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Abstract : A general definition of
personal identity is given for mechanical
entities. It is shown how to use it to build
self-reproducing machines, self-
regenerating organized collection of
machines, and more general self-
referential nets. We study different
classes of propositions that such
machines are able to communicate
(correctly prove, correctly infer) about
themselves in the limit., together with a
linked class of rememorable, and
correctly known, but not as such
communicable, experiences.
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1. HISTORY

Descartes's idea was that animals and
human's body were machines in contrast
with the immaterial human soul.
Nevertheless he fail in his obligatory
attempt to prove that some machine was
able to reproduce itself like an animal or
like our own body. The first explicit self-
reproducing man-made automata has been
conceived by Von Neumann some
centuries later. Basically Von Neumann's
construction embody a diagonalization
similar to those occuring throughout the
work bearing on the foundation of
mathematics like the one of Cantor,
Russel, Gödel, Kleene and others. (see
Davis, 10) Moreover an important
theorem of Kleene, which will be proved
in the next paragraphe, contain all what is
necessary to build a self-reproducing -or
                                    
1The following text presents research results of the
Belgian National incentive-program for
fundamental research in artificial intelligence
initiated by the Belgian State, Prime Minister's
Office, Science Policy Programming.  The scientific
responsibility is assumed by the author.

more generally a self-transforming-
machine relatively to an universal
environnement. Myhill has given a deep
account on that result and has illustrate
the strength of Kleene's theorem in
building an evolutionnary machine (see
19, 27).
Kleene's theorem has been generalized by
Case (see 8) for very general collection of
machines including, for exemple, the
offsprings of Myhill 's evolutionnary
machine.
Diagonalisation, and especially his double
(intensional) use has been fruitful in the
theory of inductive inference (Putnam,
Gold, Case & Smith), and in proof
theory (Boolos, Solovay), see 28,16,9,4,32.

2. GÖDEL NUMBERINGS

Let ω be a name for the set of natural
numbers :

ω = {0, 1, 2, ...}

Church, Turing (and others, see Davis)
has feeled the need to define precisely
what is meant by intuitively -or
mechanicaly- computable function from ω
to ω, i.e. having number as argument and
number as value. At that time there was a
general feeling that such a general
definition could not existed. The reason is
the following one : in case such a
definition could exist, we would dispose
of a finitely descriptible language L, in
which we can code all the computable
function, and we would be able to
produce an enumeration of all the
computable functions by putting these
codes in some order :

PPPPL = {φ0, φ1, φ2, φ3, ...},

φi, is the function (extension) computed
by the ieme code -or simply i- (intension).



but then we would be able to compute the
diagonal function1 :

∆L = λx φx(x)+1   (first diagonalisation)

which, although it is intuitively
computable, differ from each φ i. Indeed,
in that case ∆L would belong to PPPPL, and
there would exist a k such that ∆L = φk.
But this would entail :

φk(k) = φk(k)+1  (second diagonalisation)

It seems that any language L cannot
describe how to compute ∆L

This apparent refutation will not work if
we allow L (and we allow) to describe
partial -i.e not defined everywhere -
function. Or, in term of machines, if we
allow L to describe some machines which
does not always stop on all the inputs. In
that case the second diagonalisation only
imply that φk is not defined on k.

Definition  RRRRL is the subset of PPPPL wchich
contain all total computable function
descriptible in L.

If PPPPL contains all the intuitively
computable function, then a rereading of
the proof above show only that there is
no L-descriptible machine capable of
distinguishing the (code of) function
belonging to RRRRL
Now it happens that any attempt to
capture formally the set of intuitive
computable functions -partial functions
include- has given rise to the same set of
functions, i.e. to the same subset PPPP of

ωω.: PPPPalgol = PPPPlisp = PPPPprolog = PPPPc++   = PPPPgame-

of-life  =  PPPPn-body problem .(Moore 25)

This is the basic empirical motivation for
Church's thesis : PPPPyour-prefered-programming-

language = the set of intuitively computable
function = PPPP. There is a corresponding
thesis for RRRR. In particular these functions

                                    
1 λx means that x is the variable, for exemple λx x
is the identity function which send each number on
itself.

are the one which are computable with a
computer, and tranlatable in (any)
programming language2.. Exemple : The
following, algorithmicaly generated, list
of Lisp programs give rise to a precise
enumeration (with repetition) of PPPP :

1 (lambda (x) x)
2 (lambda (x) 'equal)
3 (lambda (x) 'car)
4 (lambda (x) 'cdr)
5 (lambda (x) (car x))
6 (lambda (x) (cdr x))
7 (lambda (x) 'x)
8 (lambda (x) (k x))
9 (lambda (x) (null x))
10 (lambda (x) 'quote)
11 (lambda (x) 'lambda)
12 (lambda (x) 'k)
13 (lambda (x) 'cons)
14 (lambda (x) 'cond)
15 (lambda (x) 'null)
16 (lambda (x) '(equal))
17 (lambda (x) '(car))
18 (lambda (x) '(cdr))
19 (lambda (x) '(x))
20 (lambda (x) '(quote))
21 (lambda (x) '(lambda))
22 (lambda (x) '(k))
23 (lambda (x) '(cons))
24 (lambda (x) '(cond))
25 (lambda (x) '(null))
26 (lambda (x) (equal x x))
27 (lambda (x) (cons x x))
etc.

In PPPP we can interpret φi as the function

from ω in ω, computed by the ième

lambda expression given in the list above,
where ω is seen as a set of code for finite
expressions. PPPP is called a Gödel
numbering (Rogers see 30) and it enjoy
two remarquable properties. First :

∃u  ∀i∀x      φu(i,x) = φi(x)             (1)

This mean that there is a machine u able
to compute any φi, given his description
i, on his domain. u correspond to the
code (we identify number and code) of an
universal machine : like computers,
interpreters... i plays the role of the
program for that computer.

                                    
2 With the notable exception of some intuitionnist
attempt to capture reasonnably big enough
enumerable set of total computable functions
(platonistically include in R).



Definition : we call such an u an universal
environment. Second :

∃s  ∀i∀x∀y  φi(x,y) = φφs(i,x)(y).       (2)

s is a metaprogram which parametrise a
function of n+1 variables in a function of
n variables by fixing one of the variable.
For exemple:

φs((λxλy x+y), 2) = λy 2+y.

Function of several variables are
implicitely represented in PPPP by function of
one variable, that variable being
interpreted as the (code of) a list (possibly
empty) of variables. Here is s given in
LISP :

(def 's '(lambda (p d)
  (list (quote lambda)
        (enlevedebut (length d)
                     (argu p))
        (subst-list-sauf-quote (mapquote d)
                               (npremier (length d)(argu p))
                               (body p)))))

s is essentially the substitution function
introduced by Gödel in his famous paper
on incompleteness. Subst-list-sauf-quote
is a generalised substitution function
which handle our identification between
number and program (or machine),
enlevedebut put away the "length
<input>" first element of the input list.
We are ready to give Kleene 's theorem :

∀t   ∃e   ∀y     φe(y) = φt(e,y)

In english : for any computable
transformation coded by t, there is a
machine coded by e which on any input y
(written in bold for remembering that it
could be a list , possibly empty, of inputs)
compute the transformation t,
parametrized by y, on itself.
Proof. λxλy.φt(φs(x,x),y) (first
diagonalisation)  is an intuitively
computable function. So, by Church's
thesis, there is a φr in PPPP wich compute it.

φr(x,y) = φt(φs(x,x), y).

Using automated parametrization (2) :

φr(x,y) = φφs(r,x)(y).

With x = r  (second diagonalisation) we
get :

φt(φs(r,r), y) = φφs(r,r) (y).

We are done with e = φs(r,r).  QED.

To avoid the use of Church's thesis it
suffices to do the same work in a
particular formal system.

Here is a description of the
diagonalisation written in LISP :

(def 'diag '(lambda (f)
  (list (quote lambda)
        (argu f)
        (subst-sauf-quote
         (list (quote s)
               (car (argu f))
               (list (quote list)
                     (car (argu f))))
         (car (argu f))
         (body f)
        ))
))

The double diagonalisation is captured, in
an uniform way, with the following
program :

(def 'k '(lambda (f)
  (s (diag f) (list (diag f))))

So k on any code of a transformation t
will build the machine which apply t on
itself.
Definition. k is Kleene's metaprogram.

We are ready to give our definition of
personal identity : a machine M has
personal identity with respect to an
(intensionally conceived) function f
relatively to an universal environment u
if M = (k f) in u. Personal identity, so
defined, is a relative and intensional
concept.

3. THE AMOEBA

A self-reproducing machine is a machine
which has personal identity with respect



to the identity function. Such a machine
apply identity  (I = λx x) on itself :

φe() = I(e) = e

exemple : if the universal environment is
LISP then I = (lambda (x) x) :

(def  'I  '(lambda (x) x) )

Then, to get the self-reproducing machine
-the amoeba- in LISP, it suffice to apply
Kleene metaprogram k on I :

(k I)

       (lambda nil
        (s '(lambda (x) (s x (list x)))
         (list '(lambda (x) (s x (list x))))))

This program apply on no input give
itself :

((k I))

       (lambda nil
        (s '(lambda (x) (s x (list x)))
         (list '(lambda (x) (s x (list x))))))

4. THE PLANARIA

Here is the generalisation (Case 74) : For
all machine t, there exist a machine e such
that

φφ...φe(x1).
..(xn)(a) = φt(e,x1,...,xn,a)

Proof :  (by induction)

For n=1, it is Kleene theorem. Using the
parametrisation theorem we find a g
(given by an application of the
metaprogram s ) such that :

φφg(x,x1...xn)(a) = φt(x,x1,...,xn,a)     (*)

take g = φs(t,x,x1,...,xn).

Suppose the theorem true for n-1, then
we can apply it to φg(x,x1,...,xn) with xn
playing the role of u. So there is a e such
that :

φφ...φe(x1).
..(xn-1)(xn) = t(e,x1,...,xn)

Substituting in (*) gives the result.  QED.

Such a e defines what we shall call a self-
referential net.

With that generalisation we are able to
buid a planaria -a little flatworm with an
amazing power of self-regeneration
(Buschsbaum, see 6). I show the
simplest one : it is a list of two cells
(C1,C2) such that on a certain flag
FLAG, each cell reconstitutes the entire
planaria (C1,C2).

C1(FLAG) = (C1,C2)
C2(FLAG) = (C1,C2)

I give different (extensional) functions for
each cells :

C1 = λx.x+1
C2 = λx.x+2

Construction : we know by the
generalized recursion theorem (with n=2) :

∀t∃e    φφe(y)(z) = φt(e,y,z)      (**)

φe will be the generator of C1 and C2 :
φe(1) = C1, φe(2) = C2, so we want :

φφe(1)(z)  =  if z=FLAG then op (φe(1),φe(2))

                         else z+1

φφe(2)(z)  =  if z=FLAG then op (φe(1),φe(2))

                               else z+2

e will be find by applying (**) on the
following recursion matrix :

t(x,1,FLAG) = (φx(1),φx(2))

t(x,2,FLAG) = (φx(1),φx(2))

t(x,1,z)= z+1, if z ≠ FLAG
t(x,2,z)= z+2, if z ≠ FLAG
t(x,y,z)= 'erreur if y > 2.

that is to say, by applying k and the
parametrization function following the
proof of the generalized recursion
theorem. I do it in the LISP, (see the
semantics below), in which



φφe(y)(z)

is represented by ((e y) z), i.e meta-
programming = parenthesized at the left.
I am using "m" instead of "t", because "t"
means true in LISP.

(def 'm  '(lambda (x y z)
        (cond
          ((and (equal y 1) (equal z 'FLAG))
            (list (x 1) '***** (x 2) ))
          ((and (equal y 2) (equal z 'FLAG))
            (list (x 1) '+++++ (x 2) ))
          ((equal y 1) (+ z 1))
          ((equal y 2) (+ z 2))
          (t '(ERREUR il n'y a que 2 cellules))
          ))
      )

then we define g following the proof of
the generalisation of Kleene's theorem :

(def 'g '(lambda (x y) (s m (list x y))) )

it suffices now to use Kleene's k to get
the planaria :

(def 'p (k g))

and the second cell generates the entire
planaria when applied on the flag FLAG :

((p 2) 'FLAG)

((lambda (z)
   (cond ((and (equal '1 1) (equal z
'FLAG))
          (list ('(lambda (y)
                    (s m
                       (list (s '(lambda (x
y) (s m (list (s x (list x)) y)))
                                (list '(lambda
(x y)
                                         (s m (list
(s x (list x)) y)))))
                             y)))
                 1)
                '*****
                ('(lambda (y)
                    (s m
                       (list (s '(lambda (x
y) (s m (list (s x (list x)) y)))
                                (list '(lambda
(x y)
                                         (s m (list
(s x (list x)) y)))))
                             y)))
                 2)))
         ((and (equal '1 2) (equal z
'FLAG))
          (list ('(lambda (y)

                    (s m
                       (list (s '(lambda (x
y) (s m (list (s x (list x)) y)))
                                (list '(lambda
(x y)
                                         (s m (list
(s x (list x)) y)))))
                             y)))
                 1)
                '+++++
                ('(lambda (y)
                    (s m
                       (list (s '(lambda (x
y) (s m (list (s x (list x)) y)))
                                (list '(lambda
(x y)
                                         (s m (list
(s x (list x)) y)))))
                             y)))
                 2)))
         ((equal '1 1) (+ z 1))
         ((equal '1 2) (+ z 2))
         (t '(erreur il n 'y a que 2
c e l l u l e s ) ) ) )
 +++++
 (lambda (z)
   (cond ((and (equal '2 1) (equal z
'FLAG))
          (list ('(lambda (y)
                    (s m
                       (list (s '(lambda (x
y) (s m (list (s x (list x)) y)))
                                (list '(lambda
(x y)
                                         (s m (list
(s x (list x)) y)))))
                             y)))
                 1)
                '*****
                ('(lambda (y)
                    (s m
                       (list (s '(lambda (x
y) (s m (list (s x (list x)) y)))
                                (list '(lambda
(x y)
                                         (s m (list
(s x (list x)) y)))))
                             y)))
                 2)))
         ((and (equal '2 2) (equal z
'FLAG))
          (list ('(lambda (y)
                    (s m
                       (list (s '(lambda (x
y) (s m (list (s x (list x)) y)))
                                (list '(lambda
(x y)
                                         (s m (list
(s x (list x)) y)))))
                             y)))
                 1)
                '+++++
                ('(lambda (y)
                    (s m
                       (list (s '(lambda (x
y) (s m (list (s x (list x)) y)))



                                (list '(lambda
(x y)
                                         (s m (list
(s x (list x)) y)))))
                             y)))
                 2)))
         ((equal '2 1) (+ z 1))
         ((equal '2 2) (+ z 2))
         (t '(erreur il n 'y a que 2
c e l l u l e s ) ) ) ) )

and each cells works :

((p 1) 3)
4

((p 2) 3)
5

Some handling of λ-expression permits
to build less redondant cells.
This planaria p has personal identity        
-with respect to a simple self-regenerating
ability- relatively to LISP.
Note that in a self-regenerating net each
cell is potentially an egg.

5. MYHILL'S MACHINES

Remark. All what has been prove so far
can be formalized in a sufficiently rich
formal theory. The interest of that fact
does not lie in the quest of some rigorous
presentation, but because it means that we
are able to construct a machine with the
ability of proving these facts. In particular
we are interested in what a machine is
able to prove concerning its own
capability of proving propositions. We
must distinguish  between M proves a
simple proposition p (we shall write
M p, or simply p) and M proves the
rather sophisticated proposition "M
proves p". (which we should write
M ‚M(p ). with "‚M" representing M's
provability ability in M's language and p
representing a representation of p in M's
language, but we shall simply write ‚p).

Definition. A machine M is said to be
self-referentially correct. in an universal
environment u if M has personal identity
with respect to provability relatively to u.
(for a related definition see also
Smullyan)

If that machine is able to prove correctly
some elementary facts concerning
substitution, then we can find a sentence
g such that the M will prove :

g<-> -‚g

This is a particular case of the
diagonalisation schema : we can replace ‚
by any formula with one free variable and
find a corresponding g. The
diagonalisation lemma is essentially the
formalisation of Kleene's recursion
theorem. Now if M does not prove any
false statements -i.e if  M  is consistent-
then g is true and M is not able to prove
g. (this is basically Gödel's first
incompleteness theorem). This proof is
constructive (algorithmic) so that we can
add to M's power the algorithmic ability
to synthetize this very sentence. In that
case we obtain a new machine  M2 with
more powerfull provability capacities.
This construction can be iterated in the
constructive transfinite (see Feferman 12).

With Case's extension of Kleene's
theorem we can build a self-referential
sequence of more and more powerfull
machines.with respect to provability.
Suppose x is the code of a machine M
which has a recognizable part which is a
theorem prover, then M belongs to the
domain of the two following function : 1)
λxT(x), T genere the set of theorems of

the proving system of x. 2) λxRL(x), RL

transforme1  x into a equivalent machine
except that he add a statement,true but not
provable, concerning x in -let us say- the
set of axioms of x.
We want build a sequence of machines :
m0, m1, m2, m3..., such that each mi, on
a certain flag -PROVE- gives T(mi), and
on a flag -NEXT- gives mi+1, where mi+1
is RL(mi). m0(PROVE) generate the
theoreme of an elementary first order
axiomatisation of Peano Arithmetic (PA).

                                    
1RL for Refutation of mechanist philosophy given
by Lucas.Such a refutation is by itsef mecanisable.
The refutation of mechanism and the mechanical
refutation of that refutation has been already done
by Post. and Webb has write a book on the subject.



As in the planaria, the role of mi, are
played by the φe(i) :

φφe(i)(z) = if i=0 & z = PROVE op T(PA), else

          if z=NEXT then output (φe(i+1)), else

          if z= PROVE then output T(RL(φe(i-1))).

As above e will be given by applying k
on a s variant of the recursion matrix :

t(x,i,z) = if i=0 & z = PROVE op T(PA), else
         if z=NEXT then output φx(i+1), else

         if z=PROVE output T(RL(φx(i-1))).   (3)

z being any list, we can made any mi
universal :

         if z=(UNIV x y) then output φx(y).

6. INDUCTIVE INFERENCE

The first who has used diagonalisation in
the field of inductive inference is Putnam.
Definition. (Gold) An Inference Inductive
Machine (IIM) is a machine which receives
successively as inputs all (in the limit)
couples <input-output> (in any order), of
a function f and which successively
outputs programs called hypotheses. We
will say that f is presented to M. The IIM
converges if it outputs finally always the
same program. The IIM M correctly
identifies f and we write f ∈ EX(M) if M
converges to a program which computes
f. Note that any φi is trivially identifiable :

φi is always identified by the idiotic λx i,
so that the interesting concept is the
identification -by one IIM- of a subset of
RRRR

Definitions
1) EX = {S : RRRR ∃M S  EX(M)}.
Putnam has gived a more strict criterion
which can be shown equivalent to the
Popperianity of the IIM :
2) Case & Smith call an IIM Popperian if
all the hypotheses produced are total
functions. (So the generated hypotheses
are all refutable in Popper sens).
3) PEX = {S : ∃M Popperian   S  EX(M)}.

Theorem (Putnam, see 28) : RRRR ∉ PEX.
Putman 's proof is based on the intuitive
feeling that any given inductive machine
α can be made wrong. Indeed let m be

the code of α, then the following
computable function defeat any PEX
machine :

φe(0) = 0

φe(x+1) = φφm(φe(: x))(x+1).

where φe(: x) is :

{(0,φe(0)), (1,φe(1)), ... (x, φe(x))}

QED. The proof is constructive, so that it
is easy to add evolving inductive
inference capabilities to the self-referential
nets.

Theorem (Case et Smith) : PEX  EX
Case and Smith has shown that the set
of functions computed by self-
reproducing machines (on the flag 0)  :

S = {f : φf(0) = f}

belongs to EX, but not to PEX. Indeed,
the function :

φe(0) = e  ; compare with Putnam's function

φe(x+1) = φφm(φe(: x))(x+1).

is trivialy identified by the IIM β which

output a on {(0,a), …}.

Here is a translation of the proof in LISP:

(def 'EX-BUT-NOT-PEX '(lambda (iim-pex-var)
 (k
  (list 'lambda (list 'y 'x)
        (list 'cond
              (list (list 'equal 'x 0) 'y)
              (list 't (list (list '+ 1
                                (list  (list iim-pex-var
                                               (list  'ulis 'y
                                                      (list '- 'x 1)))
                                      'x))
                                  )
                         )
                )
          )



  )            ; ulis (i,n) = {(o,φi(o), …(n,φi(n))}
))             ; k is Kleene's metaprogram.              QED.

It is easy to show that any
algorithmatically generable subset of RRRR
belongs to EX (Gold, see 16), but, like
PEX, RRRR itself does not.

We can enlarge the set of identifiable
functions by a non-constructive
weakening of the identification criteria.

Definitions.  (Case and Smith, see 9)

1) f =0v1 g means that f is equal to g
excepting, may be, on a single input. Put
in another way, it means that {x : f(x)=g(x)}
has cardinality less or equal to 1.

2) M  EX1-identify  f if, when we present f
to M, it converges on a program
computing a g such that f =0v1 g. We

write  f ∈ EX1(M).

3) EX1 = {S : ∃M S  EX1(M)}.
Theorem. (Case and Smith) EX   EX1

More precisely they have shown that the
set :

S0v1 = {f : φf(0) =
0v1 f}

does not belong to EX, (see ) but the IIM

α (see above) witness that it belongs to

EX1.

The "may be" is ineluctable : let us prove
that such an enlargement cannot be done
constructively (algorithmicaly) (Chen)1 :

Proof. Suppose that there is a computable
function φj such that for any inductive
inference machine M : 1) φφj(M) is total

computable and 2) φφj(M) does not belong

to EX(M). In that case the following IIM

m = λx (k j)

i.e. the machine which on any inputs
always output φj apply on itself, is such

                                    
1  Communication to Case and Smith.(see 9).

that φφj(m) belongs to EX(m), and this is

in contradiction with 2).QED.

Non union and branching nets.
Suppose φk is presented to an IIM γ, and
that φk(a) = b. Let h be the last hypothesis

of γ on φk.In the case φk(x) is equal to
φh(x) for every x excepting a : i.e. φh(a)  =

c, and c ≠ b,we say that m is precisely
incorrect on a.
Definition  EX=1 = {S : ∃M S  EX(M)
and M is precisely incorrect on exactly
one number}. Such an error can always
be refuted and corrected in the limit. So
we have :

EX=1 = EX

Non-union theorem (Blum & Blum, see
3) : A ∈EX & B∈EX does not imply
A∪B∈EX.

Proof. Let S1 be the set of functions
which are computed by machines which
reproduce themselves in a precisely
incorrect way.on the flag 0.                  
S1 = {f : φf(0) =

=1 f}. Let S = {f : φf(0) = f},

α witness that S1 belongs to EX=1 = EX,

and α witness also that S belongs to EX.
So both S1 and S belongs to EX, but the
union S1∪S = S0v1 = does not belong to
EX.(preceding theorem). That proves the
non-union theorem of Blum & Blum.:
union of members of EX does not
necessarily belongs to EX. The "v" in
0v1 is a necessarily not constructive "v".
QED. We have a typical situation where

(p v q)   does'nt imply     p or   q

If we want take advantage of such non
constructive enlargements We must allow
branchings in the net, by adding, for
exemple, in (3) above the line :

   else if z=INDUCE op IND(φx(j)   i ≥j).   (4)

where INDUCE is a new flag, and IND
is what I call a semi-realizer, that is
essentially a program which, given some



specification, built a collection of
programs -capable of running in parallele-
one of which meets the specification
although there is no possible algorithmic
choice of that one.
7. DREAMING MACHINES

In his little book DREAMING  Malcom
opposed Descartes's view1 on dreams
with his own, young-Wittgensteinien,
verificationist conception.
By true judgment he means verifiable
one, and he argues that true judgment are
communicable. In particular he argues
against the meaningfullness of
Descartes's doubt between dream and
reality.(see 7, 11).
In this setting Malcom's conception can
be compare with Brouwer's : where true
(mathematical) judgment are those
intuitively provable. Malcom defend a
kind of restricted solipsism with respect
of the dreaming person.
To know if one is dreaming or not is a
problem of personal knowledge
There are sufficiently affinities between
the concept of truth and the concept of
proof which invite an attempt for defining
knowledge with them. The personal
aspect beeing (hopefully) captured by
(double) diagonalisation (or personal
identity).
We agree with a common opinion that
knowledge's, representation in modal
logic is given by S4 :

AXIOMS : p->p
p-> p
(p->q)-> p-> q

RULES p and p->q entails q
p entails p

8. FROM G TO G *

Let fix M be the initial machine m0 of our
self-referential nets.

First attempt :      p     is     ‚p   ?
Do we have ‚p->p ? (for any p beeing a
representation of a sentence in M's
language). The provability of M is PA's
provability. If we believe in the
                                    
1 cf also Caillois 1956.(see 7)

soundness of PA we certainly believe that
‚p->p is true.
Let us look at the rule p entails ‚p.
We have ‚p->p. If the rule is valid, we
should have ‚(‚p->p).
But Löb shows that ‚p->p entails

‚p, and it has been show that the proof
is formalisable in PA, so we have

‚(‚p->p)->‚p    (Löb's formula, see 21)

And thus, if we have ‚(‚p->p) for any p,
we obtain in particular       ‚(‚FALSE-
>FALSE), then from Löb's formula we
get ‚FALSE, and with     ‚p->p, we get
FALSE.
We cannot have both the axiom ‚p->p and
the rule "p entails p" for ‚.
(see Montague and Thomason for similar
result).

Second attempt  : what is knownable is
what is inferable in the limit. Here truth is
seen as a limit platonistic concept.
In this case we follow the sequence mi.
I need Solovay's theorem (Solovay) :

the following modal system  G:

AXIOMS : ‚p->‚‚p
‚(p->q)->‚p->‚q
‚(‚p->p)->‚p

RULES p and p->q entails q
p entails ‚p

is a sound, decidable, and complete
formalisation of provability about
provability of PA,   (PA's description of
his own provability's ability) and this one,
known as G* :

AXIOMS : ‚p->p
All the theorems of G

RULES p and p->q entails q

is a sound, decidable, and complete
formalisation of truth about provability by
PA.

Now even an idiotic m0 can be used as a
mechanist counter-example contra-
malcom, for he would distinguished
communicable knowledge from non-



communicable one (the decidable
complementary of G in G*). If either by
RL, or by inductive inference he reflect
an undecidable sentence then he gives
birth to a new machines for which G and
may be G* can still be sound and on
some ways, even complete.

With G we loss ‚p->p. With G* we loss
"p entails ‚p". In the platonistic realm the
machine can infer non communicable
truth, and even communicate them with
some precautions, using an "?" for
exemple. But how to reconcile ‚p->p and
"p entails ‚p", i.e. how to isolate
immediate, actual and solipsist-like
terrestrial knowledge ?

9. ARITHMETICAL NECESSITY

An (ad hoc ?) attempt  : personal identity,
as defined here, is really identity based on
the shape -the form(al)-, which permit to
the machine to manifest itself relatively to
an universal environment. This is
certainly a counter-intuitive view of
personal identity.(see  for paradoxes). Is
it possible to capture the intuitive or
absolute identity" ? We have identify
finitely convincing proposition whith
platonistically correct proof by a machine
in the net. Is there a corresponding
concept for intuitive or informal proof in
the literature ?  The use of Kleene-like
realizability for the inner building of the
(local) past (defined as self-organized
collection of rememorable personal
experiences -these beeing with the
universal ability build in the recursion
matrix- suggest the use of intuitionistic
concept of proof. Thank to Gödel's
presomptions followed by the proof of
McKinsey and Tarski, (see 14, 26,
13)this lead naturaly toward S4, but we
loose connection with the Platonistic
G(*)s, and, I have a feeling of             
ad-hocness about it .

third attempt :   p     is     ‚p&p

We know that ‚p and ‚p&p are
platonisticaly (i.e. G*) equivalent, but not

provably so (i.e. G) as we can deduce
from Löb's theorem, moreover p will
obey S4. But more can be said : the
following system, where a formula due to
Grzegorczyk (see 18) is added :

AXIOMS : ‚p->p
‚p->‚‚p
‚(p->q)->‚p->‚q
‚(‚(p->‚p)->p)->p

RULES p and p->q entails q
p entails ‚p

is a sound, decidable, and complete
formalisation of the provable true-and-
provable sentence in PA, thus in m0 (so
that it works in the actual, we are not
obliged to wait for the limit).That system
is known as S4Grz.
Astonishingly enough, it is also a sound,
decidable, and complete formalisation of
the true true-and-provable sentence in
PA. This follows from independant work
of Boolos and Goldblatt (see 4, 5, 17).
So there is, after all, a self-referentially
based reconciliation of truth and
provability. Using Grzegorczyk's
extension of Gödel's link between S4 and
Intuitionistic logic, Goldblatt describes an
arithmetical interpretation of IL in PA,
and proves a similar double completeness
result.

Here is a summary of the works of
Solovay, Boolos and Goldblatt :

Provable     by       M       True     for       M    
G -> G* LN
IL -> IL NP
S4Grz -> S4Grz NP

LN = Loss of necessitation, NP =
necessitation preserved, and necessitation
is the common name for the rule p entails
‚p.

11. APPLICATIONS

We have seen that Idiotic self-inductive-
inference machine <G,G*>, i.e.machines
which belongs to a self-referential nets
where G, G* has been put in the
recursion matrix at the start -so that
correct self-inference are instinctive-, are



doubtfully reasonable as models for the
mind, but can nevertheless be useful for
building counter-exemples to some
arguments in philosophy of Mind.
Other exemples : Kripke-like argument
against the identity thesis.(see 20).
Refutation of Baker arguments against
functionalism (see 2). In both case their
arguments remains valid within a purely
extensional view of identity and
function(alism). It is a confusion between

p&‚p and ‚p

or at a more primitive level, it is a
confusion between :

necessarily φe() = e. and necessarily e=e.

The basic philosophical motivation for the
present approach are described in the
papers 22, 23, 24).
Other result can be extract from the
present analysis. If we accept the
darwinian-like idea of survival of the
sound-machine: then the self-referential
nets produce, at term (in the limit with the
theoretical computer science concept of
limit), machines describable with the help
of G, G*, S4Grz, or extensions. More
can be said : communication of non-
communicable statements enhance not
only the scope of possible dialogues
between machines and environment, but
permit to speed-up computations
relatively to that environment. This
speed-up phenomena has been also
presumed by Gödel (see 1, 15, 31).
Mackay has made an analysis of relative
freedom  -of a machine relatively to an
other- in term of relative computational
efficiency. That analysis, transposed in
our setting, would entail emergence of
freedom (relatively to universal
environment) in the limit (see 33).
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