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Abstract

In this work, we propose a method for self-organized task partitioning and allocation.
The current state of the art provides neither an abstract understanding of task
allocation problems in self-organized swarm systems, nor tools for modeling and
designing such systems. We present the first steps towards a unified method capable
of exactly this.

We analyse the problem and provide a structured approach to complex task allo-
cation problems. The method relies on partitioning complex tasks in smaller, more
manageable subtasks which can be tackled by a swarm of robots in a self-organized
way. Two types of subtasks are identified and discussed. We present experiments
to study the properties of these subtasks, and propose algorithms to achieve self-
organized allocation to these subtasks as well as test the algorithms in practical,
real-world applications.
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1 Introduction

In their life, most individuals constantly face complex tasks they have to master.
Frequently, these tasks are time-consuming, difficult or even beyond the possibilities
of a single individual. Tackling such tasks by a group of individuals, on the other
hand, might surpass these problems, and is therefore a concept commonly found in
nature. Be it carnivores hunting in packs or humans working in teams, cooperation
allows to work more efficiently and tackle tasks which are beyond the capabilities
of a single individual. Other reasons for teamwork might for example be increased
robustness or specialization of individuals to certain tasks.

When creating artificial system like robots, designers face similar problems. One
possibility is to create multi-purpose, complex and monolithic robots that are able
to tackle the desired tasks alone. Although this solution seems to be the simplest
way, it is limited when it comes to robustness, flexibility and scalability. An alterna-
tive approach is the so called swarm intelligence: drawing inspiration from natural
systems like social insects, it tries to overcome the problems outlined above by cre-
ating a flexible swarm of simple individuals. Using methods such as decentralisation
of control, limited communication abilities among individuals and the use of local
information only, complex behaviour emerges at colony level. Swarm intelligence
systems exhibit the desired characteristics like flexibility and robustness, while re-
maining manageable on a local level. Swarm robotics is the application of Swarm
intelligence to robotics, using a swarm of relatively simple robots to tackle complex
problems.

Of course, when trying to design groups of artificial individuals that should cooperate
in order to solve a task, we are facing exactly the same problems as they occur in
natural systems. The big problem is how to organize team work. Who is doing
what? And when? If there are multiple ways of doing things, which is the most
efficient? Humans, being faced with these questions, have developed complex social
and operational rules in order to cooperate in a group—and still, massive failures can
constantly be observed in our everyday life. Being much more limited than humans,
robots (and therefore their human creators as well) seem to face a very complex
problem. And still, taking inspiration from nature, observing existing groups and
uncovering the underlying principles helps designing systems of robots that can, in
a limited way, cooperate.

The problem of assigning tasks to individuals is commonly referred to as task al-
location. In this work, we study the problem of task allocation in self-organized
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1 Introduction

swarms of robots. More specifically, we try to find a framework which allows us, the
designers, to decompose a complex task into multiple subtasks which can be tackled
by the swarm in a self-organized way.

1.1 Contribution and Goal

The goal of this work is to present the latest advancement in our research concerning
self-organized task allocation, while giving the “overall picture” in terms of research
direction and future work.

The main contribution is a unified method to represent and tackle complex task allo-
cation in swarm robotic systems. The experiments presented in this work contribute
to the general understanding of self-organized task allocation and help us to study
the building blocks required for this method. Additionally, they serve as a testbed
for a first version of a general framework about how to decompose complex tasks.
Hence, the study ventures into finding solutions to self-organized task partitioning
as well.

1.2 Outline of this Work

We will first present some fundamentals relevant to this work in Chapter 2, namely
the field of swarm robotics and the Swarmanoid project, in which this work is
embedded in. In the following Chapter 3 we review related works. In Chapter 4
we try to establish a general framework about how to decompose complex tasks
into two types of interdependent subtasks. Chapters 5 and 6 are devoted on how
to allocate individuals to these two types of subtasks in self-organized multi-robot
systems. Chapter 5 reports current experiments and results, while Chapter 6 gives
an outlook for future work and outlines possible experiments. Finally, Chapter 7
summarizes the presented studies and draws some conclusions.
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2 Fundamentals

In this chapter, we introduce the underlying concepts of this work. First, we
give an introduction to swarm intelligence and the related swarm robotics. Af-
terwards, we present the Swarmanoid project, in which this work is embedded
in.

2.1 Swarm Intelligence

Swarm intelligence (commonly abbreviated with SI) is a branch of artificial intelli-
gence based on the collective behavior of natural systems like social insects (Bonabeau
et al., 2000; Garnier et al., 2007). It is commonly defined as:

[. . . ] any attempt to design algorithms or distributed problem-solving de-
vices inspired by the collective behavior of social insects and other animal
societies.

(Bonabeau et al., 1999)

The expression “swarm intelligence” was originally introduced by Beni and Wang
(1989) for cellular robotics systems, but is nowadays widely used in the field of ar-
tificial intelligence. Swarm intelligence systems consist typically of a population of
relatively simple individuals. Similar to social insects, the individuals follow simple
behavioral rules and rely purely on local sensing and communication. Therefore,
the individuals interact with each other and the environment on a local basis only.
Because of the dynamic nature of swarm systems, these interactions are to a certain
degree of a stochastic nature. Although there is no centralized control, such systems
show the emergence of global behaviors that transcend the behavioral repertoire of
the single individual: the swarm self-organizes. Natural examples of swarm intelli-
gence include ant colonies (Detrain and Deneubourg, 2006), bird flocking (Reynolds,
1987), animal herding (Gautrais et al., 2007), colony of bacteria (Ben-Jacob et al.,
2000), and fish schooling (Grünbaum et al., 2004) .

Swarm intelligence systems have a few invariant properties:

• the system is composed of many, relatively homogeneous individuals;

• interactions among the individuals are based on simple behavioral rules that
exploit only local information;

3



2 Fundamentals

• control is fully distributed among a number of individuals;

• communications among the individuals happen in a localized way;

• system-level behavior results from the interactions of individuals with each
other and with their environment and appears to transcend the behavioral
repertoire of the single individual;

• the overall response of the system is quite robust and adaptive with respect
to changes in the environment.

Artificial systems that were developed following the swarm intelligence approach
are usually flexible, robust, adaptive and scalable (Camazine et al., 2003; Cao et al.,
1997). Nowadays, an increasing amount of human created algorithms fall into the
domain of swarm intelligence, for example algorithms for optimization (Dorigo and
Stützle, 2004), data analysis (Abraham et al., 2006) or network routing (Di Caro
and Dorigo, 1998).

2.1.1 Swarm Robotics

Swarm robotics is a novel approach to robotics which tries to circumvent problems
with classical, monolithic robots like inflexibility and individual complexity by ap-
plying the principles of swarm intelligence to the field of robotics (Dorigo and Şahin,
2004). Thus, it studies how a large number of physically embodied agents can be de-
signed in such a way that the group self-organizes and a global, collective behaviour
emerges. Swarm robotics emphasises aspects such as:

• decentralisation of control;

• limited communication abilities among robots;

• use of local information;

• self-organization of global behaviour.

Swarm robotic systems are, similar to their natural counterparts, made up of many
simple robots. This allows for cheaper, less complex robots, which are more ro-
bust. Other goals of the swarm robotics approach are flexibility, adaptability and
redundancy (see Bonabeau et al. (1999) or Beni (2005) for a review on swarm
robotics).

Examples of known applications of swarm robotics include flocking (Turgut et al.,
2008), morphogenesis and self-assembly (Christensen et al., 2007), intrinsic fault
detection (Christensen et al., 2008), path formation and prey retrieval (Nouyan et al.,
2008), coordinated behaviors (Sperati et al., 2008), and collective transport (Groß
and Dorigo, 2008).
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2 Fundamentals

2.2 The Swarmanoid Project

This work is embedded in a project is called Swarmanoid: Towards Humanoid
Robotic Swarms. Swarmanoid and is a a Future and Emerging Technologies project1
funded by the European Commission. From the Swarmanoid project proposal:

The Swarmanoid project proposes a highly innovative way to build robots
that can successfully and adaptively act in human made environments.
The Swarmanoid project will be the first to study how to design, realise
and control a heterogeneous swarm robotic system capable of operating
in a fully 3-dimensional environment.

The main scientific objective of the proposed research is the design, im-
plementation and control of a novel distributed robotic system comprising
heterogeneous, dynamically connected small autonomous robots so as to
form what we call a Swarmanoid. The Swarmanoid that we intend to
build will be comprised of numerous (about 60) autonomous robots of
three types: eye-bots, hand-bots, and foot-bots.

The Swarmanoid project is the successor of the Swarm-bots project, which consisted
in study of the construction and the control techniques for a swarm of s-bots. The s-
bots are able to self-assemble to a larger entity called swarm-bot in order to overcome
the limitations of an individual robot. For example, connecting to each other in order
to form a long line allowed the robots to pass over a trough in the environment.
The Swarmanoid project will build on the results obtained during the Swarm-bots
project.

2.2.1 Goals

As stated above, the goal of the Swarmanoid project is to build a swarm of robots
which can operate in, and adapt to, a human-made environment. More specifically,
the swarm consists of a heterogeneous group of robots, each with different capabili-
ties, able to cooperate in order to solve complex tasks in 3-dimensional space. The
project aims at constructing the following three types of robots:

Foot-bots are wheeled robots that drive on the ground. They have the ability
to self-assemble and transport hand-bots by using a rigid gripper. They are
specialized on moving on rough terrain and transportation tasks.

Eye-bots are flying robots, which can attach to the ceiling and observe the en-
vironment. They are specialized in sensing and analysing the environment,
relaying relevant information to the other robots.

1 FET-OPEN IST-022888, running from 1 October 2006 for 42 months.
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2 Fundamentals

Hand-bots are complex robots that can climb vertical surfaces and have two arms
that allows them to manipulate objects. They are specialized in object ma-
nipulation and climbing. As they are not able to move on the ground by
themselves, they need to self-assemble with foot-bots in order to move in the
environment.

Additionally to the construction of the robotic hardware, important scientific con-
tribution are:

• research and development for novel control algorithms for a self-organized
swarm system;

• study and definition of distributed communication protocols.

These goals are required to form the Swarmanoid into a robotic entity that can act
consistently and is distributed, robust, and scalable. In the following sections we
give an overview over the robotic hardware and the simulation environment used to
conduct the experiments presented in this work.

2.2.2 Robotic Hardware

In this section we give a short introduction to the Swarmanoid hardware. In the
following, we explain common functionality shared by all robots. Afterwards, we
give details about all three robots.

The base system of each of the three robots is the same. They are driven by an
embedded Linux system, running on a low-energy processor (a Freescale i.MX31
with 533 MHz). The system can be accessed via USB, stores data on a 64 MB
flash drive and uses 128 MB of main memory. All robots can be accessed by the
operator using 802.11g wireless network, which can as well be used by the robots to
communicate with each other.

Some sensors are common to two or all three of the robots. For example share all
robots the same camera, although they are equipped with a different number of
cameras and different optical devices (e.g., mirrors or lenses). Another important
sensor is the 3D range and bearing sensor 2, which is able to detect a robots range
and bearing in 3D space using IR rays. Although this sensor is common to all
robots, its capabilities might differ. For example, the foot-bot will be equipped with
a full 3D system, while the eye-bot will carry only a 2.5D system because of weight
limits.

2 At the current stage of the project the range and bearing sensor is not finalized yet. It is
therefore not known if there will be fully 3D or a reduced version (dubbed “2.5D”) of the range
and bearing sensor implemented on all robots. Nevertheless, we will refer to the sensor as the
“3D range an bearing sensor” throughout the document.
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2 Fundamentals

Please note that the images shown below are schematics or photos of prototypes and
might differ from the final robots3. More specifically, the scale of the three robots
shown does not relate.

Foot-bots

Foot-bots are mobile robots driving on the ground, using a differential drive system.
Their hardware is based on the s-bot from the Swarm-bots project (Mondada et al.,
2004). Compared to their predecessor, foot-bots are larger, have more sensors, a
modular design, and a hot-swappable battery. Figure 2.1 gives an overview over the
hardware features of a foot-bot.

Apart from the common features listed above, foot-bots feature the following sensors
and actuators:

• differential drive system (a combination of wheels and tracks);

• rotating turret;

• gripper, which allows to connect to other foot-bots or hand-bots;

• color LED ring for local communication;

• high-power light beacon for long-range signaling;

• upward facing camera for detecting eye-bots;

• omni-directional camera for detection of other ground robots in the environ-
ment;

• 24 IR proximity sensors around the robot;

• 8 IR proximity sensors for hole detection;

• 4 contact ground sensors;

• RFID ground reader;

• long-range distance scanner;

• torque and traction sensors in the wheels, gripper, and turret; to detect exter-
nal forces the robot is subjected to.

Foot-bots are expected to run for 1 to 2 hours. A super-capacitor allows the exchange
of the battery during the course of an experiment. At the current stage of the project,
foot-bots are the only robots in the Swarmanoid which will feature a full 3D range
and bearing sensor.

3 More pictures of the robots and detailed pictures of specific subsystems, as well as videos of the
prototypes in action, can be seen on the Swarmanoid website, http://www.swarmanoid.org/
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Figure 2.1: Foot-bot hardware design shown on the basis of a CAD-drawing of the
current prototype

Eye-bots

Eye-bots are flying robots which have the ability to attach to a ferromagnetic ceiling.
As they can stay passive while being attached, this ability extends the operation
time of the robot. Because of their elevated position, eye-bot can have a aerial view
on the environment. They are therefore equipped with several sensors that allow
them to specialize in sensing tasks, for example a pan and tilt camera. Figure 2.2
gives an overview over the hardware features of an eye-bot.

Because of the nature of the robot, payload is extremely limited. Still, the robot
features all of the common features listed above, although the range and bearing
sensor is not fully 3D. Additionally, eye-bots feature the following sensors and actu-
ators:

• main thrust rotor for lifting the robot;

• 4 steering fans in ducts used for maneuvering;

• color LED ring for local communication;

• upward facing camera for detecting other eye-bots;

• optical flow sensor;

• pan and tilt camera with a fish-eye lens for observing the environment below
the eye-bot;

• rotating long-range distance scanner;

• altitude and air pressure sensor.

8



2 Fundamentals

Figure 2.2: Eye-bot hardware design shown on the basis of a photo of the current
prototype. Please note that the eye-bot shown is incomplete; missing
parts are for example the 3D IR range and bearing sensor and the com-
munication LEDs.

Eye-bots are expected to run for approximately 20 minutes of continuous flying. The
operation time can be extended by attaching to the ceiling and operating in a power-
saving mode without any mechanical devices active, which extends the run time to
1 to 2 hours. Eye-bots have interchangeable batteries, which allow for experiments
that extend even beyond these limits.

Hand-bots

Hand-bots are the most unusual robots of the project. Hand-bots are able to move
vertically on walls by launching a rope which attaches to a ferromagnetic ceiling.
Subsequently to launching the rope, they can use their arms to climb a shelf or
similar structure that supports them sufficiently. They are not able to move on
the ground unaided, but have to be transported by foot-bots to their location of
operation. Figure 2.3 gives an overview over the hardware features of a hand-
bot.

At the time of writing, it was not yet finalized to which extend the range and bearing
system is going to be integrated into the hand-bot. Nevertheless, a reduced 3D range
and bearing system similar to the one used on the eye-bot is expected. Apart from
this, the robot features all of the common features listed above. Additionally, hand-
bots feature the following sensors and actuators:

• rope launcher with magnetic ceiling attachment device;

• arms that can move in 3D space (restricted to a cone in front of the robot);

• hands that can rotate;
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Figure 2.3: Hand-bot hardware design shown on the basis of a CAD-drawing of the
current prototype

• claws that can grip objects;

• fans to turn the robot while suspended on the rope;

• color LED ring for local communication;

• a camera in the nose for observing the environment;

• cameras in the hands for object detection;

• IR proximity sensors around the robot;

• IR proximity sensors in the hands and claws for object detection;

• torque and traction sensors in all joints to detect external forces the robot is
subjected to. to detect external forces the robot is subjected to.

The expected runtime of hand-bots is currently not known. Hand-bots feature an
exchangeable battery.

2.2.3 Simulation Framework

Simulation-aided research and development is an important part to robotic research,
as experiments on the real robots are very costly. Because of the characteristics
and requirements of the Swarmanoid project, a special simulation environment
has been developed. More specifically, the requirement of a simulation environ-
ment that allows a complex, heterogeneous swarm of robots to move in 3D space
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while remaining computationally viable demanded a special design of the software
used.

General Characteristics

The Swarmanoid simulation framework (dubbed “ARGoS”, an acronym for “Au-
tonomous Robots Go Swarming”) is a novel continuous-time, physics based simu-
lation framework which is fully modular. Depending on the requirements of the
researcher, different implementations of sensors, physics engines, and other parts
can be chosen. Each implementation of an entity may simulate its physical coun-
terpart on a different level of detail. This way, the simulation can be as accurate as
required by the experiment while at the same time minimize computational over-
head.

The simulation framework has been designed to provide the following core properties
and functionalities (taken from the ARGoS documentation):

• Modeling of all the components of the Swarmanoid and of the environment
according to multiple, selectable, levels of physical detail.

• Computational efficiency, to allow running simulations of complex indoor real-
world scenarios including relatively large numbers of robots, and to ease the
use of computationally-demanding algorithms for learning and control.

• Effective monitoring and visualization of the activities and performance of the
single robots and of the entire Swarmanoid .

• Transparent migration of robot control code from the simulator to the real
robots.

• High modularity, to facilitate reuse and integration of available software mod-
ules, permit independent code development from different contributors, and
ease both the static and dynamic addition and removal of components and
functionalities such as sensors, actuators, controllers, physics engines, and vi-
sualization modalities.

Simulation Experiments

As long as not stated otherwise, all the experiments presented in this work are carried
out using the ARGoS simulation framework. For all the current experiments it is
sufficient to use a purely kinematic model of the robots. Additionally, the current
experiments only study robots acting in 2D-space. Therefore, the 2D kinematics
physics engine together with the specific sensors and actuators implementations are
used.
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3 Related Work

In the following chapter we will review some works related to our studies. In Sec-
tion 3.1, we will review multi-robot foraging in general. Although this is a wide
topic, it is somewhat important to our studies as it serves as our testbed for the
methods proposed in the following chapters. Additionally, it is tightly intertwined
with task allocation in general. Afterwards, we review the specific literature on task
allocation, followed by a short review of the literature relevant to specific experi-
ments. Because of the broad application of multi-robot foraging, the corresponding
section partly overlaps with the following sections. This is desired, as each section
reviews the publications from a different point of view.

3.1 Multi-Robot Foraging

The problem of foraging (or harvesting) objects or prey by a group of robots is one of
the canonical testbeds for collective robotics. This is because it is relatively easy to
model, has clear parallels in nature, and can be applied in many practical situations.
It therefore provides us with a general method of comparison in the otherwise very
diverse field of robotics. Especially in the case of swarm robotics, the foraging
problem can provide a useful metric, as “there are no generally accepted global criteria
to evaluate a swarm system’s performance” (Rybski et al., 2008); although analytical
models for specific systems exist (e.g., Lerman and Galstyan, 2002). Similar as with
robotic systems themselves, the issue with foraging problems is that there exists
a plethora of them (see Table 3.1 for a taxonomy). We will make a more simple
distinction while discussing related works and distinguish only between two types of
foraging problems: simple foraging versus multi-foraging.

In simple foraging, a group of robots have to collect objects of a single type, usually
driven by an internal motivation like artificial hunger, energy balance or similar.
Matarić (1997) proposed a behavior-based algorithm combined with a reinforcement
learning technique to let robots learn how to collaborate in a “puck” foraging task.
The robots were required to learn how to correlate appropriate conditions for each
of the available behaviours in order to optimise the collective responses. Arkin et al.
(1993) used a single-prey foraging task where the group collaborates through direct
communication, similar to a social stimulus. They studied the impact of an optimal
group size on task performance. Krieger and Billeter (2000) used a single-prey

13



3 Related Work

→ increasing complexity →

single robot vs. multiple robots

single storage locations vs. multiple storage locations

single source vs. multiple sources

open field environment vs. constrained environment

single prey object type vs. multiple prey object types

sparse sources vs. dense sources

homogeneous robots vs. heterogeneous robots

without communication vs. with communication

Table 3.1: A foraging problem taxonomy, inspired by Østergaard et al. (2001).

real-robot experiment, where harvesting is motivated by energy gain. In a similar
experiment, Agassounon and Martinoli (2002) compared different threshold models
in the same harvesting scenario. Labella et al. (2006) used a similar foraging task,
motivated by energy gain, for studying a task allocation problem (see Section 3.2).
Using a single-task foraging problem, Lerman and Galstyan (2002) studied the effect
of interference on group performance (see Section 3.4). Several studies concerned
the problem of interference reduction while using a simple foraging task (Lein and
Vaughan, 2008; Liu et al., 2007; Shell and Matarić, 2006; Fontán and Matarić,
1996).

In multi-foraging, two or more types of objects are used to model more complex
problems. In this case, comparisons are more problematic, as usually differing con-
straints (i.e., harvest a certain ratio of each object type) are imposed on the task.
Jones and Matarić (2003) used a 2-task foraging problem to study different kinds
(i.e., deterministic versus probabilistic) of non-adaptive threshold models. In their
work, they imposed a ratio-constraint on the foraging task. Lerman et al. (2006)
used a multi-foraging task for an extensive analysis of the underlying stochastic pro-
cess and propose a framework for similar analysis. Similarly to works using simple
foraging, Campo and Dorigo (2007) used a notion of the group’s internal energy to
allocate individuals to a multi-foraging task. Rosenfeld et al. (2005) used a 2-task
foraging problem to develop and study an adaptive division of labour method in a
large scale multi-robot system.
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3.2 Task Allocation

Task allocation for multi-robot systems is a wide field, which can be divided in
intentional and self-organized task allocation. Intentional task allocation relies on
negotiation and explicit communication to create global allocations, whereas in self-
organized task allocation global allocations result from local, stochastic decisions.
A formal analysis and taxonomy that covers intentional task allocation has been
proposed by Gerkey and Matarić (2004). Kalra and Martinoli (2006) recently com-
pared the two best-known approaches of intentional and self-organized task alloca-
tion.

3.2.1 Intentional Task Allocation

Intentional task allocation is a common approach to the task allocation problem,
as it follows a classical “engineering” philosophy. Thus, it is one of the most
popular approaches. ALLIANCE is a prominent behavior-based algorithm of this
class (Parker, 1998). It uses motivations inherent to the individual robot such as
impatience and acquiescence to achieve adaptive task allocation. The method re-
lies on a global state which has to be communicated to every individual in the
group. Therefore, ALLIANCE works only for spatially dense groups and does not
scale.

Another big group of approaches to the task allocation problem by using inten-
tional cooperation is market or auction based approaches. In these approaches
robots bid on tasks which are then assigned by an centralized auctioneer. Market
based approaches have been thoroughly studied; we therefore limit ourselves to the
best-known works in the field. TraderBots is a market-based approach proposed by
Dias and Stentz (2003). TraderBots is inherently decentralized but uses centralized,
informed sub-groups to improve efficiency. Another well-known market-based ap-
proach is MURDOCH, proposed by Gerkey and Matarić (2000). In MURDOCH,
robots use a subscribe-publish architecture to assign tasks. The system monitors
progress in short time intervals to detect and respond to faults. Kalra et al. (2005)
give an extensive survey over existing market-based approaches.

Mclurkin and Yamins (2005) studied a subproblem of intentional task-allocation:
the dynamic assignment of subgroups to subtasks. In their work, they assume
that a global partition the problem is provided a-priori. They proposed three
communication-based algorithms for assigning groups of individuals to these par-
titions.
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3.2.2 Self-Organized Task Allocation

The amount of studies in self-organized task-allocation in considerably lower. The
field can be regarded as being in its early stages, as most studies tackle simple
problems without task interdependencies. Studies in self-organized task allocation
are mostly based on threshold-based approaches, taking inspiration from division
of labor in social insects. Krieger and Billeter (2000) as well as Agassounon and
Martinoli (2002) where among the first to propose threshold-based approaches in
multi-robot task-allocation. Labella et al. (2006) used threshold-based task alloca-
tion in a multi-foraging task. Similarly, Campo and Dorigo (2007) used a notion
of the group’s internal energy to allocate individuals to a multi-foraging task. Liu
et al. (2007) studied a multi-foraging task while focusing on the influence of the
utilisation of different social cues on the overall group performance. Recently, Magg
and Te Boekhorst (2008) extended Labella’s work to heterogeneous teams of robots,
in which the (virtual) heterogeneity of the robots changes as a function of their
specialization.

3.3 Task Partitioning and Division of
Labour

Although the concepts of task partitioning, specialization, and division of labour are
a key to the success of insect societies (e.g., see Jeanne, 1986; Ratnieks and Ander-
son, 1999), their use in robotic systems is less studied. To complicate matters, these
concepts are usually intermingled with different problems and rarely studied individ-
ually. Labella et al. (2006) is one of the examples where division of labour through
specialization can be observed in a multi-robot system. As they found out in their
work, specialization occurs even in robots that were thought to be homogeneous—
most probably through little differences in built and hardware quality. Adaptive
division of labour is also studied by Jones and Matarić (2003), although the special-
ization among individuals seems to be arbitrary. Division of labour has also been
applied for other problems like team formation (White and Helferty, 2005) and is
usually inherent to heterogeneous groups of robots.

Spatial task partitioning (i.e., the partition of a large task in multiple smaller tasks
which are essentially the same) has been extensively used for interference reduc-
tion (see the works on bucket brigading (e.g., Fontán and Matarić, 1996; Lein and
Vaughan, 2008; Shell and Matarić, 2006). Nevertheless, to the best of our knowledge,
adaptive task partitioning in terms self-organized task decomposition, as envisioned
in this work, has up to now never been achieved.
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3.4 Interference in Multi-Robot
Systems

Interference has long been acknowledged as being one of the key issues in multi-robot
cooperation (Goldberg and Matarić, 2003). Lerman and Galstyan (2002) devised a
mathematical model that allows a quantification of the interference and its effect on
group performance. Probably, the most thorough study was published by Goldberg
(2001), who identified several types of multi-robot interactions. Goldberg notes that
one of the most common types of interference is physical interference in a central
area, for example the nest. This kind of interference results from resource conflicts,
in this case physical space, and can be arbitrated by either making sure that robots
stay in different areas all the time or by employing a scheduling mechanism to ensure
that robots use the same space only at different times.

A simple method for reducing interference by using the first arbitration method men-
tioned is the so-called bucket-brigade: robots are forced to stay in exclusive working
areas and to pass objects to the following robot as soon as they cross the boundaries
of their area (Fontán and Matarić, 1996; Shell and Matarić, 2006). Recently, this has
been extended to work with adaptive working areas by Lein and Vaughan (2008).
Østergaard et al. (2001) compared the bucket-brigading approach in different envi-
ronments and studied the influence of the group size on task performance. To the
best of our knowledge, current works concerned with bucket brigading only studied
the influence of interference due to obstacle avoidance. Other sources of interference
(e.g., object manipulation) were never studied, although they might have a critical
impact on the performance of any task partitioning approach. To quote Shell and
Matarić (2006): “If the cost of picking up or dropping pucks is significant [. . . ], then
bucket brigading may not be suitable.”
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4 Task Allocation and Partitioning

In this chapter we first introduce the terms task allocation and task partition-
ing, as used in the context of this work. Afterwards, we will discuss the chal-
lenges in designing a swarm system capable of self-organized task allocation, as
well as the advantages and disadvantages over classical approaches. Section 4.2
outlines a method that allows a swarm system to tackle complex tasks, followed
by two example scenarios used to demonstrate the practical application of such a
method.

4.1 Definition

The problem of assigning individuals to a task and its subtasks is a known problem,
most commonly referred to as task allocation. Although the term task allocation is
often used to describe the whole field concerned with task allocation problems in
general, it actually only refers to the allocation of individuals to (sub)tasks. The
equally important problem of task partitioning is referred to by different terms in
the literature. We therefore define both task allocation and partitioning, as well as
related terms, in the following.

4.1.1 Task Allocation

The term task allocation describes the problem of how to allocate available individ-
uals to available tasks. A good allocation should pay attention to, among others,
constraints like:

• task-interdependencies;

• limits on the number of individuals working on a task;

• specialization of individuals;

• location of tasks and individuals.
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Additional complexity arises from the fact that the number and the nature of tasks
might be unknown or change during execution time, requiring a flexible allocation
method. Another big factor is the need for robustness and fault tolerance—for
example the ability to handle failure of a specialized individual working on a key
subtask. Thus, an optimal task allocation method should have, among others, the
following characteristics:

• take into account characteristics of the individuals;

• allocate dynamically, and be able to reallocate, individuals;

• robustness and fault tolerance;

• generate optimal allocations;

• be decentralized;

• do not rely on global communication;

• scale with increasing number of individuals and tasks;

• produce exact, repeatable solutions.

It is obvious that designing a system that has all these characteristics is very com-
plex, if not impossible. Thus, different approaches focus on different characteris-
tics.

Intentional task allocation usually focuses on producing optimal allocations or close
approximations thereof, which are exact and repeatable. Other characteristics like
centrality and fault tolerance are usually second to these main features. Therefore,
it is usually assumed that tasks and allocations are communicated by the means
of a non-local communication channel. This makes the resulting task allocation
problem a combinatorial optimization problem (Gerkey and Matarić, 2003). Most
task allocations can be reduced to an instance of a well known problem, for example
the Optimal Assignment Problem (OAP) from operations research. In practice, the
complexity of finding an optimal allocation depends on the type of problem and can
well be NP-hard. Gerkey and Matarić (2004) defined a taxonomy for intentional
task allocation problems, classifying them by type, specifying their complexity and
to which type of known optimization problem they relate.

In systems that rely on self-organized behaviour, global behaviour emerges from
the interaction of local sensing and communication with simple, often probabilistic
rules (Bonabeau et al., 1999). In these systems neither a collective notion of a
“goal”, nor a centralized controller exists. Allocation of individuals to tasks has to be
achieved by other means. Inspiration for designing such systems is often taken from
social insects, as for example in Theraulaz et al. (1998). As these systems consist
of many individuals that self-organize, they inherently posses the characteristics of
decentralization and robustness. However, they provide, because of their stochastic
nature, only an “average” behaviour and an approximate allocation. It is therefore
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not feasible to treat the task allocation problem in these systems as a classical
optimization problem.

In the context of this work we define task allocation as the problem of finding
the global allocation of individuals or groups of individuals to subtasks, whereas
the subtasks are not explicitly known to the individuals. It is implicit that the
global allocation is more an average of the time-series of allocations, as the ac-
tual allocations might fluctuate because of the stochastic nature of the systems
employed.

4.1.2 Task Partitioning

Task partitioning is a somewhat lesser known concept, although it can be found
in most insect societies. It is sometimes defined as “the division of a discrete task
among workers” (Ratnieks and Anderson, 1999). It is called task partitioning, as
multiple individuals partition a large task among them, and basically allows to
allocate groups to tasks rather than just single individuals.

We extend this notion for the purpose of this work to the following. Task partitioning
is defined as the problem of decomposing a global task into smaller (atomic) subtasks,
which might then be tackled by an individual or a group of individuals. The goal
is to find methods for accomplishing this task partitioning (at least partly) in an
automated, self-organized way. Task partitioning in a self-organized system might
be dynamic and change constantly. Because of the dynamic nature of the problem
and its heavy dependency on the characteristics of the global task, it is not clear
yet to which extent a swarm can self-organize task partition, and to which extent
partitions have to be pre-assigned by the designer.

4.1.3 Division of Labour

Division of labour describes the division of the workforce among the range of tasks
encountered by a group. It is a requirement for parallel task processing and the basis
for the formation of specialized individuals. Due to this specialization, division of
labour might increase efficiency and facilitate the creation of specialists that are
unable to do tasks different than the one they are specialized in. Thus, division of
labour might lead to behaviourally heterogeneous populations. Division of labour
and task partitioning are not mutually exclusive alternatives in the organisation of
work (Jeanne, 1991). In fact, task partitioning can help to facilitate division of
labour to a greater extend by partitioning larger tasks in smaller subtasks, which
then can be tackled by specialized workers.
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4.2 Self-Organized Task Allocation

How can effective task allocation be obtained in a self-organizing system? How can
a swarm of individuals choose tasks and work on them, without having a notion of a
“goal” or purpose? These questions are yet unanswered in the relatively unexplored
field of self-organized task allocation. Present studies limit themselves to simple
cases of task allocation, usually studying a two-task foraging problem (e.g., Labella
et al., 2006; Campo and Dorigo, 2007). They usually employ threshold-based mecha-
nisms, inspired by the intelligence of social insects, in order to solve relatively simple
tasks. Although swarms that tackle complex tasks of different type, interdependen-
cies, and locations, can be observed in nature, building artificial swarms with similar
capabilities has yet not been accomplished. In the following, we propose a method
for handling complex tasks in a self-organized swarm system—mainly a method for
decomposing complex tasks in smaller and more simple subtasks. Afterwards, we
discuss possibilities for self-organized decomposition and allocation, as well as give
application examples for the proposed method.

4.2.1 Decomposing Complex Tasks

Most of the time, we can, upon closer inspection, identify smaller chunks of a task
that seems initially to be very complex. These chunks are smaller pieces of work
which can be tackled separately, but usually depend in some way on the global tasks
and other chunks (e.g., order of execution). We refer to these chunks as subtasks,
whereas identifying them is referred to as task partitioning.

We assume that the majority of the complex tasks can be broken down into two
kinds of subtasks:

1. subtasks with sequential interdependencies;

2. subtasks with parallel interdependencies.

The mentioned interdependencies can be either spacial of temporal. Subtasks of
the first type are any task that require in-order execution, i.e., any set of subtasks
that have temporal or spatial dependencies that force them to be executed one
after the other. An example is the transport of an object using two different kind
of transportation methods. Subtasks of the second type are any task that allows
parallel execution, but where the subtasks are somehow interlinked. An example is
the retrieval of objects of two types, with the additional constraint of retrieving a
specific ratio.
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Task Dependency Graphs

By analysing a complex task and the dependencies among its subtasks, we can create
task dependency graphs. Task dependency graphs represent a complex task in terms
of smaller, atomic subtasks and are basically a flow-chart of task execution. By
limiting subtasks to a small set of known types (i.e., the two types of subtasks men-
tioned above), and tackling these in a self-organized way, we hope to find a general
method for accomplishing task allocation in complex tasks.

Let us define a task T as a directed acyclic graph (DAG) with a single root node and a
single leaf node. Thus, a task can be written as T (S,D), with S = {T1, . . . Tn} being
the set of subtasks and D being dependencies between these subtasks. Subtasks
form the nodes of the graph, whereas dependencies form directed edges between the
nodes.

As a task is defined as a directed acyclic graph whose nodes might be itself directed
acyclic graphs, we can define a hierarchy of tasks, where the rank of a task T is
equal to the number of its subgraphs. The task with the highest rank is called global
task and represents the problem or mission. In the following, we explain the three
possible types of subtasks we consider in this work. Figure 4.1 gives a graphical
representation of them.

A task is called atomic if the sets of subtasks and dependencies are empty, i.e.,
T (∅, ∅). It can therefore not be decomposed further, and must be tackled
directly.

A pair of tasks Ti and Tj is called sequentially dependent when there exists a
spatial or temporal dependency that requires sequential execution. This kind
of dependency is denoted by T⊕ = Ti ⊕ Tj.

A pair of tasks Ti and Tj is called parallel dependent when the tasks can be executed
in parallel, but their start and end node are the same. This kind of dependency
is denoted by T	 = Ti	Tj. Additionally to having the dependencies mentioned,
tasks may have other constraints imposed upon them.

All tasks are in the powerset of all atomic tasks and all possible dependencies: T ∈
P(T ′(S,D)) with S = {T | ∀T = T ′(∅, ∅)} and D = {⊕,	}.

4.3 Main Idea of the Proposed
Method

The main idea of the proposed method is to partition a complex task into multi-
ple, smaller subtasks, which are less complex and of known type. These tasks can
therefore be tackled by a swarm in a self-organized way, which is, because of their
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Figure 4.1: Possible types of subtasks. Arrows indicate the flow of execution, while
nodes are subtasks. s and e nodes represent task execution start and
end, respectively. (a) A atomic task. (b) A task that consists of two
subtasks with a sequential interdependency. (c) A task that consists of
two subtasks with a parallel interdependency.

simple nature, a lot easier than treating a complex task as a monolithic problem.
Thus, the swarm should be able to decompose a complex task into smaller sub-
tasks represented by a task dependency graph as introduced above. Determining
whether this decomposition can be accomplished in a self-organized way is yet an
unresolved issue. Having an indirect notion of the task dependencies, the swarm
members should be able to allocate themselves to the tasks in the right order and
quantity.

4.3.1 Research Directions

While the main idea of this work deems to be relatively simple, there are many
unresolved issues. For example, it is not clear yet if it is reasonable to assume that
task decomposition can be accomplished in a self-organized way, and to which extent
the designer’s knowledge has to be part of the system. Therefore, there exist a couple
of main research directions rising from the analysis above.

How can we create a self-organized system, that is able to

1) partition complex tasks by itself;

2) make the transition between dependent subtasks;

3) allocate its individuals to these subtasks; and
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4) tackle the two types of non-atomic subtasks mentioned above?

Finding answers and solutions to all this questions is a daunting task, which is well
suited to provide topics for several researchers.

Scope of this Work

In this first work, we will focus on the last two questions of the ones listed above:
How can we create a self-organized system that allocates automatically to all re-
quired subtasks, and how can a swarm tackle subtasks of the two mentioned types?
We will use the decomposition method outlined before, with a partitioning set by
the designer. In the rest of this work we will therefore study how to achieve self-
organized task allocation to subtasks which are either sequentially or parallel de-
pendent.

Limits of the Approach

Because of the simplicity of the main idea of this approach, there are many limits
to it. Most important, it is yet not clear to which extent a self-organized task
partitioning is possible, and to which extent the system designer has to integrate
his knowledge into the system. Other limitations might be tasks that have different
types of interdependencies, or incompatible task goals. Additionally, the proposed
method does not allow for alternative ways of tackling a complex task and defines
only a rather rigid way of execution.

4.4 Application Examples

In the following section we demonstrate the application of the task decomposition
method outlined above by using two examples. First, we sketch a possible sce-
nario for the Swarmanoid , in which the swarm solves a complex, distributed task
using self-organized task allocation. The second example is the well known “rescue”-
mission scenario, which demonstrates the application of the method to a real-world
problem often used in the robotics literature.

4.4.1 A Swarmanoid Scenario

The following scenario is embedded in the Swarmanoid . The global task is a multi-
foraging task. The swarm has to retrieve multiple objects of different types (i.e.,
building material) in a given ratio. The objects are clustered by type, but the clusters
are distributed randomly in the environment. The environment can be large and
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might include obstacles, which limit the vision of the foot-bots. For example, in a
warehouse filled with shelves each different object type is stored on a different shelf.
Consequently, the swarm has first to locate the shelves and identify the appropriate
ones with the help of eye-bots. Next, the swarm has to collect a certain ratio of each
object type and has to transport it to a central storage location.

Objects are collected from a shelf by one or more hand-bots, depending on the
density of the objects on the shelf and the required quantity of objects. After an
object is deposited on the floor by a collecting hand-bot, it has to be transported to
the central storage location. Foot-bots are used as markers at the bottom of the shelf
for two reasons: first, to coordinate distributed collection of objects on a single shelf;
and second, to coordinate the transfer of collected objects to transporting robots.
Object transport requires cooperation of several robots, as no single robot has the
capability of moving on the ground while grasping an object. Thus, object transport
is accomplished by a self-assembled robot which form a more powerful, symbiotic
entity. In this case, the entity consists of several foot-bots and one hand-bot. The
hand-bot is used to grasp the object, while the foot-bots move the hand-bot on the
floor. Path-formation similar to the work published by Nouyan et al. (2008) will be
employed by the eye-bots in order to lead foot-bots from the central storage location
to each of the shelves. In the central storage location, objects are simply stored in
a pile. Figure 4.2 shows a diagram of the overall task (top), and a screenshot taken
from the ARGoS simulator (bottom).

Task allocation aspects of this scenario

The swarm has to form a so called “delivery line” from the central storage location
to each of the shelves. Each delivery line represents the subtask of collecting one
object type. These subtasks can be executed in parallel, but have the constraint of a
certain required ratio between the object types. Each delivery line itself consists of
two subtasks: object collection and object transportation. Because of the nature of
the task, these subtasks have to be executed sequentially. From the task allocation
point of view, the global task is partitioned into parallel subtasks, which themselves
are partitioned into two sequential subtasks. Individuals have to be allocated to each
delivery line, and inside the delivery line to either collect or transport objects. A
possible reason for this might be that collection of objects on the shelf is faster than
object transportation on the ground (e.g., because of the a long distance between
the nest and the shelf). Thus, the swarm might use more robots for transportation
than for gathering.

We consider a task with two object types, in the following referred to as “blue” and
“red” objects. Therefore, the global task can be represented as a task consisting of
two subtasks with parallel interdependency, T = Tblue	Tred. These subtasks in turn
consist of two subtasks with a sequential interdependency, Tblue = Tc ⊕ Tt (and Tred
accordingly). The collect and transport subtasks (Tc and Tt, respectively) are
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Figure 4.2: A task allocation experiment. The top image shows a schematic view
of the experiment shown at the bottom (screenshot from the ARGoS
simulator). The grey circle in the center represents the central storage
location where all objects have to be transported to. There are two de-
livery lines, one for “blue” objects and one for “red” objects. Individuals
can switch from one delivery line to the other. Inside each line, individ-
uals can switch from one subtask (transporting on the ground) to the
other subtask (collecting on the shelf).

atomic tasks and can be tackled directly by the swarm. Thus, the global task has a
rank of 2. A graphical representation of this task as a task dependency graph can
be seen in Figure 4.3

The proposed experiment relies on several submodules which are by themselves
complex and interesting research topics. For example, shelf climbing using the
hand-bot is a complex control problem involving close coordination of several joints.
Other problems to research include collective motion of a self-assembled entity, path-
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Figure 4.3: Task dependency graph for the Swarmanoid task allocation scenario
depicted in Figure 4.2. There are two tasks in parallel, the blue foraging
task (Tblue) and the red foraging task (Tred). Each task consists of a
collect and transport task (Tc and Tt, respectively).

formation using a swarm of eye-bots as well as navigation guided by eye-bots. These
submodules are not part of this work as they are well outside the scope of task
allocation. We rely on the Swarmanoid project partners to supply these submod-
ules.

4.4.2 A Rescue-Mission Scenario

The following scenario is a “rescue”-mission scenario. We will use it here as a demon-
strator for our method, as it is a common task of arbitrary complexity. Together
with the “space”-mission scenario, the rescue-mission is one of the most prominent
application examples in the robotics literature (see for example the Robocup Res-
cue Leagues1). Naturally, this scenario is more hypothetical, as large-scale robotic
space missions are currently technologically unfeasible, and the environmental and
task parameters were chosen arbitrarily. Nevertheless, this scenario serves well as a
demonstrator for a possible application of the method.

In this scenario, we assume a swarm of homogeneous, wheeled robots which can
communicate by local radio and have the ability to grip and pull objects. The envi-

1 http://www.robocuprescue.org/
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ronment of the scenario consists of a site of some catastrophe or accident, for example
a major train crash. The goals of the swarm in this scenario are:

• explore the environment;

• locate and identify human casualties;

• identify and overcome obstacles; and

• rescue humans (if possible).

The system operator need to set a goal or at least the environment boundaries upon
mission start, so that the swarm knows in which space it needs to operate. The
swarm should start by exploring the environment, finding human casualties along
the way and identify possible obstacles that hinder their rescue. Possible obstacles
might be for example rubble blocking the way or holes in the ground. The swarm
members might have to work together in order to overcome these obstacles, and
different obstacles might need different numbers of individuals working together.
Finally, the swarm should rescue human individuals by dragging them along the
cleared paths.

Task allocation aspects of this scenario

The swarm has to start exploring the environment. As soon as a human is found, the
swarm determines the rescue path and obstacles on the way, while in parallel con-
tinuing to explore. Depending on the state of health of the human, different human
casualties may have different priorities for rescue. Depending on this priority, the
robots will clear the way of obstacles in sequential order or in parallel. By doing so,
the robots are able to allocate the necessary amount of robots to each human in or-
der to find and rescue every casualty in an efficient way. After the robots cleared the
way, they will try to rescue the human. After completion, they will join forces with
other robots working on other tasks, for example exploration.

The global task can be represented as a task consisting of two main subtasks with
parallel interdependency, T = Texplore 	 Trescue. The explore subtask is atomic,
while the rescue subtasks in turn consist of three subtasks with a sequential inter-
dependency, Trescue = Tlocate⊕Tfree	Ttransport. The locate and transport subtasks
are atomic tasks and can be tackled directly by the swarm. The subtasks of the
free task can be, depending on the state of health of the human, either executed
in parallel or one after the other, with an atomic subtask Tclear for each obstacle.
Thus, the global task has a rank of 3. A graphical representation of this task as a
task dependency graph can be seen in Figure 4.4.
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Figure 4.4: Task dependency graph for the rescue-mission task allocation scenario.
There are three tasks in parallel, the explore task (Te) and two rescue
tasks (Trescue). In the rescue tasks the robots first have to find the
human (Tf), then free the way (Tfree) and transport the human casualty
back (Tt). Freeing the way includes clearing the path of all obstacles (Tc).
clear tasks can be executed in sequential (left), or parallel (right) order,
depending on the state of health of the human. Of course, working in
parallel is faster but requires more robots. * symbolizes the cardinality
of the rescue and clear subtasks, as there can be arbitrarily many of
them.

Of course, the proposed scenario is rather hypothetical and more on a though-
experiment. Nevertheless, we think it demonstrates well the flexibility of the frame-
work and possible real-world counterparts to complex task allocation problems.
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In this chapter we present experimental work undertaken to study self-organized
task allocation in the case of sequentially dependent tasks. Sequentially dependent
tasks are one of the building blocks of the method for self-organized task allocation
presented in the previous chapter. Therefore, we need to study extensively what the
properties of such tasks are and how we might tackle these tasks in a self-organized
way. More specifically, we first study an abstract version of a two-task problem.
Afterwards, we try to transfer the knowledge gained in the abstract case to several,
more specific applications with a practical background.

Please note that this chapter reports finished, ongoing, and future work. The studies
are presented in their logical order and not their temporal order. Thus, ongoing work
including preliminary results is presented in Section 5.2, whereas the following two
Sections 5.3 and 5.4 describe future works. The final section of this chapter will
report findings in a specialized case of task partitioning, and represents the only
published study of this work (Pini et al., 2009).

5.1 Common Methods

We use the foraging problem, one of the canonical testbeds for collective robotics
(see Section 3.1), as a base for our studies. In our experiments, a swarm of robots
has to harvest prey objects from a source area and transport them to a home area.
By spatially partitioning the environment, the global foraging task is partitioned
into two subtasks: 1) harvest prey objects from a harvesting area (called source)
and 2) store them to a home area (called nest). Robots working on the first
subtask harvest prey objects from the source and pass them to the robots working
on the second subtask, which store the objects in the nest. These subtasks have a
sequential interdependency in the sense that they have to be performed one after
the other in order to complete the global task once: delivering a prey object to the
home area.

Thus, the task can be represented according to the the method introduced in Chap-
ter 4 as follows. There are two atomic subtasks, Tharvest and Tstore, with the global
subtask being Tsequential = Tharvest ⊕ Tstore. See Figure 5.1 for a graphical representa-
tion of the task dependency graph.
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Figure 5.1: The general task dependency graph of the sequential task allocation
problem studied here, according to the method presented in Chapter 4.
First, objects have to be harvested (subtask Th) and transported to the
exchange zone. Afterwards, they have to be transported to the nest and
be stored there (subtask Ts).

In this chapter, we limit ourselves to a harvesting task that is pre-partitioned by the
designer into two subtasks with a sequential interdependency. Robots can decide
to switch from one subtask to the other, thus creating a task allocation problem:
individual robots have to be allocated to subtasks and different allocations yield
different performance. As a prey object has to be passed directly from one robot to
the other, a robot usually has to wait some time before passing a prey object to, or
receiving a prey object from, a robot working on the other subtask. This waiting
time can therefore give an indication of the allocation quality for the respective
subtask: if the waiting time is very long, there might not be enough robots allocated
to the other subtask. Thus, the robots can use this waiting time to decide whether
to switch subtask or not. Ideally, the waiting time should be the same for the
two subtasks in order for the system to reach a stable state and deliver optimal
performance.

5.1.1 Environments

We study sequential task allocation in a common scenario: harvesting objects in
environments which are spatially partitioned into two parts. In these environments,
the nest is marked by a light source that can be perceived by all robots, thus pro-
viding directional information. The parts in which the environment is partitioned
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Figure 5.2: General representation of the environments used for studying the se-
quential task allocation problem. Prey objects are transported from the
source on the left to the nest on the right (gray stripes). The robots
hand over the objects in the exchange zone (black stripe). The light
source is marked with “L”.

are the part containing the source, which is located on the left, and the part con-
taining the nest, which is located on the right side of the arena. We refer to the
two sides of the arena as harvest area and store area, respectively. The exchange
zone is located between these two areas. Robots working on the left side, called
harvesters, gather prey objects in the source and move them to the exchange zone,
where they pass them to the robots working on the other side. These are referred to
as storers : their role is to transport prey objects to the nest and store them there.
The nest, the source, and the exchange zone can be detected through environmental
cues (ground color). Figure 5.2 gives a graphical representation of the general layout
of the environments used in the experiments.

5.1.2 Controllers

Although each of the individual experiments presented in the following sections re-
quires extra methods or specialized behaviours, the overall structure of the controller
is the same in all experiments. As we present the controller only on a fairly abstract
level, we will present it once for all experiments. Individual specifics will be explained
in the each experiment’s subsection, titled “Controller Specifics”.

All the robots share the same, hand coded, finite state machine controller depicted
in Figure 5.3. The controller consists of two parts, each corresponding to a possible
subtask a robot can perform. Gray states refer to the harvest subtask, white states
to the store subtask. Since all the robots start in the harvest area, their controller is
initially set to perform anti-phototaxis. In this way they will reach the source, where
they can start retrieving prey objects. The behavior of each robot is a function of
the task it is performing. Harvesters not carrying a prey object move towards the
source, where they can find prey. Harvesters carrying a prey object, move to the
exchange zone and wait for a free storer. Upon arrival of a storer, the harvester
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Go to source Go to nest

Switch
   task?

Switch
   task?

Figure 5.3: Simplified state diagram of the controller of the robots for all the se-
quential task allocation experiments. Gray states belong to the harvest
task, white states to the store task. The obstacle avoidance state has
been omitted for clarity, as it is applicable in all states.

passes the prey object to it. Storers carrying a prey object move towards the nest,
where they can deposit the object. Storers not carrying a prey object head to the
exchange zone and search for a harvester with a prey object. Robots can detect
other robots carrying a prey on the basis of the color of their LED ring. While
moving, each robot avoids obstacles (walls and other robots).

Task switches can occur: a harvester carrying a prey object can decide to become
a storer, and a storer not carrying a prey object can decide to become a harvester.
It depends on the different controller types how the decision of switching task is
achieved, but usually some kind of threshold mechanism is employed. For exam-
ple, the robots controller could employ a deterministic threshold model: if a robot
remains in the transfer zone for a period of time that is bigger than its threshold
without passing or receiving prey objects, it switches its task.

5.1.3 Research Questions

As the partition of the task has been fixed in the experiments presented in the fol-
lowing, we focus on the question on how to accomplish self-organized task allocation
in a task with sequential interdependencies. In a self-organized system, there exists
no central controller that decides which allocation might be the best. Instead, the
global allocation emerges from the local decision of each individual of the group.
Thus, the main question is: how can an individual make the decision in which task
it should work? Or, more specifically to this task: when should an individual switch
between the two subtasks?
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The studies presented in this chapter focus on this question, and how it can be
answered in a general and environment-independent way. Without using explicit
communication, the robots have only the following estimates about the environment
and tasks they are working on:

• The round-trip-time (tRTT ), describing the time they need to complete one
subtask,

• the task switching delay (tTSD), describing the cost of switching between tasks,
and

• the waiting time (tw), describing the time they wait in the exchange zone.

It is clear that an individual can only have an estimate of these environmental
cues as experienced by itself. Thus, the individuals need some type of averaging
or memory technique to keep track of estimates. Depending on these choices, the
system needs a certain period of time before each individual has a stable estimate
of these information, and needs therefore a certain period of time to stabilize in
itself.

The main research question is therefore: How can an individual make the decision to
switch tasks only based on the information it has, and how can this decision be inde-
pendent from the environment it is working in? Moreover, we want to study the rela-
tionship between the information described above and their influence on the decision
making process. Additionally, we will study applications of the proposed methods
in different practical problems robotic designers are faced with.

5.2 Abstract Experiments

In the following experiments, we omitted a practical justification of the task as
given in the other experiments presented in the following sections. The rationale
behind this choice is that the environment and the choice of the problem parameters
might be limited by such a practical application. We therefore study the problem in
several abstract experiments and transfer the gained knowledge to the applications
afterwards.

5.2.1 Methods

Simulation and Analysis

In case of the abstract experiments, we use a 3-tier approach to analyse and simulate
the system. This approach, utilizing simulations on different levels of detail, allows
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us to simulate and analyse larger parameter spaces than physics-based simulation
only.

Mathematical Model We use a mathematical model to represent the task in an
abstract way. This allows us to study the task analytically. The main advantage
of this is the possible identification of theoretical optima and faster analysis of
very large parameters spaces. Although the mathematical model is currently being
designed, it has neither been finished nor validated against the simulation results.
Thus, we will not include it in this work.

Abstract Simulation We used an abstract, agent-based simulator for simulating
the system. Although the simulation is based on an individual representation of each
robot, the agents are not embodied. This allows us to test algorithms and study
general system dynamics in large populations without the high cost of a physics-
based simulation. The abstract simulation has been implemented in Java using the
Repast agent-based simulation framework (Collier, 2003).

Physics-based Simulation The most detailed experiments were carried out in a
custom simulation environment that models geometries and functional properties of
simple objects and robots, namely the ARGoS simulator of the Swarmanoid project
(see Chapter 2 for more information). Our robots’ model is purely kinematic. Prey
objects are simulated as an attribute a robot can posses and not as physical entities.
Although the experiments are conducted in simulation only, the simulated robots
have a real counterpart: the foot-bots from the Swarmanoid project. For a detailed
description of the hardware, see Section 2.2.2.

The simulated robots are of round shape, with a diameter of 0.116 m. Each of
them is equipped with 24 infrared proximity sensors, used to perceive obstacles up
to a distance of 0.15 m. Eight ambient light sensors can be used to perceive light
gradients up to a distance of 5 m. The robots are equipped with 4 ground sensors
used to perceive nest, source and exchange zone. A LED ring is used to signal when
a prey object is carried. An omnidirectional camera allows the perception of LEDs
in a circle of radius 0.6 m surrounding the robot. A uniform noise of 10% is added
to all sensor readings at each simulation step. The robots can move at a maximum
speed of 0.1 m/s by means of a differential drive system.

Environments

The experiments are run in two different environments (see Figure 5.4). Both en-
vironments are 5 m long and 2 m wide. In the first environment (Figure 5.4a), the
exchange zone is located exactly in the middle (rendering both areas 2.5 m long).
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Figure 5.4: Depiction of the environments used in the abstract experiment. (a)
Symmetric environment used in the first experiment. (b) Asymmetric
environment used in the second experiment. The gray stripes are the
source (left), and the nest (right), each 0.5 m deep. The black stripe is
the exchange zone, that is 1 m deep. The light source is marked with
“L”.

Therefore, this environment is referred to as the symmetric environment. In the
second environment (Figure 5.4b), the exchange zone is located in a way that the
overall area is partitioned into 2/3 for the harvest area and 1/3 for the store area
(rendering them 3.33 m and 1.66 m long, respectively). Therefore, this environment
is referred to as the asymmetric environment.

In both environments, the exchange zone has a width of 1 m, whereas the nest
and the source are each 0.5 m wide. The area of the environments is 10 m2. As
the overall area is the same in the two environments, the same group size results
in the same robot density. Thus, results are comparable across the two environ-
ments.
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Controller Specifics

In this experiment, we use a controller that switches task based on a probabilistic
threshold θ. Thus, for each time step a robot is waiting in the exchange zone,
it draws a uniform random number p ∈ [0, 1). If p < θ, the robot switches its
subtask.

The robot’s waiting time is a function of the average time the robots working in
the other subtask need to complete their task. The task-completion time of a robot
depends on two factors: 1) round-trip-time (i.e., distance to travel) and 2) time lost
due to interference. Thus, the robot’s threshold θ is a function of the round-trip-time
and the interference of the robots in the other subtask. Therefore, the optimal task
switching threshold depends on the task (i.e., time to harvest a prey object) and the
environment (i.e., distance between the source and the nest). As the parameters of
the environment are not pre-programmed into the robots, determining the optimal
threshold can be a complex problem.

Experiments

The goal of the experiments is to uncover the relationship between the three environ-
mental cues mentioned before, namely tRTT , tTSD and tw, and their influence on the
threshold. This information should be used to define a method for deciding when to
switch task. As we base our controller on a probabilistic threshold, we therefore seek
a general function how to determine this threshold θ based on the estimates each
individual has. This threshold function should ideally be environment-independent
and adaptive.

At time t = 0, the robots are randomly placed in the harvest area. The exper-
iments run for tmax = 18, 000 time steps (a simulated time of one hour, with a
time step length of 200 ms). All experiments have been simulated with N = 10
robots.

Metrics

In order to quantify the influence of interference, we measure the group performance
P by the number of prey objects collected by the swarm at the end of the experiment.
Other metrics include time of convergence after experiment start and after changes
in the population.

Another important metric is the ratio r between storers and harvesters the sys-
tem converges to. We will compare this ratio to its theoretical optimal value
rt.
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5.2.2 Preliminary Results and Discussion

In this section we present the ongoing experiments and their preliminary results.
Most of them have been obtained by testing a hypothesis in the faster abstract simu-
lation and were then transferred to the physics-based simulation.

Adaptive Threshold Function

We propose to set the threshold θ in dependence of the robot’s waiting time, using
a sigmoid function. Thus, task switching probability is initially nearly zero, while
increasing over time and being certain after a long time span. We use a basic
exponential function for creating a sigmoid curve,

p =
1

(1− eθ(tw))
, (5.1)

where θ(tw) is a threshold function of the waiting time defined as follows:

θ(tw) =
wt − ts
a

− c , (5.2)

where ts is the waiting time at which the probability starts to rise, a influences the
steepness of the curve and c is a calibration factor. The parameters a and c can be
determined experimentally and should be fixed. The problem arises from ts, which
is dependent on the tRTT of the other subtask. Figure 5.5 gives an example for such
a function.

We performed a simple experiment in which the parameter ts was set to the average
waiting time experienced by the respective individual. That way, the probability
of switching increased as soon as the robot waited longer than expected. The re-
sult of this preliminary experiment is shown in Figure 5.6. As it can be seen, the
convergence speed of the swarm to a stable allocation is clearly influenced by the pa-
rameters. This means that the system is sensible to these parameters, which should
therefore be set carefully. Additionally, we can observe that the system converges to
a stable allocation, although the time of convergence is rather high. All experiments
have been performed in the symmetric environment.

The performance P of each subtask is sequentially dependent on the performance
of the other. The optimal allocation should be reached when both subtasks perform
at an equal level, thus maximizing the flow of prey objects. Both subtasks perform
equally when the waiting time tw is equal among all robots across the subtasks.
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Figure 5.5: An example for the switching probability when using the threshold func-
tion θ(tw), with ts = 100, a = 20 and c = 8. The vertical line marks ts,
the point at which the probability to switch task starts to rise.

Thus, the parameter ts should be set according to the ratio of the waiting times in
the two subtasks:

ts =
avg(t′w)

avg(tw)
, (5.3)

with t′w being the average waiting time experienced by the individual in the other
task. When the current task is performing worse than the other (i.e., ts is greater
than 1), robots working in this task should continue working. On the other hand,
robots working in the other task (ts is lesser than 1), robots should switch to the
lower performing task with higher probability. By combining this simple method
with the curve shown in 5.5, we can generate a task switching function in which
switching probability increases according to the difference of performance between
the two tasks. Up to now, this hypothesis has has neither been implemented nor
tested in physics-based simulation.

5.2.3 Future Work

One of the next steps will be the completion of the mathematical model mentioned
above. We can use it to identify the theoretical optimum when concerning allocation
and performance optima. This way, we can evaluate the existing system on a neutral
basis.
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Figure 5.6: Convergence speed for different parameters of the threshold function.
The solid line gives the ratio r between harvesters and storers, whereas
the dotted line gives the percentage of gathered prey objects. Time is
given in simulation time steps (1 step = 200 msec). (a) Convergence
speed for a = 10 and c = 5. (b) Convergence speed for a = 30 and
c = 10.

Additionally, we will continue the study concerning the threshold function and its
parameters. We will implement and test the method proposed in Equation (5.3) in
the abstract simulation, and, if successful, the physics-based simulation. We will
try to eliminate the other parameters of the proposed threshold function and try to
identify optimal values for them. Further, we need to investigate the influence of
task switching delay on the performance. More specifically, we will study at what
point it becomes advantageous to partition the task, depending on task switching
delay.

5.3 Sequential Task Allocation in a
Self-Assembled Swarm

The following experiment is the application of the sequential task allocation meth-
ods presented in the previous section to a “real-world” problem. Because of its
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L

Figure 5.7: Depiction of the environment used in the self-assembly experiment. The
shaded area is a rough terrain which renders a single robot incapable of
navigating across it. Thus, robots have to team up in order to tackle
this subtask.

dependence on the study of the threshold function, this work has not been ex-
tensively researched. Nevertheless, the basic implementation has been completed
and the setup works. We will therefore outline the rationale and the goal of this
research.

5.3.1 Outline of the Experiment

The rationale behind this experiment is to apply the method described in Chapter 4
and the threshold functions studied in the previous experiment to an environment
which demonstrates the properties of the system in a “real-world” problem. We
defined the task so that the two subtasks are not essentially the same as in the
previous experiment and switching between subtasks is costly (i.e., there is a task
switching delay).

The experiment will be conducted in an environment similar to the one specified in
the previous experiment. The environment is again partitioned in two areas, one
for harvesting and one for storing. The dimensions of the areas are as given in the
previous Section 5.2.1, with an equal distribution of area between the two partitions.
The difference compare to the previous experiment is that the surface of one of the
subtasks is rough, thus rending a single robot incapable of navigating across the
terrain. The subtask can therefore only be tackled by a self-assembled group of
robots (i.e., two foot-bot attached to each other). Figure 5.7 gives a graphical
representation of the environment.
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5.3.2 Research Directions

The study will focus on the application of the threshold model mentioned in the
previous Section 5.2 and the comparison to the self-assembly experiment. Interesting
questions will be:

• Can conclusions be transferred between the two experiments, and if yes, at
what level?

• Is the threshold model capable of converging to the optimal allocation?

• Are the parameter settings that proved to be optimal in the abstract experi-
ment optimal in this experiment as well?

• What is the influence of a task switching cost to the system’s performance?

Additionally, certain questions stem from the fact that the robots have to self-
assemble. For example, an interesting question is which switching cost makes it
advantageous not to disassemble after each run of the “rough-terrain” subtask and
stay instead assembled during the course of the whole experiment? If this is the case,
will this change in behaviour occur by itself and for all individuals? Will it occur
at the same time or gradually? If it is not the case that the cost of task switching
justifies always-assembled teams, will we observe the emergence of specialized indi-
viduals, only working on one task (be it assembled or individually)? We think that
these questions are a substantial base for further studies and multiple interesting
research directions.

5.4 Sequential Task Allocation in an
Heterogeneous Swarm

In the following experiment we study another application of the sequential task al-
location method. Because of the dependence on the study of the threshold function,
this work has not been extensively researched. Nevertheless, the basic implementa-
tion has been completed and the setup works. We will therefore outline the rationale
and the goal of this research.

5.4.1 Outline of the Experiment

The rationale behind this experiment is similar to the one presented in Section 5.3,
but with a slightly different focus. In this experiment, we study the allocation to a
task which has been partitioned into two subtasks which are essentially the same.
The difference is that the swarm working on this task is heterogeneous, consisting
of two types of robots: “strong” and “weak” ones. Only the strong robots can work
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Figure 5.8: Depiction of the environment used in the heterogeneous experiment. The
shaded area is a rough terrain on which some robots can only move with
reduced speed. The other robots are able to move on both terrains with
the same speed. Thus, robots have to specialize in order to reach optimal
performance in this task.

in both subtasks efficiently, while the weak ones loose efficiency in one of them.
Therefore, the swarm’s individuals have to specialize and utilize division of labour
in order to reach maximum performance. We will study if and how specialization in
a task like this can be achieved in a self-organized way.

The experiment will be conducted in an environment similar to the one specified
in the previous experiment. The environment is again partitioned in two areas,
one for harvesting and one for storing. Similar to the environment of the previ-
ous experiment, described in Section 5.3.1, the surface of one of the subtasks is
rough. Although all robots can navigate across this rough terrain, weak robots
can do so only by driving very slow, while strong robots can proceed at normal
speed. Thus, it would be advantageous that the strong robots specialize on the
subtask with the rough terrain, while the weak robots work on the subtask where
they can move at full speed. Figure 5.8 gives a graphical representation of the
environment.

The study will focus on how the swarm’s individuals can specialize in a self-organized
way. Most probably, we will employ the well known reinforced response thresh-
old model (Theraulaz et al., 1998), which has been proven to explain special-
ization and division of labour in colonies of social insects. In this model, indi-
vidual i engages in task j with the following probability (from Bonabeau et al.,
1996):

Tθij
(sj) =

s2
j

s2
j + θ2

ij

, (5.4)

where sj is the stimulus of task j and θij the threshold of individual i for task j.
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For a stimulus sj � θij, Tθij
(sj) will be close to 0, rendering it nearly impossible

that the individual i will start working on task j. On the other hand, for a stimulus
sj � θij, Tθij

(sj) will be close to 1, making it nearly certain that the individual i
will start working on task j.

Additionally, θij is updated in a self-reinforced way as follows (from Theraulaz et al.,
1998):

θij → θij − ξ∆t (5.5)

if individual j did not perform task j in the time period ∆t, and

θij → θij + ϕ∆t (5.6)

if individual j did perform task j in the time period ∆t. The factors ξ and ϕ are
usually called forgetting and learning coefficients respectively, and control how fast
individuals (de-)specialize. The overall threshold update function for a time period
∆t is then:

θij → θij − ξ∆ + (1− θij) + ϕ∆t (5.7)

Replacing the stimulus sj by a function similar to an inverted Equation (5.3) should
allow the individuals to switch task according to necessity. As the value of tw for
the weak robots should always be larger for the subtask they can efficiently work
on, they should specialize by lowering their threshold for this subtask. At the same
time, their threshold for the other subtask should rise, making it less likely for them
to work on that subtask. The strong robots on the other hand will be drawn to the
subtask with the rough terrain, simply because of the lack of individuals working
there.

5.4.2 Research Directions

As mentioned before, the study will focus on how the swarm’s individuals can spe-
cialize in a self-organized way. Additionally, we will study how to embed this in the
method described in Chapter 4. Interesting questions will be:

• Can the swarm reliably specialize?

• Is the swarm capable of converging to the optimal allocation?

• Is the specialization flexible enough, e.g., do weak robots start to work on both
tasks when there are not enough strong robots present?

• How should the stimulus, threshold and update functions be designed?
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• What is the influence of the parameters, and which values prove to be optimal?
Are these environment-dependent?

• Can we extend the mathematical model from Section 5.2.1 to model the spe-
cialization of individuals?

We think that these questions are interesting and provide another direction for
research: specialization in a self-organized robotic swarm. Although similar systems
have already been researched, they were never fully analysed from the task allocation
perspective. Moreover, combining these strategy with a method for self-organized
allocation to complex task is certainly promising. Additionally, the parallels with
social insect societies might provide further inside to the behavior of complex systems
in both fields.

5.5 Interference Reduction through Sequential
Task Partitioning

In collective robotics, interference is a critical problem limiting the growth of a
group: the time each robot spends in non-task-relevant behaviors such as obstacle
avoidance increases when the density of individuals rises—see e.g., Lerman and
Galstyan (2002). The performance on tasks that suffer from physical interference
can typically be improved by spatial partitioning; for example, by keeping each
robot in its own “working area”. A known approach that uses this rationale is the so
called bucket-brigade (Fontán and Matarić, 1996; Shell and Matarić, 2006). In this
approach, robots hand over objects to robots working in the following area, until the
objects reach their destination. As tasks usually cannot be partitioned arbitrarily,
this approach effectively limits the number of robots that can be employed in the
task. A possible solution to this problem, treating working areas as non-exclusive,
raises other problems: How should individuals be allocated to tasks? How can such
an allocation help in limiting the amount of interference?

In this section, we study the application of self-organized task allocation to this
problem. More specifically, we study a) how partitioning the global task in two
subtasks with a sequential interdependency can help in reducing interference, and
b) how we can apply the method introduced in Section 5.2 to this task. In contrary
to the previously presented experiments, the robots exploit a simple, deterministic
threshold-based model to decide when to switch task: when the waiting time tw
is higher than a threshold θ, a robot switches its subtask. In the following, we
study the properties of this simple self-organized task allocation strategy, compare
this strategy to a strategy without task partitioning, and analyze how it can help to
reduce interference. We refer to the two strategies as partitioned and non-partitioned,
respectively.
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5.5.1 Methods

This section describes the environments in which the experiments are carried out,
the simulated robots, and the robot’s controller. Additionally, we describe how we
run the experiments and we introduce some metrics that we use to evaluate the
properties of the system.

Environments

At time t = 0, the robots are randomly placed in the harvest area. The experiments
run for tmax = 18, 000 time steps (a simulated time of one hour, with a time step
length of 200 ms). The experiments are run in two different arenas (see Figure 5.9).
The first arena (Figure 5.9a) is 4.125 m long with a width of 1.6 m at the source and
exchange zone, whereas the nest is 0.4 m wide. The exchange zone is located 3.125 m
away from the source. This arena is characterized by the presence of an area, critical
for the task, in which high interference between robots can be expected (the nest).
Thus, this arena is referred to as the narrow-nest environment.

The second arena (Figure 5.9b) has a rectangular shape: it is 3.75 m long and 1.6 m
wide. Here as well the exchange zone is located 3.125 m from the source. The
arena shape does not suggest the presence of any zone where interference can be
higher than in other places. This arena is referred to as the wide-nest environ-
ment.

The area of both arenas is 6 m2, 5 m2 for the harvest area and 1 m2 for the store
area. The overall area is the same in the two arenas, so that the same group size
results in the same robot density. Thus, results are comparable across the two
environments.

Simulated Robots

As this experiment was the first one studied, the predecessor of the foot-bot, the
s-bot, has been used. Although the experiments are conducted in simulation only,
these simulated robots have a real counterpart: the swarm-bot robotic platform
(Mondada et al., 2004). The platform consists of a number of mobile autonomous
robots called s-bots, which have been used for several studies, mainly in swarm
intelligence and collective robotics—see for instance Groß et al. (2006) and Nouyan
et al. (2008). In the context of the experiments reported, the s-bots and the foot-bots
are interchangeable, though. Therefore, we are certain that results are transferable
across the two robot platforms.

Similar to the foot-bots, the simulated s-bots are of round shape, with a diameter
of 0.116 m. Each of them is equipped with 16 infrared proximity sensors, used to
perceive obstacles up to a distance of 0.15 m. Eight ambient light sensors can be
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Figure 5.9: Depiction of the environments used in the interference-reduction exper-

iment. (a) Narrow-nest environment used in the first experiment. (b)
Wide-nest environment used in the second experiment. The gray stripes
are the source (left), and the nest (right), each 0.25 m deep. The black
stripe is the exchange zone, that is 0.5 m deep. The light source is marked
with “L”.

used to perceive light gradients up to a distance of 5.0 m. The robots are equipped
with 4 ground sensors used to perceive nest, source and exchange zone. A 8 LEDs
ring is used to signal when a prey object is carried. An omnidirectional camera
allows the perception of LEDs in a circle of radius 0.6 m surrounding the robot. A
uniform noise of 10% is added to all sensor readings at each simulation step. The
robots can move at a maximum speed of 0.1 m/s by means of a differential drive
system.

Controller Specifics

As mentioned before, this controller uses a deterministic threshold in order to deter-
mine when a robot should switch its task. The robots internal threshold θ represents
the maximum amount of control cycles they can spend in the transfer zone waiting
to pass (harvesters) or receive (storers) a prey object. If a robot remains in the
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transfer zone longer than its threshold without passing or receiving prey objects
(tw > θ), it switches its task. The optimal threshold value is not trivial to deter-
mine. In the work presented here, we use a simple method to set the threshold θ:
at the beginning of the experiment, each robot draws a random threshold, sampled
uniformly in the interval [0, 1000].

We chose this method because it is sufficiently independent of the environment and
does not rely on complex approximation techniques. The threshold value does not
change during the experiment. In case of the non-partitioned strategy, the threshold
is set to θ = 0, causing the robots to switch subtask immediately as soon as they
reach the exchange zone.

Experiments

The goal of the experiments is to investigate whether task partitioning can reduce
interference in task-critical zones, and how to allocate a robotic swarm to partitions.
As pointed out by Lerman and Galstyan (2002), interference is related to the number
of individuals in the system. Additionally, the physical interference between robots
is also a function of the environment the robots act in. The higher the group size,
the higher the density, resulting in a higher amount of physical interference. Thus,
in order to study interference in our experiments, we increase the size of the group
in each of the two environments shown in Figure 5.9, while using both strategies
(non-partitioned and partitioned). We study the performance of the system when
the group size N ranges in the interval [1, 40]. We run 50 repetitions for each value
of N and each experimental setting.

Metrics

In order to quantify the influence of interference, we measure the group performance
P by the number of prey objects collected by the swarm at the end of the experiment
(tmax = 1 hour). From the group performance measure we can derive the individual
efficiency as follows:

Ieff = P/N, (5.8)

where N is the size of the group. Individual efficiency can help to understand the
effect of interference on the performance.

In order to measure the influence of environmental features on the interference,
we define an interference measure taking inspiration from Rosenfeld et al. (2005).
In their work, interference is measured as the time spent performing actions not
strictly related to the task, but rather lost due to negative interactions with the
environment (e.g., obstacle avoidance maneuvers). By registering the number of
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collisions for each area of the arena, we can draw conclusions about where physical
interferences happen most often. We measure interference through the state of the
controller: in our case a robot is experiencing interference each time its controller
perceives an obstacle.

In case of a partitioned task, there is another source of inefficiency that adds to
interference: the time lost in the exchange zone. We define the strategy cost C as
the sum of time lost because of physical interference and time lost in the exchange
zone:

C = Tint + Tpart , (5.9)

where Tint is the amount of time steps during which the controller perceives an ob-
stacle, and Tpart is the total amount of time steps spent in prey passing maneuvers.
By using this metric, the cost of the non-partitioned strategy is purely due to in-
terference (Tpart = 0), while in case of the partitioned strategy, prey passing costs
add to interference costs. In a way, passing a prey object produces another kind of
interference in the system. The strategy cost captures this effect, thus allowing for
a comparison of strategies.

5.5.2 Results and Discussion

The graphs in Figures 5.10a and 5.11 show the performance P for different group
sizes in the narrow-nest and wide-nest environment respectively. Figure 5.10b shows
the individual efficiency Ieff of the robots in the narrow-nest environment. Black
curves are the average computed over the 50 repetitions of each setting, gray curves
indicate the 95% confidence interval on the expected value. The performance graph
in Figure 5.10a shows that the partitioned strategy improves performance in the
narrow-nest environment. The graph shows that the non-partitioned strategy per-
forms better than the partitioned strategy for small group sizes (up to N = 13
robots). However, increasing the group size makes the non-partitioned strategy col-
lapse: the number of gathered prey objects drops dramatically for groups larger
than 13. The individual efficiency graph (Figure 5.10b) can explain the behavior
of the system. The robots employing the partitioned strategy are less efficient, for
small group sizes, than those performing the non-partitioned strategy. However,
the addition of more individuals affects the efficiency of the non-partitioned group
in a more dramatic way. At a certain point, the drop in efficiency becomes very
steep for the non-partitioned strategy. On the other hand, the partitioned strategy
scales better: individual efficiency drops smoothly. This explains why a group us-
ing the partitioned strategy performs better: it can benefit from the work of more
individuals and therefore collects more prey objects. These considerations do not
hold in the wide-nest environment. The performance graph in Figure 5.11 shows
that the non-partitioned strategy performs better than the partitioned strategy for
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Figure 5.10: (a) Performance P and (b) individual efficiency Ieff for increasing num-
ber of robots in the narrow-nest environment. The black continuous
line refers to the case of no task partitioning, the black dashed line to
the case of partitioning. Gray lines indicate the 95% confidence interval
on the expected value.
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Figure 5.11: Performance P for increasing number of robots in the wide-nest en-
vironment. The black continuous line refers to the case of no task
partitioning, the black dashed line to the case of partitioning. Gray
lines indicate the 95% confidence interval on the expected value.

group sizes N < 33. In both the environments, independently of the strategy used
to accomplish the task, the system collapses when the area is saturated by the
swarm.

Figure 5.12 shows how an increasing number of robots effects the strategy cost C
in the narrow-nest environment. The graph compares the cost C of each of the
two strategies for different group sizes. In case of the partitioned strategy (Fig-

51



5 Sequential Task Allocation

S
tr

at
eg

y 
co

st
 (

C
)

0
50

00
10

00
0

15
00

0
20

00
0

Collision costs
Partition costs

S
tr

at
eg

y 
co

st
 (

C
)

0
50

00
10

00
0

15
00

0
20

00
0

0 5 10 15 20 25 30 35 40

Number of robots (N)

partitioned strategy

non−partitioned strategy

Figure 5.12: Cost of interference in the narrow-nest environment. Bars represent
the cost C, sum of interference time Tint and partition time Tpart (i.e.,
waiting times). For easy reference, the outline of the bars of the re-
spective other graph has been added to each graph. (a) Costs for the
partitioned strategy, where interference cost stem from waiting times
and collisions. (b) Cost in case of the non-partitioned strategy, where
only physical interference through collisions exists.
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ure 5.12a), the graph shows each component of the cost (Tint and Tpart). Clearly,
task partitioning has the effect of reducing the cost due to interference but has the
disadvantage of increasing the cost due to time lost in the exchange zone. The
probability of two or more robots encountering each other increases with the robot
density. Although this determines a higher interference cost (i.e., Tint), it decreases
the cost due to lower waiting time (i.e., Tpart) in the case of the partitioned strategy.
Partitioning performs better when the gain from interference reduction is greater
than the loss of performance due to partitioning inefficiencies. These considerations
hold in the narrow-nest environment, where the likelihood of physical interference
in a task-critical zone is very high. In the wide-nest environment, interference in
the nest is as likely as interference in the exchange zone. Thus, it is not beneficial
to pay the cost of waiting and the non-partitioned strategy performs better for any
group size.

The mechanism by which partitioning reduces interference costs can be deduced by
comparing the interference graphs in Figure 5.13. The graphs show the number of
times that physical interference (as defined in Section 5.5.1) was registered in each
region of the narrow-nest environment. The total area was discretized in squares
of 1 cm2. Figure 5.13 shows the results obtained with 18 robots, in the case of the
partitioned strategy (Figure 5.13a) and in the case of the non-partitioned strategy
(Figure 5.13b). The graphs show that the use of the non-partitioned strategy leads to
high interference in the nest, which becomes congested. Partitioning the task reduces
the robot density in the nest, thus spreading the interference more uniformly across
the arena. In addition, the overall interference diminishes because the majority of
robot contact is moved into a area of the environment that is wider than the nest:
the exchange zone. Thus, the robots have more freedom of movement and collide less
often. Although the graphs show only data collected with 18 robots, experiments
with different group sizes produced similar results.

5.5.3 Conclusions and Future Work

Interference can be an issue when working with swarms of robots. In this work, we
used task partitioning and allocation to reduce interference between robots sharing
the same physical space. We manually partitioned the environment and employed
a simple self-organized strategy for allocating individuals to subtasks. Results show
that a partitioning strategy improves performance in a constrained environment.
Additionally, we identified cases in which partitioning is not advantageous and a
non-partitioned strategy should be used. The proposed strategy is fairly simple and
far from being an optimal solution, nevertheless we improved the performance of
the swarm when interference was costly.

Future work will concern the identification of the optimal allocation in the studied
environments as well as the development and study of a strategy that can find this
optimal allocation in a self-organized and adaptive way. In addition, the interference
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metric proposed in Section 5.5.1 could be used by the robots to decide whether to
partition the task. In this way, we could achieve even better performance, since
partitioning would be employed only when strictly needed. Finally, the goal is to
validate the system using the real robots.
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6 Parallel Task Allocation

In this chapter we will discuss self-organized allocation to subtasks with a paral-
lel interdependency. Together with the sequential task allocation discussed in the
previous chapter, parallel task allocation is one of the keystones for using the task
allocation method presented in Chapter 4.

The work presented here is in a preliminary phase. Up to now, only tentative
considerations and studies have been undertaken, but no real experiment has been
developed out of them. We will therefore present only briefly the current state and
give an outlook for possible experiments.

6.1 Outline of the Experiments

Similarly to the experiments presented in the previous chapter, we will use a foraging
problem as a testbeds for our task allocation algorithms. A typical scenario is a
harvesting task with two different types of prey objects (we will refer to them as
“blue” and “red” objects from now on). The two distinct subtasks of harvesting
one object type can be executed in parallel, thus creating a parallel task allocation
problem as defined in Chapter 4. Usually, certain constraints are imposed on the
subtasks, e.g., a given ratio of objects has to be harvested or a certain energy limit
has to be kept. Several examples of this can be found in the literature, e.g., Campo
and Dorigo (2007).

The task can be represented according to the the method introduced in Chapter 4
as follows. There exist two atomic subtasks, Tblue and Tred, with the global subtask
being Tparallel = Tblue	Tred. See Figure 6.1 for a graphical representation of the task
dependency graph.

In this experiments, we will again limit ourselves to a harvesting task that is
pre-partitioned by the designer into two subtasks with a parallel interdependency.
Robots can decide to switch from one subtask to the other, thus creating a task
allocation problem: individual robots have to be allocated to subtasks and different
allocations yield different performance. Additionally, constraints as discussed above
might influence the desired allocation.

The first group of planned experiments concerns exactly such a parallel task alloca-
tion problem with a constraint imposed on the ratio of objects. This means that the
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Figure 6.1: The general task dependency graph for the parallel task allocation prob-
lem studied here, according to the method presented in Chapter 4. The
swarm has to harvest objects of two types (e.g., “blue” and “red” objects,
their collection subtasks represented by Tb and Tr, respectively). The
two tasks can be executed in parallel, but might have some constraints
imposed on them (e.g., harvest a specific ratio of objects).

swarm has to harvest the a specific, a-priori defined ratio of the two objects. The ex-
periments will be concerned with researching the properties of the problem and possi-
ble methods to honor this constraint in a self-organized system.

6.2 Research Directions

The proposed studies open several research directions. Of course, the first group of
experiments already rises several questions of mostly practical nature: how can we
honor a ratio constraint as described above in a self-organized system? How can we
achieve self-organized allocation to such tasks? Is it at all possible to achieve adap-
tive allocation without relying on explicit communication? If yes, which methods
can be used? If no, how and which information should be passed among members
of the swarm?

There are several higher-level questions stemming from these basic questions. The
first is mostly related to the method presented in Chapter 4. The current method
does not include the possibility to model constraints between the two subtasks run-
ning in parallel. In order to make this method general enough to allow for broad
application, task allocation problems with parallel interdependencies have to be ex-
tensively researched. Therefore, the current method does not include any model for
additional constraints. Additionally, although studies with parallel task allocation
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exist in the literature (e.g., Campo and Dorigo, 2007), no study has yet analysed
task interdependencies in an abstract way. Thus, questions concerned with this line
of research are:

• Can we identify and model constraints imposed on tasks with parallel inter-
dependencies?

• If yes, how do these models relate to our current method for complex task
allocation, and, moreover, can they be integrated?

• Can we find general methods for tackling those constraints in a self-organized
system?

Another research direction will focus on the application of the threshold models that
were used for sequential task allocation. The most interesting question will be if we
can use similar, threshold-based algorithms for tackling self-organized allocation to
parallel dependent tasks. If yes, this raises related questions:

• How can we include the constraints imposed on the subtasks into the model?

• Can conclusions between the two types of task allocation problems be trans-
ferred, and if yes, at what level?

• Can we unify the approaches to sequential and parallel task allocation prob-
lems into a single method, general enough to tackle both?

Preliminary experiments and a review of the literature prove that threshold-based
methods are certainly suitable for allocating a swarm to parallel dependent tasks.
Nevertheless, much depends on the modeling of the constraints imposed on the tasks.
Is is possible to find a versatile method to represent these? Can it be integrated in the
threshold-based algorithms, and if not, what are the alternatives? All these questions
are currently of fundamental nature, as the dynamics of the basic underlying system
have not been researched yet. We will therefore focus the work on the first group of
experiments described above, in order to gain insight into the more advanced topics
outlined here.
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7 Conclusions and Future Work

This final chapter summarizes the research work presented in the previous chapters
and draws conclusions from it. Additionally, we summarize future research directions
and possible improvements given in these chapters.

Conclusions

In this work, we presented our ongoing research in self-organized task partitioning
and allocation. The current state of the art provides no unified understanding nor
tools for modeling and designing swarm systems that are capable of self-organized
task partitioning and allocation. The work presented here provides the first steps
towards a method providing exactly this. More specifically, the goal of our re-
search is to find a method that allows to partition tasks into smaller and simpler
subtasks, which can be tackled by a set of algorithms readily available for the de-
signer.

In order to achieve this, we first defined the problem and investigated related is-
sues. We defined task dependency graphs, a first step towards a method to partition
complex tasks into smaller subtasks. Although the partitioning of a complex task
is currently defined a-priori by the designer, the method is intended to allow for
self-organized task partitioning. Nevertheless, in the rest of the work we focused
on researching self-organized task allocation in case of the two types of subtasks
used by the mentioned method: subtasks with sequential and parallel interdepen-
dencies.

We proposed several experiments for the sequential task allocation, ranging from
a more abstract experiment which allowed us to study the parameters of the sys-
tem more freely to specific applications in current robotics research. We devel-
oped several simulation tools for each experiment, each providing us with a dif-
ferent level of detail. We identified and studied parameters of the problem and
proposed a threshold-based algorithm for self-organized task allocation, which has
been studied in case of the abstract experiment. We proposed several extensions
of this algorithm and future experiments building on the gained knowledge, includ-
ing an experiment which focuses on substantially different subtasks and an experi-
ment focusing on specialization in a heterogeneous swarm. Additionally, we studied
the use of task allocation and task partitioning for interference reduction. This
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study is the only completed and published work of the present report (Pini et al.,
2009).

Moreover, we outlined experiments for the study of parallel task allocation, the
next keystone required for the task modeling method proposed in this work. We
identified possible research directions and issues with this approach, but will hold
further studies until the discussed experiments for sequential task allocation have
been finished.

To summarize, we presented a method for tackling self-organized task allocation in
a structured way, identified the keystones for achieving this in a real system and
studied several instantiations of the problem. Overall, the proposed method and
algorithms are well beyond the state of the art and extend the knowledge in the
field of swarm robotics.

Future Work

As we gave detailed research directions specific to each experiment in each experi-
ment’s section, we will limit ourselves here to a summary and try to give a global
outline of planned and possible future work.

First, we will continue investigating sequential task allocation problems as presented
in Chapter 5. We will try to uncover the relationship of the environmental cues
mentioned and to define a robust and adaptive method for allocating individuals in
such a system. The methods researched on the abstract experiment (Section 5.2)
will be transferred to the other two experiments (Section 5.3 and 5.4). We hope to
find a general method to tackle self-organized task allocation in all of these problems,
thus creating a method general enough for broad application.

The next milestone in creating a unified method for self-organized task allocation
will be the research of problems with parallel interdependencies, as discussed in
Chapter 6. As this is currently a very preliminary work, a detailed road map can-
not be given. Nevertheless, future work will focus on modeling the problem as
well as researching possible constraints between the parallel subtasks. We will try
to integrate methods for handling constraints with threshold-based algorithms for
allocation.

The overall goal is to identify and develop a set of methods that allows a swarm
to self-organize allocation to complex tasks which have been pre-partitioned by the
designer into the two mentioned types of subtasks. The following step will be con-
cerned with how to self-organize partitioning and decomposition of complex tasks.
It is currently unknown to which extend this is possible, although first studies have
been already undertaken. Quantifying the amount of knowledge a designer has to
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inject into the system on its creation is an essential step and might further push the
boundaries of the state of the art.

The transfer of the knowledge gained in theoretical analysis and simulation to real
robot systems that have to tackle a practical problem is envisioned for all of the
proposed experiments.
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