P0. The main loop consists of four principal stages.
The first stage is to select the best individuals (according to some fitness criteria
f) from the population. These individuals are used in a second stage in which
the solution distribution model P t is updated or recreated. The third stage
consists of sampling the updated solution distribution model P t+1 to generate
new solutions Xt+1

offspring . The last stage involves the base population Xt
base,

the set of new solutions Xt+1
offspring and the fitness criteria f . The end result

of this final stage is a new base population. The process starts over again until
the stopping criteria are satisfied.

There has been a growing interest for EDAs in the last years and there are
now some hybrid approaches. One of them is our proposed algorithm. It is a
particle swarm optimizer that uses the solution distribution model P t, to keep
the particles within the promising regions so that it does not waste function
evaluations. It is not a pure EDA because it does not generate new solutions
from the solution distribution model unless it is needed. We detail our algorithm
in the next section.
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Algorithm 2 Algorithmic structure of Estimation of Distribution Algorithms.

{Initialization}
Initialize population of solutions X0

base and solution distribution model P0

{Main Loop}
while Stopping criteria are not satisfied do

Xt
parent = select(Xt

base, f) {Selection}

Pt+1 = estimate(Xt
parent,Pt) {Estimation}

Xt+1
offspring = sample(Pt+1) {Sampling}

Xt+1
base = replacement(Xt+1

offspring,X
t
base, f) {Replacement}

t = t+ 1
end while

5.3.2 Estimation of Distribution Particle Swarm Optimi-
zation Algorithm

Particle swarm optimization algorithms are considered to be part of the emerg-
ing field of Swarm Intelligence [24] [5]. Swarm Intelligence is the discipline
that studies natural and artificial systems composed of multiple simple entities
that collectively exhibit adaptive behaviors. Some examples of natural swarm
intelligent systems are ant colonies, slime molds, bee and wasp swarms.

Besides Particle Swarm Optimization, the other prominent representative
of artificial swarm intelligent systems is Ant Colony Optimization [9]. It is
usually used for solving combinatorial optimization problems. In ant colony
optimization algorithms, artificial ants build solutions incrementally selecting
one solution component at a time. The probabilistic selection is biased by
a trail of “pheromone” deposited by other ants in previous iterations of the
algorithm. The amount of pheromone is proportional to the quality of the
complete solutions, so that ants will prefer to choose solution components that
are known to yield good solutions. In fact, the role of the so-called pheromone
matrix is to approximate the distribution of good solutions in the search space.
Seen from this point of view, ant colony optimization algorithms belong to the
family of estimation of distribution algorithms.

A recent development of Ant Colony Optimization that extends it to con-
tinuous optimization is called ACOR [51] [52]. ACOR approximates the joint
probability distribution, one dimension at a time, by using mixtures of weighted
Gaussian functions. The weights represent the quality of different search regions.
This allows the algorithm to deal with multimodal functions. Figure 5.6 illus-
trates the idea of approximating the distribution of good regions in a single
dimension using a mixture of weighted Gaussian functions.

In ACOR, the source of information to parameterize these univariate dis-
tributions is an archive of solutions of size k. The i-th component of the l-
th solution is denoted by sil. For an n-dimensional problem, 1 ≤ i ≤ n and
1 ≤ l ≤ k. For each dimension i, the vector ~µi =< si1, . . . , s

i
k > is the vector of

means that is used to model the univariate probability distribution of the i-th
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Figure 5.6: Mixture of weighted one-dimensional Gaussian functions used to
approximate two promising (but in a different degree) search regions.

dimension. The vector of weights ~w =< w1, . . . , wk > is the same across all
dimensions because it is based on the relative quality of the complete solutions.
Every iteration, after the solutions are ranked, the weights are determined by

wl =
1

qk
√

2π
e
− (l−1)2

2(qk)2 , (5.5)

where q > 0 is a parameter that determines the degree of preferability of good
solutions. The smaller q, the stronger the preference of the best solutions to
guide the search.

Since ACOR samples the mixture of Gaussians, it has to first select one of
the Gaussian functions from the kernel. The selection is done probabilistically.
The probability of choosing the l-th Gaussian function is proportional to its
weight and it is computed using

pl =
wl∑k
j=1 wj

. (5.6)

Then, ACOR computes the standard deviation of the chosen Gaussian func-
tion as

σil = ξ
k∑

j=1

|sij − sil |
k − 1

, (5.7)

where ξ > 0 is a parameter that controls the wideness of the chosen Gaussian
function. The smaller ξ, the narrower the range over which ACOR searches. ξ
has the same value for all the dimensions.

Having computed all the needed parameters, ACOR samples the Gaussian
function to generate a new solution component. The process is repeated for
every dimension, for every ant until a stopping criterion is met.
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This fast presentation of ACOR was needed to introduce our Estimation of
Distribution Particle Swarm Optimization (EDPSO) algorithm. The reason is
that EDPSO borrows some ideas from ACOR.

The fundamental data structure of EDPSO is the set of vectors ~pbesti, that
represent the particles’ previous best positions. This set plays the role of the
solution archive in ACOR. It is though this set that the swarm accumulates its
experience in the search process, so we use this experience to guide the future
of the search. In EDPSO, the parameter k (i.e., the size of the solution archive)
is equal to the number of particles.

EDPSO works as a canonical PSO as described in Section 2.3.1 but with
some modifications: after the execution of the velocity update rule shown in
Equation 2.4, EDPSO selects one Gaussian function just as ACOR does. Then,
the selected Gaussian function is evaluated (not sampled) to probabilistically
move the particle to its new position. The value returned by the evaluation of
the Gaussian function is interpreted as a probability of accepting a particles’s
new position. If the movement is accepted, the algorithm continues as usual,
but if the movement is not accepted, then the selected Gaussian function is
sampled in the same way as in ACOR.

The result is a hybrid algorithm that explores the search space using the
usual Particle Swarm Optimization dynamics but when this approach fails (i.e.,
when a particle’s tendency is to move far away from good solutions) a direct
sampling of the probability distribution is used instead. It is important to men-
tion that when the selected Gaussian function is evaluated, we use an unscaled
version of it, so that its range is [0,1] (i.e., a true probability). A pseudo-code
version of EDPSO is presented in Algorithm 3.

5.3.3 Evaluation of Performance

The evaluation of the performance of EDPSO was carried out using the same 10
benchmark functions presented in Section 4.1.1. Since EDPSO is based on the
canonical particle swarm optimizer, its non-free parameters were set as described
in Table 4.1. The algorithm was run 100 times on each problem for a maximum
of 1 000 000 function evaluations.

The free parameters were the number of particles, the swarm’s population
topology, and parameters q and ξ. For the first two parameters, we tried three
different population sizes: 20, 40 and 60 particles, and three topologies: fully
connected topology, ring topology and a square topology. The sets of values we
tried for q and ξ were {0.1, 0.2} and {0.85, 1.0}, respectively.

The run-length and solution-quality distributions we present in the follow-
ing paragraphs were obtained using swarms of 20 and 60 particles. We focus
our attention to the distributions obtained on three benchmark functions only.
The run-length and solution-quality distributions presented in this section cor-
respond to a specific solution quality and a certain maximum number of function
evaluations. The results obtained in the rest of the benchmark functions are
available online at http://iridia.ulb.ac.be/supp/IridiaSupp2006-005/index.html.

Results on the Griewank Function

Figure 5.7 shows the run-length distributions obtained by EDPSO for a solution
quality of 0.001% away from the optimum. Recall that the Griewank function is
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Algorithm 3 Pseudocode version of the EDPSO algorithm

{Initialization. k is the number of particles, and n is the dimension of the
problem}
for i = 1 to k do

Create particle i with random position and velocity
end for
Initialize gbest and all pbesti to some sensible values {To a sufficiently large
number, for example, if we want to minimize a function}

{Main Loop}
t = 0
while gbest is not good enough or t < tmax do
{Evaluation Loop}
for i = 1 to k do

if f(~xi) is better than pbesti then
~pi = ~xi
pbesti = f(~xi)

end if
if pbesti is better than gbest then
gbest = pbesti
~s = ~pi

end if
end for
{Update Loop}
Rank all pbesti according to their quality
Compute ~w =< w1, . . . , wk > using Equation 5.5
Compute all pl using Equation 5.6
for i = 1 to k do

for j = 1 to n do
vij = χ(vij + ϕ1U1(0, 1)(pij − xij) + ϕ2U2(0, 1)(sij − xij))
xcandidateij = xij + vij
Select a Gaussian function from the kernel according to pl, name it gil .
Compute σil using Equation 5.7
probmove = σil

√
2πgil(x

candidate
ij ) {σil

√
2π unscales the function}

if U3(0, 1) < probmove then
xij = xcandidateij {The particle moves normally}

else
xij = sample(gil) {New position is a sample from the chosen func-
tion}

end if
end for

end for
t = t+ 1

end while
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the only one in which all the particle swarm optimizers compared in Chapter 4
(with 20 particles) could not find the required solution quality with probability
equal to one. EDPSO behaves in the same way.

It is easier to analyze the behavior of EDPSO is we first focus on the cases in
which parameter ξ = 0.85. In this case, we see how with 20 particles and q = 0.1,
the algorithm suffers from severe stagnating behavior. With q = 0.2, however,
the performance improves considerably. No qualitative change in the behavior
of these two configurations can be observed after a change of the population
topology. If we increase the number of particles, all configurations improve
their performance. The configurations with ξ = 1.0 are, in general, slower
than the ones using ξ = 0.85. If we compare Figures 4.18 and 5.7 we see how,
in spite of the stagnating behavior exhibited by EDPSO, at least one of its
configurations finds the required solution quality with greater probability than
any of the optimizers compared in Chapter 4. The only exception is FIPS with
60 particles and the ring topology, which finds a solution of the required quality
faster than any EDPSO configuration.

Figure 5.8 shows the solution-quality distributions obtained by the differ-
ent EDPSO configurations after 1 000 000 function evaluations. The greediest
EDPSO configuration (ξ = 0.85, q = 0.1) is the worst performing in the 20
particles case. With 60 particles, all configuration reach solution qualities of
0.01% away from the optimum with probability equal to one, irrespective to
the population topology used. With 20 particles (excluding the results of the
greediest configuration), the lowest probability of finding a solution of quality
0.01% away from the optimum is approximately equal to 0.9. In Figure 4.19
we can see how no algorithm, using 20 particles, was capable of reaching this
solution quality probability with a probability greater than 0.84, irrespective of
the population topology.

Figure 5.9 shows the median solution quality development over time achieved
by the different EDPSO configurations. The fastest configuration of all is the
one with 20 particles, the fully connected topology, ξ = 0.85 and q = 0.2.
With 60 particles, there’s a clear separation between those configurations with
ξ = 0.85 and those with ξ = 1.0. In this case, there is no significant difference
between the configurations using q = 0.1 and q = 0.2.

Results on the Rastrigin Function

Figure 5.10 shows the run-length distributions obtained by EDPSO for a so-
lution quality of 20.0% away from the optimum. With 20 particles, the only
configuration that does not find a solution of this quality with a high probability
is the greediest one. From the other three configurations, the fastest is the one
with ξ = 0.85 and q = 0.2. However, with the square and ring topologies, it is
not distinguishable from the one with ξ = 1.0 and q = 0.1. With 60 particles,
there is a significant slow down of the algorithm’s performance. In comparison
with other particle swarm optimizers, EDPSO’s performance can be compared
with that of HPSOTVAC which was the best optimizer for solving the Rastrigin
function.
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Figure 5.7: Run-Length Distributions on the Griewank Function. Estimation of Distribution Particle Swarm Optimizer. The solution quality

demanded is of 0.001% away from the global optimum. Figures (a), (b), and (c) show the run-length distributions obtained with 20 particles.

Figures (d), (e), and (f) show the run-length distributions obtained with 60 particles. Columns show the effect of using different population

topologies.
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Figure 5.8: Solution-Quality Distributions on the Griewank Function. Estimation of Distribution Particle Swarm Optimizer. These results were

obtained after 1 000 000 objective function evaluations. Figures (a), (b), and (c) show the solution-quality distributions obtained with 20 particles.

Figures (d), (e), and (f) show the solution-quality distributions obtained with 60 particles. Columns show the effect of using different population

topologies.
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Figure 5.9: Solution quality development over time on the Griewank function. Estimation of Distribution Particle Swarm Optimizer. Figures (a),

(b), and (c) show the solution quality development over time that is obtained with 20 particles. Figures (d), (e), and (f) show the solution quality

development over time that is obtained obtained with 60 particles. Columns show the effect of using different population topologies. These results

are based on medians.
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Figure 5.11 shows the solution-quality distributions for the different EDPSO’s
configurations at 1 000 000 function evaluations. With 20 particles, the two best
performances are obtained by the configurations in which q = 0.2. No signifi-
cant difference can be appreciated between the results obtained with different
population topologies. With 60 particles, the best performing configuration is
the one with ξ = 0.85 and q = 0.1. This configuration shows a bimodal solution-
quality density function. The other configurations abruptly drop at a solution
quality level around 30% away from the optimum. In comparison with other
optimizers, EDPSO exhibits a very similar behavior.

Figure 5.12 shows the median solution quality development over time achieved
by the different EDPSO configurations. With 20 particles and irrespective of
the population topology used, the fastest configuration is the one with ξ = 0.85
and q = 0.1. However, the one that achieves the best solution qualities is the
one with ξ = 1.0 and q = 0.2. With 60 particles, the greediest configuration
achieves the best results Although its improvement begins after the first 100 000
function evaluations.

Results on the Rosenbrock Function

Figure 5.13 shows the run-length distributions obtained by the different EDPSO’s
configurations for a solution quality of 10% away from the optimum. The ef-
fect of an increase in the number of particles is much stronger than the effect
of a change in the population topology. In all cases, the distributions change
shape dramatically. With 20 particles, the distributions increase very rapidly
between 10 000 and 100 000 function evaluations, but slowly afterwards (recall
that the x-axis is in logarithmic scale). With 60 particles, the underlying density
distributions become bimodal.

Compared with the performance of other particle swarm optimizers (cf. re-
sults published online), the performance of EDPSO in this function is not among
the best ones. Irrespective of the population topology, it is dominated by all
algorithms except by the decreasing inertia weight optimizer with the slowest
inertia weight schedule, and HPSOTVAC.

Figure 5.14 shows the solution-quality distributions obtained by the dif-
ferent EDPSO’s configurations after 1 000 000 function evaluations. The more
explorative configuration, that is, the one with ξ = 1.0 and q = 0.2 is the one
that reaches high quality solutions with higher probability than the others. The
greediest configuration is the one with the worst performance. With 60 particles,
the overall ability of the algorithm to find high quality solutions is hindered.

Figure 5.15 shows the solution quality development over time graphs for
the different EDPSO’s configurations. The fastest results are obtained with 20
particles. From these, up to 10 000 function evaluations, the best performing
configuration is the one with ξ = 0.85 and q = 0.2. After that, and up to the
end, the fastest configuration becomes the one with ξ = 1.0 and q = 0.2.
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Figure 5.10: Run-Length Distributions on the Rastrigin Function. Estimation of Distribution Particle Swarm Optimizer. The solution quality

demanded is of 20.0% away from the global optimum. Figures (a), (b), and (c) show the run-length distributions obtained with 20 particles.

Figures (d), (e), and (f) show the run-length distributions obtained with 60 particles. Columns show the effect of using different population

topologies.
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Figure 5.11: Solution-Quality Distributions on the Rastrigin Function. Estimation of Distribution Particle Swarm Optimizer. These results were

obtained after 1 000 000 objective function evaluations. Figures (a), (b), and (c) show the solution-quality distributions obtained with 20 particles.

Figures (d), (e), and (f) show the solution-quality distributions obtained with 60 particles. Columns show the effect of using different population

topologies.
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Figure 5.12: Solution quality development over time on the Rastrigin function. Estimation of Distribution Particle Swarm Optimizer. Figures (a),

(b), and (c) show the solution quality development over time that is obtained with 20 particles. Figures (d), (e), and (f) show the solution quality

development over time that is obtained obtained with 60 particles. Columns show the effect of using different population topologies. These results

are based on medians.
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Figure 5.13: Run-Length Distributions on the Rosenbrock Function. Estimation of Distribution Particle Swarm Optimizer. The solution quality

demanded is of 10.0% away from the global optimum. Figures (a), (b), and (c) show the run-length distributions obtained with 20 particles.

Figures (d), (e), and (f) show the run-length distributions obtained with 60 particles. Columns show the effect of using different population

topologies.
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Figure 5.14: Solution-Quality Distributions on the Rosenbrock Function. Estimation of Distribution Particle Swarm Optimizer. These results were

obtained after 1 000 000 objective function evaluations. Figures (a), (b), and (c) show the solution-quality distributions obtained with 20 particles.

Figures (d), (e), and (f) show the solution-quality distributions obtained with 60 particles. Columns show the effect of using different population

topologies.
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Figure 5.15: Solution quality development over time on the Rosenbrock function. Estimation of Distribution Particle Swarm Optimizer. Figures (a),

(b), and (c) show the solution quality development over time that is obtained with 20 particles. Figures (d), (e), and (f) show the solution quality

development over time that is obtained obtained with 60 particles. Columns show the effect of using different population topologies. These results

are based on medians.
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The idea of containing the dispersion of particles in the search space began
soon after the introduction of the technique. In fact, the version that we now
call “canonical” was devised as a way of controlling the “explosion” of the swarm
which happens when the particles’ velocity grows very rapidly and without limit.
The decreasing inertia weight is another way for dealing with this problem. The
effect, as we have seen, is that it forces the particles to reduce their speed.

The Estimation of Distribution Particle Swarm Optimizer (EDPSO) that we
presented in this section can be thought of as another alternative for dealing with
the same problem. EDPSO exploits the search history of the particle swarm to
guide it to the most promising regions in the search space. The particle swarm
search history is encoded in the set of vectors pointing to the best positions
the particles have ever been in. The core idea is to contain the search within
the best regions discovered by the algorithm. This containment is done in a
probabilistic way so as not to hinder the exploration capabilities of the swarm.
The parameters q and ξ help in balancing the exploration/exploitation behavior
of the algorithm.

We have seen how EDPSO, with the appropriate parameter settings, per-
forms better than the underlying canonical particle swam optimizer. These
results, together with the the ones we obtained in Chapter 4, suggest that con-
taining or forcing convergence is a good strategy if one wants to get good qual-
ity solutions fast. On the other hand, these greedy algorithms often stagnate
in medium-long and long runs. Explorative configurations usually get better
results in these cases.

5.4 Summary

In this chapter, we presented two improved particle swarm optimizers. One
of them is not really an algorithmic variation but a strategy to control the
way the decreasing inertia weight optimizer is run. The other algorithm is
a hybrid approach in which a canonical particle swarm optimizer is equipped
with an estimation of distribution mechanism that probabilistically contains the
movement of the particles in the search space.

The main points presented in Section 5.1 are:

1. The analysis of run-length and solution-quality distributions can suggest
ways of improving the performance of the studied algorithms.

2. Restarting a stochastic optimization algorithm several times, forces it to
exhibit a geometric run-time distribution.

Related points:

• Stochastic optimization algorithms with an exponential run-time dis-
tribution is not affected by the use of restarts.

• Algorithms whose run-time distributions grow slower than an ex-
ponential distribution improve their performance with the use of
restarts.

• The performance of algorithms with steeper-than-exponential run-
time distributions are negatively affected by the use of restarts.
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3. Using an adaptive restart strategy in the decreasing inertia weight opti-
mizer makes the greatest difference when using an aggressive inertia weight
schedule.

Related points:

• The faster the schedule, the earlier the divergence of the run-time
distributions.

4. The effects of adaptive restart strategies are problem-dependent. What
works fine for some problems, might not work at all for others.

Related points:

• In some problems, the adaptive restart mechanism is triggered pre-
maturely. Depending on the specific behavior of the underlying algo-
rithm on that problem, this can result in a performance deterioration
or in a performance slow down.

The main points presented in Section 5.3 are:

1. The particle swarm search history (encoded in the set of vectors pointing
to the positions in which the particles have obtained the best objective
function evaluations) can be exploited in an alternative way to contain
the movement of the particles in the most promising regions in the search
space.

Related points:

• EDPSO is a hybrid approach that borrows some ideas from recent de-
velopment in Ant Colony Optimization. It operates in the same way
as a canonical particle swarm optimizer whenever the estimation of
distribution mechanism does not contains the movement of particles.
When a particle tries to move too far from a good region, EDPSO
substitutes the move with a sample from a probabilistic model.

• EDPSO is a promising algorithmic variant that performs better than
other particle swarm variants.
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Chapter 6

Conclusions

Particle Swarm Optimization [11, 23] is an 11 year-old field that has enjoyed an
increasing interest from the industrial and academic worlds. Many algorithmic
variants have been proposed and many particle swarm optimization algorithms
have been used with success in many applications [24].

In spite of this success, there is no general agreement on which variant(s)
can be considered as the state-of-the-art in the field. This has been the reason
why most authors compare their variants with either, the original version, or
the canonical particle swarm optimizer. In most cases, the variant is reported
to “outperform” the algorithm of reference. As a result, the concept of a state-
of-the-art particle swarm optimizer is a vague one.

In this document we reported a comparison among some of the most widely
used particle swarm optimization algorithms. We embarked on this task to
fill this missing aspect in the literature, and as a starting point for further
developments.

The methodology we used for evaluating and comparing the different algo-
rithms, helped us also to devise some improved versions.

In the following sections, we summarize the main points presented and dis-
cussed in each chapter of this document. We conclude this document pointing
out some future research work.

6.1 An Empirical Evaluation Methodology of

Stochastic Optimization Algorithms

The empirical methodology that was used in the work presented in this docu-
ment is the one proposed by Hoos and Stützle [17]. It is based on the estimation
of the run-length and solution-quality distributions exhibited by stochastic op-
timization algorithms when solving specific problems.

The run-time distribution is the cumulative distribution function of the ran-
dom variable describing the time needed by a stochastic optimization algorithm
to find a solution of a specific quality. Likewise, the solution-quality distribution
is the cumulative distribution function of the random variable that represents
the solution quality achieved by an algorithm exactly after some computational
effort limit.
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Run-time and solution-quality distributions provide information about the
behavior of stochastic optimization algorithms that is useful for making com-
parisons and for devising improvements. Specifically, they can tell us how prone
an algorithm is to stagnating. An algorithm with propensity to stagnate will
show a slowly-increasing or a non-increasing probability (towards the right tail
of the distribution) of finding a solution of a given quality over the allocated
time limit.

The estimation of run-time and solution quality distributions does not im-
pose a major burden in the process of collecting data. All we need to do is
to run the algorithm several times and record information relative to solution
improvement. In every run, we need to record the time or the number of critical
operations, and the solution quality whenever a new best solution is found by
the algorithm.

6.2 Empirical Evaluation of Particle Swarm Op-

timizers

The comparison reported in Chapter 4 was carried out using the most commonly
used parameterization of the compared algorithms. This had the intention of
comparing the performance of the different algorithms under the hypothetical
scenario in which no a priori knowledge about the structure of the problem
is available. This is the situation that, normally, one finds in a real-world
application.

The results show that no algorithm dominates the rest. All algorithms per-
form better than another one in at least one of the ten problems in our bench-
mark set. However, some facts deserve mention:

• Depending on the problem and the demanded solution quality, different
algorithms exhibit a stagnating behavior with different degrees of severity.
This stagnating behavior can be alleviated by incrementing the population
size or changing the population topology to a loosely connected one.

• Different algorithms are sensitive to a change in the population topology
in different degrees. The sensitiveness also depends on the moment in time
it is measured.

• In situations where the number of function evaluations must be main-
tained to the minimum, particle swarm optimizers with convergent prop-
erties (with highly connected topologies or low inertia weights) get the
best results. For medium-long and long runs, algorithms with explorative
properties (those with medianly or loosely connected topologies, or large
inertia weights) perform best.

• In the case of the decreasing inertia weight particle swarm optimizer, faster
inertia weight schedules provoke faster decelerations and spatial contrac-
tions of the particle swarm. Even though aggressive inertia weight sched-
ules yield the best results for short runs. Faster inertia weight schedules
provoke the algorithm to exhibit a stronger stagnating behavior. For long
runs, slow schedules provide the best results. In general, it is a tradeoff
between speed and quality.

132



6.3 Improved Particle Swarm Optimizers

After analyzing the behavior of the compared particle swarm optimizers, it was
clear that most of them show a strong stagnating behavior. One way of alleviat-
ing this phenomenon is to increase the exploration capabilities of the algorithms.
One of the easiest ways to deal with stagnation is to restart the algorithm once
we have evidence that it cannot improve anymore the solution quality found so
far. This mechanism was added to the decreasing inertia weight particle swarm
optimizer, resulting in a significant improvement of its performance, specially
when it used aggressive inertia weight schedules. The major problem of adaptive
restart strategies is that the obtained improvement is problem-dependent.

The improvement achieved though the application of restarts can be ex-
plained if we realize that restarting a stochastic optimization algorithm several
times, forces it to exhibit a geometric run-time distribution. If the geometric
distribution thus obtained, grows faster than the algorithm’s original run-time
distribution, then we get an improvement. The significance of the improvement
depends, obviously, on the departure of the algorithm’s run-time distribution
from an exponential one.

The second improved algorithm was designed borrowing some of ideas of
recent developments in Ant Colony Optimization (ACO) [9], which is the other
most prominent exponent of Swarm Intelligence [5], besides Particle Swarm
Optimization.

The idea behind this variant is to exploit the search history of the particle
swarm to guide it to the most promising regions in the search space. The
Estimation of Distribution Particle Swarm Optimizer (EDPSO), as we called
It, operates in the same way as a canonical particle swarm optimizer whenever
the estimation of distribution mechanism (the feature taken from ACO) does not
contains the movement of particles. When a particle tries to move too far from
a good region, EDPSO substitutes the move with a sample from a probabilistic
model. In the evaluation it was found that EDPSO is a promising algorithmic
variant that performs better than other particle swarm variants.

6.4 Future Work

In this section, we mention some issues that we believe should be addressed
to have a complete picture of the true performance of different particle swam
optimizers. We first list the issues that would complement the results presented
in this document, and then we list some potential research issues.

6.4.1 Complementary Work

In Chapter 3, we said that for comparing two or more stochastic optimization
algorithms, one should take into account the specific aspects that are likely
to be present in a practical application scenario. One such aspect is the di-
mensionality of the problem. Eight of the benchmark problems we used were
30-dimensional, and two were bidimensional. Aside from the bidimimensional
problems (which have this dimensionality by definition), we decided to use 30-
dimensional problems because we wanted to have results comparable to those
reported in the literature. However, an evaluation on higher dimensions is the
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immediate next step to see whether the relative performance of the compared
algorithms depends on the dimensionality of the problems and, if so, to which
extent.

An issue that we did not discuss quantitatively in the document, is the
interaction between the population topology and population size. We saw in
Chapter 4 that there is indeed an interaction. The effects of a change in the
population topology are not the same with 20 particles than with 60 particles.
Establishing this relationship is another issue that remains to be done.

6.4.2 Research issues

Finding the optimal parameter set for a particle swarm optimizer solving a
particular problem has been the interest of many researchers since the very
birth of the technique. There have been analytical approaches (e.g. [7, 56]), trial
and error approaches (e.g. [49, 58]) and heuristic ones (e.g. [30, 39, 40]), with
varying degrees of success. Nevertheless, we believe that a fourth strategy based
on Design of Experiments techniques, that have been used in industrial process
tuning, offers the advantage of being based on solid statistics and that tackle
the problem of a very reduced budget of possible experiments in an explicit way.
This approach is beginning to be explored by Bartz-Beielstein [4].
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Appendix A

Parameterization of the
Benchmark Functions Used
in our Experiments

All the benchmark functions that we used in the study presented in this doc-
ument have their global optima displaced and biased. In most cases, we used
exactly the same values that were proposed in the set of benchmark functions
used for the special session on real parameter optimization of the IEEE Congress
of Evolutionary Computation 2005 [55].

Given a displacement vector ~d and a bias value b, all functions are trans-
formed using

f ′(~x) = f
(
~x− ~d

)
+ b , (A.1)

where f is the original benchmark function, f ′ is the transformed benchmark
function that has its global optimum in ~o+ ~d, and has a function value of o+ b.
Vector ~o is the original location of the global optimum and o is its original
function value, that is, o = f(~o).

Tables A.1 and A.2 show the displacement vectors and bias values used in
our experiments. In our experiments, all functions except for two of them, are
30-dimensional. Easom and Schaffer functions are two-dimensional.

In order to compute the absolute value that corresponds to a relative solution
quality specification (for minimization problems), we use

a = o+ sign(o) · (o · r) , (A.2)

where a is the absolute solution quality value, o is the objective function value
of the known optimum, and r is the relative solution quality value. For example,
suppose the objective function value of some problem’s optimum is 100, and the
relative solution quality is 0.1%. The solution quality in absolute values would
be 100 + (100 · 0.001) = 100.1. On the other hand, if the optimum had a value
of −100, the absolute value of a solution 0.1% away from it, would be −99.9.
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Table A.1: Benchmark functions’ displacement vectors and biases. Part I.

Ackley Easom Griewank Rastrigin Rosenbrock
x1 -1.68230e+1 0.0 -2.762684e+2 1.90050e+0 8.10232e+1
x2 1.49769e+1 0.0 -1.191100e+1 -1.56440e+0 -4.83950e+1
x3 6.16900e+0 N/A -5.787884e+2 -9.78800e-1 1.92316e+1
x4 9.55660e+0 N/A -2.876486e+2 -2.25360e+0 -2.52310e+0
x5 1.95417e+1 N/A -8.438580e+1 2.49900e+0 7.04338e+1
x6 -1.71900e+1 N/A -2.286753e+2 -3.28530e+0 4.71774e+1
x7 -1.88248e+1 N/A -4.581516e+2 9.75900e-1 -7.83580e+0
x8 8.51100e-1 N/A -2.022145e+2 -3.66610e+0 -8.66693e+1
x9 -1.51162e+1 N/A -1.058642e+2 9.85000e-2 5.78532e+1
x10 1.07934e+1 N/A -9.648980e+1 -3.24650e+0 -9.95330e+0
x11 7.40910e+0 N/A -3.957468e+2 3.80600e+0 2.07778e+1
x12 8.61710e+0 N/A -5.729498e+2 -2.68340e+0 5.25486e+1
x13 -1.65641e+1 N/A -2.703641e+2 -1.37010e+0 7.59263e+1
x14 -6.68000e+0 N/A -5.668543e+2 4.18210e+0 4.28773e+1
x15 1.45433e+1 N/A -1.524204e+2 2.48560e+0 -5.82720e+1
x16 7.04540e+0 N/A -5.883819e+2 -4.22370e+0 -1.69728e+1
x17 -1.86215e+1 N/A -2.828892e+2 3.36530e+0 7.83845e+1
x18 1.45561e+1 N/A -4.888865e+2 2.15320e+0 7.50427e+1
x19 -1.15942e+1 N/A -3.469817e+2 -3.09290e+0 -1.61513e+1
x20 -1.91531e+1 N/A -4.530447e+2 4.31050e+0 7.08569e+1
x21 -4.73720e+0 N/A -5.065857e+2 -2.98610e+0 -7.95795e+1
x22 9.25900e-1 N/A -4.759987e+2 3.49360e+0 -2.64837e+1
x23 1.32412e+1 N/A -3.620492e+2 -2.72890e+0 5.63699e+1
x24 -5.29470e+0 N/A -2.332367e+2 -4.12660e+0 -8.82249e+1
x25 1.84160e+0 N/A -4.919864e+2 -2.59000e+0 -6.49996e+1
x26 4.56180e+0 N/A -5.440898e+2 1.31240e+0 -5.35022e+1
x27 -1.88905e+1 N/A -7.344560e+1 -1.79900e+0 -5.42300e+1
x28 9.80080e+0 N/A -5.269011e+2 -1.18900e+0 1.86826e+1
x29 -1.54265e+1 N/A -5.022561e+2 -1.05300e-1 -4.10061e+1
x30 1.27220e+0 N/A -5.372353e+2 -3.10740e+0 -5.42134e+1
bias -140.0 0.0 -180.0 -330.0 390.0
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Table A.2: Benchmark functions’ displacement vectors and biases. Part II.

Salomon Schaffer Schwefel Sphere Step
x1 -1.68230e+1 -7.36029e+1 0.0 -3.93119e+1 0.0
x2 0.00769e+0 -2.35497e+1 0.0 5.88999e+1 0.0
x3 6.16900e+0 N/A 0.0 -4.63224e+1 0.0
x4 9.55660e+0 N/A 0.0 -7.46515e+1 0.0
x5 1.95417e+1 N/A 0.0 -1.67997e+1 0.0
x6 -1.71900e+1 N/A 0.0 -8.05441e+1 0.0
x7 -1.88248e+1 N/A 0.0 -1.05935e+1 0.0
x8 8.51100e-1 N/A 0.0 2.49694e+1 0.0
x9 -1.51162e+1 N/A 0.0 8.98384e+1 0.0
x10 1.07934e+1 N/A 0.0 9.11190e+0 0.0
x11 7.00000e+0 N/A 0.0 -1.07443e+1 0.0
x12 8.61710e+0 N/A 0.0 -2.78558e+1 0.0
x13 -1.65641e+1 N/A 0.0 -1.25806e+1 0.0
x14 -6.68000e+0 N/A 0.0 7.59300e+0 0.0
x15 1.45433e+1 N/A 0.0 7.48127e+1 0.0
x16 7.04540e+0 N/A 0.0 6.84959e+1 0.0
x17 -1.86215e+1 N/A 0.0 -5.34293e+1 0.0
x18 1.45561e+1 N/A 0.0 7.88544e+1 0.0
x19 -1.05942e+1 N/A 0.0 -6.85957e+1 0.0
x20 -1.91531e+1 N/A 0.0 6.37432e+1 0.0
x21 -4.73720e+0 N/A 0.0 3.13470e+1 0.0
x22 9.25900e-1 N/A 0.0 -3.75016e+1 0.0
x23 1.32412e+1 N/A 0.0 3.38929e+1 0.0
x24 -5.29470e+1 N/A 0.0 -8.88045e+1 0.0
x25 1.84160e+0 N/A 0.0 -7.87719e+1 0.0
x26 4.56180e+0 N/A 0.0 -6.64944e+1 0.0
x27 -1.88905e+1 N/A 0.0 4.41972e+1 0.0
x28 9.80080e+0 N/A 0.0 1.83836e+1 0.0
x29 -1.54265e+1 N/A 0.0 2.65212e+1 0.0
x30 1.27220e+0 N/A 0.0 8.44723e+1 0.0
bias -100.0 -300.0 100.0 -450.0 -200.0
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Appendix B

Empirical Evaluation of
Particle Swarm Optimizers:
Median Solution Qualities

In this appendix we present the median solution qualities, after a certain number
of function evaluations, achieved by the compared algorithms
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Table B.1: Median solution qualities achieved by the compared particle swarm optimizers using 40 particles and a fully connected topology. Each

cell contains the median solution quality achieved by the corresponding optimizer after 1 000, 10 000, 100 000 and 1 000 000 function evaluations.

Algorithm
High dimensional Low dimensional

Multimodal Unimodal Multimodal Unimodal
Ackley Step Griewank Rastrigin Schwefel Salomon Sphere Rosenbrock Schaffer Easom

Canonical

1.184e+01 5.300e+01 7.680e+01 9.964e+01 9.623e+03 1.127e+01 2.790e+03 5.011e+07 3.303e-03 7.835e+00
1.318e+00 1.500e+01 2.043e-01 2.295e+01 4.140e+03 1.100e+00 5.657e-02 1.624e+02 6.764e-12 0.000e+00
1.176e+00 2.500e+00 1.094e-02 2.171e+01 3.988e+03 4.999e-01 2.533e-14 4.566e+00 0.000e+00 0.000e+00
1.176e+00 1.500e+00 1.094e-02 2.171e+01 3.988e+03 4.999e-01 2.533e-14 7.274e-06 0.000e+00 0.000e+00

Decreasing-IW

1.423e+01 6.450e+01 2.379e+02 1.209e+02 1.022e+04 2.065e+01 9.485e+03 1.088e+08 9.707e-03 9.662e+01
1.313e+01 5.400e+01 1.198e+02 9.841e+01 9.781e+03 1.608e+01 5.161e+03 1.053e+07 3.256e-03 4.823e+00
1.117e+01 3.700e+01 5.415e+01 7.784e+01 8.483e+03 1.165e+01 2.405e+03 1.990e+06 3.125e-04 7.470e-04
6.071e-14 0.000e+00 8.207e-03 4.523e+00 1.303e+03 2.999e-01 1.267e-14 4.689e+00 0.000e+00 0.000e+00

Increasing-IW

1.094e+01 4.600e+01 6.135e+01 8.864e+01 8.716e+03 9.980e+00 2.282e+03 1.072e+08 3.243e-03 8.263e-02
8.481e-01 1.450e+01 1.452e-01 1.878e+01 3.469e+03 1.401e+00 2.557e-02 3.718e+02 5.152e-06 0.000e+00
8.143e-14 5.000e-01 5.476e-03 1.598e+01 3.178e+03 3.999e-01 2.533e-14 1.787e+01 0.000e+00 0.000e+00
8.143e-14 0.000e+00 5.476e-03 1.206e+01 2.477e+03 3.999e-01 1.267e-14 3.483e+00 0.000e+00 0.000e+00

Stochastic-IW

1.209e+01 5.350e+01 9.421e+01 1.011e+02 9.688e+03 1.211e+01 3.426e+03 6.166e+07 3.291e-03 7.405e+00
1.403e+00 1.650e+01 5.666e-01 2.432e+01 4.040e+03 1.411e+00 4.741e-01 3.344e+02 9.212e-11 0.000e+00
6.652e-01 1.000e+00 6.842e-03 1.779e+01 3.336e+03 3.999e-01 1.267e-14 5.690e+00 0.000e+00 0.000e+00
6.652e-01 5.000e-01 6.842e-03 1.779e+01 3.336e+03 3.999e-01 1.267e-14 2.226e-04 0.000e+00 0.000e+00

FIPS

7.611e+00 4.400e+01 7.675e+01 7.956e+01 1.014e+04 2.986e+00 1.839e+03 2.067e+09 3.246e-03 4.633e+00
6.579e+00 4.400e+01 6.589e+01 5.180e+01 1.014e+04 2.805e+00 1.514e+03 1.939e+09 3.239e-03 0.000e+00
6.579e+00 4.400e+01 6.589e+01 5.177e+01 1.006e+04 2.805e+00 1.514e+03 1.939e+09 3.239e-03 0.000e+00
6.579e+00 4.400e+01 6.589e+01 5.177e+01 1.000e+04 2.805e+00 1.514e+03 1.939e+09 3.239e-03 0.000e+00

HPSOTVAC

1.254e+01 5.550e+01 2.381e+02 9.843e+01 9.366e+03 7.307e+00 7.165e+03 3.790e+09 5.306e-03 7.037e+01
8.661e+00 3.000e+01 4.806e+00 4.620e+01 5.903e+03 4.644e+00 1.475e+02 1.652e+06 3.239e-03 1.000e-13
5.278e-02 8.000e+00 7.877e-04 1.693e+01 1.935e+03 2.000e+00 1.309e-07 3.824e+01 0.000e+00 0.000e+00
1.413e-07 1.000e+00 6.333e-14 7.490e-10 1.540e+03 5.999e-01 5.044e-14 1.021e-01 0.000e+00 0.000e+00

AHPSO

1.208e+01 5.250e+01 8.382e+01 9.835e+01 9.639e+03 7.331e+01 3.298e+03 8.997e+07 3.311e-03 7.178e+00
1.306e+00 1.500e+01 3.685e-01 2.167e+01 4.073e+03 7.003e+01 1.182e-01 1.851e+02 7.053e-08 0.000e+00
1.270e+00 6.000e+00 6.845e-03 1.990e+01 3.988e+03 6.985e+01 2.533e-14 4.985e+00 0.000e+00 0.000e+00
1.270e+00 3.000e+00 6.845e-03 1.990e+01 3.988e+03 6.982e+01 1.267e-14 1.150e-03 0.000e+00 0.000e+00
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Table B.2: Median solution qualities achieved by the compared particle swarm optimizers using 40 particles and a ring topology. Each cell contains

the median solution quality achieved by the corresponding optimizer after 1 000, 10 000, 100 000 and 1 000 000 function evaluations.

Algorithm
High dimensional Low dimensional

Multimodal Unimodal Multimodal Unimodal
Ackley Step Griewank Rastrigin Schwefel Salomon Sphere Rosenbrock Schaffer Easom

Canonical

1.385e+01 6.000e+01 2.376e+02 1.124e+02 9.515e+03 1.594e+01 8.431e+03 1.331e+09 3.716e-03 4.121e+01
3.292e+00 2.350e+01 1.273e+00 3.709e+01 5.526e+03 3.125e+00 2.664e+01 3.651e+04 1.255e-03 0.000e+00
3.804e-11 5.000e+00 1.556e-14 1.990e+01 4.383e+03 2.999e-01 0.000e+00 6.865e+00 0.000e+00 0.000e+00
2.000e-14 0.000e+00 0.000e+00 1.930e+01 4.382e+03 1.999e-01 0.000e+00 8.359e-02 0.000e+00 0.000e+00

Decreasing-IW

1.469e+01 6.500e+01 3.766e+02 1.391e+02 1.023e+04 2.262e+01 1.446e+04 1.336e+09 1.248e-02 1.000e+02
1.367e+01 5.750e+01 1.394e+02 1.022e+02 9.719e+03 1.706e+01 6.158e+03 1.650e+07 3.243e-03 2.671e+00
1.028e+01 3.300e+01 3.715e+01 6.753e+01 7.407e+03 9.708e+00 1.547e+03 1.033e+06 1.970e-04 3.286e-04
2.000e-14 0.000e+00 1.556e-14 8.744e+00 1.559e+03 2.999e-01 0.000e+00 1.126e+00 0.000e+00 0.000e+00

Increasing-IW

1.336e+01 5.550e+01 1.788e+02 1.040e+02 9.025e+03 1.421e+01 6.400e+03 1.300e+09 3.344e-03 6.270e+00
3.658e+00 2.300e+01 1.263e+00 3.487e+01 4.848e+03 4.100e+00 2.895e+01 4.440e+04 3.239e-03 0.000e+00
9.892e-09 4.500e+00 1.556e-14 1.960e+01 3.811e+03 4.999e-01 1.267e-14 1.689e+01 0.000e+00 0.000e+00
2.000e-14 5.000e-01 0.000e+00 1.393e+01 3.005e+03 2.999e-01 0.000e+00 1.732e+00 0.000e+00 0.000e+00

Stochastic-IW

1.389e+01 6.050e+01 2.448e+02 1.168e+02 9.519e+03 1.623e+01 8.950e+03 1.478e+09 3.855e-03 4.933e+01
4.335e+00 2.650e+01 2.228e+00 4.059e+01 5.479e+03 3.817e+00 6.672e+01 8.165e+04 7.594e-04 0.000e+00
2.737e-08 4.500e+00 6.333e-14 1.869e+01 4.047e+03 3.999e-01 1.267e-14 1.104e+01 0.000e+00 0.000e+00
2.000e-14 0.000e+00 0.000e+00 1.719e+01 3.909e+03 2.999e-01 0.000e+00 8.481e-02 0.000e+00 0.000e+00

FIPS

1.291e+01 5.800e+01 1.595e+02 1.041e+02 9.779e+03 1.247e+01 5.627e+03 1.455e+09 4.908e-03 6.697e+01
8.404e-01 1.700e+01 5.691e-01 5.188e+01 8.293e+03 1.443e+00 4.932e-01 4.395e+03 7.007e-04 1.000e-13
2.000e-14 3.500e+00 4.739e-13 1.758e+01 4.524e+03 3.999e-01 0.000e+00 2.931e+01 0.000e+00 0.000e+00
0.000e+00 5.000e-01 0.000e+00 6.397e+00 4.738e+02 2.999e-01 0.000e+00 9.379e+00 0.000e+00 0.000e+00

HPSOTVAC

1.371e+01 6.000e+01 3.016e+02 1.184e+02 9.228e+03 1.256e+01 9.425e+03 3.326e+09 1.245e-02 9.789e+01
5.674e+00 2.900e+01 5.178e+00 6.235e+01 6.114e+03 4.605e+00 1.719e+02 9.291e+05 3.239e-03 1.505e-06
1.750e-03 7.500e+00 3.170e-04 1.672e+01 2.608e+03 9.999e-01 1.727e-05 3.588e+01 0.000e+00 0.000e+00
3.220e-07 0.000e+00 1.556e-14 8.942e-08 1.184e+03 3.999e-01 1.011e-13 2.762e+01 0.000e+00 0.000e+00

AHPSO

1.208e+01 5.250e+01 8.382e+01 9.835e+01 9.639e+03 7.331e+01 3.298e+03 8.997e+07 3.311e-03 7.178e+00
1.306e+00 1.500e+01 3.685e-01 2.167e+01 4.073e+03 7.003e+01 1.182e-01 1.851e+02 7.053e-08 0.000e+00
1.270e+00 6.000e+00 6.845e-03 1.990e+01 3.988e+03 6.985e+01 2.533e-14 4.985e+00 0.000e+00 0.000e+00
1.270e+00 3.000e+00 6.845e-03 1.990e+01 3.988e+03 6.982e+01 1.267e-14 1.150e-03 0.000e+00 0.000e+00
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Table B.3: Median solution qualities achieved by the compared particle swarm optimizers using 40 particles and a square topology. Each cell

contains the median solution quality achieved by the corresponding optimizer after 1 000, 10 000, 100 000 and 1 000 000 function evaluations.

Algorithm
High dimensional Low dimensional

Multimodal Unimodal Multimodal Unimodal
Ackley Step Griewank Rastrigin Schwefel Salomon Sphere Rosenbrock Schaffer Easom

Canonical

1.302e+01 5.800e+01 1.459e+02 1.005e+02 9.443e+03 1.368e+01 5.441e+03 3.340e+08 3.476e-03 2.236e+01
1.843e+00 1.900e+01 6.560e-01 2.509e+01 4.811e+03 1.911e+00 3.392e+00 1.702e+03 5.168e-07 0.000e+00
4.071e-14 1.500e+00 1.556e-14 1.538e+01 3.889e+03 2.999e-01 1.267e-14 2.008e+01 0.000e+00 0.000e+00
2.000e-14 0.000e+00 1.556e-14 1.477e+01 3.849e+03 1.999e-01 1.267e-14 8.171e-03 0.000e+00 0.000e+00

Decreasing-IW

1.454e+01 6.500e+01 2.933e+02 1.279e+02 1.021e+04 2.170e+01 1.198e+04 3.932e+08 1.273e-02 9.925e+01
1.340e+01 5.600e+01 1.314e+02 9.969e+01 9.644e+03 1.680e+01 5.615e+03 1.262e+07 3.247e-03 3.899e+00
1.048e+01 3.350e+01 3.870e+01 7.056e+01 7.581e+03 1.020e+01 1.688e+03 1.104e+06 2.524e-04 2.166e-04
2.000e-14 0.000e+00 1.556e-14 6.332e+00 1.303e+03 2.999e-01 1.267e-14 2.957e+00 0.000e+00 0.000e+00

Increasing-IW

1.220e+01 5.300e+01 1.004e+02 9.054e+01 8.982e+03 1.207e+01 4.097e+03 3.083e+08 3.255e-03 2.278e+00
2.125e+00 1.850e+01 6.552e-01 2.332e+01 4.265e+03 2.757e+00 3.464e+00 2.808e+03 7.362e-05 0.000e+00
2.236e-13 2.500e+00 1.556e-14 1.387e+01 3.277e+03 2.999e-01 1.267e-14 1.774e+01 0.000e+00 0.000e+00
2.000e-14 0.000e+00 1.556e-14 9.563e+00 2.291e+03 2.999e-01 1.267e-14 4.514e+00 0.000e+00 0.000e+00

Stochastic-IW

1.320e+01 5.800e+01 1.606e+02 1.034e+02 9.560e+03 1.414e+01 5.441e+03 4.052e+08 3.682e-03 2.683e+01
2.617e+00 2.100e+01 9.239e-01 3.035e+01 5.008e+03 2.500e+00 3.392e+00 7.065e+03 1.447e-05 0.000e+00
1.033e-11 2.000e+00 1.556e-14 1.357e+01 3.514e+03 2.999e-01 1.267e-14 1.918e+01 0.000e+00 0.000e+00
2.000e-14 0.000e+00 1.556e-14 1.296e+01 3.356e+03 1.999e-01 1.267e-14 2.193e-01 0.000e+00 0.000e+00

FIPS

1.024e+01 4.900e+01 7.059e+01 8.660e+01 1.004e+04 6.886e+00 2.299e+03 8.459e+08 3.918e-03 5.830e+01
1.073e+00 2.300e+01 2.462e-01 3.820e+01 9.871e+03 1.500e+00 2.065e-01 2.721e+07 3.174e-04 0.000e+00
1.073e+00 2.200e+01 1.388e-01 1.516e+01 9.601e+03 1.500e+00 1.800e-01 2.707e+07 3.250e-10 0.000e+00
1.073e+00 2.150e+01 1.177e-01 1.429e+01 5.801e+03 1.500e+00 1.800e-01 2.707e+07 0.000e+00 0.000e+00

HPSOTVAC

1.286e+01 5.800e+01 2.495e+02 1.076e+02 9.311e+03 8.513e+00 7.504e+03 3.177e+09 5.434e-03 9.941e+01
4.363e+00 2.450e+01 2.831e+00 5.466e+01 6.264e+03 3.104e+00 8.685e+01 3.967e+05 3.239e-03 1.690e-09
5.899e-04 7.500e+00 2.040e-05 1.532e+01 2.311e+03 1.100e+00 1.713e-06 4.112e+01 0.000e+00 0.000e+00
1.269e-07 5.000e-01 1.556e-14 2.385e-09 1.303e+03 5.999e-01 2.533e-14 1.857e+01 0.000e+00 0.000e+00

AHPSO

1.208e+01 5.250e+01 8.382e+01 9.835e+01 9.639e+03 7.331e+01 3.298e+03 8.997e+07 3.311e-03 7.178e+00
1.306e+00 1.500e+01 3.685e-01 2.167e+01 4.073e+03 7.003e+01 1.182e-01 1.851e+02 7.053e-08 0.000e+00
1.270e+00 6.000e+00 6.845e-03 1.990e+01 3.988e+03 6.985e+01 2.533e-14 4.985e+00 0.000e+00 0.000e+00
1.270e+00 3.000e+00 6.845e-03 1.990e+01 3.988e+03 6.982e+01 1.267e-14 1.150e-03 0.000e+00 0.000e+00

1
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Appendix C

Different Inertia Weight
Schedules in the
Time-Decreasing Inertia
Weight Particle Swarm
Optimizer: Median Solution
Qualities

In this appendix we present the median solution qualities, after a certain number
of function evaluations, achieved by the compared configurations.
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Table C.1: [Median solution qualities achieved by the decreasing inertia weight optimizers with different schedules based on median solution

qualities and a fully connected topology. Each cell contains the median solution quality achieved by the corresponding optimizer after 1 000, 10 000,

100 000 and 1 000 000 function evaluations.

Schedule
High dimensional Low dimensional

Multimodal Unimodal Multimodal Unimodal
Ackley Step Griewank Rastrigin Schwefel Salomon Sphere Rosenbrock Schaffer Easom

100

1.085e+01 4.800e+01 5.733e+01 8.795e+01 8.800e+03 1.003e+01 2.235e+03 9.209e+07 3.245e-03 1.103e-01
9.880e-01 1.400e+01 1.205e-01 1.949e+01 3.403e+03 1.320e+00 2.272e-02 3.404e+02 6.633e-13 0.000e+00
1.014e-13 5.000e-01 5.480e-03 1.688e+01 3.198e+03 3.999e-01 2.533e-14 6.678e+00 0.000e+00 0.000e+00
1.014e-13 0.000e+00 5.480e-03 1.688e+01 3.198e+03 3.999e-01 2.533e-14 5.145e+00 0.000e+00 0.000e+00

1000

1.247e+01 5.600e+01 9.684e+01 9.923e+01 9.729e+03 1.334e+01 3.943e+03 3.745e+07 3.486e-03 1.488e+01
8.838e-01 1.450e+01 1.444e-01 1.832e+01 3.370e+03 1.400e+00 2.790e-02 1.238e+02 0.000e+00 0.000e+00
1.014e-13 5.000e-01 5.476e-03 1.508e+01 3.139e+03 3.999e-01 2.533e-14 6.061e+00 0.000e+00 0.000e+00
1.014e-13 0.000e+00 5.476e-03 1.508e+01 3.139e+03 3.999e-01 2.533e-14 4.895e+00 0.000e+00 0.000e+00

10 000

1.409e+01 6.350e+01 2.057e+02 1.187e+02 1.022e+04 1.950e+01 8.695e+03 8.583e+07 1.074e-02 9.538e+01
3.119e+00 2.350e+01 1.146e+00 3.523e+01 4.811e+03 3.372e+00 2.473e+01 5.824e+03 3.223e-10 0.000e+00
1.014e-13 5.000e-01 5.476e-03 1.417e+01 2.903e+03 3.999e-01 2.533e-14 5.973e+00 0.000e+00 0.000e+00
1.014e-13 0.000e+00 5.476e-03 1.417e+01 2.903e+03 3.999e-01 2.533e-14 4.754e+00 0.000e+00 0.000e+00

100 000

1.421e+01 6.450e+01 2.285e+02 1.206e+02 1.023e+04 2.038e+01 8.898e+03 1.041e+08 9.427e-03 9.819e+01
1.270e+01 5.100e+01 9.727e+01 9.411e+01 9.722e+03 1.498e+01 4.280e+03 7.347e+06 3.241e-03 7.581e-01
3.242e-08 3.500e+00 5.476e-03 9.347e+00 1.757e+03 4.999e-01 2.533e-14 1.964e+01 0.000e+00 0.000e+00
8.143e-14 0.000e+00 5.476e-03 8.744e+00 1.757e+03 3.999e-01 1.267e-14 4.823e+00 0.000e+00 0.000e+00

1 000 000

1.423e+01 6.450e+01 2.379e+02 1.209e+02 1.022e+04 2.065e+01 9.485e+03 1.088e+08 9.707e-03 9.662e+01
1.313e+01 5.400e+01 1.198e+02 9.841e+01 9.781e+03 1.608e+01 5.161e+03 1.053e+07 3.256e-03 4.823e+00
1.117e+01 3.700e+01 5.415e+01 7.784e+01 8.483e+03 1.165e+01 2.405e+03 1.990e+06 3.125e-04 7.470e-04
6.071e-14 0.000e+00 8.207e-03 4.523e+00 1.303e+03 2.999e-01 1.267e-14 4.689e+00 0.000e+00 0.000e+00

1
4
6



Table C.2: [Median solution qualities achieved by the decreasing inertia weight optimizers with different schedules based on median solution

qualities and a ring topology. Each cell contains the median solution quality achieved by the corresponding optimizer after 1 000, 10 000, 100 000

and 1 000 000 function evaluations.

Schedule
High dimensional Low dimensional

Multimodal Unimodal Multimodal Unimodal
Ackley Step Griewank Rastrigin Schwefel Salomon Sphere Rosenbrock Schaffer Easom

100

1.340e+01 5.700e+01 1.779e+02 1.027e+02 9.060e+03 1.416e+01 6.231e+03 1.289e+09 3.449e-03 8.657e+00
3.660e+00 2.300e+01 1.297e+00 3.375e+01 4.869e+03 4.015e+00 2.989e+01 4.207e+04 3.239e-03 0.000e+00
3.484e-09 4.500e+00 1.556e-14 1.930e+01 3.790e+03 4.999e-01 1.267e-14 8.752e+00 0.000e+00 0.000e+00
2.000e-14 0.000e+00 0.000e+00 1.749e+01 3.632e+03 2.999e-01 0.000e+00 3.777e-01 0.000e+00 0.000e+00

1000

1.400e+01 6.050e+01 2.226e+02 1.131e+02 9.659e+03 1.733e+01 8.375e+03 1.080e+09 4.250e-03 4.465e+01
3.798e+00 2.350e+01 1.314e+00 3.354e+01 5.097e+03 4.100e+00 3.123e+01 3.157e+04 3.239e-03 0.000e+00
2.917e-09 4.500e+00 1.556e-14 1.779e+01 3.869e+03 4.999e-01 1.267e-14 1.745e+01 0.000e+00 0.000e+00
2.000e-14 0.000e+00 0.000e+00 1.628e+01 3.790e+03 2.999e-01 0.000e+00 1.260e-01 0.000e+00 0.000e+00

10 000

1.461e+01 6.450e+01 3.585e+02 1.347e+02 1.021e+04 2.212e+01 1.365e+04 1.327e+09 1.286e-02 9.985e+01
6.572e+00 3.150e+01 6.802e+00 4.561e+01 6.026e+03 6.094e+00 2.652e+02 1.690e+05 8.858e-04 0.000e+00
8.854e-09 5.000e+00 1.556e-14 1.628e+01 3.830e+03 4.999e-01 1.267e-14 7.139e+00 0.000e+00 0.000e+00
2.000e-14 0.000e+00 0.000e+00 1.568e+01 3.672e+03 2.999e-01 0.000e+00 1.022e-01 0.000e+00 0.000e+00

100 000

1.468e+01 6.500e+01 3.756e+02 1.380e+02 1.026e+04 2.293e+01 1.465e+04 1.308e+09 1.282e-02 1.000e+02
1.302e+01 5.400e+01 1.087e+02 9.553e+01 9.322e+03 1.555e+01 4.804e+03 1.022e+07 3.239e-03 5.678e-01
5.957e-03 8.500e+00 2.822e-04 1.417e+01 2.761e+03 1.100e+00 7.226e-06 2.741e+01 0.000e+00 0.000e+00
2.000e-14 0.000e+00 0.000e+00 1.176e+01 2.685e+03 2.999e-01 0.000e+00 6.374e-02 0.000e+00 0.000e+00

1 000 000

1.469e+01 6.500e+01 3.766e+02 1.391e+02 1.023e+04 2.262e+01 1.446e+04 1.336e+09 1.248e-02 1.000e+02
1.367e+01 5.750e+01 1.394e+02 1.022e+02 9.719e+03 1.706e+01 6.158e+03 1.650e+07 3.243e-03 2.671e+00
1.028e+01 3.300e+01 3.715e+01 6.753e+01 7.407e+03 9.708e+00 1.547e+03 1.033e+06 1.970e-04 3.286e-04
2.000e-14 0.000e+00 1.556e-14 8.744e+00 1.559e+03 2.999e-01 0.000e+00 1.126e+00 0.000e+00 0.000e+00
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Table C.3: [Median solution qualities achieved by the decreasing inertia weight optimizers with different schedules based on median solution

qualities and a square topology. Each cell contains the median solution quality achieved by the corresponding optimizer after 1 000, 10 000, 100 000

and 1 000 000 function evaluations.

Schedule
High dimensional Low dimensional

Multimodal Unimodal Multimodal Unimodal
Ackley Step Griewank Rastrigin Schwefel Salomon Sphere Rosenbrock Schaffer Easom

100

1.227e+01 5.350e+01 1.031e+02 9.127e+01 9.076e+03 1.197e+01 3.793e+03 2.924e+08 3.271e-03 2.353e+00
2.054e+00 1.900e+01 6.438e-01 2.293e+01 4.396e+03 2.700e+00 3.691e+00 2.797e+03 1.197e-05 0.000e+00
6.071e-14 2.500e+00 1.556e-14 1.477e+01 3.277e+03 2.999e-01 1.267e-14 1.957e+01 0.000e+00 0.000e+00
2.000e-14 0.000e+00 1.556e-14 1.417e+01 3.158e+03 1.999e-01 1.267e-14 1.050e+00 0.000e+00 0.000e+00

1000

1.333e+01 6.000e+01 1.517e+02 1.032e+02 9.671e+03 1.534e+01 5.786e+03 2.372e+08 3.820e-03 4.518e+01
2.216e+00 1.950e+01 6.546e-01 2.340e+01 4.306e+03 2.900e+00 4.147e+00 2.581e+03 1.479e-03 0.000e+00
6.071e-14 2.500e+00 1.556e-14 1.327e+01 3.198e+03 2.999e-01 1.267e-14 1.852e+01 0.000e+00 0.000e+00
2.000e-14 0.000e+00 1.556e-14 1.236e+01 3.119e+03 1.999e-01 1.267e-14 8.055e-01 0.000e+00 0.000e+00

10 000

1.442e+01 6.500e+01 2.830e+02 1.234e+02 1.021e+04 2.114e+01 1.096e+04 3.798e+08 1.245e-02 9.960e+01
5.291e+00 2.800e+01 3.670e+00 4.167e+01 5.810e+03 5.011e+00 1.494e+02 5.204e+04 1.194e-03 0.000e+00
1.421e-13 2.500e+00 4.109e-03 1.327e+01 3.237e+03 2.999e-01 1.267e-14 1.935e+01 0.000e+00 0.000e+00
2.000e-14 0.000e+00 4.109e-03 1.206e+01 3.139e+03 1.999e-01 1.267e-14 7.849e-01 0.000e+00 0.000e+00

100 000

1.456e+01 6.500e+01 2.895e+02 1.285e+02 1.021e+04 2.165e+01 1.178e+04 4.294e+08 1.274e-02 9.989e+01
1.289e+01 5.350e+01 1.002e+02 9.200e+01 9.478e+03 1.562e+01 4.533e+03 8.351e+06 3.240e-03 9.012e-01
9.574e-05 7.000e+00 4.109e-03 1.086e+01 2.191e+03 6.999e-01 1.354e-08 2.169e+01 0.000e+00 0.000e+00
2.000e-14 0.000e+00 1.556e-14 9.648e+00 2.152e+03 1.999e-01 1.267e-14 1.022e+00 0.000e+00 0.000e+00

1 000 000

1.454e+01 6.500e+01 2.933e+02 1.279e+02 1.021e+04 2.170e+01 1.198e+04 3.932e+08 1.273e-02 9.925e+01
1.340e+01 5.600e+01 1.314e+02 9.969e+01 9.644e+03 1.680e+01 5.615e+03 1.262e+07 3.247e-03 3.899e+00
1.048e+01 3.350e+01 3.870e+01 7.056e+01 7.581e+03 1.020e+01 1.688e+03 1.104e+06 2.524e-04 2.166e-04
2.000e-14 0.000e+00 1.556e-14 6.332e+00 1.303e+03 2.999e-01 1.267e-14 2.957e+00 0.000e+00 0.000e+00
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