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Abstract

Prey retrieval, also known as foraging, is a widely used test application
for Multi Robot Systems (MRS). The task consists in searching for objects
spread in the environment and in bringing them to a specific place called nest
or home. Scientific issues usually concern efficient exploration, mapping,
communication among agents, task coordination and allocation, and conflict
resolution. In particular, conflicts prevent the performance of foraging (i.e.
the number of items retrieved) from growing linearly with the number of
robots. Collisions among robots or two robots that try to move an object but
in different directions are examples of conflicts. From an energetic point of
view, conflicts can be seen as energy that is lost during the retrieval. Several
works in the literature investigate how the control system of each agent or
some form of middle/long range communication can improve performance.
In this work, we study a different approach to conflict resolution based only
on information locally available to each robot. We show that it is possible
to reduce conflicts by adapting for each robot the probability to leave the
nest according to previous successes or failures. We derive an estimator of
the efficiency of the system and show that this form of adaptation improves
it. Efficiency increases through the allocation of tasks among members of
the team and the exploitation of their individual abilities.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

In the past few years, much research in robotics has focused on collective
robotic systems, where several independent robots work together to achieve
a given goal. Scientific issues can have both an engineering or a biological
origin. From an engineering perspective, systems made of several agents
are particularly appealing because they represent a way of improving the
efficiency of the solution in tasks that are intrinsically parallel, such as the
delivery of items in a factory or the exploration and mapping of unknown
environments. Moreover, a collective robotic system is robust in case of
failures of any of its members. From a biological perspective, many robots
working together (or in competition) are interesting because they are a good
test-bed for theories about self-organisation (Camazine et al., 2001).

Collective robotics belongs to the field that studies Multi Agent Systems
(MASs). The distinction between the two is that while in the latter an agent
can act also in a virtual environment, in the former a robot must deal with
the real world. Much work in the literature uses simulations to help the
designer to test solutions that would be too risky to be run on real robots
(e.g. when the robot’s motors could be damaged), or too slow to develop
on them (e.g. in Evolutionary Robotics, see Nolfi and Floreano (2000)). In
the real world, physical interactions among robots are more complex than
in a simulated environment. This complexity makes robotic systems richer
of features and more complex to implement.

An important issue in MAS is the design of control systems for each
agents that can deal with complex and dynamic situations. Solutions usu-
ally make use of complex models of the environment. Recently, researchers
involved in the design of robotic control systems have looked at biological
systems to learn how very complex tasks are solved by swarms of animals
through the exploitation of simple behaviours. They have noticed that it
is not always necessary to use a high degree of complexity in a control sys-
tem in order to cope with difficult environments. It has been shown that
ant colonies can solve apparently complex tasks by exploiting the dynamics
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CHAPTER 1. INTRODUCTION

brought forth by the interactions among agents and between agents and the
environment. For instance, ants often find the shortest path to a food source
when foraging. This happens without the means of direct communication
between them, but they exploit instead some features of the environment.
The interplay between the pheromone laid by each ant and its evaporation
makes the shortest path become the preferred one (Bonabeau et al., 1999,
p. 26–31).

One advantage of using simple behaviours like in ants is that control
programs usually do not rely explicitly on direct means of communication
between agents, but exploit the environment. “In situations where many
individuals contribute to a collective effort, such as a colony of termites
building a nest, stimuli provided by the emerging structure itself can be
a rich source of information for the individual” (Camazine et al., 2001,
page 23). This form of communication is called stigmergy (Grassé, 1959).
“In stigmergic labor, it is the product of work previously accomplished,
rather than direct communication among nest-mates, that induces the in-
sects to perform additional labor” (Wilson, 1971, p. 229). A controller for
robots that relies on stigmergic communication is simpler because it does
not have to care of the other robots and of the records and the analyses of
the information they transmit. In order to emphasise the inspiration from
biology, a system of such robots is sometimes called a colony. The approach
paves the way toward the implementation of robotic systems that comprise
a huge amount, a swarm, of individuals. The field of robotics that deals with
swarms of robots with simple control based on stigmergic communication
is called Swarm Robotics, which is part of the field of Swarm Intelligence
(Bonabeau et al., 1999).

A swarm of robots programmed with swarm-intelligent techniques can
theoretically perform as good as, or even better than, other systems. Its
advantage is to be more robust in the case of failure of some elements. Sim-
ple behaviours also imply fewer assumptions about the environment and
these systems result to be more robust to sudden changes. Anyway, Swarm
Robotics has its drawbacks. The relationship between local and global be-
haviours is not easy to understand and, as it often occurs in complex sys-
tems, small changes at a local level might result in drastic and unpredictable
changes at the global level. In this context, a good analysis and understand-
ing of the dynamics of the system plays a crucial role.

Our work is a case study of a swarm-robotic system. We consider the
costs and efficiency of foraging. Here, the word “cost” is used to describe
anything that reduces the performance and the efficiency of the system. It
can comprehend, for instance, conflicts between agents, energy consumption
or the adversity of the environment. This study wants to show that a simple
swarm-intelligent technique can improve the benefit/costs trade-off which
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CHAPTER 1. INTRODUCTION

governs the retrieval task of a colony of robots.

This work was carried out within the scope of the SWARM-BOTS
project, a Future and Emerging Technologies project founded by the CEC,
whose aim is to design new artifacts, called s-bots, able to self-assemble in
a bigger structure called a swarm-bot. More details about this are given
below.

Our experiments use real robots instead of software simulation. The lat-
ter is extensively used in several works in the literature and also inside the
SWARM-BOTS project for the reasons explained above, but it has the dis-
advantage that it becomes unpractical when experiments need an accurate
representation of physical constraints and interactions. Unfortunately, no
s-bot was available to date. Therefore a simplified version made with Lego
bricks was used to simulate the main s-bot features in a real environment.
Instead of using a digital simulation, that is, a program running entirely on
a computer, we used an analogical one, meaning that a simulated version of
the s-bots was used in real world with real physics and real interactions.

This work is organised as follows: Section 1.1 describes the SWARM-
BOTS project, its ground ideas and our contribution to it; Section 1.2 ex-
plains the aim of our study; Section 1.3 closes the chapter anticipating the
results we achieved. Then, Chapter 2 reviews related work in the literature,
Chapter 3 describes the hardware aspects of the work and Chapter 4 the
implemented software. Chapter 5 details experiments and their results, and
Chapter 6 ends with conclusions and future works.

1.1 The SWARM-BOTS Project

The aim of the SWARM-BOTS project is to develop a new robotic system,
a swarm-bot, composed of several independent and small modules, called s-
bots. Each module is self contained and capable of independent movements,
but it can connect with other modules to form a swarm-bot. This process
is intended to be self-organised and self-assembled in order to easily adapt
to dynamic environments or difficult tasks. A task is considered difficult if
it is not possible for a single s-bot to achieve it, thus it requires some form
of collaboration. Examples of difficult tasks are pulling of heavy object or
exploration on rough terrain, which could contain holes bigger than each
s-bot. Collaboration is achieved by mean of indirect and non-symbolic com-
munication, e.g. physical interactions through the environment and among
s-bots.

The SWARM-BOTS project aims to use techniques derived from swarm
intelligence, the study of how collectively intelligent systems can be created
by a number of simple autonomous agents. A swarm-bot is someway in be-
tween a collective robotic system and a metamorphic robotic system. The

3



CHAPTER 1. INTRODUCTION

former is object of study in the field of collective robotics, the latter in meta-
morphic robotics. In collective robotics, the general issue is to understand
the means by which groups of independent robots can interact to accomplish
a given task. An overview of this field is given in Chapter 2. In metamor-
phic robotics, several modules must aggregate to be able to achieve a task.
Usually, the modules are self-contained, but they need to be connected to
other modules in order to move. The main research topic in this field is the
achievement of a predefined shape starting from any configuration. Solutions
to this problem use both centralised and distributed algorithms, but usually
the target shape is determined a priori and is not task-related (Chirikjian,
1994; Yim, 1995; Pamecha et al., 1996; Kotay et al., 1998; Castano et al.,
2000; Rus and Vona, 2001; Ünsal et al., 2001; Yim et al., 2001; Kamimura
et al., 2001).

The main source of inspiration for the project is biology: several exam-
ples for self-assembling and self-organisation can be found in Nature (Ca-
mazine et al., 2001; Anderson et al., 2002). It is useful to present a scenario
of a suitable task for a swarm-bot in order to better explain which are the
main issues in the control design.

1.1.1 Imaginary scenario

The following scenario is intended to describe the issues that the control
system must deal with. It describes a hypothetical object-retrieving task, a
task that requires co-operation and physical connections among s-bots. Two
kinds of s-bots are in a rectangular arena: explorers, with fast motors and
many sensors, and carriers, with powerful motors and fewer sensors. The
object to be retrieved is the hexagon on the left side of Figure 1.1(a) and
the circle on the right side indicates the location to which the object has to
be moved (the goal). Walls are present too and hide the goal to the s-bots.
The two other objects in the middle of each figure represent holes in the
terrain.

When explorers find the object, they start signalling to nearby s-bots,
which start clustering around the object. Carriers position themselves
around the perimeter of the object, grasp it and try to push and pull till
they can co-ordinate and move it in the right direction (Fig. 1.1(b)). In
the meanwhile, explorers search for a path to the goal and signal it to the
carriers (Fig. 1.1(c)). The last passage in front of the goal is too narrow for
the present configuration of the swarm-bot and the s-bots have to rearrange
their positions to pass through (Fig. 1.1(d)). Finally, s-bots can drop the
target at the goal.

4



CHAPTER 1. INTRODUCTION

(a) S-bots looking for a target. (b) The s-bots start to pull the
object to the goal position.

(c) Selection of the best path. (d) The swarm-bot reconfig-
ures itself to pass through a
narrow passage.

Figure 1.1: Imaginary scenario of a transportation task for a swarm-bot.

1.1.2 General issues

The general task depicted above includes the possible sub-tasks that the
s-bots should be able to perform:

Dynamic pattern formation/change: s-bots must be able to self-
assemble into a number of different configurations, choosing the most
suitable one for the task and the environment in which they operate.
They must also be able to change spatial arrangement in order to
adapt to modifications in the environment.

Navigation on rough terrain: the swarm-bot must be able to move au-
tonomously on rough terrain, using information gathered by single
s-bots.

Pulling/pushing objects: the swarm-bot must be able to pull or push
objects that are too heavy for a single s-bot. When collective pulling or
pushing is required, s-bots must call for help and self-assemble taking
care of the characteristics of the objects and the environment, e.g. the
shape of the object or the presence of holes around it.

Task allocation: only some s-bots pull the prey while the others search
for the way to the goal. The number of s-bots in each group should

5



CHAPTER 1. INTRODUCTION

Figure 1.2: The design of an s-bot.

be adapted both to the weight of the object and to the adversity and
complexity of the environment.

This work focuses particularly on the last issue. Considering that search-
ing and retrieving is not costless, there is an optimal number of scout s-bots
to be used that must be adapted according to the situation. Section 1.2
gives a more detailed explanation of this concept.

Only a sub-problem of retrieving is studied at the beginning, that is,
when the object to collect is light enough to be retrieved by a single s-
bot. This simplification facilitates the initial study of task allocation and
resource optimisation. As a consequence, the following pages do not stress
the self-assembly feature of a swarm-bot.

1.1.3 The s-bot

To date, only one prototype of the s-bots is available. This section briefly
describes it in order to point out the features that the version with Lego
bricks tries to simulate.

Figure 1.2 is the mechanical drawing of an s-bot, while Figure 1.3 depicts
its real implementation. The s-bot uses treels

�
, a mix between tracks and

wheels to address rough terrains. On the top there is an omni-directional
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Figure 1.3: The hardware prototype of an s-bot.

camera that can be used to analyse the surroundings, looking for objects
or obstacles. The s-bot has a fixed and a mobile grippers to provide both
rigid and flexible connections. The body can rotate independently from the
treels

�
. Infrared emitters and receivers, light intensity sensors and LEDs

are all around the body to sense other s-bots or objects.

For the task of prey retrieval, tracks and a strong gripper are the most
important elements: the first provides a good traction while the second
holds objects tightly. The large number of sensors, the camera, the addi-
tional gripper and the rotating base can be useful for this task, but are
unfortunately hard to replicate with Lego bricks. Chapter 3 describes how
the Lego model simulates an s-bot.

1.2 The Aim of this Work

This work takes inspiration from retrieval in biological systems as, for in-
stance, in a colony of ants. Each ant needs food to obtain energy to survive,
but it also needs a secure place, the nest, to rest. If all the ants go and
search for prey, nobody can take care of the defence of the nest or of feeding
the brood.

Searching also has drawbacks, that can come from dangers in the envi-
ronment or from predators. It is also possible that foragers interact in an
inefficient way, for instance trying to collectively retrieve an item that could
be carried by one ant only. If we look at the energetic consumption of the
whole colony, these effects represent costs that decrease the net income of
energy.

We present a small mathematical model to illustrate the problem more
formally (what follows has the only purpose of clarifying the explanation

7



CHAPTER 1. INTRODUCTION

and it is not intended to model our results). If X is the number of foragers
in a colony, we can assume that the rate of discovery and retrieval of prey is
approximately αXP , where P is the total amount of prey in the environment
and α is the probability that one forager finds one prey in one unit of time
(i.e. the discovery rate). P is generally not constant in time. It can change
because new prey appear or because foragers retrieved some of them. To
be more general, prey can also disappear (e.g. if it is another insect that is
walking through the area), although this is not the case in the experiments
of Chapter 5. Prey dynamics can be modelled according to the following
equation:

dP

dt
= φ− αXP − βP ,

where φ represent the “appearing” and β the “disappearing” prey rate. This
equation tells that the equilibrium is reached for

P =
φ

αX + β
,

which is a stable point since α > 0, X > 0, β ≥ 0 and therefore −αX − β,
the eigenvalue of the system, is less than 0. The energetic “income” rate of
the colony i(X) is proportional to the retrieved-prey rate at the equilibrium:

i(X) ∝ αX
φ

αX + β
.

It is harder to find a good approximation for a proper cost function
c(X), given that it depends on factors in the environment that are a priori
unknown. It is still possible to derive some of its characteristics considering
what it should represent. Since it must consider the total amount of energy
spent by the colony, it must be proportional to the total number of colony
members, N , which is constant. It must also take into account the energy
spent by foragers and the possibility that they get lost or killed (in this case
the colony loses resources to exploit). Therefore, the first derivative of c(X),
must be greater than 0. Finally, to consider the influence of negative inter-
actions between foragers, which increases with the square of their number,
the second derivative must also be greater than 0. As a first approximation,
c(X) can be given by:

c(X) = δN + εX + γX2 ,

with δ > 0, ε > 0 and γ > 0. Figure 1.4 shows two possible curves for the
income and the costs. The colony survives when the incomes are bigger than
the costs. Therefore the colony can allocate foragers between a minimum
and a maximum value. For values outside this range, the income of energy
is less than the consumption.

8
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Figure 1.4: Relationship between the number of foragers and the energetic
income/outcome in a colony.

There is an optimal number of foragers to be used that is given by

X̂ = argmax
X∈[0,N ]

i(X)− c(X) ,

represented as a vertical line in Figure 1.4. X̂ depends on conditions of the
environment that can change during time, like the appearing and disappear-
ing rates, or the presence of predators in the area.

Ants use a number of methods to reach and adapt this optimal value in
case of dynamic environments. We can look at some of them to see if it is
possible to implement them in a robotic system.

Evolution surely played an important role tuning parameters of ant be-
haviours. A solution based only on evolutionary robotics1 is not robust with
respect to changes in the environment faster than evolutionary dynamics.
Moreover, experiments with this approach take a lot of time if they are
performed on real robots, as we intend to do.

1Evolutionary robotics simulates biological evolution to find the best control program
to achieve a given task. In a collection, called population, of different programs, each of
them is tested to measure how good it achieves the task. The ones that can solve the task
better in the current population are selected and simulated recombination and mutation

are applied to them to create new programs and thus a new population. The process is
then iterated on the new population. See Nolfi and Floreano (2000) for a more detailed
explanation and examples.
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Ants also exploit different forms of recruitment and stigmergic commu-
nication to adapt to a dynamic environment, for instance communicating
the sudden appearance of a cluster of prey to nest mates. Unfortunately,
these methods usually rely on chemical substances being released in the en-
vironment, and this makes it impossible to be implemented with robots as
simple as the one we used (see Chapter 3).

In this work we investigate another way to reach the optimal value of for-
agers, or to approach it. Assuming that each robot can switch from a resting
behaviour to a foraging behaviour in a probabilistic fashion, it is possible to
modulate this probability in each individual according to its previous suc-
cesses or failures. The foraging time cannot exceed a fixed timeout, after
which robots come back to the nest. Each individual becomes a “tester”
to estimate the quality of the environment. If, for instance, the environ-
ment is rich of prey easy to retrieve, each individual finds and retrieves prey
whenever it is out of the nest and tends to rest little time by increasing its
probability to leave. From the colony point of view, the mean number of
individuals allocated to foraging increases. If the environment is poor, many
individuals fail to find a prey and tend to increasingly rest in the nest. The
mean number of foragers decreases. If there are too many foragers, some of
them will not be able to find a prey and come back to the nest, decreasing
the probability to leave. If they are too few, some nest-mate start foraging
eventually with success, therefore tending to go out more and more often.

We argue that this simple individual learning algorithm can drift the
colony toward the optimal point illustrated above. Moreover, the dynamics
it creates can be used to allocate tasks to nest-mates thanks to the amplifi-
cation of small random perturbations. Individuals that, because of luck or
better ability, find more prey than others have a higher probability to leave
the nest. Since they spend more time out of the nest, they find more prey.
This positive feedback transforms them into foragers, while their nest-mates
spend more and more time in idleness in the nest.

The next chapters describe the work done from the hardware and the soft-
ware point of view to test these ideas. The focus is mainly on the dynamic
allocation of an optimal number of foragers, and little on the retrieving
behaviours themselves. Therefore, a simpler case is studied: solitary prey
retrieval. In this framework, each forager is able to retrieve a single prey
item, therefore no collaboration between individuals is needed. This situa-
tion is left as a future work in the SWARM-BOTS project.
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1.3 Results

We anticipate here the preliminary results that Chapter 5 reports in more
detail. We used a rule to modify the probability to leave the nest based on
the number of successes or failures in a row. We tested it in a series of ten
experiments2 against a system where robots always exit from the nest with
probability 1. The adaptation rule saves the colony’s energy, resulting in a
more efficient retrieval, without using communication among robots.

One would think of prey retrieval, as described in Section 1.2, as a multi-
objective optimisation problem: the goals are, on the one hand, to increase
the flux of incoming prey and, on the other hand to reduce energy consump-
tion. The higher the number of foragers, the higher the flux of incoming
prey, but the spent energy increases too. Our results suggest, on the con-
trary, that this is not always true. In some conditions, for instance when
the negative interactions between robots are too strong, a decrease in the
number of foragers improves the efficiency of retrieval without changing the
flux of incoming prey.

The means by which the system performs efficiently is task allocation.
Two classes of robots are present systematically in all experiments: foragers,
which leave the nest with high probability, and loafers, which leave the nest
with low probability. We also show that the task allocation process exploits
differences among robots. Individuals that are better in retrieving are more
likely to become foragers.

We do not claim that our method can find the optimal number of for-
agers, nor that the updating rule we use is the best one. We think that our
approach is promising, but there is still much work to do. Possible future
directions of research are listed in Chapter 6.

2The number of experiments was mainly decided by the reliability of the robots and
by the time it took to complete them.
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Chapter 2

Literature Overview

There has been an increasing interest in Multi Robot Systems (MRS) re-
cently. Some of the reasons for their utility are:

. . . tasks may be inherently too complex (or impossible) for a
single robot to accomplish, or performance benefits can be gained
from using multiple robots; building and using several simple
robots can be easier, cheaper, more flexible and more fault tol-
erant than having a single powerful robot for each separate task;
and the constructive, synthetic approach inherent in cooperative
mobile robotics can possibly yield insights into fundamental prob-
lems in the social sciences (organisation theory, economics, cog-
nitive psychology), and life sciences (theoretical biology, animal
ethology). (Cao et al., 1997, page 7.)

Prey retrieval, also known as foraging, is among the different tasks that
Cao et al. consider the canonical domains for MRS. It consists of searching
for objects in the environment and bringing them to a region called home
or nest. A retrieval task can be performed by each robot independently,
and generally, the issue is whether or not multiple robots can achieve a
performance gain.

In MRS, robots usually collaborate to achieve their task. There are also
systems in which competition is important. For instance, in RoboCup,1

two teams of robots (both simulated and real) must play against each other
in a soccer match. Scientific and practical issues include combining reac-
tive approaches and modelling/planning approaches, real-time recognition,
planning, reasoning, strategy acquisition, and agent modelling (Kitano et al.,
1997; Asada and Kitano, 1999; Asada et al., 1999).

If we look at the field of collaborative robotics, i.e. where there is no
competition among robots, a multi robot system can be classified according
to different parameters as suggested by Dudek et al. (1996):

1http://www.robocup.org/
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Size. A multi robot system can be formed by one robot (the “minimal
collective”, Dudek et al. (1996), p 379), two robots (the “simplest
group”), or by limited number n of robots. If n is big enough, then
the group can be considered of infinite size.

Communication range. There can be no communication, communication
limited to a certain distance or without limit. The latter means that
each robot can communicate with every other robot independently
from its distance. Limitless communication it is a property that de-
pends both on the characteristic of the environment and on the means
of communication.

Communication topology. Robots can use broadcasting techniques, ad-
dress based messages or tree hierarchies to spread information. The
communication topology can also have the form of a general graph.
This is more robust to failures than a tree structure because of the
possible presence of multiple paths between nodes of the graph.

Communication bandwidth. There can be costs related to communica-
tion which affect the available bandwidth. It is possible to have no
costs and infinite bandwidth, high costs and low bandwidth or no
communication at all because costs are prohibitive. The latter is con-
sidered to be an “impractical case if coordinated collective behaviour
is desired” (Dudek et al., 1996, p. 381). Dudek et al. identify another
category, which lies between between infinite and low bandwidth, that
is more interesting for our work. The costs of communication for this
category have “the same order of magnitude of the cost of moving the
robots between locations” (Dudek et al., 1996, p. 381) and includes
stigmergic communication.

Collective reconfigurability. It takes care of spatial arrangements of the
groups. Robots can have fixed positions, change occasionally following
communication or have completely dynamic locations.

Processing abilities. The control program of each robot can be imple-
mented as a neural network, a finite state automaton, a push-down
automaton or a Turing machine.

Collective composition. Units of the system can be identical both in form
and function, homogeneous (same physical characteristic) or hetero-
geneous.

The system studied in this work has a limited size, although the aim is
to eventually use a swarm. It uses no (direct) communication and therefore
no particular communication topology. Costs are given by the movements of
robots. The system is dynamically reconfigurable and composed of identical

14
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units. At the high level, the control system can be modelled as a finite state
automaton (Section 4.2).

The following pages briefly review some of the issues addressed in MRSs
(Section 2.1) and in swarm robotics (Section 2.2), focusing mostly on work
related to foraging. The last section (2.3) describes what is known in bio-
logical systems about prey retrieval.

2.1 Multi Robot Systems

The task of the control system of a robot can be described as follows: given
a condition, or state, of the environment, the robot has to perform a series
of actions to reach a goal state. The goal state can be to have an object
carried from one place to another, to have the robot in a fixed position,
to move it so that all the environment has been explored, and so forth.
The control system analyses sensor data to identify the current state and to
select the best action in order to reach the goal. There are two approaches
to the decision process: a reactive system considers only the current state
and binds it to a specific action, creating a mapping from the state space
to the action space; a planning approach selects the best action according
to predictions of future states which are elaborated using a model of the
environment. Sensor data is then reanalysed to decide on the next action
and to give feedback to the system.

If the system is composed of one robot, control algorithms must take
care of a number of problems, listed as follows:

Unpredictable changes. If the environment is dynamic, it can change
because of factors that are not under the control of the robot. If a
reactive architecture is used, the state-action mapping may not be
valid any more. If planning is used, the foreseen states do not occur
and new predictions are needed, but the environment can change again
before the new predictions are available.

Sensor reliability. Sensors can be unreliable or they can return the same
data in different states (sensor aliasing or partial observability). For
instance, if a new state of the environment was reached, e.g. the goal
is closer, and the control system read the same data, the robot would
think that no progress has been made and select the wrong action.

Unknown environments. If a robot worked in a new environment, the
outcome of any of its actions might be partially or completely un-
known. In this case the model used for the planning or the mapping in
reactive system may be wrong and ineffective. Experience collected in
the past can be used by the robot to improve the state-action mapping
or the model of the environment, for instance by means of reinforce-
ment learning (Sutton and Barto, 1998).
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Real time requirements. The product between state and action spaces
is generally huge. Looking for the best action in case of planning, or
for the best mapping in the case of a reactive system, can take too
much time. This is usually a problem when the robot must operate
in a critical environment where decisions must be fast or where fast
learning is desired.

In the case of MRSs, these problems are amplified. Each robot must
take care of the others. From point of view of the single robot, the envi-
ronment is more dynamic because the other robots can change it by means
of their actions. Each control system shall consider both the actual state
of the environment and all possible combinations of the states of the other
robots. This gives rise to a combinatorial increase of the state space with
the number of robots. Moreover, if no communication is used, the states of
other robots are unknown, hence the environment is only partially observ-
able. If communication is used, the capacity of the communication channel
can easily saturate with a high number of robots.

In order to deal with changing and partially observable environments,
Goldber and Matarić (2000) use several Augmented Markov Models (AMM),
a kind of Markov Chain that is incrementally generated through node split-
ting in order to catch hidden states. Each AMM tracks a different timescale.
The algorithm is tested on a foraging task, but only one robot is used to
evaluate its performance.

Matarić (1997b) addresses the problem of learning in a puck retrieval
task when the state-action space is large. The dimension is drastically de-
creased using behaviours instead of actions as basic blocks of the decision
process. Behaviours are goal-driven control laws that achieve sub-goals and
are not learnt during experiments. She uses a reinforcement function that
is the sum of three different components. The first one takes care of in-
ternal events triggered by behaviour activations, like the collection or the
dropping of pucks. The second one considers the distance to neighbours
and has a positive value when it increases. The third one, initialised when a
puck is grasped, gives positive reinforcement when the distance to the home
decreases while carrying a puck.

In Matarić (1997a), the task is to learn social behaviours in order to
reduce interference among robots that is “an unavoidable aspect of multi-
agent interaction and is the primary impetus behind social rules” (Matarić,
1997a, p. 192). Reinforcement is composed again of three parts. A progress
estimator gives a reward whenever a progress toward the immediate goal is
done. The second reinforcement comes from the observation and imitation
of the behaviours of the others. After some time, the robot forgets what it
has seen. Finally, a third reward is given by other agents in order to share
reinforcement when involved in social interactions.

Hayes (2002) directly addresses the problem of increasing the efficiency
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providing an analytical model to find the optimal number of foragers to
use when using both random and coordinated search. The author shows
that coordinated search gives better results. The model is limited for our
purposes because it uses the following hypotheses: there is only one item to
search, the environment is not changing in time and the probabilities of each
agent to succeed are fully independent. The last one is the most restrictive
hypothesis because it implies that robots do not interact with each other.
We will show in Section 5.4 that this is not true.

Balch and Arkin (1994) analyse the effects of communication in foraging
and other tasks. Their conclusion is that communication improves perfor-
mances when little environmental communication is available. However, it
is not essential for tasks which include implicit communication and the ben-
efit of using complex communication strategies instead of low-level ones is
small.

Other researchers have focused on issues related to multi-robot planning.
A plan is usually created in a centralised fashion and then distributed to
each robot to be executed, as in Bruce and Veloso (2002). Their planning
method is based on Rapidly-Exploring Random Trees (RTT) and is used
for navigation tasks. The planning algorithm expands a path one step from
the current position to a goal or, with a small probability, toward a random
position. This algorithm has a good performance when the application is as
real-time constrained and dynamic as a RoboCup match.

Interesting forms of learning can be studied when the system is composed
of two groups of robots in competition. Riley and Veloso (2002) try to
learn the opponent’s strategies during a RoboCup match to find a counter-
strategy to apply. A centralised system keeps statistics about the opponent’s
positions and the ball movements to feed a number of different opponent
models. The best fitting one is then used to plan the counter-strategy.

In most of the work done in the literature, the design of the control
system is centred on the perspective of a single robot. The group and
its dynamics are considered mainly to evaluate performance. Researchers
acknowledge that there are negative interferences in a group of robots, but
their solutions are mostly based on making the individual control system
more complex. The following section discusses work in which the control
system tries to exploit the interactions in the group to accomplish its task.

2.2 Swarm Robotics

Control algorithms in swarm robotics are very simple and do not use com-
plex representations of the environment or of the other robots. Achievement
of a task is solely based on inter-robot interactions. Attention is more on
robot–robot and robot–environment interactions than on the control sys-
tems, which are consequently mostly reactive. The use of probabilistic de-
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cisions is also common.

In Jones and Matarić (2002), robots must collect items of different
colours and in a predefined sequence. Two control algorithms were im-
plemented. The first one is based on timers connected to each item colour.
If too much time has passed without any item of one colour found, robots
focus on the next colour. The second algorithm is probability based. Each
robot has associated probabilities to ignore items of a given class or to drop
them before reaching the home region.

Melhuish et al. (2001) use patch sorting as a test bed for their system.
It is a form of clustering where more than one type of object is present
in the arena. The goal is to have one cluster for each item class in the
environment. They show that a simple 4-rule behaviour implemented by a
swarm of robots can achieve the task. They observe that the performance
of the system decreases with the number of classes of objects to cluster and
that the time to complete the task is minimal when four classes are used.

Holland and Melhuish (1999) address the problem of over crowding by
measuring the number of collisions between robots because they are “respon-
sible for the large deterioration in performance when the number of robots
[is] increased beyond a small limit” (Holland and Melhuish, 1999, p. 181).
They analyse the system by looking at the qualitative and quantitative ef-
fects of parameter changes in the control algorithm. There is not enough
space here to list all of them and they are less important in the context of
our work. The interested reader is referred to the original paper.

Agassounon et al. (2001) and Agassounon and Martinoli (2002) address
the problem of task allocation in a colony. The task is not the retrieval but
the clustering of small cylindrical pucks. They try three different algorithms.
The first one uses two timers to synchronise robot activities. Robots search
for a maximum time of Tsearch, after which they rest for Trest. The counter
for the search phase is reset when a new puck is found. In this way, workers
can estimate the local density of items, and if it is too small they rest,
decreasing the total number of workers. The values for Tsearch and Trest are
fixed and therefore the algorithm is not robust with respect to changes in the
environment. Moreover, environmental conditions must be known a priori
to use optimal values for Tsearch and Trest. The authors then developed an
auto-calibrating system. At the beginning, each robot measures the mean
time it takes to find a puck, and then fixes its Tsearch using this statistic.
A third improvement is achieved allowing the robots to communicate their
estimations to neighbours, which can use this information to improve the
value of Tsearch. Although their work might appear similar to our, we see
some differences among them. We discuss this topic in Chapter 6, after
having described our setup and methodology.
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1 cut it?
recruit near nestmates?
go back and recruit
nestmates?

pull it alone? 2

3

Figure 2.1: Foraging and retrieving behaviour of ants. An ant performs a
random walk in the environment until it finds a prey. It takes some decisions
about how to retrieve it. Transport can be done alone or in group. Once the
prey is in the nest, the ant goes back directly to where the prey was found.

2.3 Prey Retrieval in Biology

A wide range of different foraging behaviours is observed during prey scav-
enging and prey retrieval (or building material), but the mechanisms govern-
ing the emergence of them remain unclear. Figure 2.1 sketches the general
behaviour of ants. When they find a prey after having randomly explored
the environment, they take decisions following this schema:

� they first try to pull the prey and if it is too heavy they can recruit
local nest-mates by emitting a chemical signal;

� they can decide to return to the nest and recruit nest-mates by laying
a pheromone trail;

� they can cut the prey on the place with their jaws and retrieve smaller
pieces.

The retrieval can be done solitarily or in group, if the prey is too big. Once
back in the nest, the forager exits and directly returns to the place where
the prey was found.

In many species (Cammaerts, 1980; Cammaerts and Cammaerts, 1980;
Detrain and Pasteels, 1991, 1994), the colony activity is regulated through
the use of chemical trails and recruitment in the nest, which is more intense
for large than for small prey. These collective responses (cooperative re-
trieval, trail recruitment, and so forth) result from decision-making systems
which are poorly understood. The main issues are about the behaviours of
ants, the criteria they use to estimate the characteristics of the prey and
the way they coordinate their movements and decide whether to recruit or
not. Some of these problems are solved through cooperation and synchro-
nisation emerging from simple interactions among individuals and between
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individuals and the prey. Coordination in collective transport seems to oc-
cur through the item transported: a movement of one ant engaged in group
transport is likely to modify the stimuli perceived by the other group mem-
bers. This is an example of stigmergy (Sudd, 1963). The task in progress
generates new stimuli to which the insects react by continuing the task and
possibly creating new information sources. The prey is at the same time the
object transported and the media allowing the coordination of transporters
(including the decision to recruit) in order to retrieve it. The movements
of the prey contain the essential information used by ants: any movement
indicates, without any measure of prey size and weight, that the pulling
force is sufficient. This criterion, although very simple, is of high impor-
tance for a colony since it is used to decide whether to recruit and involve
more individuals in a task.

The Mediterranean terrestrial species Pheidole pallidula and Œcophylla
longinoda are main models for the understanding of prey retrieval. Pheidole
(and also Œcophylla) helps understanding how dead prey of different sizes
induce different global foraging patterns and different levels of cooperation.
It also raises several questions about the informative content of the food
itself and the modulation of individual behaviour at the food source.

Pheidole pallidula is divided in two castes: minor and major. One minor
can carry small items while medium-sized prey or cumbersome body parts
are retrieved by groups of cooperating minors. Most scavenged insects in-
dividually retrieved show an average weight of 0.86 mg. Larger prey are
carried back to the nest by the ants collectively (Detrain, 1990). A very
large food item induces a massive recruitment of both minors and majors
which dissect the prey directly at the food site. Food discovery and trail
recruitment is done exclusively by the minors, whose poison gland contains
trail pheromone. Majors perceive and follow these trails but cannot produce
the pheromone (Ali et al., 1988; Detrain and Pasteels, 1991). The majors
caste is only involved in recruitment for heavy prey which they cut into
pieces.

In Œcophylla longinoda, the collective and individual behaviours are sim-
ilar to those of Pheidole. Retrieval consists of two periods (motionless and
high speed retrieval) constituted by a succession of moves and stops. These
periods are increasing exponentially with the mass of the prey. The propor-
tion of the motionless period is approximately 70-60%, but decreases as the
mass of the prey increases (77% to 57% respectively for 0.4 g and 2.8 g). The
population size around the prey follows the same dynamics. However, for
Œcophylla, when a plateau is reached, a decrease of the population around
the prey is observed. Comparing different masses, the higher the mass, the
lower this decrease, which shows the impact of the retrieval speed on the
population size around the prey.

Division of labour and adaptation to changes in the environment are
often observed in ant colonies. Deneubourg et al. (1987) explain them with
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a simple probabilistic model. The environment is discretized into zones.
Each ant has a given probability, for each simulated time step, to forage
and, when it does, it chooses the zone where to go according to a given
probability distribution. If an ant is successful in finding a prey, it increases
by a fixed value the probability to leave the nest and to return to the same
point where it was before. If it is not successful, then the probabilities are
reduced by the same value. Monte Carlo simulations of this model gave
results similar to the one observed on the field.
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Chapter 3

Hardware

This chapter gives the details of the hardware implementation for the robots
used to test the hypothesis illustrated in Section 1.2 and for the results
described in Chapter 5.

Real robots have the advantage that it is not necessary to simulate their
dynamics and their interactions in detail, which is the bottleneck of any
realistic simulation. Dynamics is considered important because interactions
among robots create those constraints that a control program must face to
improve the performance of the system. Simulated robots also have the dis-
advantage of being identical, unless differences are intentionally integrated
in the simulation, for instance in the form of noise. Two real robots are never
the same. Sensors have different sensibilities and responses, the mechanics
may be weaker in one of them or their speed can be different. Usually, this
is something that makes the control system more complex, since it has to
cope with different conditions. A swarm-intelligent solution does not tackle
these problems directly, but lets the dynamics of the system solve them.
Some of the robots could be mechanically better to retrieve objects, and
therefore they will be more successful than others. The positive feedback
explained in Section 1.2 allocates them to the retrieving task, while the un-
successful ones stay more frequently in the nest. However, simulation has
the big advantage of being faster and simulated robots being mechanically
more reliable for experiments.

The actual s-bot is not used in this work because it was still in the pro-
totyping phase at the time of writing. Therefore, we employed a simplified
version of an s-bot, made with Lego bricks, which simulates some of its fea-
tures. We call our artifacts made from Lego bricks MindS-bot (Figure 3.1).
The advantage of Lego is that it allows a faster prototyping phase because
it is composed of modular pieces easy to connect to each other. From the
mechanical point of view, the plastic used by Lego is not the best solution
in order to obtain reliable artifacts because of the elasticity of some of its
components.
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Figure 3.1: A picture of a MindS-bot. See Section 3.3 for details.

Section 3.1 describes the hardware characteristics of Lego MindstormTM ,
the line of Lego products which was used to build the MindS-bots. Section 3.2
describes the main prototyping issues. Section 3.3 describes a MindS-bot in
details.

3.1 Lego MindstormTM

Lego MindstormTM is the line of Lego products used to prototype and build
the MindS-bots. A box usually contains pieces like the ones that can be
found in a Lego TechnicTM box, that is, normal squared bricks, axles, gears
and joints of different types and sizes, plus some electric and electronic
components. A box of Lego MindstormTM also includes a microprocessor
embedded in a block, called Brick or RCX (Figure 3.2).

The Brick contains an Hitachi H8300-HMS 1 MHz microprocessor and
slots for six AA batteries, 1.5V each. It has 32Kb RAM and a ROM on-
board. On the front side, there is an infrared transmitter/receiver to com-
municate with a computer, with other Bricks or to receive commands from a
remote controller. A program in the ROM takes care of downloading and ex-
ecuting the operating system from a base computer by means of the infrared
port. The operating system runs user’s programs and handles hardware in-
terrupts. In this work, only communication with the computer is used both
to download the program on the robot and to upload logs recorded by the
MindS-bots during each experiment.

A 5-digits LCD display is on the top of the brick. Four keys and slots
for three input and three output devices are situated around it. The out-
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Figure 3.2: A picture of the Brick included in each Lego MindstormTM box.
The infrared transmitter is in the front. On the top there are an LCD
display, four keys, three slots for sensors (the front grey stripe) and three
slots for actuators (the back black stripe).

put connections provide the power for the actuators, like motors or lights.
The input connections are used to sample and digitise, with a ten bit A/D
converter, the signals coming from the sensors. They also provide power for
those sensors that might need it, e.g. proximity sensors that emit infrared
pulses to be reflected by an obstacle. If a sensor needs power in order to
work, it is called an active sensor, otherwise it is called passive. More than
one device can be connected to one slot, but the resulting signal is not the
sum of all the individual ones. In fact, the devices are connected in parallel
from an electronic point of view.

Lego provides two kind of actuators: 9V motors (Figure 3.3(a)) and
white lamps. The variety of sensors is wider: there are rotation sensors (Fig-
ure 3.3(b)—can be used only in active mode), light intensity (Figure 3.3(c)—
used both in passive and active mode) and touch sensors (Figure 3.3(d)—
only passive mode). When a light intensity sensor is used in passive mode,
the value it returns is simply the intensity of the light in the environment.
Readings are stable and change only if a strong light source is in front of the
sensor. When it is in active mode, a small red LED in the front is switched
on and the sensor reads the reflected light of any object in the front. These
readings are more noisy, but the sensor can reliably detect black objects if
they are approximately 15-20 cm away, depending on their size.

There is also a number of additional sensors and actuators to be added
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(a) 9V motor. (b) Rotation sensor. It mea-
sures the rotation of an axle
that is inserted in the hole on
the side.

(c) Light sensor. On the front
there are a red LED and the
actual sensor.

(d) Touch sensor. It is a simple
switch that turns on when the
front button is pressed.

Figure 3.3: Pictures of sensors and actuators available in the Lego
MindstormTM product line.

to the list, which are sold on the Internet but not provided by Lego.1 Among
these, there are temperature, PH, humidity, colour and proximity sensors,
accelerometer and coloured lights. Most notably, there are also multiplexers
both for sensor input and for motor output that allow to overcome the
limitations imposed by the Brick.

3.2 Mechanical Issues

This section describes the mechanical issues that one must consider when
designing a robot for prey retrieval. We illustrate in Section 3.3, when we

1For instance:
http://www.mindsensors.com/, http://www.hitechnicstuff.com/products.htm and
http://ex.stormyprods.com/lego/
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describe the MindS-bot, the solutions we found to these problems.
For the achievement of a prey retrieval task, a MindS-bot must be strong

enough to pull a prey. Pulling is more often observed in nature than pushing.
It simplifies the control system because a MindS-bot can grasp and hold one
prey on one side, and look for the nest on the opposite side. If pushing
occurred, the MindS-bot would not be able to see the nest because the prey
would occlude most of the visual field. Therefore, the MindS-bot should
somehow remember the position of the nest, for instance by means of a map
that should be continuously updated.

The circular shape of the s-bot (Section 1.1.3) is hard to replicate with
squared Lego bricks. We dropped the idea of simulating a circular body in
order to have a compact volume and sizes comparable to a s-bot.

Recognition of the nest, prey, walls and other nest-mates is essential
for the achievement of the task. We chose to use black prey in a white
environment and a light to signal the position of the nest. A combination
of short and long range sensors is needed on at least two opposite sides, if
pulling is what we want. Therefore, light and touch sensors are essential for
our task. This sums up to at least four sensors, but there are slots for only
three of them.

The gripper is the last issue we highlight. It must be able to hold a prey
tightly. Lego motors can be short-circuited to brake their rotation, but this
solution must be avoided because it is too energy consuming and batteries
would not last long enough. A mechanical solution is better. Figure 3.4
gives an example of what could happen if the gripper was too weak.

3.3 The MindS-bot

This final section is dedicated to the description of the MindS-bot used for
the experiments. Figures 3.1 and 3.5 are pictures of a real MindS-bot and
a computer generated draw. Figure 3.6 shows lateral views of a MindS-
bot to highlight some details. In the following, there is a description of its
main part and of the solutions to the problems discussed in Section 3.2.
Appendix A reports the list of pieces to use and gives instructions on how
to reproduce a MindS-bot.

3.3.1 Traction

A MindS-bot uses tracks to move on the ground (Figure 3.7). They offer a
good compromise between traction power and space compactness. A first
trial used big wheels to achieve a stronger traction to pull a prey, but the
gripper was placed to high and the hold was not strong enough (the result
is shown in Figure 3.4). Tracks allow a good traction because of a high
friction with the ground. Moreover, the gripper’s arms can be placed over
them when the gripper is open, as can be noticed in Figure 3.1 and 3.7. Low
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(a) An early prototype of a MindS-

bot has grasped a prey and is ready
to pull it.

(b) The friction of the prey with the
ground is too high for the gripper.

(c) The momentum that the prey ap-
plied to the gripper’s arms was strong
enough to break them.

(d) The MindS-bot leaves with its re-
mainders left on the battlefield.

Figure 3.4: Example of a weak gripper.

arms allow to have a more stable and resistant grasp, but it is important
that arms do not protrude too much from the MindS-bot ’s shape in order
to reduce the danger of getting stuck.

A reduction between the motors’ and the tracks’ gears increases the
traction power, although it slows down the MindS-bot. However, its speed
is still about 12 cm/sec, which is considered enough for the experiments.

3.3.2 Gripper

Two arms, placed symmetrically with respect to the centre of the robot and
actuated by the same motor, form the gripper (Figure 3.8). The movement is
controlled by a motor, whose pulley is connected by an elastic ring to an axle
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Figure 3.5: Computer generated view of a MindS-bot.

at the bottom of the MindS-bot. The rotation of the motor is transmitted
to a worm screw placed on the other side of the axle. The work screw
is connected to the two arms by means of a series of gears. The centres
of rotation of the arms result to be nearly at the front end of the robot,
increasing the area in which a prey can be grasped. Figure 3.9 depicts the
extension of the gripper.

The series of reductions, especially with the endless screw, allows the
gripper to be strong and fix in a position without the need of short circuiting
the motors, thus avoiding a waste of energy. However, the arms are not
completely blocked because of the mobility between gears. Having more
gears in a series amplifies this phenomenon, which has some effects when
pulling a prey. Sometimes a MindS-bot can lose a prey while pulling it.
This is not a problem in the framework of this work because it can be seen
as an increase of the cost function described in Section 1.2. The colony
compensates individual flaws by tuning the number of foragers.

The rubber connecting the two pulleys is also used to prevent damages
to the motor. If the gripper is stuck and cannot move, the rubber will slide
over the pulley, allowing the motor to rotate freely.

3.3.3 Sensors

MindS-bots perceive the environment by means of two light sensors and
two bumpers. The front light sensor (the blue brick on the top-right of
Figure 3.10) is used in active mode to sense a prey. The back light sensor
(top left of the same picture) is in passive mode and is used to search for
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the nest, identified by a light source. The front and back touch sensors are
activated respectively by the movement of the back lever and by a pressure
on the front whisker.

The back bumper and the front light sensor share the same input slot
on the Brick. The control system can recognise if the value it reads comes
from the touch or the light sensor. The former basically works like a switch,
giving either no readings or the maximum value.2 On the other hand, the
latter’s readings can reach neither the minimum nor the maximum value.
Therefore, if the back bumper is not pressed, the value read by the control
system corresponds to the value given by the light sensor. If a hit occurs,
the read value is the maximum one. Finally, the back bumper is useful only
when a MindS-bot is moving backward. The control system the MindS-bot
moves backward only when to go back to the nest, with or without a prey.
In these conditions, readings from the front light sensor are not needed.

2The touch sensor is actually a variable resistor, controlled by the pressure on the
yellow frontal button visible in Figure 3.3(d). It is very sensitive to small pressure, giving
nearly immediately the maximum reading—corresponding to a short circuit in the sensor.
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(a) Top view of a MindS-bot. The blue
bricks are light sensors. The grip-
per arms are half opened to have an
idea of the grasping area. The front
bumper takes less space on the hori-
zontal axis than the back one in order
to permit an easier grasping of prey.

(b) Front view of a MindS-bot. The
front light sensor is on the top. The
whiskers of the bumper occupy nearly
all the area to detect possible colli-
sions more easily.

(c) Back view of a MindS-bot. This
part is mainly covered by the back
bumper for collision detection when
moving backward. Behind it, there
are the three motors for the tracks
and the gripper. On the top there is
a light sensor.

(d) Side view of a MindS-bot. Tracks
do not occupy vertical space that can
be used by the gripper’s arms when it
is open.

Figure 3.6: Details of a MindS-bot.
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Figure 3.7: Details of the traction system. The gripper’s arms can be placed
over the tracks when the gripper is open. A small reduction in the trans-
mission between the motors and the tracks allows for a stronger traction at
the cost of a slower speed. The parts of the robots that are not of interest
are transparent. On the bottom right corner, a small picture shows the
perspective of the MindS-bot.
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Figure 3.8: Details of the gripper. The series of gears create a reduction
which is strong enough to block the gripper without short-circuiting the
motor. The parts of the robots that are not of interest are transparent. On
the top, a small picture shows the perspective of the MindS-bot.

(a) Open gripper. (b) Closed gripper.

Figure 3.9: Spatial extension of the gripper.
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Figure 3.10: Details of the sensors. Light sensors are on the top to reduce
problems with the shadows of other MindS-bots. The back touch sensor is
pressed when the back lever is pushed against the MindS-bot. When the
front whisker is pressed, an axle connected to it pushes the button of the
touch sensor that is placed under the Brick. The parts of the robots that
are not of interest are transparent. On the top left corner, a small picture
shows the perspective of the MindS-bot.
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Chapter 4

Software

Control systems used in swarm robotics are usually less complex because a
number of programming techniques do not need to be implemented. There is
no environment mapping, no inter-robot communication, no sensor analysis,
no data fusion and so forth. The control system still has to face basic
problems like searching for an object, avoiding obstacles, searching for the
nest and retrieving objects. The following pages describe how the software
that controls a MindS-bot deals with these subtasks.

Section 4.1 illustrates the features of the operating system that runs on
the Brick. Section 4.2 illustrates the high level structure of the control and
Section 4.3 ends describing the implementation of each behaviour.

4.1 BrickOS

A Brick (Section 3.1) runs the default program in ROM memory when it is
switched on for the first time. The program waits on the infrared port for
a firmware, also known as the operating system, to be downloaded. A Lego
MindstormTM box originally comes with a firmware provided by Lego, which
is unfortunately designed for entertainment only. Its biggest disadvantage is
that user programs can contain no more than thirty-two variables. Moreover,
programs are compiled in a byte-code that is interpreted on the Brick by
the firmware, which slows down execution time.1 Lego’s software does not
provide other features that are typical of many operating systems, such as
multitasking or resource locking.

Some people have overcome these limitations by writing their own op-
erating system. It is possible to find free software for Lego MindstormTM

based, for instance, on Perl or Java.

Among different possibilities, we have chosen to use BrickOS.2 A big

1Recall that the microprocessor, as explained in Section 3.1, works at a frequency of
1MHz. Interpretation time becomes crucial when facing dynamic environment.

2http://brickos.sourceforge.net/
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advantage of this software is that it uses the original machine code of the
Hitachi-H8300-HMS microprocessor also for the execution of programs. It is
possible to write programs in any programming language and compile them
with a compiler that supports the right machine code. GCC,3 the most
commonly used compiler within Linux and Unix distributions, is already
configured for the H8300-HMS.

BrickOS is a POSIX-like operating system, with limitations mainly im-
posed by memory requirements. BrickOS uses between 14Kb and 18Kb of
memory, depending on the options that the user wants to use. The rest (18–
14Kb) is left to user programs. Moreover, BrickOS implements the following
features:

� priority-based preemptive multitasking;

� process synchronisation with POSIX semaphores;

� CPU power saving;

� complete LCD control for debugging;

� key input handling;

� a random number generator inspired by Press et al. (1992, pages 279–
281);

� infrared communication protocols that implement:

– undirected broadcasting of messages

– UDP-like directed communication based on address/port.

The communication protocols implemented in BrickOS do not guaran-
tee that recipients receive the messages. Two robots (or one robot and
one computer) must face each other with their infrared ports in order to
communicate and the control system has to make sure that this situation
takes place. This condition cannot be guaranteed while robots are moving.
BrickOS’ job is just to send packets and to guarantee that, when a packet
is received, it is not corrupted. The following section describes a method to
overcome this problem in a simple situation.

4.1.1 Communication with the Base

BrickOS functions for communication with other robots or with a computer
take care only of the correctness of messages. If a message is received cor-
rupted, the operating system drops it. BrickOS does not ensure that a
message is received. As the MindS-bots themselves log data about each ex-
periment, it is indispensable that all the logs are uploaded on a computer at

3http://gcc.gnu.org/
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the end of each run. Moreover, it was noticed that only packets up to eight
bytes can be successfully sent without corruption. Therefore, the control
program needed a small wrapper around BrickOS functions to ensure the
delivery of a message.

The solution is simple if it is considered that MindS-bots must com-
municate with the computer only at the end of each experiment and that
communication is limited to one direction: only one MindS-bot transmits
data and, for each packet sent by a MindS-bot, the computer sends back
an acknowledgement. After sending, the MindS-bot waits 1 second for the
acknowledgement that the computer sends after the packet was processed.
If there is no answer, e.g. the packet is lost, the MindS-bot repeats the
transmission up to 10 times.

The first transmitted packet is always 1-byte long. It contains a number
that identifies the format and the order of the following data. The first
packet allows the receiving program to select the right procedure to correctly
parse the incoming data. Usually a number of constants used during each
experiment are sent first, then the total number of log records and finally
the records themselves. These include an integer to identify an event (exit
from the nest, retrieval of a prey, or timeout reached) and the elapsed time
from the beginning of the experiment when it occurred.

4.2 Control Architecture

Figure 4.1 gives a finite state machine abstract representation of the control
program of the MindS-bots. Different states represent the different phases
of prey retrieval, that is, the sub-tasks in which the overall prey retrieval
task is decomposed. These sub-tasks are as follows:

Search The MindS-bot looks for a prey. It has to avoid collision with other
MindS-bots. If a prey is found, the MindS-bot grasps it. If it has spent
too much time searching a prey without finding any, it gives up.

Retrieve The MindS-bot looks for the nest and pulls a prey into it.

Deposit The MindS-bot leaves the prey in the nest and turns on the spot
so that its front points outward and its back to the centre of the nest.

Give Up The MindS-bot looks for the nest and returns to it.

Rest The MindS-bot rests in the nest before restarting searching.

Transitions between states occur on the base of events that are either
external (e.g. finding a prey or entering the nest) or internal to the robot
(e.g. a timeout). The labels on the edges in the graph of Figure 4.1 show
the conditions (called also predicates) that must be true for the transition
to occur. The complete list of the predicates and their meaning is given in
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Figure 4.1: Finite state machine that describes the transitions between the
states in a MindS-bot. The labels on each edge represent the predicates
that let the transition occur whenever they are true. Their meaning and
definition are given in Table 4.1. The label “prob update” shows when the
probability to leave the nest is updated. The label “log” shows which transi-
tions are logged for the analyses of the experiments. The edge between Rest
and Search is dash-dotted to indicate that the transition occurs probabilis-
tically.

Table 4.1. Their truth values are evaluated from raw sensor readings every
100 ms, i.e. in each control cycle (see below).

The transition between Rest and Search is probabilistic. It is the pur-
pose of our work to show that the adaptation of the probability of this
event can improve the efficiency of prey retrieval. Probability updates occur
during the transitions from Search to Give Up (in case of failure) and
from Deposit to Rest (in case of success). Section 5.1 explains how the
probability changes during these transitions.

The MindS-bot uses a number of behaviours, i.e. sub-procedures that
directly react to sensor input, to achieve each sub-task. Each behaviour can
be executed only if some predicates, called activation conditions, are true.
Theoretically, there could be more than one behaviour that could be exe-
cuted and whose actions could be in conflict. For instance, one behaviour
could try to avoid an obstacle by going backward and a second one could
search in the environment by going forward. To avoid this problem, be-
haviours are hierarchically ordered and only the first one whose activation
condition is true is executed. This architecture is known in the literature as
subsumption architecture (Brooks, 1991).

Each state uses a restricted set of behaviours from the pool that we
developed. They are listed in Table 4.2 together with the list of their ac-
tivation conditions. The order in which the behaviours appear also reflect
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Table 4.1: Definition of predicates and constants used by the control algo-
rithm of a MindS-bot. On the left column there is the symbolic name of
constants (in italic in the upper half table) or of conditions (bottom half).
On the right there is a brief explanation of their meanings.

B T front light sensor reading when a black object is
in the gripper

P T front light sensor reading when a black object is
20 cm away (P T>B T )

N T back light sensor reading when the MindS-bot is
in the nest

T L maximum time to spend to look for a prey

in nest back light ≥ N T

front bumper the front bumper is pressed

back bumper the back bumper is pressed

gripper close the last command issued to the gripper motor was
to close it

gripper open the last command issued to the gripper motor was
to open it

prey near front light reading ≤ P T

prey in gripper front light reading ≤ B T

have prey gripper close ∧ prey in gripper

hit prey front bumper ∧ prey in gripper

timeout time elapsed from the beginning of the search
phase > T L

the hierarchy among them. The description of each behaviour is given in
Section 4.3.

The control program exploits the multitasking feature of BrickOS. Each
behaviour is implemented as a standalone process that takes care of reading
the input and controlling the motors. An arbitrator process controls both
state switching and behaviour activation. If the arbitrator detects that the
activation condition of a higher-level behaviour is true, the currently running
process is killed and the new one is started. Both arbitrator and behaviour
processes repeat their execution every 100 ms. BrickOS does not provide
real-time features, therefore, the period is not always precise and depends on
the scheduler of the operating system. However, we consider the precision
sufficient for our experiments.

Finally, there is a main process that controls the arbitrator. Its task is
just to wait for the user’s start and stop command and to upload logged
data onto a computer.
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Table 4.2: List of behaviours used by each state. For each behaviour, its
activation condition is described using the formalism of predicate logic. The
meaning of each predicate is illustrated in Table 4.1. In each state, be-
haviours are listed in activation order, the one with highest priority being
on the top. The execution of a behaviour inhibits the activation of all the
others below it.

State Behaviour Conditions

Search CloseGripper hit prey

AvoidObstacle front bumper ∧¬have prey

∨ back bumper

OpenGripper gripper closed ∧¬prey in gripper

Explore

Give Up AvoidObstacle back bumper

SearchNest

Retrieve AvoidObstacle back bumper

SearchNest

Deposit LeavePrey have prey

SearchNest

Rest ExitFromNest

4.3 Behaviours

The previous section introduced the behaviours implemented in each MindS-
bot. Their names are enough to understand what they do. In this section
it is explained in more detail how they work. After this section, the reader
should have enough information to re-implement the control algorithm in
order to replicate our experiments.

4.3.1 AvoidObstacle

AvoidObstacle tries to avoid an obstacle after the MindS-bot hit it. It first
checks the state of the front and the back bumper. If only the back bumper
is pressed, the MindS-bot moves forward at maximum speed for 500 ms.4 If
only the front bumper is hit, the MindS-bot moves backward at maximum
speed for 500 ms, and then rotates with equal probability either to the right
or to the left for 500 ms. Rotation was introduced to avoid dead locks. In
fact, other behaviours start by moving the MindS-bot forward. If they were
executed after AvoidObstacle, the MindS-bot would hit the obstacle again
and again.

4This value, as all the other given in this section, was hand tuned. In 500 ms, the
MindS-bot can cover approximately one third of its body length, which is enough to freely
turn.
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Finally, if both bumpers are pressed, the motors are switched off and the
MindS-bot stays still.

4.3.2 CloseGripper

This behaviour first switches off the track motors, then activates the gripper
motor for 9 s. This time is enough for the arms to completely close and to
tighten the hold. At the end, the new status of the gripper is registered into
memory.

4.3.3 OpenGripper

The OpenGripper behaviour works exactly like CloseGripper except that
the gripper motor turns in the opposite direction, thus opening the arms.
At the end the new status of the gripper is registered in the memory.

4.3.4 Explore

The Explore behaviour is somewhat more complex than the others because
it deals with all the aspects of searching and finding a prey. It can be split in
three sub-behaviours: randomWalk, searchNear and gotoPrey. Its execution
always starts with randomWalk : a random direction is chosen by turning
left or right with equal probability for a time randomly distributed between
1 and 3 seconds. Then the MindS-bot moves straight on. The upper limit
for the rotation time allows the MindS-bot to turn nearly 180 degree.

The behaviour randomly changes from randomWalk to searchNear, in
which the MindS-bot turns on the spot checking with the front light sensor if
there is a prey, that is, if prey near is true. The transition has a probability
such that the expected covered distance before searchNear starts is 3/4 of
the arena diameter. If more than 10 seconds are spent without finding
anything, randomWalk restarts.

Finally, gotoPrey is executed to move toward a prey whenever there is
one in front of the MindS-bot, that is when prey near is true. If the prey is
lost, searchNear is again executed to explore the neighbourhood.

4.3.5 SearchNest

SearchNest follows the gradient of light intensity with the back sensor. At
the beginning of its activation, SearchNest turns the MindS-bot on the spot
and searches the maximum light intensity with the back light sensor, used
in passive mode (Section 3.1). Then, it moves backward and checks that the
readings of the back light sensor are not decreasing. This would mean that
the MindS-bot is not heading toward the nest and that SearchNest must
start from scratch.
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4.3.6 LeavePrey

LeavePrey turns the MindS-bot clockwise for 8,75 s, so that it is oriented
w.r.t. the centre of the nest with an angle of 90

�

, and then opens the gripper,
thus releasing the prey. It must be noted that this behaviour is executed
only if the MindS-bot has gripped a prey, so the gripper is always closed
when LeavePrey starts (see Table 4.2).

4.3.7 ExitFromNest

The ExitFromNest behaviour does not move the MindS-bot, but selects a
random number between 0 and 1 each second. If it is below the current
probability to leave the nest, it signals to the arbitrator module that the
transition to the Search state can occur.
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Chapter 5

Results

This chapter describes the experiments and the results we obtained to vali-
date our hypotheses, which are here summarised:

Efficiency: foraging efficiency improves in a colony where the probability
to leave the nest, Pl, is adapted on-line.

Task allocation: the dynamics of the adaptation leads to task allocation
among robots and to the creation of two robots classes: foragers and
loafers.

Individual capabilities: the task allocation mechanism exploits natural
differences among robots so that those that are mechanically better
for retrieval are more likely to become foragers.

This chapter is organised as follows: Section 5.1 describes the adaptation
mechanism. Section 5.2 describes the experimental setup and the values of
several control parameters. Section 5.3 tests and analyses the efficiency of
the system. Section 5.4 deals with the task allocation and Section 5.5 with
the individual capabilities.

5.1 Variable Delta Rule to Adapt the Probability

to Leave the Nest

Pl, the probability to leave the nest, is modified according to Algorithm 1. It
keeps trace of the consecutive number of successes and failures of the MindS-
bot. This number is then multiplied by a fixed amount ∆ before being added
to or subtracted from the probability. The variation of the probability to
leave the nest is continuously increasing in case of continuous successes or
failures. The larger the number of successes is, the larger is the reward given
by this algorithm, which thereby introduces a form of non-linearity. We call
this method “Variable Delta Rule” (VDR).
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Algorithm 1 Variable Delta Rule. Pl is the probability of leaving the nest.

initialisation:
successes ← 0
failures ← 0
Pl ← INITIAL VALUE

if prey retrieved then
successes ← successes + 1
failures ← 0
Pl ← Pl + successes * ∆
if Pl > Pmax then

Pl ← Pmax

end if
else if timeout then

failures ← failures + 1
successes ← 0
Pl ← Pl - failures * ∆
if Pl < Pmin then

Pl ← Pmin

end if
end if

The range of Pl is limited to [Pmin, Pmax] in order to avoid that a
value of 0 or too high values are reached. In fact, if all MindS-bots had 0
probability, there would be no foragers any more. If Pl was too high, adding
or subtracting ∆ to it would have no sensible effects on the mean time spent
in the nest, as Figure 5.1 shows.

We decided for this rule out of several alternatives. We first intended
to update Pl according to the total number of successes and failures or to
the mean time to find a prey. We discarded these alternatives because the
information they used keeps track of the history of each MindS-bot. We
expect that, if the environment changed when the MindS-bots had worked
for a long time, the adaptation would be very slow since the past would still
have a lot of impact. This is only a hypothesis and will be tested in future
work.

We investigated an algorithm, which we call “Fixed Delta Rule” (FDR)
that does not take care of the past for the adaptation of Pl. It adds ∆
each time a prey is retrieved and subtract ∆ at each failure. Its drawback
is related to its speed. The plots in Figure 5.2 show what happens in two
example cases when eight prey are placed in the environment and a colony
of four robots must retrieve them. When FDR is used (Figure 5.2(a)), some
of the MindS-bots reach the minimum Pl only after 2500 s. When VDR is
used (Figure 5.2(b)), all of them have reached the lower bound after 1700 s.
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Figure 5.1: Relationship between the probability to leave the nest, Pl, and
the mean time t spent in the nest (equal to 1/Pl). Adding a fixed value ∆ to
p2 has no noticeable effect on the mean time spent in the nest t2. The effect
is more sensible with low probabilities, for instance p1. High probabilities are
therefore of no use in our framework and this is why the control algorithm
of the MindS-bots sets an upper bound to Pl.

This suggest that VDR allows faster convergence to the equilibrium point
of the system. As a consequence, it allows us to carry out our experiments
in less time.

5.2 Experimental Setup

In our experiments, we used a circular arena (Figure 5.3) with a diameter
of 2,40 m. A light bulb is placed over the nest area in the centre. Walls and
floor are white painted to be more reflective. Prey are made of small bottles
covered with black curly cotton. Curls and black decrease the reflectivity of
the tissue and improve prey recognition capabilities.

The three thresholds used by the control algorithm (B T , P T and N T ,
see Table 4.1) are calibrated at the beginning of each experiment on each
robot to adapt to the luminosity of the experiment room. The calibration
is done placing the MindS-bots and a prey in positions that are fixed for all
MindS-bots and for all the experiments. Each MindS-bot takes some samples
of sensor readings, whose average is used to set the thresholds.

The search time limit is set to 228 s. This value was decided after having
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(a) Fixed Delta Rule to update the probability to leave the nest.
MindS-bots reach the minimum value nearly two thousand seconds
after the last prey is retrieved.
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(b) Variable Delta Rule to update the probability to leave the nest.
MindS-bots reach the minimum value nearly one thousand seconds
after the last prey is retrieved.

Figure 5.2: Comparison between the dynamics of the probabilities of leaving
the nest in two example cases when a system of four MindS-bot is given
eight prey to retrieve at the beginning of an experiment. Data of the upper
plot shows results for MindS-bots that used the Fixed Delta Rule, while
the bottom one was obtained with MindS-bots that used the Variable Delta
Rule (see text for details). The thin black line is the number of prey in the
environment and is scaled to fit the plot. The thick dotted lines are the
probabilities of leaving the nest for each robot used in the experiment.
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Figure 5.3: Snapshot of an experiment. Four MindS-bots are looking for
three prey. The nest is indicated by a light in the centre. One MindS-bot is
resting in the nest and is therefore inactive. Two others are exploring the
environment. One found a prey. It grasped it and is searching for the nest
to retrieve it.

analysed the mean time a MindS-bot took to find a prey. The times to find
a prey were recorded in a series of 15 experiments. In each experiment,
one prey was placed in a random position uniformly distributed in space,
with the only constraint that the distance from the nest must be in the range
[0.5 m, 1.1 m]. Figure 5.4 shows the empirical cumulative density function of
the observed times. Given a time t on the abscissa, the corresponding value
on the ordinate is the relative number of observations that were less than
or equal to t. The probability function of a geometrical distribution with
expected value equal to the observed average time is superposed upon the
empirical data. A Kolmogorov-Smirnoff test (see Siegel and Castellan Jr.,
1988, p. 51–55) for the goodness of fit of the two distribution gives a p-value
of 0.74. It is therefore reasonable to use the geometrical distribution as a
rough approximation of the experimental data. 228 s is its 0.5–quantile, i.e.
a single MindS-bot has probability 0.5 to find a prey before the timeout is
reached.

The upper bound for Pl (see Section 5.1) is set to 0.05, which corresponds
to a mean idleness time of 20 s. The lower bound is 0.0015 (mean idleness
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Figure 5.4: Comparison between the empirical cumulative frequency of the
time to find one prey and a geometrical distribution. The black continuous
line gives the relative number of observations that were less than or equal
to the corresponding value on the abscissa. The average time is 416.18 s.
The dotted line is a geometrical distribution with the same mean time.
A Kolmogorov-Smirnoff test with the null hypothesis that the two curves
are equal, returned a p-value of 0.74. Therefore, although the two lines
do not fit perfectly, the geometrical distribution can be considered a good
approximation of the experimental data.

time: 666.6 s). At the beginning of each experiment Pl is set to 0.033
(mean idleness time: 30 s). The values were tuned with a trial-and-error
methodology until satisfactory values were reached. The base increment and
decrement of probability, ∆, is set to 0.005.

5.3 Efficiency of the System

The first of our hypotheses is that the adaptation of Pl increases the effi-
ciency of the foraging task. We first need to define a metric for the efficiency
in order to evaluate the results we get from experiments. The most straight-
forward definition of efficiency is:

η =
income

costs
. (5.1)
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(a) Two MindS-bots mistake a nest-
mate for a prey and try to grasp it.
This occurs because the shadow that
the MindS-bot casts can be sometimes
enough to be misinterpreted by other
MindS-bots.

(b) Two MindS-bots want to grasp the
same prey. Both will fail and retry
again. Eventually, either one of them
goes somewhere else or its search time
limit is exceeded, living the prey to
the other. It could also happen that
both give up.

Figure 5.5: Examples of some conflicts that decrease the efficiency of the
system and that are part of the cost function described in Section 1.2. Some
of them could be solved making the control system more sophisticated and
thus more complex or, as in our case, decreasing the mean number of for-
agers.

“Income”, as defined in Section 1.2, refers to the benefit that the colony has
from retrieval. “Costs” include those phenomena that reduce the income of
energy. The former can be easily computed because it is proportional to the
number of retrieved prey, but the latter is more complex because it depends
on unknown factors of the environment. For instance, a MindS-bot could
get lost or, if it is working in a very hard environment, it could be destroyed.
These events can be considered costs because they reduce the resources of
the colony, although they are hard to quantify. Other examples of costs are
the phenomena depicted in Figure 5.5.

We decided to use a value that is directly related to the efficiency of the
system:

ν =
number of retrieved prey

colony duty time
, (5.2)

where “colony duty time” is the sum of the time each MindS-bot spent to
search for a prey. As written above, the number of prey is proportional to
the income of the colony. The colony duty time is an indirect measure of
the costs. The more time spent by each agent to search, the more energy
is consumed, the more the chances to get lost or to break. If the colony
duty time increases, also the costs are higher. We can use ν as an estimator
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for η because colony duty time and costs are dependent, although their
relationship could be non linear.

To test our hypotheses, we measured ν as a function of time in a colony
that used the Variable Delta Rule and compared it to a colony where adap-
tation did not occur. We used the method of paired experiments: each
experiment done with a colony that used the Variable Delta Rule was repli-
cated with a colony where Pl was constant and equal to 1. In the rest of
this section, the experiments where the Variable Delta Rule was used are
called “base experiments” and the corresponding ones, where Pl was con-
stant, “control experiments”.

Data was collected from a set of ten experiments. The number of ex-
periments was constrained mainly by the time it took to finish them. The
same group of four MindS-bots, out of a pool of six, was used both in base
and control experiments, and changed among experiments. The decision on
which MindS-bots to use for each couple of experiments depended purely on
the charge level of their batteries and their mechanical and sensor reliability
at the moment the decision had to be taken. State transitions were recorded
during the experiments according to what is shown in Figure 4.1.

Prey appeared randomly in the arena. The probability of prey appear-
ance each second was 0.006, that is a new prey appeared in mean every 167 s.
Its position was selected randomly in the zone between 0.5 m and 1.10 m
from the centre of the arena. The reasons for the bounds are twofold: if a
prey had been placed further than 1.10 m, it would have been against the
wall and a MindS-bot would not have been able to grip it and, if it had been
placed nearer than 0.5 m, the nest light intensity would have been so strong
that a MindS-bot would not have been able to recognise the prey. A ran-
dom number generator, running on a computer next to the arena, decided
times and positions of prey appearance for the base experiments. Times and
positions were recorded and reused also for the control experiments.

The idea behind a paired test is to see how two different systems behave
in the same conditions. MindS-bots and prey appearance schemata were kept
constant in each base-control experiment couple. Also the control program
did not change, except that Pl was fixed to 1 in the control experiments.
More specifically, the search timeout mechanism was kept in both cases. In
control experiments, when the time limit was reached, MindS-bots returned
in the nest to exit in the subsequent control cycle. We think that this
mechanism can avoid deadlocks as those depicted in Figure 5.5, and therefore
it can have a sensible effect on the efficiency of a colony. If we had eliminated
it in the control experiments, we would have introduce a bias between the two
setups and we would not have been able to assess the role of the adaptation
only.

Figure 5.6 plots the mean value of ν in time for both the base and the
control experiments. It can be seen that the mean value for the colony that
uses the Variable Delta Rule is higher than in the control experiments. The
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Figure 5.6: Comparison of system efficiency (number of retrieved prey di-
vided by colony duty time) when probability is adapted (continuous line)
and when it is not (dotted line). The average over 10 experiments is plot-
ted. Vertical lines represent the standard deviation. The two curves are
statistically different with confidence 95% after 1400 s.

difference between the curves is statistically significant after 1400 s.1 If ν
increases, then the efficiency increases. Since the adaptation of Pl is the
only thing that changes in the two setups, we can conclude that Variable
Delta Rule does improve the efficiency of foraging and retrieval.

We are interested to understand why ν is higher in the base experiments.
ν can improve in two ways: an increase in the number of retrieved prey or
a decrease of the mean time to search and retrieve a prey. Obviously, a
combination of the two phenomena can also occur. The question we want
to answer is therefore: is the increase of ν due to more retrieved prey or to
shorter retrieving time (or both)?

We can reject the first hypothesis. In the case of the base experiments,
the final ν is nearly 1.41 times bigger than in the control experiments
(1.71 10−3 vs. 1.22 10−3). If we look at the number of retrieved prey
(Table 5.1), we see that MindS-bots retrieved more prey in the base exper-
iments than in the control ones. However, it is only 1.04 times more and

1We used the sign test (see Siegel and Castellan Jr., 1988, p. 80–87) with the null
hypothesis that the two efficiencies are equal. The alternative is that the efficiency of the
system with Variable Delta Rule is better. The p-value is 0.01074 after 1400 s and 0.00098
after 1500 s.
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Table 5.1: Number of prey retrieved for each experiment when the probabil-
ity to leave the nest is either adapted or when it is set to the constant value
of 1. The first column contains the experiment number and the second the
total amount of prey that appeared during the experiment. The third one
is the number of prey retrieved when the probability is modulated with the
Variable Delta Rule, the forth one is the same but for the control experi-
ments. The last row sums the results. Bold numbers are used to indicate
which setup retrieved more prey.

Exp. Tot. prey prey retrieved
with adaptation without adaptation

1 15 14 13

2 17 14 14

3 12 8 7

4 18 12 11

5 16 11 12

6 21 18 15

7 14 10 12

8 16 12 15

9 16 16 14

10 24 19 15

Total: 169 134 128

there is no statistical difference between the two setups.2 Therefore, we can
conclude that the difference of retrieved prey is not enough to justify the
increase of ν, which is due therefore to a decrease of the search and retrieve
time.

The results about the number of retrieved prey, which can be considered
as an index of the performance3 of the retrieval, were at the beginning a
bit surprising. Foraging could be thought as an example of multi objective
optimisation. On the one hand, we would like to retrieve as many prey as
possible, i.e. to maximise the performance. On the other hand, we would
like to maximise the efficiency. We expected that reducing the number of
foragers would have improved the efficiency but would have decreased the
performance. Our experiments showed that this was not true. This can be

2We performed a permutation test on the data in Table 5.1. This kind of test is among
the most powerful because it uses all the information available in a data set (Siegel and
Castellan Jr., 1988, p. 95). The null hypothesis was that the number of retrieved prey is
equal in the two setups and it was tested against the hypothesis that the base experiments
performed better. The p-value we obtained was 0.2637, which is the double in the case the
alternative hypothesis is that the number of retrieved prey is different in the two setups.

3The meaning we give to the word “performance” follows the one used, among the
others, by Balch (1999) and Schneider-Fontán and Mataric (1996).
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explained by the fact that the environment was “tough” for the MindS-bots,
probably because of the density of robots was too high or the density of
prey was too low and three or four MindS-bots could have overcrowded our
arena.

We think of three possible scenarios in a foraging task when changing
the robot density:

� Low robot density reduces the chances of negative interactions among
MindS-bots. Therefore, both the efficiency and the performance in-
crease with the number of foragers, since each robot successfully re-
trieves prey without conflicts with the others.

� Higher robot density increases the effect of negative interactions. The
efficiency increases by reducing the number of foragers, but the per-
formance decreases.

� In an overcrowded environment, as it was presumably our case, the
conflicts among robots are overwhelming. Reducing the number of
foragers increases both the efficiency and the performance.

Further analyses and tests on this topic are left as future work.

5.4 Task Allocation

The second of our hypotheses regards task allocation. We expect that the
adaptation mechanism leads to the creation of two classes of MindS-bots in
the colony: foragers and loafers. The task of the first group is to search and
retrieve prey while the second group stays in the nest and avoids to interfere
with the activity of the others.

We need a measurable characteristic that differentiates the two groups in
order to test this hypothesis. The only means by which the Variable Delta
Rule can create task allocation is the modification of Pl. Therefore, Pl is
the observable at which we can look for our analysis. If we consider a colony
of MindS-bots during a foraging experiment, we can follow their Pl during
time. We can then consider an instant t when the colony has reached its
working regime. The value of Pl of each MindS-bot at time t is generally
a random variable that assumes different values for different experiments
according to an unknown distribution. The distribution of Pl can give us
enough information to test our hypothesis. Moreover, it can give us deeper
understanding about the mechanism that improves the efficiency of foraging.

Figure 5.7 plots the mean number of prey and searching MindS-bots
observed both in the base and control experiments of Section 5.3. In the
control experiments, MindS-bots that were not searching, were going to the
nest. When the Variable Delta Rule is used, there were 2.57 foragers and
2.44 prey on average in the arena in the period between 1000 s and 2400 s.
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(a) Mean number of MindS-bots and prey when the Variable Delta Rule
(Section 5.1) is used. After 1000 s, there are on average 2.57 foragers and
2.44 prey.
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(b) Mean number of MindS-bots and prey in control experiments with prob-
ability to leave the nest equal to 1. After 1000 s, there are on average 3.63
foragers and 3.49 prey.

Figure 5.7: Mean number of searching MindS-bots and prey observed during
the first 2400 seconds in experiments with probability adaptation and in
control experiments with Pl equal to 1. The continuous line represents
MindS-bots, whilst the dotted one represents prey. Vertical lines show the
standard deviation. Data is collected over 10 experiments.
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Figure 5.8: Histogram of the observed probability to leave the nest 2400 s
after the beginning of experiments. On the abscissa there are intervals of
probability to leave the nest, Pl. The height of boxes indicates how many
times the value of Pl of each MindS-bot is observed to be in the corresponding
range. The distribution has two peaks, suggesting that only some of the
MindS-bots become foragers (high probability) and the others tend to rest
in the nest (low probability). The boundary between the two groups is
around 0.025. 60% of the observations are below this threshold. Data refers
to ten experiments, four MindS-bots per experiment.

In the control experiments, there were 3.63 foragers and 3.49 prey. In both
cases the ratio is nearly one robot per prey but there are less robot searching
prey when adaptation is used. It could be that the adaptation tuned the
mean number of foragers by changing the Pl equally in each MindS-bot till
the optimal mean number of foragers is reached or, as we hypothesise, by
decreasing Pl in some robots and increasing it in the others. If the first
phenomenon happened, then the distribution of Pl would spread around a
single peak. If the second happened, then the distribution would have at
least two peaks, one that indicates the nominal Pl of foragers and the other
of loafers. The further the peaks and the steeper the valley between them
are, the stronger is the distinction between the classes.

The data of the experiments of Section 5.3 can be used to estimate
the distribution of Pl and thus to asses the occurrence of task allocation.
We collected the value of Pl for each MindS-bot (four MindS-bot for ten
experiment) after 2400 s. Each MindS-bot in each experiment represent
an observation from which we can build the empirical distribution that is
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Table 5.2: Number of MindS-bots per experiment with probability to leave
the nest, Pl, less and greater than 0.025. Only in one case all MindS-
bots have Pl lower than 0.025 (in bold). If combined with the histogram in
Figure 5.8, this table suggests that the allocation of tasks among MindS-bots
is a systematic phenomenon. Data refers to ten experiment, four MindS-bots
per experiment.

Exp. #P<0.025 #P>0.025

1 3 1

2 3 1

3 4 0

4 1 3

5 3 1

6 2 2

7 3 1

8 2 2

9 1 3

10 2 2

shown in Figure 5.8. Its U-shape suggests, as we explained above, that task
allocation occurs. There are two groups of MindS-bot : those with Pl higher
than 0.025, i.e. the foragers, and those with Pl lower than 0.025, i.e. the
loafers. There was no observation with Pl near 0.0025.

A possible criticism could come from the fact that there are few ex-
periments done and therefore it could be that the right peak of Figure 5.8
is given by a few lucky cases. We can reject this argument by looking at
the number of foragers and loafers in each experiment. The numbers are
summarised in Table 5.2 and they show foragers were present in nearly all
experiment4 and thus their presence is a systematic phenomenon.

Finally, Figure 5.9 shows the dynamics of the distribution of Pl. At
the beginning, all MindS-bots starts with the same Pl, and therefore the
distribution is a central peak. Slowly, some MindS-bots begin to decrease
or increase their Pl. Fewer and fewer MindS-bots can keep their Pl in the
centre of the distribution. At the end, all of them have either a low or high
Pl. The two extremes of the distribution (0.0015 and 0.05) seems to be the
attractors for Pl.

4It is worth observing that no forager was present in experiment 3, which is also the
one where less prey appeared, as shown in Table 5.1

56



CHAPTER 5. RESULTS

frequencies at the beginning

probability to leave the nest

ob
se

rv
ed

 f
re

qu
en

cy

0.00 0.01 0.02 0.03 0.04 0.05

0
10

20
30

40

(a) Frequency distribution at the be-
ginning. All MindS-bots have the same
probability.
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(b) Frequency distribution after 600 s.
A tail of the distribution drifts toward
lower values.

frequencies after 1200s

probability to leave the nest

ob
se

rv
ed

 f
re

qu
en

cy

0.00 0.01 0.02 0.03 0.04 0.05

0
2

4
6

8
12

(c) Frequency distribution after 1200 s.
Nearly one fourth of the MindS-bots

have the minimum probability. One
other fourth has still high values in the
centre.
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(d) Frequency distribution after 1800 s.
The distribution has no more peaks in
the middle. The MindS-bots with prob-
ability in the centre of the distribution
will move right or left to reach the dis-
tribution of Figure 5.8

Figure 5.9: Time evolution of observed frequency of the probability to leave
the nest, starting from the beginning of experiments (where all MindS-bots
have the same initial probability) till 1800 s. Data refers to ten experiments,
four MindS-bots per experiment.
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Table 5.3: Number of experiments for each MindS-bot in which it had Pl

less or greater than 0.025 after 2400 s. The first column reports the identi-
fication name of the MindS-bot. In the second, there are the total number
of experiments each MindS-bot attended. The third reports the number of
experiments in which its Pl was less than 0.025 and the fourth when Pl was
greater than 0.025. A statistical test (see text) shows that the probability
to become foragers is not the same for each MindS-bot. Therefore, task al-
location exploits individual capabilities. Data refers to ten experiment, four
MindS-bots per experiment.

ID Tot. Exp. #P<0.025 #P>0.025

Mind1 6 1 5

Mind2 3 1 2

Mind3 9 8 1

Mind4 9 5 4

Mind5 3 3 0

Mind6 10 6 4

5.5 Role of Individual Capabilities

The third and last hypothesis concerns the role of individual capabilities in
the allocation of tasks. We expect that individuals that are better retriever
than the others can benefit from the Variable Delta Rule and become for-
agers more likely.

If our hypothesis is true, then the probability that each MindS-bot has
to become forager in an experiment, indicated as P f , is not constant for
all the MindS-bot or depends on the nest-mates. It could happen that one
MindS-bot is the best one and therefore it is always going to be forager,
that is, his P f is the highest among the MindS-bots. Or, it could be that
it becomes a forager only if specific nest-mates are present, that is, its P f

depends on the others. Therefore, the value of P f can be used to test our
hypothesis.

We looked at the number of times in which each MindS-bot was a forager
after 2400 s in the ten experiments of Section 5.3. We recall that four robots
out of six were used in each experiments and that they changed across
experiments. Table 5.3 summarises the data: for each robot, identified
by an identification name, the amount of experiments in which it was a
forager or a loafer is reported. The total number of experiment is not equal
for all the MindS-bot. This is due to the fact that the main criteria used
to select which MindS-bot had to participate in an experiment were the
mechanical reliability and the battery charge. Some MindS-bot resulted to
be less reliable than the others and, therefore, they were used less.

It is possible to use a χ2 test to determine if P f is not constant for all
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the MindS-bots. An important hypothesis that has to be satisfied in order to
apply this test is that the data in each row must be independent (Siegel and
Castellan Jr., 1988, p. 191–200). In our case, this means that the individual
P f shall not depend on the other MindS-bots, but we do not know if this
holds true. Therefore, there are two possibilities:

� The values of P f are independent: the χ2 test reject the hypothesis
that P f is the same for all the MindS-bot with a significance level
of 95,4%. Therefore, individual differences play a role in the task
allocation process.

� The values of P f are not independent: it is not possible to use the χ2

test. However, as mentioned above, dependent P f show that differ-
ences among MindS-bots are relevant and therefore we can still con-
clude that exploitation of individual differences takes place.

Our hypothesis is proved in both cases.
We do not have enough data to describe the process in more detail.

We cannot say, for instance, whether the individual P f is constant in each
experiment or whether its value depends on the nest-mates. But we can
conclude that the difference among MindS-bots play a crucial role in the
task allocation mechanism. This is considered an interesting research path,
especially in the context of the SWARM-BOTS project (see Section 1.1.2).
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Chapter 6

Conclusions and Future

Work

This work is based on a rigorous methodological approach: we defined some
hypotheses that we wanted to prove (Section 1.2), we created our research
tools, the MindS-bots (Chapter 3 and 4), and finally we designed a set of
experiments for validation (Chapter 5). The results show that the starting
hypotheses are true: the efficiency of the system improves using a swarm-
intelligent technique, that is, the adaptation of the probability to leave the
nest, and by means of task allocation, which exploits physical differences
among robots.

Adaptation works independently on each robot and it is based only on
locally available information. No form of direct or symbolic communication
is used, and therefore the control system of each robot is simple. We do
not claim that the adaptation rule we used (Section 5.1) achieves optimal
results, but we show that it is theoretically feasible to reach global efficiency
optimisation by exploitation of local behaviours and without direct commu-
nication. Since no direct communication or global information is used, this
process can be considered self-organised.

The preliminary results shown in Chapter 5 raise other issues that are
worth of analysis. However, the main problem we have to face before con-
tinuing our research regards the time it takes to run experiments. Each
run lasted approximately forty minutes, and it took a lot of time to reach
any statistical significance, slowing down our research. We plan to move
to simulation using the criteria discussed in Jakobi et al. (1995) to fill the
gap between reality and simulation. To achieve this, we need to identify a
number of features essential to describe a real situation, like the probability
to lose a prey or the probability to get stuck in a nest-mate, and implement
them in the simulator. Further experiments will be run in simulation, but
cross validation will occasionally occur using real robots.

So far, experiments use a distribution of prey that is constant in time and
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space. We think that the Variable Delta Rule (Section 5.1) can be an efficient
way for the colony to adapt to sudden changes. Therefore, adaptability of
the system is another direction of work that will be addressed in future
work. In this context, it is interesting to compare the performance of our
system, based on probability, with the one by Agassounon and Martinoli
(2002) discussed in Section 2.2, based on time thresholds. We find several
differences between our work and theirs:

� In their setup the density of items in the environment is fixed. In our
work prey appear probabilistically.

� We use probabilities instead of time thresholds. This could be more
advantageous if the system had to adapt to a dynamic environment. If
behaviours were probabilistic, some robots would take the right action
in a changed environment before the others. The frequency of right
actions would be amplified over time by means of learning. After
a while, some members of the colony would be adapted to the new
conditions. If behaviours were based on time thresholds, the dynamics
of adaptation would be fixed and might be too slow if the thresholds
were not well tuned.

� We use different information for our updating rule. The mean time
used by Agassounon and Martinoli keeps track of the whole history
of the system, while we are more interested in remembering only the
recent past and to forget the rest in order to have a faster adaptation.

We plan to run a series of experiments to study the differences in adaptation
speed between the two setups.

Another topic that is worth of analysis is how performance, efficiency
and task allocation depend on the initial density of robots. Concerning
task allocation, we expect that there is a critical value for the density of
robots after which task allocation does not occur anymore. In fact, in an
overcrowded environment, each robot has a small probability of finding a
prey, and therefore it tends to become a loafer. This is different from other
biological phenomena in which the higher the density, the more specialised
the individuals are, e.g. human cells that become organised in tissues with
different tasks.

We see also some limitations in our system. Some of the control parame-
ters (timeout, minimum and maximum probabilities) are tuned to work well
in our arena. We want to study their effects on efficiency and task allocation
and, eventually, to relax these constraints in order to have more flexibility.

Finally, collective retrieval is a fundamental task to analyse in the scope
of the SWARM-BOTS project and raise several interesting issues. We are in-
terested in two aspects: the self-assembling process needed to solve the task
and how this form of cooperation can arise without direct communication.
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Appendix A

List of Pieces and

Assemblage Instructions

The following pages show how to build the MindS-bots used in our work.
The instructions are divided in sixteen steps. Each step shows a picture
of the partially built MindS-bot and a table with the list of the needed
pieces for the step. Red edges highlight the new pieces in each picture. For
each new piece, its picture, its description, the quantity and the colours are
reported in the table. The identification number of each piece is between
brackets in the description. Nearly all the pieces come from a single Lego
MindstormTM box. Only one additional motor (piece number 71727C01)
and one extra light sensor (number 2982C01) have to be taken from another
source, e.g. from another box or a Lego retailer.1

1The pictures and the instructions in this appendix were generated with the help of
LeoCAD (http://www.leocad.org/).
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Step 1

Descr White Black Silver

Technic Brick 1 x 10 with
Holes (2730)

- 2 -

Technic Axle 5 (32073) - 2 -

Technic Gear 24 Tooth (3648) - - 2

Technic Brick 1 x 8 with Holes
(3702)

- 1 -

Technic Brick 1 x 16 with
Holes (3703)

- 2 -

Technic Bush (3713) - - 8
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Descr White Black Silver

Technic Pin (3673) - 4 -

Technic Brick 1 x 2 with Hole
(3700)

- 1 -

Technic Brick 1 x 4 with Holes
(3701)

- 3 -

Technic Axle 6 (3706) - 4 -

Technic Axle 8 (3707) - 4 -

Technic Brick 1 x 12 with
Holes (3895)

- 4 -

Technic Gear 16 Tooth (4019) - - 2

Technic Bush 1/2 Smooth
(4265C)

- - 10

Technic Tread Sprocket
Wheel (32007)

4 - -

Technic Tread (680C01) - 2 -
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Step 2

Descr Yellow Silver

Plate 2 x 2 Corner (2420) - 2

Plate 2 x 4 (3020) 2 -

Technic Plate 2 x 8 with Holes
(3738)

- 2
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Step 3

Descr Black Silver

Technic Bush (3713) - 2

Technic Axle 12 (3708) 1 -

Technic Axle 10 (3737) 1 -

Technic Axle Pin (3749) - 2

Technic Liftarm 1 x 9 Bent
(6629)

2 -
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Step 4

Descr Black Silver

Technic Micromotor Pulley
(2983)

- 1

Technic Gear 8 Tooth (3647) - 2

Brick 2 x 2 x 2/3 Electric Wire
End (5306)

3 -

Technic Mini-Motor 9v
(71427C01)

- 3
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Step 5

Descr Black Silver

Technic Micromotor Pulley
(2983)

- 1

Technic Bush (3713) - 4

Technic Axle 6 (3706) 1 -

Technic Axle 12 (3708) 1 -
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Descr Black Silver

Technic Worm Screw (4716) 1 -

Technic Axle Joiner Offset
(6538B)

- 1

A yellow elastic, as those that can be found in a normal Lego
MindstormTM box (not shown in this and the following pictures), connects
the pulley used here and the one of Step 4.

70



APPENDIX A. LIST OF PIECES AND ASSEMBLAGE
INSTRUCTIONS

Step 6

Descr Black Silver

Technic Gear 24 Tooth Crown
(3650A)

- 2

Technic Bush (3713) - 2

Technic Axle 4 (3705) 4 -

Technic Bush 1/2 Smooth
(4265C)

- 4
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INSTRUCTIONS

Step 7

Descr
Light
Green

Black Silver

Plate 2 x 2 Corner (2420) - - 2

Brick 2 x 2 (3003) - 2 -

Plate 2 x 4 (3020) - - 2

Plate 1 x 2 (3023) - - 3

Plate 1 x 2 with Door Rail
(32028)

- - 2

Technic Brick 1 x 2 with Axle-
hole (32064)

1 - -

0
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APPENDIX A. LIST OF PIECES AND ASSEMBLAGE
INSTRUCTIONS

Descr
Light
Green

Black Silver

Technic Brick 1 x 4 with Holes
(3701)

2 - -

Technic Axle Pin (3749) - - 1

Plate 2 x 10 (3832) - - 2

Plate 1 x 10 (4477) - - 2

A yellow elastic, as those that can be found in a normal Lego
MindstormTM box (not shown in this and the following pictures), connects
the pin and the axle on the top of the back bumper that was built in Step 3
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APPENDIX A. LIST OF PIECES AND ASSEMBLAGE
INSTRUCTIONS

Step 8

Descr
Light
Green

Yellow Black Silver

Brick 2 x 4 (3001) - - 2 -

Plate 2 x 4 (3020) - 2 - -

Plate 2 x 2 (3022) - - - 1

Plate 1 x 2 (3023) - - - 2

Plate 2 x 8 (3034) 1 - - -

Plate 2 x 6 with
Holes (32001)

- - - 1
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APPENDIX A. LIST OF PIECES AND ASSEMBLAGE
INSTRUCTIONS

Descr
Light
Green

Yellow Black Silver

Plate 1 x 2 with Door
Rail (32028)

- - - 2

Plate Technic Gear 8
Tooth (3647)

- - - 2

Technic Plate 2 x 8
with Holes (3738)

- - - 2

Plate 2 x 10 (3832) - - - 1

Technic Bush 1/2
Smooth (4265C)

- - - 2
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APPENDIX A. LIST OF PIECES AND ASSEMBLAGE
INSTRUCTIONS

Step 9

Descr
Light
Green

Yellow Black Silver

Brick 2 x 2 (3003) - - 2 -

Plate 2 x 4 (3020) - 1 - -

Plate 2 x 2 (3022) - - - 2

Plate 2 x 8 (3034) 2 - - -

Technic Gear 24
Tooth (3648)

- - - 2

Plate 1 x 6 (3666) - - - 2
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APPENDIX A. LIST OF PIECES AND ASSEMBLAGE
INSTRUCTIONS

Step 10

Descr
Light
Green

Black Silver

Technic Engine Crankshaft
Centre (2854)

- - 1

Plate 1 x 2 (3023) - - 1

Technic Brick 1 x 2 with Axle-
hole (32064)

2 - -

Technic Bush (3713) - - 1

Technic Brick 1 x 2 with
Hole(3700)

- 1 -
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APPENDIX A. LIST OF PIECES AND ASSEMBLAGE
INSTRUCTIONS

Descr
Light
Green

Black Silver

Technic Axle 4 (3705) - 1 -

Technic Axle 6 (3706) - 1 -

Technic Bush 1/2 Smooth
(4265C)

- - 1

Technic Axle 3 (4519) - 1 -

Brick 2 x 2 x 2/3 Electric Wire
End (5306)

- 2 -

Electric Touch Sensor Brick 3
x 2 (879)

- - 2
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APPENDIX A. LIST OF PIECES AND ASSEMBLAGE
INSTRUCTIONS

Step 11

Descr Black Silver

Brick 2 x 2 (3003) 2 -

Plate 2 x 2 (3022) - 2

Plate 1 x 6 (3666) - 6

Plate 2 x 10 (3832) - 2
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APPENDIX A. LIST OF PIECES AND ASSEMBLAGE
INSTRUCTIONS

Step 12

Descr
Light
Blue

Yellow Black Silver

Plate 2 x 2 (3022) 2 - - 1

Technic Liftarm 1
x 11.5 Double Bent
(32009)

- 2 - -

Technic Plate 2 x 6
with Holes (32001)

- - - 1

Technic Gear 24
Tooth Crown
(3650A)

- - - 2

Technic Bush (3713) - - - 2
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APPENDIX A. LIST OF PIECES AND ASSEMBLAGE
INSTRUCTIONS

Descr
Light
Blue

Yellow Black Silver

Technic Axle 8
(3707)

- - 2 -

Technic Axle 10
(3737)

- - 2 -

Bracket 2 x 2 - 2 x 2
(3956)

- - - 1

Technic Bush 1/2
Smooth (4265C)

- - - 2

Technic Liftarm 1 x
3 (6632)

- - - 4

Technic Axle 2
Notched (32062)

- - 2 -
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APPENDIX A. LIST OF PIECES AND ASSEMBLAGE
INSTRUCTIONS

Step 13

Descr
Light
Green

Black Gold
Light
Gray

Silver

Plate 2 x 2 Cor-
ner (2420)

- - - - 2

Plate 2 x 2
(3022)

2 - - - -

Plate 1 x 2
(3023)

- - - - 2

Technic Pin
(3673)

- 2 - - 2

Technic Brick 1
x 2 with Hole
(3700)

- 2 - - -
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APPENDIX A. LIST OF PIECES AND ASSEMBLAGE
INSTRUCTIONS

Descr
Light
Green

Black Gold
Light
Gray

Silver

Plate 1 x 4
(3710)

- - - - 2

Technic Plate 2
x 8 with Holes
(3738)

- - - - 2

Technic Brick 1
x 12 with Holes
(3895)

- 2 - - -

Technic Pin 1/2
(4274)

- - - 4 -

Electric Mind-
storms RCX
(884)

- - 1 - -
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APPENDIX A. LIST OF PIECES AND ASSEMBLAGE
INSTRUCTIONS

Step 14

Descr Yellow

Technic Liftarm 1 x 11.5 Dou-
ble Bent (32009)

2
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APPENDIX A. LIST OF PIECES AND ASSEMBLAGE
INSTRUCTIONS

Step 15

Descr Black Silver

Technic Liftarm 1 x 4 (2825) - 2

Technic Connector with Axle-
hole (32039)

- 1

Technic Liftarm 2 x 4 L Shape
(32140)

2 -

Technic Bush (3713) - 2
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APPENDIX A. LIST OF PIECES AND ASSEMBLAGE
INSTRUCTIONS

Descr Black Silver

Technic Axle 4 (3705) 2 -

Technic Axle 8 (3707) 2 -

Technic Axle 10 (3737) 1 -
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APPENDIX A. LIST OF PIECES AND ASSEMBLAGE
INSTRUCTIONS

Step 16

Descr
Light
Blue

Black

Electric Light Sensor
(2982C01)

2 -

Brick 2 x 2 x 2/3 Electric Wire
End (5306)

- 7

Connections (“A”, “B” and “C” are the back output slots on the Brick,
“1”, “2”, “3” the front input slots):

Piece Slot Piece Slot

left motor A front bumper 3

right motor C back bumper 2

gripper motor B front light 2

back light 1

87



APPENDIX A. LIST OF PIECES AND ASSEMBLAGE
INSTRUCTIONS

End
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Switzerland, 1987.

C. Detrain. Field study on foraging by the polymorphic ant species
Pheidole pallidula. Insectes Sociaux, 37(4):315–332, 1990.

C. Detrain and J.M Pasteels. Caste differences in behavioral thresholds as
a basis for polyethism during food recruitment in the ant Pheidole
pallidula (Nyl.) (Hymenoptera: Myrmicinae). Journal of Insect
Behavior, 4(2):157–176, 1991.

90



BIBLIOGRAPHY

C. Detrain and J.M. Pasteels. Regulated food recruitment through
individual behavior of scouts in the ant Myrmica sabuleti (Hymenoptera:
Formicidae). Journal of Insect Behavior, 7(6):767–777, 1994.

G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. A taxonomy for
multi-agent robotics. Autonomous Robots, 3:375–397, 1996.
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