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IRIDIA, Université Libre de Bruxelles
Avenue Franklin Roosevelt 50, CP 194/6, 1050 Brussels, Belgium

dcatanzaro@iridia.ulb.ac.be
——–

Supervised by

Marco Dorigo, Ph.D.
——–
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Chapter 1

Phylogenetic analysis

1.1 Introduction

Phylogenetics is the study of evolutionary relationships. It deals with finding
descent relationships in terms of adaptive modifications based on natural and
sexual selection.

The means of inferring or estimating these evolutionary relationships is
called phylogenetic analysis. The result of this inference is depicted us-
ing tree-like diagrams—called phylogenetic trees—representing estimated lin-
eages of the inherited relationships among molecules, organisms, or both.
Phylogenetic trees are fundamental to understand the evolution and the di-
versity, necessary to organize biological data and central for the organisms
comparison.

We can distinguish among classic and modern phylogenetics. Classic phy-
logenetics deals with physical or morphological features—called also charac-
ters—of a set of entities, for example: size, color, number of legs and so on.
This approach is also called cladistics because clade, a set of descendants
from a single ancestor, is a Greek term meaning branch. Cladistics supposes
that members of a group or clade share a common evolutionary history and
are more related to each other than to members of another group. A given
group is recognized by sharing unique features that were not present in dis-
tant ancestors. These shared and derived characteristics can be anything
that can be observed and described.

Modern phylogenetics, at the contrary, uses information extracted from
genetic material—mainly DNA and protein sequences. The stable inheri-
tance of characteristics in fact is mediated by the genome so the relationships
between species can be deduced from their genomic information.

The Classic and the modern approach however have in common the goal:

1
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Human

Mouse

Fly

Internal node

Clade

Branch

Figure 1.1: Trivial example of phylogenetic tree.

to obtain the phylogenetic tree of a given set of species. The next section
will define the basic terms of this representation.

1.2 Definitions of terms and number of topolo-

gies

By observing the tree represented in Figure 1.1, we can identify the basic
components of a phylogenetic tree:

internal node: a bifurcating branch point within the tree or, more simply,
a not peripheral node (leaf).

branch: a divergence between two nodes; it is usually represented as a line.
In Figure 1.1 for example, the link between the internal node and the
human in a branch.

branch length: the evolutionary distance between two nodes or, in other
words, the number of evolutionary changes necessary to evolve from a
node A to a node B.

taxon: any named group of organisms; it is always a peripheral node and
can be also called external node.

clade: a group of organisms sharing a common ancestor.

Usually phylogenetics represents its diagrams depicting un-rooted and
bifurcating (binary) trees. Un-rooted because a typical assumption for the
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Figure 1.2: As we can see in this example, a ternary tree can be reduced to
a binary tree adding a dummy node and a dummy edge.

tree building is the reversibility of the model:“a evolved to b” or “b evolved
to a” must be equiprobable events [Swofford et al., 1996]. This assumption
imposes that the tree must be un-rooted because the presence of a root in
a tree would presuppose an initial starting point— that is a direction in the
acyclic graph— and this would contradict the hypothesis of reversibility.

About the second attribute, considering binary tree is not reductive: it
is possible to demonstrate that a n-ary tree can be reduced to a binary tree
adding dummy nodes and dummy edges as in Figure 1.2. Furthermore, if
the tree is binary, we have equations that allow us to quantify the number of
internal nodes, the number of the branches and the number of tree topologies
for an assigned number of taxa [Swofford et al., 1996, Felsenstein, 2002]:
considering T external nodes, an un-rooted and binary tree is characterized
by T − 2 internal nodes, 2T − 3 branches of which T − 3 link internal nodes
and T link leaves; the total number of distinct un-rooted binary trees is

B(T ) =
T∏

i=3

(2i− 5) ∼ 2T · T. (1.1)

Adding a root adds one more internal node and one more interior branch;
since the root can be placed along any of the 2T-3 branches, the number of
possible rooted trees is increased by a factor of 2T-3. Equation 1.1 means
that the number of tree topologies for a given set of taxa is exponential
varying the number of taxa involved in the analysis, therefore the explicit
enumeration of the trees is intractable even for small values of T (greater
than 13).
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1.3 Tree building methods

The intractability of the problem leads to the birth of a set of methodologies
and techniques finalized to finding a good approximation of the best phy-
logenetic tree for a given set of taxa [Baxevanis and Ouellette, 2001, Steel
et al., 1998]. Considering the type of data used for reaching this objective we
can distinguish among character-based methods and distance-based methods.
The former use characters, the latter use distances. From now on, we will
use as synonymous the term species and the DNA sequence that describes
it.

1.3.1 Character-based methods

A discrete character provides data about a given sequence. For example,
given a DNA sequence, a base in a specific position of the sequence represents
a discrete character.

...AATTGCATGATGGGGCCCTATTTGGAAAA...

A discrete character x can assume values in the set of character states

S = S1 ∪ S2 (1.2)

where S1=[A, T, C, G] and S2=[M, R, W, S, Y, K, V, H, D, B, N].

S1 is made up by the four bases 1 Adenine (A), Timine (T), Citosine (C),
Guanine (G) while S2 is made up by literals belonging to a table called stan-
dard ambiguity codes (SAC). SAC has reason to exist because sometimes we
don’t know anything about the base in exam or we have very poor infor-
mation (e.g. the case of corrupted sequences, Swofford et al. [1996]). The
standard ambiguity code is represented in Figure 1.3.

We can define therefore a discrete character as an independent variable
whose possible values are collections of mutually exclusive character states
[Shamir and Naor, 2002]. The assumption of independence among characters
is common to most character-based methods of analysis. When we can not
assume independence, we are forced to take covariances among characters
into account, and the computational methods become considerably more
complicated. Furthermore, the assumption of independence enables us to

1Adenine and Timine are usually called purine while Citosine and Guanine are called
pyramidine.
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code description
M A ∨ C
R A ∨G
W A ∨ T
S C ∨G
Y C ∨ T
K G ∨ T
V A ∨ C ∨G
H A ∨ C ∨ T
D A ∨G ∨ T
B C ∨G ∨ T
N A ∨ C ∨G ∨ T

Figure 1.3: The standard ambiguity code.

treat each position separately, thereby allowing problems to be subdivided
into a number of much simpler subproblems (divide et impera approach).

A second assumption is the following: characters must be homologous.
By homology we mean that a character must be defined in such a way that all
of the states observed over taxa for that particular character must have been
derived, perhaps with modification, from a corresponding state observed in
the common ancestor of those taxa.

Maximum parsimony

Maximum parsimony (MP) is an optimization criterion that adheres to the
principle that the best explanation of the data is the simplest, which in turn
is the one requiring the fewest ad hoc assumptions. An example of the max-
imum parsimony method can be found in Figure 1.4. In practical terms, the
MP tree is the shortest, that is the one with the fewest changes. There are
several variants of MP that differ with regard to the permitted directionality
of character state change [Swofford et al., 1996]. To accommodate substitu-
tion bias, MP is amenable to weighting; for example, the transformation of
a transversion2 can be weighted relative to a transition 3. The easiest way

2We define transversion one of the eight types of substitution: A −→ C, A −→ T ,
C −→ G, G −→ T , and the reverse.

3We define transition one of the four types of substitution A −→ G, G −→ A, C −→ T ,
T −→ C. Transitions are usually more frequent than transversion. MP wants to minimize
the number of transitions and transversions necessary for explaining a given tree.
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Figure 1.4: Character weight matrix and application in MP phylogenetic
analysis. (A) Matrix indicating that a transversion substitution costs twice
that of a transition. Because, according to MP, bases shared between two
sequences cannot ever have changed, diagonal elements of the matrix are
ignored. (B, C) Two phylogenetic resolutions and reconstructions of the
evolution of a hypothetical pattern of aligned bases at a particular site in
eight sequences. With un-weighted MP, both reconstructions (among several
others) have the same cost (three steps); hence, they are equally acceptable.
With the weight matrix in (A), the reconstruction of (B) requires four steps,
and the reconstruction of (C) requires five. Thus, the first reconstruction (B)
and others requiring four steps are preferred.
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to do this is to create a weighting step matrix in which the weights are the
reciprocal of the rates estimated using maximum likelihood (ML) (described
subsequently). However, step-matrix weighting can greatly slow MP compu-
tation [Huelsenbeck, 1995]. MP analysis tend to yield numerous trees that
have a same score. Because each is defined to be as optimal as any other,
only groupings present in the strict consensus4 of all trees are considered to
be supported by the data (for more information see [Swofford et al., 1996,
Felsenstein, 2002]).

Simulation studies have shown that MP performs no better than mini-
mum evolution (ME) and worse than ML (described subsequently) when the
amount of sequence evolution since lineages diverged is much greater than
the amount of divergence that occurred between lineage splits (i.e., in a tree
with very long terminal branches and short internal internodes) [Huelsenbeck,
1995]. This condition produces “long branch attraction”—the long branches
become artificially connected because the number of non-homologous simi-
larities the sequences have accumulated exceeds the number of homologous
similarities they have retained with their true closest relatives [Swofford et al.,
1996]. Character weighting improves the performance of MP under these con-
ditions [Huelsenbeck, 1995]. We will see better MP calculation in the next
chapter.

Maximum likelihood

Maximum likelihood (ML) turns the phylogenetic problem inside out. ML
searches for the evolutionary model that has the highest likelihood of pro-
ducing the observed data. In practice, ML is derived for each base position
in an alignment. The likelihood is calculated in terms of the probability
that the pattern of variation at a site would be produced by a particular
substitution process, given a particular tree and the overall observed base
frequencies. The likelihood becomes the sum of the probabilities of each pos-
sible reconstruction of substitutions under a particular substitution process.
The likelihoods for all the sites are multiplied to give an overall “likelihood of
the tree” (i.e., the probability of the data given the tree and the substitution
process). As one can imagine, for one particular tree, the likelihood of the
data is low at some sites and high at others. For a “good” tree, many sites
will have high likelihood, so that the product of likelihoods is high. For a
“poor” tree, the reverse will be true.

The substitution model should be optimized to fit the observed data.

4Basically the consensus tree consists of groups that occur as often as possible in the
data. If a group occurs in more than 50% of all the input trees it will definitely appear in
the output tree (called consensus tree).
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Because ML uses great amounts of computational time, it is usually im-
practical to perform a complete search that simultaneously optimizes the
substitution model and the tree for a given data set. Economical heuristic
approaches are recommended [Adachi and Hasegawa, 1992, Swofford et al.,
1996, Stamatakis and Ludwig, 2003] and [Stamatakis and Ludwig, 2002,
Stamatakis et al., 2004a,b]. Perhaps the best time saver in this regard is
preliminary ML estimation of the substitution model (as can be performed
using PAUP( http://paup.csit.fsu.edu)). This procedure can be applied iter-
atively, searching for better ML trees, then re-estimating the parameters, and
then searching for better trees. As algorithms, computers, and phylogenetic
understanding have improved, the ML criterion has become more popular for
molecular phylogenetic analysis. In simulation studies, ML has consistently
outperformed ME and MP when the data analysis proceeds according to the
same model that generates the data [Huelsenbeck, 1995]. ML will always
be the most computationally intensive method of all, however, so there will
always be situations in which it is not practical.

1.3.2 Distance-based methods

Distance-based methods use the amount of dissimilarity (the distance) be-
tween two aligned sequences to derive trees. A distance method would recon-
struct the true tree if all genetic divergence events were accurately recorded
in the sequence. However, divergence encounters an upper limit as sequences
become mutationally saturated [Felsenstein, 2002]. After one sequence of
a diverging pair has mutated at a particular site, subsequent mutations in
either sequence cannot render the sites any more “different”. In fact, subse-
quent mutations can make them again equal [Baxevanis and Ouellette, 2001,
Shamir and Naor, 2002, Felsenstein, 2002]. Therefore, most distance-based
methods correct for such “unseen” substitutions.

Pairwise distance is calculated using ML estimators of substitution rates.
The most popular distance tree-building programs have a limited number of
substitution models, but PAUP 4.0 implements a number of models, includ-
ing the actual model estimated from the data using ML, as well as the logdet
distance method. Distance methods are much less computationally inten-
sive than maximum likelihood but can employ the same models of sequence
evolution. This is their biggest advantage. The disadvantage is that the
character data are discarded and with them all local information contained
inside them. The most commonly applied distance-based methods are the
un-weighted pair group method with arithmetic mean (UPGMA), neighbor
joining (NJ), and methods that optimize the additivity of a distance tree,
including the minimum evolution (ME) method [Baxevanis and Ouellette,
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Figure 1.5: Star decomposition. This is how tree-building algorithms such as
neighbor joining work. The most similar terminals are joined, and a branch
is inserted between them and the remainder of the star. Subsequently, the
new branch is consolidated so that its value is a mean of the two original
values, yielding a star tree with n-1 terminals. The process is repeated until
only one terminal remains.

2001, Felsenstein, 2002, Shamir and Naor, 2002].

Un-weighted pair group method with arithmetic mean

Un-weighted Pair Group Method with Arithmetic Mean (UPGMA) is a clus-
tering algorithm; it joins tree branches based on the criterion of greatest simi-
larity among pairs and averages of joined pairs [Shamir and Naor, 2002]. UP-
GMA is expected to generate an accurate topology with true branch lengths
only when the divergence is according to a molecular clock [Swofford et al.,
1996] or approximately equal to raw sequence dissimilarity. These conditions
are rarely met in practice.

Neighbor joining

The neighbor-joining algorithm (NJ) is commonly applied with distance tree
building, regardless of the optimization criterion. The fully resolved tree is
“decomposed” from a fully unresolved “star” tree by successively inserting
branches between a pair of closest (actually, most isolated) neighbors and the
remaining terminals in the tree Figure 1.5. The closest neighbor pair is then
consolidated, effectively reforming a star tree, and the process is repeated.
The method is comparatively rapid [Shamir and Naor, 2002].

Minimum evolution

Minimum evolution (ME) seeks to find the shortest tree that is consistent
with the path lengths measured by minimizing the squared deviation of all
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possible distance relative to all possible path length on the tree [Rzhetsky
and Nei, 1992, Swofford et al., 1996, Felsenstein, 2002]. ME does not use
all possible pairwise distances and all possible associated tree path lengths,
rather, it fixes the location of internal tree nodes based on the distance to
external nodes and then optimizes the internal branch length according to
the minimum measured error between these “observed” points.

Existing phylogenetics software

PHYLIP and PAUP are the most widely used phylogenetic analysis software,
although other newer applications such as PUZZLE are beginning to com-
pete. Here, PHYLIP and PAUP will be described in the most detail, with
references made to other available packages that have useful features. How-
ever, the number of programs available is now so numerous, many having
their own useful features, that the reader is referred to the list of Internet
resources in [Baxevanis and Ouellette, 2001] for further information.

PHYLIP

PHYLIP (phylogeny inference package) is a package consisting of about 30
programs that cover most aspects of phylogenetic analysis. PHYLIP is free
and available for a wide variety of computer platforms (Mac, DOS, UNIX,
VAX/VMS, and others). According to its author, PHYLIP is currently the
most widely used phylogeny program. PHYLIP is a command-line program
and does not have a point-and-click interface, as programs like PAUP do. The
tree file generated is a widely used format that can be imported into a va-
riety of tree-drawing programs, including DRAWGRAM and DRAWTREE
that come with this package. However, these PHYLIP tree-drawing pro-
grams produce low-resolution graphics, so a program such as TreeView (de-
scribed below) is instead recommended. Particulars of some of the PHYLIP
tree-inference programs are discussed below. PROTDIST is a program that
computes a distance matrix for an alignment of protein sequences. It al-
lows the user to choose between one of three evolutionary models of amino
acid replacements. NEIGHBOR is a tree-generating program that utilizes
the distance matrix data generated from a program such as PROTDIST
and generates a tree using the neighborjoining method. This is one of the
more popular methods, due to its speed of computation. FITCH is another
tree-generating program similar to NEIGHBOR but much more robust. It
also uses distance matrix data, such as that described in PROTDIST, and
generates a tree using the method of Fitch-Margoliash. This method, while
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more robust than NEIGHBOR, tends to produce a similar final answer, yet
takes longer to compute. Although computational times are often signifi-
cantly longer, the quality of the results produced by the method often makes
this method the method of choice in these types of analyses. PROTPARS
is a parsimony program for protein sequences that generates trees without
utilizing a distance matrix. The evolutionary model is different from the
ones used in the PROTDIST program in that it considers the underlying
changes in the nucleotide sequence to evaluate the probabilities of the ob-
served amino acid changes. PROTPARS does not have an option that uses
empirical values for amino acid changes (e.g., PAM matrices). DNADIST
computes a distance matrix from nucleotide sequences. Trees are generated
by running the output through NEIGHBOR or other distance matrix pro-
grams in the PHYLIP package. DNADIST allows the user to choose between
three models of nucleotide substitution. The older Jukes and Cantor model
is similar to the simple model in the PROTDIST program in that it assumes
equal probabilities for all changes. The more recent Kimura two-parameter
model is very similar but allows the user to weigh transversion more heavily
than transitions. PHYLIP also comprises DNAML, a maximum-likelihood
program for nucleotide data. Because the program is fairly slow, the use of
its faster ”sibling”, the fastDNAml program [Olsen et al., 1994] described
below, is recommended. SEQBOOT and CONSENSE are required for boot-
strap analysis. SEQBOOT is used to generate any number of replicates of
the data; these replicates are then used in programs within the PHYLIP
suite for analysis. The resulting tree file contains as many trees as there are
replicates of the data, so this file needs to be run through CONSENSE to
generate the consensus tree from the analysis.

PAUP

The objective of the development of PAUP is to provide a phylogenetics pro-
gram that includes as many functions (including tree graphics) as possible in
a single, platform-independent program with a menu interface. PAUP stands
for phylogenetic analysis using parsimony and contains one of the most so-
phisticated parsimony programs available. Current tree-building functions in
PAUP include MP, and, for nucleotide data, distance and ML using the fastD-
NAml algorithm. Each tree-building program permits a variety of options.
The MP options include specification of any character-weighting scheme.
Distance options include choice of NJ, ME, FM (see PAUP release notes re-
garding PHYLIP), and UPGMA procedures. According to the release notes
accompanying PAUP test version 4, PAUP* usually finds trees with likeli-
hoods as high or higher [i.e., better] than PHYLIP (both because PAUP’s tree
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rearrangements are more extensive and because its convergence criterion for
branch-length iteration is stricter). With any tree-building method, PAUP
allows a variety of tree search options. These include algorithm specification
for generating the initial tree (starting tree): NJ, stepwise addition, or input
tree(s). For MP analysis, in which a large number of equal-length trees might
exist, the search should specify saving from each replicate only a few trees
that match or are better than the score of the slower search. PAUP performs
the Kishino-Hasegawa test to compare MP or ML trees, computes four types
of consensus of multiple trees (usually used for multiple equal-length MP
trees), computes stepwise differences between MP trees, and evaluates sig-
nal conflicts between specified partitions of sites (e.g., nuclear and organical
sequence data in a combined analysis).

1.3.3 Other programs

In addition to PAUP and PHYLIP, there are phylogenetics programs that
have some unique capabilities but are generally more limited in their proce-
dures and portability. These include FastDNAml, PUZZLE, and MOLPHY.

FastDNAml

FastDNAml [Olsen et al., 1994] is a freestanding maximum-likelihood, tree-
building program. Although it is currently not part of the PHYLIP pack-
age, it uses largely the same input and output conventions, and the results
of fastDNAml and PHYLIP’s DNAML should be very similar or identical.
FastDNAml can be run on parallel processors, and it comes with a number
of useful scripts (in particular for bootstrapping and jumbling the sequence
input order). To take full advantage of the program, knowledge of UNIX is
beneficial. The source code for UNIX systems is publicly available from the
RDP Web site, and a Power Macintosh version is available by FTP.

PUZZLE

PUZZLE or TREE-PUZZLE [Strimmer and von Haeseler, 1996], as it is now
called, is a maximum likelihood-based program that implements a fast tree
search algorithm (quartet puzzling) that allows analysis of large data sets
and automatically assigns estimations of support to each internal branch.
PUZZLE also computes pairwise maximum-likelihood distances as well as
branch lengths for user-specified trees. PUZZLE also offers a novel method,
likelihood mapping, to investigate the support of a hypothesized internal
branch without computing an overall tree and to visualize the phylogenetic
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content of a sequence alignment. It conducts a number of statistical tests ( χ2

test for homogeneity of base composition, likelihood ratio clock test, Kishino-
Hasegawa test) and includes a large range of models of substitution. Rate
heterogeneity is modeled by a discrete gamma distribution and by allowing
invariable sites.

MOLPHY

MOLPHY is a shareware package of programs and utilities for ML analysis
and statistics of nucleotide or amino acid sequences [Adachi and Hasegawa,
1992]. It has been tested on Sun OS and HP9000/700 systems. Practical
application requires some knowledge of UNIX file management. The ML
procedures are similar to those in PHYLIP, but there is a wider range of
amino acid substitution models and options for faster, heuristic searches,
including an option to use ”local bootstrap” analyses (i.e., a bootstrap on
subtrees under the assumption that the remainder of the tree is correct) to
search for better ML trees. The output includes branch-length estimates
and standard error. Analysis of separate codon positions is possible. MOL-
PHY uses a subset of the nucleotide substitution models available in PAUP,
although it allows user-specified parameter values. The current MOLPHY
lacks a bootstrap option and also has no accommodation for among-site rate
heterogeneity.

METAPIGA

MetaPIGA (version 1.02) is written in the cross-platform compatible (Win-
dows, Macintosh, Unix/Linux) Java programming language and implements
a graphical interface for importing/exporting data, specifying a ML model,
monitoring search progress and visualizing trees generated by the engine.
The current version allows the analysis of data sets of 500 taxa and 3000
nucleotides on a regular computer (1.7-Gh Pentium IV) in less than 10 hours
under the Hasegawa-Kishino-Yano (HKY) + rate heterogeneity model. As
in [Agarwala and Fernández-Baca, 1994] and [Reijmers et al., 1999], the core
of MetaPIGA is based on a genetic algorithm, and makes a strong use of the
concept of consensus pruning (see http://www.ulb.ac.be/sciences/ueg/html-
files/MetaPIGA.html for further information).



Chapter 2

Modeling the problem

In this chapter we will model the phylogenetic inference problem, one of the
most important problem in the molecular biology field, and we will show that
it is a combinatorial optimization problem.

The definition of solution for the problem, and space of solutions of the
problem can be found in the first section of this chapter. Subsequently, in the
second section, we describe in which way we model a solution, and in the third
section we give the definitions of neighborhood of a solution, defining the
operators that let obtain a neighborhood starting from a given solution. The
fourth section introduces the quality function used for evaluating a solution,
and describes in which way to compute it.

2.1 Problem definition

Let V = E ∪ I be the set of nodes and B the set of the edges of a tree1,
where E is the set of leaves2 and I is the set of internal nodes.

A tree can be represented using an adjacency matrix M in which each mij

is equal to 1 if there exists a link between nodes vi and vj, 0 otherwise [Rosen,
2000]; M explicitly maps the tree topology, so we will say that two trees T1

and T2 are topologically equivalent if mijT1
= mijT2

∀ i and j, where mijT1
is

the generic element of the matrix MT1 , respectively for mijT2
. Otherwise, we

will say that T1 and T2 are topologically different.
As we showed in chapter 1, given a set Γ of taxa such that | Γ |= n, the

number of possible distinct tree topologies is 2n ·n. This means that for each

1We use here the classical definition of undirect tree: an acyclic, undirect and connected
graph G=(V,B).

2From now on we will use as synonymous “leaves”, “set of taxa” and “set of external
nodes”.

14
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given set Γ, there exists a set S made of 2n · n distinct adjacency matrices
representing these topologies.

We can formally define the phylogenetic inference problem like a search
problem in the following way3:

Problem 2.1 (Search problem)

find M (2.1)

s.t.

2n−1∑
j=1

mij ≤ 3 i ∈ I (2.2)

2n−1∑
j=1

mij ≥ 2 i ∈ I (2.3)

∑
j∈I

mij = 1 i ∈ E (2.4)

∑
j∈E

mij = 0 i ∈ E (2.5)

The constraint 2.2 means that each internal node can have at most three
links with the other nodes of the tree, this imposes that the tree must be
binary. The constraint 2.3 imposes that each internal node must have no
less that two links, this means that an internal node cannot be a leaf. The
constraint 2.4 imposes that each external node must have exactly a link with
the other nodes of the tree, this means that an external node cannot be an
internal node, and the latter constraint 2.5 imposes that no link can exist
between leaves.

Mathematical solutions for the search problem are all the matrices that
satisfy its constraints. Not all these solutions are empirically valid: for exam-
ple, if we consider Figure 2.1, we can observe that the phylogeny represented
can not be valid because a man and a monkey are two species nearer than a
man and a dolphin or a monkey and a dolphin. This problem can be avoided
introducing a function that, embodying the parameters for judging the good-
ness of a solution, distinguishes a solution empirically valid from another one
that is not.

If we assume that there exists a function f : S → R that assigns to
each solution M in S a real number, we can give a formal definition of the
phylogenetic inference problem as an optimization problem:

3As we have seen in chapter 1, the number of internal node for a binary tree (also called
fully resolved tree) is | Γ | −1 where Γ is the set of taxa and | Γ | is its cardinality. From
now on we will always suppose | Γ |= n.
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Mokey

DolphinMan

Figure 2.1: An example of mathematically correct solution for the search
problem, but refutable empirically: man and monkey are nearer than man
and dolphin.

Problem 2.2 (Optimal phylogenetic tree)

minimize f(M) (2.6)

s.t.

2n−1∑
j=1

mij ≤ 3 i ∈ I (2.7)

2n−1∑
j=1

mij ≥ 2 i ∈ I (2.8)

∑
j∈I

mij = 1 i ∈ E (2.9)

∑
j∈E

mij = 0 i ∈ E (2.10)

Hypothesizing to have a set of m characters relative to each leaf v of
the tree M , calling vj the j-th character of v, A(M) the set of branches,
hypothesizing to have a set of k states for each character, and defining value
of the tree M the number:

f(M) ≡
∑

(u,v)∈A(M)

|{j : vj 6= uj}| (2.11)

that is, the total number of times that the state of some character changes
along some edge, it is possible to demonstrate (see [Shamir and Naor, 2002,
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Gusfield, 1984]) that the optimization problem 2.2 is NP-hard. In particular,
it can be shown (see [Gusfield, 1984]) that, given a matrix M describing
m characters of a set of n species, to find a most parsimonious tree, that
is a tree4 such that the function 2.11 is minimal, is reducible to the un-
weighted Steiner tree problem on an m-dimensional hypercube. The latter
is a well-known NP-hard problem [Papadimitriou and Steiglitz, 1998, Garey
and Johnson, 2003], both for the un-weighted case and for the weighted one.

2.2 Modeling a tree

Let T be a binary tree, E the set of its external nodes, I the set of its internal
nodes, V the union of E and I (V = E ∪ I), B the set of its branches. Let’s
assume | E |= n and | I |= m.5

We can represent T using a |I| × |E ∪ I| matrix M, whose elements are
defined in this way:

mij =

{
1, if node i is father of node j;
0, otherwise.

(2.12)

This kind of representation begins to be inefficient when the number of
columns of the matrix M becomes high. In fact, in this case, since the
maximum number of elements mij equal to one is at most two6 for each i,
the number of elements mij of M equal to zero is enormous in proportion to
the unitary elements.

To improve the efficiency we can: compress the matrix M reducing the
number of columns to two, label each element of I∪E using a positive integer
number x (label) between zero and 2n− 1, and consider a new matrix M

′
of

dimension (n− 1)× 2 and such that

m
′
ij = label(i, j) i = 0...n− 1, j = 0...1 (2.13)

where label(i, j) is a function that, varying j, returns the label x of the left
or the right child of the internal node i. A graphical example of this kind of
representation is given in Fig. 2.2.

4It must be noted that we don’t want only to find the topology of the tree, but also
the labels of the leaves and the sequences of the internal nodes.

5We remind to the reader that—as we saw in the first chapter—the number of internal
nodes is m = n− 1.

6This because the tree is supposed binary.
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Figure 2.2: Representation of a tree in form of rectangular matrix.

2.3 Neighborhood definition

A critical point during the modeling of the problem is the definition of the
neighborhood. This aspect influences directly the computing time necessary
to describe the solutions space, and indirectly the quality of the solutions
found. A good definition of neighborhood is often a trade-off between these
two factors. To understand the combinatorial nature of this problem is fun-
damental for modeling neighborhood operators (good references are [Dress,
2001, 2000, Roberts and Sheng, 2000, Ahuja et al., 2001, Scaparra et al.,
2003, Pe’er et al., 2004]). We have used these references for defining new
concepts of neighborhood of a solution.

In the following, we will assume that all external nodes can be labeled by
a positive integer number in [0, n-1]7 and respectively for the internal nodes
in [n, 2n-1].

We give the following definitions of neighborhood:

Definition 2.1 Let S be the solutions space. We define the constant internal
topology neighborhood (CITN) of a matrix M , the set SE

M = {M ′ ∈ S : m
′
ij =

mij ∀ i, j : label(i, j) > n− 1}.

Definition 2.2 Let S be the solutions space. We define the variable internal
topology neighborhood (VITN) of a matrix M , the set SI

M = {M ′′ ∈ S : m
′′
ij =

mij ∀ i, j : label(i, j) ≤ n− 1}.

Definition 2.3 Let S be the solutions space. We define the totally construc-
tive topology neighborhood (TCTN) of a matrix M , the set ST

M = {M ′′′ ∈ S :
m
′′′
ij 6= mij at least for a couple (i, j)}.

We define also the following operators:

7I.e., given the set of external nodes {e0, e1, ..., en−1}, we can represent this set as a
sequence {0,1,...,n-1}.
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Definition 2.4 We define operator ∇E : S → SE
M each operation that, mod-

ifying a solution M ∈ S, returns a solution M
′ ∈ SE

M .

Definition 2.5 We define operator ∇I : S → SI
M each operation that, mod-

ifying a solution M ∈ S, returns a solution M
′′ ∈ SI

M .

Definition 2.6 We define operator ∇T : S → ST
M each operation that, mod-

ifying a matrix M ∈ S, returns a matrix M
′′′ ∈ ST

M .

Definition 2.7 We define permutations of n distinct elements, all the var-
ious groupings that can be formed with the given elements, respecting the
following property:

1. Each group contains n elements.

2. Each element can appear in the group once and only once time.

3. Two groups differ only for the order in which the elements appear.

Definition 2.8 Given n distinct elements and an integer k, k ∈ Z+, k ≤ n,
we call simple combinations of n elements of class k, all the various groupings
that can be formed with the given elements, so that the following property are
valid:

1. Each group contains k elements.

2. Each element can appear in the group once and only once time.

3. Two groups that differ at least for an element are considered differents.
The order is not important.

2.3.1 Models ∇E

This operator does not modify the internal topology of the tree but only
the configuration of the leaves. In this way, ∇E allows the generation of
solutions very similar among them, and therefore the local improvement of
the quality of the solutions found. In the following we give two pseudo codes
describing two examples of ∇E operators: ∇E

µ and ∇E
macro. They differ only

in the way they manage the leaves: ∇E
µ works using combinations of leaves,

∇E
macro works using permutations of leaves. In Figure 2.3 and 2.4 we report

their pseudocodes.
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procedure ∇E
µ

k ←SelectIntegerRandomIn(2, n− 1)
L ←Select and remove k elements in the current so-
lution M such that label(i, j) ≤ n − 1 and set the
respective Mij = −1
for each Mij = −1 do

L←Permutation(L)
Select a random element q in L
Mij ←Lq

Remove Lq

end for

Figure 2.3: Modifying the assignment of a subset of leaves to internal nodes,
∇E

µ allows the generation of solutions very similar among them, and therefore
the local improvement of the quality of the solutions found.

procedure ∇E
macro

L ←Select and remove all elements in the current so-
lution M such that label(i, j) ≤ n − 1 and set the
respective Mij = −1
for each Mij = −1 do

L←Permutation(L)
Select a random element q in L
Mij ←Lq

Remove Lq

end for

Figure 2.4: ∇E
macro generates new solutions modifying the assignment of all

the leaves. Comparing ∇E
µ and ∇E

macro we can observe as the latter allows
the generation of solutions potentially more different among them then the
former. At the contrary, the former allows the generation of solutions more
similar among them. Therefore we can use the former if the goal is to improve
locally an assignment of a subset of leaves, and the latter if the goal is to
obtain solutions characterized by different assignments of leaves.
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2.3.2 Model ∇I

This operator does not modify the external assignment of the leaves of the
tree but only its internal topology. In this way, ∇I allows the local improve-
ment of the quality of the internal topological structure relative to a solution.
In Figure 2.5 we report the pseudocode of ∇I operator.

2.3.3 Model ∇T

This operator modify both of external assignment of the leaves and the inter-
nal topological structure of the tree. ∇T is a destructive operator, because
it does not maintain any information about the topological structure of the
tree. ∇T can be used in order to direct the search in new different area of the
solutions space S.In Figure 2.6 we report the pseudocode of ∇T operator.

2.4 Evaluating a solution

Another critical point for the phylogenetic inference problem is the definition
of a quality function. To define it is not a simple problem because it is difficult
to give a concept of “goodness of a solution”.

There exist different quality functions in the literature; in this works we
have used the minimum total cost of a tree (formula 2.11). This function is
normally used as quality function in the weighted small parsimony problem
(WSPP) [Swofford et al., 1996, Shamir and Naor, 2002], and the Sankoff’s
algorithm shows how compute it. We describe it in the following.

Let’s assume to have a set Γ of n leaves representing species, a set of
m characters describing the DNA of each species, a set of k states for each
character, and a matrix8 Cc

ij representing the cost for changing from state i
to state j relative to the character c.

Definition 2.9 We define cost of a leaf v, for each character c and state t,
the number

Sc
t (v) =

{
0, vc = t,
∞, otherwise.

(2.14)

Definition 2.10 We define cost of an internal node w, with children u and
z, for each character c and state t, the number

Sc
t (w) = mini{Cc

ti + Sc
i (u)}+ minj{Cc

tj + Sc
j (z)} (2.15)

8In the literature there exist many models for this matrix. The reader can find them
in Swofford et al. [1996].



CHAPTER 2. MODELING THE PROBLEM 22

procedure ∇I

L ← Remove all elements of the rows in which
there exists at least one element such that
label(i, j) > n− 1 and set the respective Mij = −1
for each Mij = −1 do

L←Permutation(L)
Select a random element q in L such that Lq < i
Mij ←Lq

Remove Lq

end for

Figure 2.5: Pseudocode relative to the ∇I operator. It allows the local
improvement of the quality of the internal topological structure relative to a
solution.

procedure ∇T

L ← Remove all elements of the solution M and insert
in L only the elements such that label(i, j) ≤ n− 1
for each row i of the solution M do

L ←Permutation(L)
select two nodes in L
add node i to L

end for

Figure 2.6: Pseudocode relative to the ∇T operator. It can be used in order
to direct the search in new different area of the solutions space S.
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Figure 2.7: An example illustrating the computation of the cost of a tree.

Definition 2.11 We define minimum total cost of a tree T with root node r
the number

S(T ) =
m∑

c=1

mintS
c
t (r) (2.16)

Sankoff’s algorithm complexity: Repeating the formula 2.14 for each
state of each character of each leaf, we do n · k · m steps; repeating the
formula 2.15 we do 8 ·m · k · (n− 1) steps; the resulting computational cost
is O(9 ·m · k · n) ' O(α · n ·m), where α = 36 if we assume that the number
of all the possible states is four, α = 135 if we consider that the number of
all possible states is fifteen (see the table in Figure 2.8).

We can improve the computational cost of the Sankoff’s algorithm by
observing that the result of the application of the formula 2.14, for each
character of each leaf, is independent of the internal topological structure
of the evaluating tree. Defining therefore the vectorial space on the real
numbers

M(R)
n×m = {(aij) ∈ R : ∃aij →∞, i = 1...n j = 1...m} (2.17)

and considering the matrix H ∈ M(R4)
n×m, such that the generic element hij

is equal to the vector obtained by the table in Figure 2.8 in correspondence
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state glossary vector
A A {0,∞,∞,∞}
T T {∞, 0,∞,∞}
C C {∞,∞, 0,∞}
G G {∞,∞,∞, 0}
M A ∨ C {0,∞, 0,∞}
R A ∨G {0,∞,∞, 0}
W A ∨ T {0, 0,∞,∞}
S C ∨G {∞,∞, 0, 0}
Y C ∨ T {∞, 0, 0,∞}
K G ∨ T {∞, 0,∞, 0}
V A ∨ C ∨G {0,∞, 0, 0, }
H A ∨ C ∨ T {0, 0, 0,∞}
D A ∨G ∨ T {0, 0,∞, 0}
B C ∨G ∨ T {∞, 0, 0, 0}
N A ∨ C ∨G ∨ T {0, 0, 0, 0}

Figure 2.8: This table represents the way in which it is possible representing
the standard ambiguity code using a vector of four components.

to the j-th character of the DNA sequence of the i-th species; defining: the
operator ⊕ : M(R)

θ1×θ2
→M(R)

θ1×θ2
, θ1 ∧ θ2 ∈ N, as follows:

∀V ∈M(R)
θ1×θ2

,C ∈M(R)
θ1×θ2

V ⊕C = L ∈M(R)
θ1×θ2

(2.18)

lij = vij + cij, i = 1...θ1, j = 1...θ2 (2.19)

the operator ª: Rν →M(R)
ν×ν , ν ∈ N, as follows:

∀~v ∈ Rν , xª = Λ ∈M(R)
ν×ν , λij = λkj j = 1..ν, i ∧ k = 1...ν, i 6= k(2.20)

the operator ‖ · ‖min : M(R)
φ×φ → Rφ, φ ∈ N as follows:

∀P ∈M(R)
φ×φ ‖P‖min = ~q, ~q ∈ Rφ, (2.21)

qi = minjPij i = 1...φ, j = 1...φ (2.22)

the matrix

Ω =




~ω1

~ω2

...
~ωn


 , ~ωi =




ωi1

ωi2

...
ωim




T

ωij ∈ R4 : ωij = ‖hª
ij ⊕Cj‖ (2.23)
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procedure Select
input: i =integer, output: ~v ∈ R4·m

if i < n then
return ~ωi

else
return ~ψi−n

end if

procedure Evaluate
input: a solution M , output: r ∈ R
for i = 1 to n− 1 do

~v1 ← Select(mi1)
~v2 ← Select(mi2)
~ψi = ~v1 ⊕ ~v2

for j = 1 to m do
~ψij = ‖~ψª

ij ⊕Cj‖min

end for
end for
return

∑m
j=1 mink=1..4ψijk

Figure 2.9: This is the pseudocode relative to the algorithm that computes
the quality function of a solution.

where Cj is the cost matrix relative to the character j of the DNA sequence,
and the matrix

Ψ =




~ψ1

~ψ2

...
~ψn−1


 , ~ψi =




ψi1

ψi2

...
ψim




T

, ψij ∈ R4 (2.24)

we can compute the quality function using the algorithm described in Figure
2.9.

This new algorithm needs of O((n− 1)× (4 ·m + 16 ·m)) ' O(α ·m · n)
steps, with α=20. So pre-computing the matrix Ω allows us almost to halve,
in the worst case, the constant α of the Sankoff’s algorithm.



Chapter 3

Solving techniques

In this chapter we describe the solution techniques we have used for solving
the considered problem. We have split each section of this chapter in two
parts: the first part is dedicated to the description of the methodology used,
the second part describes the details of each implementation. If the reader
needs more details about the methodologies used, he can find them in [Glover
and Kochenberger, 2003, Dorigo and Stützle, 2004].

3.1 Simulated annealing

Simulated annealing (SA) is a generalization of a Monte Carlo method for ex-
amining the equations of state and frozen states of n-body systems [Metropo-
lis et al., 1953]. The concept is based on the manner in which liquids freeze
or metals recrystalize in the process of annealing. In an annealing process a
melt, initially at high temperature, is slowly cooled so that the system at any
time is approximately in thermodynamic equilibrium. As cooling proceeds,
the system becomes more ordered and approaches a “frozen” ground state
at T = 0. Hence the process can be thought of as an adiabatic approach
to the lowest energy state. If the initial temperature of the system is too
low or cooling is done insufficiently slowly the system may become quenched
forming defects or freezing out in metastable states (i.e., trapped in a local
minimum energy state). In the original Metropolis schema we select an ini-
tial state of a thermodynamic system, characterized by the internal energy E
and temperature T. Holding T constant, we perturb the initial configuration
and compute the change in energy dE. If the change in energy is negative,
the new configuration is accepted, otherwise, if the change in energy is pos-
itive, it is accepted with a probability given by the Boltzmann factor exp
-(dE/T). This processes is repeated a sufficient number of times to give good

26
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sampling statistics for the current temperature, and then the temperature is
decremented and the entire process repeated until a frozen state is achieved
at T=0.

The generalization of this Monte Carlo approach to combinatorial prob-
lems is straightforward [Kirkpatrick et al., 1983]. The current state of the
thermodynamic system is analogous to the current solution to the combinato-
rial problem, the energy equation for the thermodynamic system is analogous
to at the objective function, and ground state is analogous to the global min-
imum. The major difficulty in the implementation of the algorithm is that
there is no obvious analogy for the temperature T with respect to a free
parameter in the combinatorial problem. Furthermore, avoidance of entrain-
ment in local minima is dependent on the “annealing schedule”, the choice
of initial temperature, how many iterations are performed at each tempera-
ture, and how much the temperature is decremented at each step as cooling
proceeds.

Figure 3.1 gives a general algorithmic outline for SA. We have indicated
with s the initial solution, with s′ the neighbor solution of s (often it is gener-
ated randomly according to a uniform distribution), with T the temperature,
and with f(·) the objective function. To implement a simulated annealing
algorithm, the following parameters and functions have to be specified:

• The function GenerateInitialSolution, that generates an initial so-
lution.

• The function InitializeAnnealingParameters that initializes several
parameters used in the annealing schedule; the parameters comprise

– an initial temperature T0,

– the number of iterations to be performed at each temperature
(inner loop criterion in Figure 3.1),

– a termination condition (outer loop criterion in Figure 3.1).

• The function GenerateNeighbor that chooses a new solution s′ in the
neighborhood of the current solution s.

• The function AcceptSolution that implements the following equation

paccept(s, s
′, T ) =

{
1, if f(s′) < f(s);

exp(f(s)−f(s′)
T

), otherwise.
(3.1)

that describes the probability of accepting a neighbor solution s′.

• The function UpdateTemp that returns a new value for the temperature.
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procedureSimulatedAnnealing
s ← GenerateInitialSolution

InitializeAnnealingParameters

sbest ← s
n ← 0
while (outer-loop termination condition not met) do

while (inner-loop termination condition not met) do
s
′ ← GenerateNeighbor(s)

s ←AcceptSolution(Tn,s,s
′
)

if (f(s) < f(sbest)) then
sbest ← s

end if
end while
UpdateTemp(n); n ← n + 1

end while

Figure 3.1: High-level pseudo-code for simulated annealing (SA).

3.1.1 SA algorithm for inferring phylogenies

Our implementation of the SA algorithm to tackle the phylogenetic inference
problem has the following features:

• The function GenerateInitialSolution is external to the SA algo-
rithm and in common with the other metaheuristics; an outline pseudo-
code for the generation of the initial solution is given in Chapter 5.

• The function InitializeAnnealingParameters that initialize the pa-
rameters used in the annealing schedule is characterized by:

– the initial temperature T0 set to 100,

– the number L of iteration to be performed at each temperature
(inner loop criterion in Figure 3.1) is function1 of the initial tem-
perature T0, and of the current temperature T :

L =
{

Random·T0, T − T0 = 0;
Map(T − T0)·Random·T0, T − T0 6= 0.

(3.2)

– the termination condition (outer loop criterion in Figure 3.1) is
based on temporal criterion: if tin is the initial time, t is the cur-
rent time, and tmax denotes the maximum time allowed for compu-
tation, the termination condition can be written in the following

1The function Random of the equation 3.2 returns a random number in [0,1]; the function
Map maps a number x ∈ R in [0,1].



CHAPTER 3. SOLVING TECHNIQUES 29

way:

bool TerminationCondition(){ return (t > tmax − tin)}

• The function GenerateNeighbor works in this way: initially the oper-
ator used for generating the neighborhood is ∇E

µ and the constant a
(used for updating the temperature T , see function UpdateTemp) is set
to 0.99. This configuration is used during the temporal interval [0,k

4
],

where k ∈ Z is a constant given by the user such that k < tmax. If
the cost function does not change in [0, k

4
], during the temporal interval

[k
4
, k

2
] we set a = 1.1 and use ∇E

macro for generating the neighborhood.
If no variation is noted in [k

4
, k

2
], during the temporal interval [k

2
, 3k

2
] we

proceed using the operator ∇I and setting a = 0.99, that is we proceed
trying to find the local optimal internal topology. If the cost function
does not change in [k

2
, 3k

4
], during the interval [3k

4
, k] we set a = 1.1

and use ∇T operator for generating the neighborhood. If we have at
least a modification in the cost function in whatever temporal interval
t
′ ∈ [0, k], this loop restart again, setting a = 0.99 and using ∇E

µ as
neighborhood generator.

• The function AcceptSolution is the same of the equation 3.1.

• The function UpdateTemp update the temperature T at time t in the

following way: T = at · T , where a =





0.99, if the operator used
is ∇E

µ or ∇I ;
1.1, otherwise.

3.2 Tabu search

The basic concept of tabu search (TS) as described by [Glover, 1986, Glover
and Laguna, 1997] is a meta-heuristic superimposed to an heuristic. The
main idea is to avoid cycling by forbidding or penalizing moves which take
the solution, in the next iteration, to points in the solution space previously
visited—hence “tabu”. The tabu search is quite old, Glover attributes it’s
origin to about 1977. The method is still actively researched, and is continu-
ing to evolve and improve. The tabu search method was partly motivated by
the observation that human behavior appears to operate with a random ele-
ment that leads to inconsistent behavior given similar circumstances [Glover
and Laguna, 1997]. As Glover points out, the resulting tendency to deviate
from a charted course, might be regretted as a source of error but can also
prove to be source of gain. The tabu method operates in this way with the
exception that new courses are not chosen randomly. Instead the tabu search
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proceeds according to the hypothesis that there is no point in accepting a
new (poor) solution unless it is to avoid a path already investigated. This
insures new regions of a problems solution space will be investigated, with
the goal of avoiding local minima and ultimately finding the desired solution.
The tabu search begins by moving to a local minimum. To avoid cycling, the
method records recent moves in one or more tabu lists. The original intent of
the list was not to prevent a previous move from being repeated, but rather
to insure it was not reversed. The tabu lists are historical in nature and form
the tabu search memory. The role of the memory can change as the algorithm
proceeds. At initialization the goal is to make a coarse examination of the
solution space, but as candidate locations are identified the search is more
focused to produce local optimal solutions in a process of ’intensification’. In
many cases the differences between the various implementations of the tabu
method have to do with the size, variability, and adaptability of the tabu
memory to a particular problem domain.

Figure 3.2 gives a general algorithmic outline for a simple tabu search.
We have indicated with s the initial solution, and with f(·) the objective
function. The functions needed to define it are the following:

• The function GenerateInitialSolution, that generates an initial so-
lution.

• The function InitializeMemoryStructures, that initializes all the
memory structures used during the run of the TS algorithm.

• The function GenerateAdmissibleSolutions, that is used to deter-
mine the subset of neighbor solutions which are not tabu.

• The function SelectBestSolution, that returns the best admissible
move.

• The function UpdateMemoryStructures, that updates the memory struc-
tures.

3.2.1 TS algorithm for inferring phylogenies

Our implementation of the TS algorithm to tackle the phylogenetic inference
problem has the following features:

• The function GenerateInitialSolution is external to the TS algo-
rithm and in common with the other metaheuristics; an outline pseudo-
code for the generation of the initial solution is given in Chapter 5.
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procedureTabuSearch
s ← GenerateInitialSolution

InitializeMemoryStructures

sbest ← s
while ( termination condition not met) do

A ← GenerateAdmissibleSolutions(s)
s ←SelectBestSolution(A)

UpdateMemoryStructures

if (f(s) < f(sbest)) then
sbest ← s

end if
end while

Figure 3.2: High-level pseudo-code for tabu search (TS).

• The function InitializeMemoryStructures creates a tabu list with
an initial length of l = p

√
|E|q, as is usual in many implementation

of the tabu search. In the tabu list we don’t store movements but
solutions, and we define tabu all those solutions that are already in the
tabu list.

• The function GenerateAdmissibleSolutions works in the following
way: let max be a positive integer given by the user, α, β, γ, δ positive
integer such that α+β +γ + δ = max. The neighborhood of a solution
s is computed by applying α times the operator ∇E

µ , β times the oper-
ator ∇E

macro, γ times the operator ∇I and γ times the operator ∇T to
the solution s. We use the following table for setting the parameters
α, β, γ, δ:

α β γ δ

[0, k
4
] MAX

4
MAX

4
MAX

4
MAX

4

[k
4
, k

2
] 0 MAX

4
MAX

4
MAX

2

[k
2
, 3k

4
] 0 MAX

2
0 MAX

3

[3k
4
, k] 0 0 0 MAX

(3.3)

where k is the same of the SA implementation. The values assigned to
α, β, γ, δ in the table don’t derive by a particular study of tuning of
these value, but have been selected in according to thumb rules. These
arguments anyway will be object of the next study.

• The function SelectBestSolution is implemented as a simple loop
that returns the position and the value of the solution in the neighbor-
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hood with the smallest value. The following is the outline pseudo-code
for the function:

procedure SelectBestSolution
min=∞, val=∞
for each solution s in the neighborhood do

if f(s) < min then
min=s; val=f(s);

end if
end for
return min and val

• The function UpdateMemoryStructures add the non-tabu solution in
the tabu list, and modifies the tabu list length varying its dimension
between [0.25l, 2l], in function of the value of the fbest (the value of the
best-so-far solution): if fbest remains constat during the interval [t′, t′′]
such that (t′′ − t′) > const, where const is a parameter given by the
user, a random number r between [0.25, 2] is selected and the tabu list
length is set to r.

3.3 Iterated local search

Iterated local search (ILS) [Lourenço et al., 2002] is a simple metaheuristic
working as follows. Starting from an initial solution S, a local search is
applied. Once the local search is stuck, the locally optimal solution ŝ is
perturbed by a move in a neighborhood different from the one used by the
local search. This perturbed solution s′ is the new starting solution for the
local search that takes it to the new local optimum ŝ′. Finally, an acceptance
criterion decides which of the two locally optimal solution to select as a
starting point for the next perturbation step. The main motivation for ILS
is to build a randomized walk in a search space of the local optima with
respect to some local search algorithm.

An algorithmic outline of ILS is given in Figure 3.3. The four functions
needed to specify an ILS algorithm are:

• The function GenerateInitialSolution that generates an initial so-
lution.

• The function LocalSearch that returns a locally optimal solution ŝ
when applied to s.

• The function Perturbation that perturbs the current solution s gen-
erating an intermediate solution s′.
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procedureIteratedLocalSearch
s ← GenerateInitialSolution

ŝ ←LocalSearch(s)
sbest ← ŝ
while ( termination condition not met) do

s′ ← Perturbation(ŝ)
ŝ′ ←LocalSearch(s′)
if (f(s) < f(sbest)) then

sbest ← ŝ′

end if
ŝ ← AcceptanceCriterion(ŝ, ŝ′)

end while

Figure 3.3: High-level pseudo-code for iterated local search (ILS).

• The function AcceptanceCriterion that decides from which solution
the search is continued at the next perturbation step.

3.3.1 ILS algorithm for inferring phylogenies

Our implementation of the ILS algorithm to tackle the phylogenetic inference
problem has the following features:

• The function GenerateInitialSolution is external to the ILS algo-
rithm and in common with the other metaheuristics; an outline pseudo-
code for the generation of the initial solution is given in Chapter 5.

• The function LocalSearch, that returns a locally optimal solution,
works in this way: let s be the current solution, max a positive integer
given by the user, α,β,γ,δ positive integers such that α + β + γ + δ =
max; the solution ŝ is computed by applying α times the neighborhood
operator ∇E

µ , β times the neighborhood operator ∇E
macro, γ times the

neighborhood operator∇I , δ times the neighborhood operator∇T . The
parameters α,β,γ,δ, are selected using the table 3.3.

• The function Perturbation is the most delicate part of the ILS algo-
rithm. In fact, “if the perturbation is too strong, ILS may behave like
a random restart, so better solution will only be found with a very low
probability. On the other hand, if the perturbation is too small, the
local search will often fall back into the local optimum just visited and
the diversification of the search space will be very limited”[Lourenço
et al., 2002]. We implemented this function using only two operators:
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∇E
µ and ∇I : given the solution s, we apply before the former operator,

and after the latter; in other words we try to perturb the solution with
respect both the external nodes and the internal nodes.

• The function AcceptanceCriterion decides in the following way from
which the search is continued at the next perturbation step: if f(ŝ) <
f(ŝ′), the function returns ŝ, ŝ′ otherwise.

3.4 Ant colony optimization

Ant colony optimization (ACO) [Dorigo and Stützle, 2004] is a metaheuristic
in which a colony of artificial ants cooperate in finding good solutions to
discrete optimization problems. Each ant, represented as a simple agent,
disposes of computational resources, and communicates indirectly with the
other ants by stigmergy, that is, by indirect communication (through the
pheromone) mediated by the environment. The building process, that is the
process by which each ant builds solutions by moving on the space of the
solutions’ components, is stochastic and exploits both pheromone trails and
heuristic values for making probabilistic decisions on how to move on the
space of the solutions’ components. The pheromone trails encode a long-
term memory about the entire ants search processes, and are updated by
the ants themselves. The heuristic values represent, on the contrary, a priori
information about the problem instance or run time information provided by
a source different from the ants.

To implement ACO is necessary:

• To define the information represented by the pheromone and the data
structures representing it.

• To define the stochastic procedure for making decision on how to move
on the space of the solutions’ components, in particular:

– to define a model embodying the information about the pheromone
trails and the heuristic values,

– to define a strategy for selecting a solution component.

• To define the procedure for managing the pheromone.

ACO, of which a pseudo-code is given in Figure 3.4, is made up of three
procedures: ConstructAntSolutions, UpdatePheromones, DaemonActions.

ConstructAntSolutions represents the process by which a colony of
ants builds concurrently and asynchronously new solutions for the consid-
ered problem. The building process, simulating the movement of the ants,
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is based on a stochastic local decision policy that makes use of pheromone
trails and heuristic information.

UpdatePheromones represents the process by which the pheromone trails
are modified. The trail values can either increase, as ants deposit pheromone
on the components and/or connections they use, or decrease, due to pheromone
evaporation.

Finally, DaemonActions is used to implement centralized actions which
cannot be performed by a single ants. Example of daemon actions are the ac-
tivation of a local optimization procedure, or collection of global information
that can be used to decide whether it is useful or not to deposit additional
pheromone to bias the search from a non-local perspective (see [Dorigo and
Stützle, 2004] for more information).

procedureAntColonyOptimization
while (termination condition not met) do
ConstructAntSolutions

UpdatePheromones

DaemonActions

end while

Figure 3.4: High-level pseudo-code for ant colony optimization (ACO).

3.4.1 ACO algorithm for inferring phylogenies

Our implementation of the ACO algorithm to tackle the phylogenetic infer-
ence problem is the following:

• Let I be the set of internal nodes, E the set of external nodes, and
V = E∪I the set of all nodes. Let’s assume that for each external node
e ∈ E there exists an edge for each internal node i (see Figure 3.5).
Let’s consider now the connected, un-weighted, and un-direct graph
G(V, A) where A is the set of edges; since the graph is un-weighted no
heuristic information can be used, therefore only the pheromone trails
lead the colony of ants during the building process. We have modeled
the pheromone trails as a matrix Θ ∈ MR

|I|×|E∪I| whose elements τij ∈
[0, 1].

• The stochastic procedure for making decision on how to move on the
space of the solutions ’ components depends by the type of neighbor-
hood selected: CITN, VITN, TCTN.
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Figure 3.5: Graph relative to five taxa; the blue circles represent the external
nodes, the green circles represents the internal nodes. The graph is un-weight,
un-direct, and connected.

CITN: in this case k ≤ |E| external nodes are selected2, removed by
the tree, and inserted in a list LeCITN ; all the corresponding inter-
nal nodes i, to which the j-th removed external nodes was linked,
are inserted in the list LiCITN . By introducing pij as the probabil-
ity that the internal node i links the node j, we can consider, for
each node i ∈ LiCITN , the vector ~pi whose components, for each
j ∈ LeCITN , are computed in this way:

pij =
τij∑

l∈LeCITN
τil

. (3.4)

The sum of the components pij of the vector ~pi is equal to one so, if
r is a random number uniformly distributed in [0,1], we can select
the j-th and the (j + 1)-th component of ~pi using the following
pseudo-code3:

Let b=0;j=0;
while b < r or LeCITNj

≥ i + n− 1 do
b ← pij; j ← j + 1

end while

It must be noted that if k < |E| this procedure is the analogous of
the operator ∇E

µ , while if k = |E| this procedure is the analogous
of the operator ∇E

macro.

2We consider therefore assigned the remaining |I|+ |E| − k nodes.
3This pseudo-code must be repeated for the j-th and for the (j+1)-th component be-

cause we we want to select two children for each internal node at each step of the building
process.
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VITN: the stochastic procedure is similar to CITN with the only dif-
ference that are removed all the internal nodes having at least a
child that is an internal node. The internal nodes having two ex-
ternal nodes as children are not removed. It must be noted that
this kind of building process works in the same way of the ∇I

operator.

TCTN: let L be the list of the nodes (both internal and external) of
the tree, and Λ a list of boolean with length equal to L. If the
j-th entry of Λ equals to true then we will consider the j-th node
of L as part of the solution we are building. By introducing pij

as the probability that the internal node i links the node j, we
can consider, for each internal node i ∈ I, the vector ~pi whose
components, for each external node j ∈ E, are computed in this
way:

pij =

{
τij∑

l∈Γ={j∈Λ:Λj=false} τil
, if Λj=false ;

0, otherwise.
(3.5)

For each i, the sum of the components pij is equals to one so, if r
is a random number uniformly distributed in [0,1], we can select
the j-th and the (j + 1)-th component of ~pi using the following
pseudo-code:

Let b=0;j=0;
while b < r or LeCITNj

≥ i + n− 1 do
b ← pij; j ← j + 1

end while

It must be noted that this building process is analogous of the ∇T

operator.

• The last phase, relative to the update of the pheromone, is done in
the same way of the max-min ACO inside the hyper-cube framework
[Blum et al., 2001]: if we indicate with sib the best solution generated
in the iteration k by the h ants (the parameter h is given by the user),
with sbs the best-so-far solution generated since the start of the algo-
rithm, and with srb the best solution generated since the last restart
of the algorithm (see [Blum et al., 2001] for details), the procedure for
updating the pheromone can be divided in two part: the first part in
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which we reinforce the pheromone trails of sib,sbs,srb

τisibij
← τisibij

· ρ · kib i = 1...|I|, j = 1...2. (3.6)

τisbsij
← τisbsij

· ρ · kbs i = 1...|I|, j = 1...2. (3.7)

τisrbij
← τisrbij

· ρ · krb i = 1...|I|, j = 1...2. (3.8)

and the second part in which we apply the evaporation of the pheromone
trails

τij ← τij − ρ · τij i = 1...|I|, j = 1...|I|+ |E|. (3.9)

3.5 Hyperheuristic models

Hyperheuristics are defined in the literature [Terashima-Marin et al., 1999,
Hart and Ross, 1998, Fang et al., 1994, Berger et al., 1999] to be high-level
heuristics which choose between heuristics in order to solve a given optimiza-
tion problem. The fundamental principle exploited by a hyperheuristic is the
cooperation between different research strategies (i.e., low-level knowledge-
poor heuristics, or metaheuristics) finalized to obtaining better performances
than the execution of the single ones. It must be noted that a hyperheuristic
is not an hybrid metaheuristic: the latter takes diverse features from a set of
metaheuristics and generates a new one that embodies them; the former uses
a set of metaheuristics (hybrid or not) and run them in different moments of
the search. An algorithm outline of a hyperheuristic is given in Figure 3.7:

procedure Hyperheuristic
Let MH be a set of metaheuristics and mh a metaheuris-
tic
while ( not GlobalStopCriterion ) do

mh=SelectNewMetaheuristic

UpdateParameters(mh)
while (not LocalStopCriterion(mh)) do
Execute(mh)
ApplyFeedbackSchema(mh)

end while
end while

Figure 3.6: High-level pseudo-code for an hyperheuristic.

The functions needed to define it are the following:

• The function GlobalStopCriterion, that represents the stop criterion
for the procedure Hyperheuristic.
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• The function SelectNewMetaheuristic, that selects a metaheuristic
m ∈ MH.

• The function UpdateParameters, that sets all the parameters and fea-
tures relative to the metaheuristic mh.

• The function LocalStopCriterion, that represents the stop criterion
for the execution of mh.

• The function Execute, that runs the metaheuristic selected.

• The function ApplyFeedbackSchema, that applies a feedback schema
[Battiti and Tecchiolli, 1994] for modifying the parameters of the run-
ning metaheuristic.

It must be observed that when the set MH is made of only one metaheuris-
tic, the hyperheuristic collapses into a metaheuristic, In this work we have
developed a model of hyperheuristic called random token-ring hyperheuristic
(RTRH). We will describe each of them in the following.

3.5.1 Random token ring hyperheuristic

The random token-ring hyperheuristic (RTRH) is made of a set of meta-
heuristics MH such that |MH| > 1. RTRH takes the attribute random
because the selection of the next metaheuristic to use is done in a random
way. RTRH takes the attribute token-ring because the set of metaheuris-
tics is imagined as a ring in which each metaheuristic passes the token to
another one. Our implementation of RTRH is made of four metaheuristics:
tabu search, iterated local search, simulated annealing, ant colony optimiza-
tion; in the following is given an algorithm outline of a random token ring
hyperheuristic:

Global stop criterion: This is the most external loop. It is normally based
on temporal criteria: we assign a temporal interval T = [t

′
, t′′] to RTRH

and after t
′′

all computational processes must stop. RTRH divides the
temporal interval T into a set of n subintervals τi such that

n∑
i=1

|τi| = (t
′′ − t′) (3.10)

Local stop criterion: RTRH assigns τi to the selected metaheuristic mh ∈
MH. If we indicate with qI the initial value of the cost function at
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procedure RandomTokenRingHyperheuristic
Let MH and MH

′
be sets of metaheuristics.

Let assume initially MH = {TS, SA, ILS, ACO} and
MH

′
= Ø

while not GlobalStopCriterion do
Select and remove randomly a metaheuristic mh ∈
MH
UpdateParameters(mh)
while not LocalStopCriterion(mh) do
Execute(mh)
ApplyFeedbackSchema(mh)

end while
insert mh in MH

′

if MH = Ø then
MH = MH

′
and MH

′
= Ø

end if
end while

Figure 3.7: High-level pseudo-code for the random token-ring hyperheuristic
(RTRH).

the begin of the time slot τi in which runs the metaheuristic mh, with
qF the final value of the cost function at the end of the time slot τi in
which has run the metaheuristic mh, with nf the numbers of changes
in the cost function during the time slot τi, and with t the length of
the time slot τi, indicating with ϕ the number:

ϕ =

arctan (qI−qF )+π
2

π
+

nf

t

2
(3.11)

the local stop criterion can be written in this way:

stop running criterion (metaheuristic m)

length ← lengthτi

return (length = lengthτi
+ ϕ · lengthτi

)

As we can see, ϕ is a real number comprised in [0, 1], so when ϕ = 0
then the length of the time slot τi, assigned to the metaheuristic mh, is
not increased; when ϕ = 1 then the length of the time slot τi is increased
of the same length, in other words it is assigned to the metaheuristic
mh an other time slot having the length equal to the length of τi.
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Otherwise, if 0 < ϕ < 1, the length of time slot τi is increased of
ϕ · lengthτi

.

Executing m: if RTRH has assigned the time slot τi to the metaheuristic
mh ∈{ACO,TS,ILS}, by naming with t0 and t respectively the lower
bound and the upper bound of τi, the parameters α, β,γ,δ change
respecting this table:

variables [t0,
(t−t0)

4 ) [
(t−t0)

4 ,
(t−t0)

2 ) [
(t−t0)

2 , 3
(t−t0)

4 ) [3
(t−t0)

4 , (t− t0))

α MAX/3 MAX/4 0 0
β MAX/3 MAX/4 MAX/4 0
γ MAX/3 MAX/4 MAX/4 0
δ 0 MAX/4 MAX/2 MAX

(3.12)

Initially α,β,γ,δ are set like the first column. If we don’t have modifi-
cation in the cost function values during the interval [t0, (t− t0)/4), in
the subsequently interval [(t−t0)/4, (t−t0)/2) the values of α,β,γ,δ are
changed using the second column of the table, and so on. If we have at
least a modification in the cost function in whatever temporal interval
t∗ ∈ τi, this loop restarts again from the first column in the table, using
the following temporal intervals: [t∗, (t− t∗/4)], [(t− t∗)/4, (t− t∗)/2],
[(t−t∗)/2, 3(t−t∗)/4], [3(t−t∗)/4, (t−t∗)]. If the selected metaheuristic
is SA, we will use similarly the following table:

sub time slot of τi operator a

[t0,
(t−t0)

4
) ∇E

µ 0.99

[ (t−t0)
4

, (t−t0)
2

) ∇E
macro 1.1

[ (t−t0)
2

, 3 (t−t0)
4

) ∇I 0.99

[3 (t−t0)
4

, (t− t0)) ∇T 1.1

(3.13)

The value assigned to each variable in each time slot is assigned in
according to thumb rules.

UpdateParameters: this procedure allows to map the state of a meta-
heuristic into another one. We have designed two models for RTRH:

local restart consisting into executing, during the time slot τi, the
selected metaheuristic m as it restarted from the begin. This
means: to reset the tabu list for TS, the temperature for SA, the
pheromone for ACO and so on.

mapping consisting into mapping the state of the metaheuristic mh
′
,

run in the time slot τi−1, into the state of the metaheuristic mh
′′
,
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running in the time slot τi. Storing the last k current solutions of
the time slot τi−1, we can map the state of mh

′
into the state of

mh
′′

using this table:

Metaheuristic mapping
TS Delete all elements stored into the tab-

ulist. Insert in the tabu list the last
z distinct current solutions, with z ≤
tabulistlength ≤ k.

SA Set the value of the temperature
T = |f(Scurrent)−f(Sbest)

f(Sbest)
| · 100.

ILS ———
ACO For each of the last k current solu-

tions: add the pheromone to the com-
ponents of the i-th current solution
and apply the evaporation process.

(3.14)



Chapter 4

The framework

In this chapter we will describe the framework that we have developed for
solving the phylogenetic inference problem. We will begin with an overview
of the framework, then we will analyze each of its components.

4.1 An overview

The framework is inspired to the Easy Local++ framework [Schaerf et al.,
2000, Gaspero and Schaerf, 2003]. It is made up by a set of overlapped
abstraction layers: I/O layer, Core layer, Metaheuristic layer, Hyperheuristic
layer.

Each abstraction layer embodies cooperating components that take care
of different aspects of the search. Each layer of the hierarchy relies on the ser-
vices supplied by lower levels and provides a set of more abstract operations
to the upper layers.

4.2 I/O layer

I/O layer is the lowest level of the hierarchy and it is responsible for the
communication with the external environment by getting the input that has
to be analyzed and delivering the output representing the best solution found
by the framework. It is made of two component: input system (IS) and the
output system (OS).

The input system is responsible for interfacing the framework with any
input source: XML files, nexus files, data bases and so on. The structure of
the Input system is modular, so if we need to read a new type of input source,
it is sufficient to add the appropriate method. All type of input is internally
transformed by the Input system into two structures: the DNA matrix, that

43
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provides the respective DNA sequence for each taxon analyzed, and the taxa
names list that provides the respective name for each taxon analyzed.

The output system is responsible for interfacing the framework with any
output source: XML files, nexus tree format and so on. Also the structure of
the Output system is modular, so if the international community defines a
“standard tree format” for the representation of a phylogeny, it is sufficient
to add the respective method to the output system. The output system
transforms the internal data structures of the Core layer in the standard
nexus tree format, and write down the output in a XML file.

4.3 Core layer

The core layer embodies the components that represent specific aspects of a
local search: state manager, that represents the state of the search; engine,
that represents the manager of the neighborhood; evaluator, that represents
the manager of the cost function. All the metaheuristics use these compo-
nents, for reading the state, for generating new solutions, for evaluating new
solutions.

The state manager supplies a set of operations for managing the state
of the search. It is responsible for: storing into the memory the solution
structures (best so far solution, current solution and so on); storing the value
of each solution structure (best so far value, current solution value and so
on); storing the values of the constant values used for the neighborhood
exploration.

The engine supplies a set of methods implementing: the neighborhood
operators (∇E

µ , ∇E
macro, ∇I , ∇T ), and the initial solution generator. It stores

the structure representing the neighborhood of a solution as an array of
solutions of which only the first element is used by the simulated annealing,
while the whole array is used by the other three metaheuristics, representing
the ants for aco, the neighborhood for tabu search and iterated local search.

The evaluator provides a set of methods which handle the cost function.
It is responsible for: storing the pre-computed matrix Ω and the dynamic
matrix Ψ, storing all the models for the cost matrix C, implementing the
operators ‖ · ‖min, ⊕ and ª.

Each component of the core can use any other component inside the
core, for example: the engine can use the state manager for computing the
neighborhood of a solution; the evaluator can use the neighborhood generated
by the engine for computing the best solution; the state manager can use the
evaluator for setting up the best so far solution, the current solution and so
on.
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We can say, using only a sentence, that the core is made up by funda-
mental, cooperating and universal components. Fundamentals because they
are necessary for searching in the solutions space. Cooperating because they
cooperate during the search. Universal because they can be used indistinctly
by any metaheuristic.

4.4 Metaheuristic layer

The metaheuristic layer embodies all the metaheuristics used by the frame-
work. These metaheuristics are represented as complex components, are
characterized by an high abstraction level, and are totally independent from
the representation of the problem, adhering to the philosophy used by Gaspero
and Schaerf [2003].

The metaheuristics implemented are components extended by an ab-
stracted class called metaheuristic. This class is characterized by the
generic methods RUN(), and SelectBest(). All the metaheuristics must
implement these methods, so they provide to the highest layer a common
interface for managing any of the metaheuristic.

A component embodies subcomponent, for example: the metaheuristic
ACO embodies the class that manages the hypercube; respectively for the
tabu search with its tabu list and the simulated annealing with the annealing
model.

4.5 Hyperheuristic layer

The highest layer of the framework is the hyperheuristic layer, representing
the level in which we describe a generic hyperheuristic. Each describes: how
many metaheuristics and which one have to participate, in which order they
have to be called, how much times to dedicate to each metaheuristic, when
a metaheuristic in runtime must stop, which strategy to apply during the
runtime of a metaheuristic. The framework includes the description of the
two hyperheuristics: the simple hyperheuristic and the random token ring
hyperheuristic. Both of them were described in the prevoius chapter.
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Figure 4.1: The framework.



Chapter 5

Results

We tested the proposed hyperheuristics and metaheuristics on a test set
made of one hundred different instances, each of them containing fifty DNA
sequences. Each DNA sequence is made of one thousand characters, gener-
ated randomly. For each instance we have fixed the initial solution using the
deterministic procedure in Figure 5.1. All instances, the random procedure
for generating them, and the deterministic procedure for generating the ini-
tial solution can be found at the internet site:
http://iridia.ulb.ac.be/∼dcatanzaro/BioProject-Eufoǹıa.

The cost matrix used for the cost function is the Wagner Model (see
Swofford et al. [1996]).

The combination of strategies has produced 22 different implementations
of hyperheuristic and metaheuristic models1:

Table 5.1: Table of Experiments
Hyperheuristics Metaheuristics Neighborhood operators Updating parameters

— ACO ∇E
macro, ∇E

µ , ∇I , ∇T ,mix ———

— ILS ∇E
macro, ∇E

µ , ∇I , ∇T ,mix ———

— SA ∇E
macro, ∇E

µ , ∇I , ∇T ,mix ———

— TS ∇E
macro, ∇E

µ , ∇I , ∇T ,mix ———
RTRH ACO,ILS,SA,TS mix local restart
RTRH ACO,ILS,SA,TS mix mapping

We have tested these strategies using the time as evaluation criterion: we
have run the strategies for 1000 seconds over each instance, using a cluster of
six Athlon XP 1400+, each of them equipped with 512 MB of RAM, Debian
linux distribution version 3.0 with kernel version 2.4.26, and gcc compiler
version 2.95.4.

1In the table mix indicates “all operators”.

47
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procedure GenerateInitialSolution
let M ∈ M

(R)
|I|×(|E|∪|I|)

c ← 0
for i = 1 to number of taxa−1 do

for j = 1 to 2 do
Mij = c
c ← c + 1

end for
end for

Figure 5.1: Pseudo-code for the deterministic generation of the initial solu-
tion.

5.1 Time-based analysis

In Fig. 5.2 we report, using the box-and-whisker plot [Siegel and Castellan,
1988], the absolute values of the solutions generated by each hyperheuris-
tic/metaheuristic. A box shows the range between the 25% and the 75%
quantile of the data. The median of the data is indicate by a bar. The
whiskers extend to the most extreme data point which is no more than 1.5
times the interquantile range from the box. Outliers are indicate as circles.

Wishing to make a comparison between the hyperheuristics and the meta-
heuristics described (from now on we will call them simply algorithms), we
have to determine a zero value and an interval of measurement [Johnson,
2002]. Instance by instance we can assign the zero value to the algorithm
that found the best value, and the value one to the the algorithm that found
the worst value. Each value generated by each algorithm in each instance
can be re-mapped using this formula:

xj −mini

maxi −mini

∀i ∈ Instances, ∀j ∈ Algorithms (5.1)

where xi is the best value found by the algorithm j, mini and maxi are
respectively the best and the worst value found running all the algorithms
on the instance i. Working in this way we obtain the box-and-whisker plot
histograms in Fig. 5.3, in which we represent the scaled values of the solutions
generated by each algorithm and their relative ranks in the comparison among
each other. Analyzing these histograms we can observe that the group of
metaheuristics using SA obtains the best performances followed by RTRH
with mapping and RTRH with local restart. Analyzing these histograms for
all type of operators we obtain the histograms in Fig. 5.4, 5.5, 5.6, 5.7 and
5.8. We can observe:

• The SA metaheuristic obtains always the best performances.
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Figure 5.2: Global box-and-whisker plot histogram of experiments using the time
as stop criterion. A box shows the range between the 25% and the 75% quantile
of the data. The median of the data is indicate by a bar. The whiskers extend
to the most extreme data point which is no more than 1.5 times the interquantile
range from the box. Extreme points are indicate as circles.
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• The ACO metaheuristic is the second best algorithm with respect to the
operator ∇E

µ (ACOnablaMicro) while ILSnablaMicro and TSnablaMi-
cro are respectively the third and the forth.

• ILSnablaMacro and TSnablaMacro are the second best metaheuristics
with respect to the operator ∇E

macro, while ACOnablaMacro is the last
in terms of performance.

• Executing the paired Wilcoxon rank sum test [Siegel and Castellan,
1988] (see table 5.1) we can affirm that all the algorithms using the
operator ∇I are statistically equivalents, and in particular obtain the
global worst performances.

• With respect to the operator ∇T the paired Wilcoxon test allows to
say with confidence level 95% and with Holmes correction for multiple
tests, that ACOnablaT and ILSnablaT are statistically equivalents and
are the second best models in terms of performances, while TSnablaT
is the last.

• Using all the operators, the second best performances are obtained
by ILSmix, while TSmix is the third and ACO the last in term of
performances.

Grouping the algorithms described by the type of metaheuristic used we
can observe:

ACO: The best performance is obtained (Fig. 5.9) exploring the neighbor-
hood by using the ∇E

µ operator, the second one using all operators, the
third one using ∇T operator, the fourth one using ∇E

macro operator, and
the last one using ∇I operator.

ILS: The best performances is obtained (Fig. 5.10) exploring the neighbor-
hood by using the ∇E

µ operator, the second one using the mix strategy,
the third one using ∇T operator, the fourth one ∇E

macro operator, and
the last one using ∇I operator.

SA: Executing the paired Wilcoxon rank sum test it is possible to observe
how all the operators give results statistically equals.

TS: The best performances is obtained (Fig. 5.12) exploring the neighbor-
hood by using the ∇E

µ operator, the second one using the mix strategy,
the third one using ∇T operator, the fourth one ∇E

macro operator, and
the last one using ∇I operator.
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Figure 5.3: The scaled values of the solutions generated by each algorithm
(top) and their relative ranks in the comparison among each other (bottom)
are depicted in two box-and-whisker plot histogram.
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Figure 5.4: Box-and-whisker plot histogram relative to all the hyperheuristics
using ∇E

µ as neighborhood operator. The scaled values of the solutions generated
by each algorithm (left) and their relative ranks in the comparison among each
other (right) are depicted in two box-and-whisker plot histogram.
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Figure 5.5: Box-and-whisker plot histogram relative to all the hyperheuristics us-
ing ∇E

macro as neighborhood operator. The scaled values of the solutions generated
by each algorithm (left) and their relative ranks in the comparison among each
other (right) are depicted in two box-and-whisker plot histogram.
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Figure 5.6: Box-and-whisker plot histogram relative to all the hyperheuristics
using ∇I as neighborhood operator. The scaled values of the solutions generated
by each algorithm (left) and their relative ranks in the comparison among each
other (right) are depicted in two box-and-whisker plot histogram.
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Figure 5.7: Box-and-whisker plot histogram relative to all the algorithms using
∇T as neighborhood operator. The scaled values of the solutions generated by
each algorithm (left) and their relative ranks in the comparison among each other
(right) are depicted in two box-and-whisker plot histogram.
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Figure 5.8: Box-and-whisker plot histogram relative to all the algorithms using
all the neighborhood operators. The scaled values of the solutions generated by
each algorithm (left) and their relative ranks in the comparison among each other
(right) are depicted in two box-and-whisker plot histogram.
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Figure 5.9: Box-and-whisker plot histogram relative to the group of algorithms
using ACO as metaheuristic. The scaled values of the solutions generated by each
algorithm (left) and their relative ranks in the comparison among each other (right)
are depicted in two box-and-whisker plot histogram.
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Figure 5.10: Box-and-whisker plot histogram relative to the group of algorithms
using ILS as metaheuristic. The scaled values of the solutions generated by each
algorithm (left) and their relative ranks in the comparison among each other (right)
are depicted in two box-and-whisker plot histogram.
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Figure 5.11: Box-and-whisker plot histogram relative to the group of algorithms
using SA as metaheuristic. The scaled values of the solutions generated by each
algorithm (left) and their relative ranks in the comparison among each other (right)
are depicted in two box-and-whisker plot histogram.
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Figure 5.12: Box-and-whisker plot histogram relative to the group of algorithms
using TS as metaheuristic. The scaled values of the solutions generated by each
algorithm (left) and their relative ranks in the comparison among each other (right)
are depicted in two box-and-whisker plot histogram.
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Figure 5.13: Box-and-whisker plot histogram relative to the RTRH group of
algorithms. The scaled values of the solutions generated by each algorithm (left)
and their relative ranks in the comparison among each other (right) are depicted
in two box-and-whisker plot histogram.
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Grouping the RTRH hyperheuristic models (Fig. 5.13) we can observe that
RTRH with mapping obtains performances higher that RTRH with local
restart. In other words, to proceed with remapping the state of a metaheuris-
tic in an analogous one of another metaheuristic is better than restarting a
metaheuristic from the begin.

5.2 Conclusions

Taking into account the above results, we can affirm that:

• the Simulated Annealing metaheuristic obtains the best results over
these set of instances; referring to the type of operator, the best me-
dian of the solutions found is relative to the mix strategy, although
statistically there’s no difference among the results obtained using the
other operators, as we can see from Figure 5.3 and 5.11.

• The RTRH family performs in average not worst than the other meta-
heuristics. In particular, as we can see from Figure 5.3, RTRH family
are the second and third algorithm in terms of results. This is a good
result if we think that, at this moment, does not exist a policy for
managing the metaheuristics different from the random one, where for
policy we mean a set of criteria for selecting, running and stopping a
metaheuristic. Anyway, we can observe this important result: mapping
the state of a metaheuristic into an analogous one of another meta-
heuristic, during the passage from one metaheuristic to another one,
performs better than starting the new metaheuristic from the start.

• Using the data structure for representing a tree and matrices for com-
puting the quality function allows to halve the computational cost of
the Sankoff’s algorithm, as we showed in the Chapter 2.

5.3 Future work

The hyperheuristic models open a new possible way for searching the solu-
tions spaces of the combinatorial optimization problems. The way for com-
bining a subset of metaheuristics, selecting the metaheuristic for the temporal
run time, selecting the stop criterion are limited only by the imagination of
the researcher. We will focus our future research on these topics, trying to
describe the criteria for which a hyperheuristic could find the optimal per-
formances for a given set of instances.
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