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Abstract In this paper, we study how to obtain a quantitative correspondence between
the dynamics of the microscopic implementation of a robot swarm and the dynamics of a
macroscopic model of nest-site selection in honeybees. We do so by considering a collec-
tive decision-making case study: the shortest path discovery/selection problem. In this case
study, obtaining a quantitative correspondence between the microscopic and macroscopic
dynamics—the so-called micro–macro link problem—is particularly challenging because
the macroscopic model does not take into account the spatial factors inherent to the path
discovery/selection problem. We frame this study in the context of a general engineering
methodology that prescribes the inclusion of available theoretical knowledge about target
macroscopic models into design patterns for the microscopic implementation. The attain-
ment of the micro–macro link presented in this paper represents a necessary step towards the
formalisation of a design pattern for collective decision making in distributed systems.
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1 Introduction

The goal of this study is to establish a quantitative correspondence between the dynamics of a
microscopic implementation of a swarm robotics system and the dynamics of a macroscopic
model of collective decision in honeybees. Our aim is to support a general methodology for
the design of behaviours leading to efficient and flexible collective decisions with predictable
dynamics, a frequently recurring problem in swarm robotics. Indeed, it is often the case that
the solution to a given problem requires some form of consensus among the robots. For
instance, coordinated motion, collective transport, aggregation, path selection and resource
exploitation are all activities that presuppose a collective decision by the swarm (Trianni and
Dorigo 2006; Garnier et al. 2009; Parker and Zhang 2009, 2010; Gutiérrez et al. 2010; Campo
et al. 2010, 2011; Ferrante et al. 2012; Wilson et al. 2014). Therefore, sound methodologies
for engineering distributed control strategies for collective decision making are of utmost
importance.

Normally, given a problem that requires some collective decision, a specific solution is
developed (Parker and Zhang 2009; Montes et al. 2010; Scheidler et al. 2015; Valentini et al.
2014;Wilson et al. 2014; Sartoretti et al. 2014). Inspiration frombiological and social systems
is customary, as it provides a microscopic, individual-level description of the behaviour that
can be used as a reference. Then, the proposed solution is analysed in detail through the
development of analytical models that reveal the main features of the macroscopic, system-
level dynamics, along with various system properties, such as decision accuracy, efficiency,
robustness, scalability, and so forth. Whenever the problem changes, the solution is adapted
from previous work or invented anew. In both cases, the theoretical analysis of the system
dynamics must be repeated, and the system properties re-assessed. In fact, a quantitative
correspondence between microscopic and macroscopic descriptions (hereafter referred to
as the micro–macro link, see also Hamann and Wörn 2008) is generally difficult to obtain.
When starting from themicroscopic description, difficulties are due to the several abstractions
necessary to develop a treatable macroscopic model. As a result, the micro–macro link
holds only qualitatively, and extensive tuning and sensitivity analyses are needed to find
the appropriate working regime for the real system.

The problem-specific approach described above can lead to custom-tailored and possibly
highly efficient solutions. However, it does not seem suitable as an engineering methodology,
given that the macroscopic properties and the micro–macro link must be repeatedly verified
for each new implementation. Given the large literature and the extensive theoretical knowl-
edge available on collective decisions and opinion dynamics in social systems (Castellano
et al. 2009; Couzin 2009; Vicsek and Zafeiris 2012; Arganda et al. 2012; Baronchelli et al.
2013; Kao et al. 2014), a better approachwould be to start fromwell-understoodmacroscopic
models—which somehow guarantee the attainment of the desired performance/properties—
and to (automatically) generate an implementation of the robotic system in such a way
as to obtain a one-to-one match with the target model. Unfortunately, obtaining a micro–
macro link starting from the macroscopic description of a desired outcome is unworkable
in the general case. Some preliminary work in this direction can be found in (Hamann and
Wörn 2008; Kazadi 2009; Berman et al. 2009, 2011; Vigelius et al. 2014; Brambilla et al.
2015).

A compromise solution between problem-specific and generic design approaches can
be given by resorting to design patterns, which can provide generic solutions to a specific
class of problems. Design patterns are good engineering practices to face recurring design
problems: they originate from the generalisation of repeatedly employed solutions, and they
provide a formalised methodology to simplify system design and promote dissemination
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of best practices. First introduced in the architectural domain (Alexander et al. 1977), they
have been exploited in several disciplines including software engineering (Gamma et al.
1995). The exploitation of design patterns for the implementation of distributed systems has
not received much attention, and only few proposals can be acknowledged (Babaoğlu et al.
2006; Gardelli et al. 2007). A design pattern for distributed systems must provide a set of
implementation guidelines in support of the development of themicroscopic behaviour,which
leads to the desired macroscopic dynamics. Hence, the core of the design pattern comprises
both a macroscopic model presenting desired system-level properties and a microscopic
description of the individual behaviour sufficient for the implementation. Analytical tools
are also provided for validation. Along with tools and guidelines, a design pattern must also
provide examples that showcase its usage in simplified situations, as well as in particularly
challenging working conditions that require extra care in the implementation.1

In this paper, we take a step towards the development of a design pattern for collective
decision making. In Sect. 2, we introduce a set of high-level implementation guidelines
inspired by studies of honeybee nest-site selection, which describe the target macroscopic
dynamics (Seeley et al. 2012; Pais et al. 2013). The main contribution of this paper consists
in exploiting these guidelines to develop a swarm robotics system featuring an accurate
quantitative micro–macro link with the chosen model. The attainment of such a link is
a prerequisite to the formal characterisation of the design pattern for the general case of
collective decisions in distributed systems, which is out of the scope of the present paper and
is deferred to futurework. As case study, we have chosen the shortest path discovery/selection
problem (Gutiérrez et al. 2010; Montes et al. 2010; Scheidler et al. 2015). This problem
requires the identification and collective selection of the shortest path between target areas, to
be performed by a (possibly large) swarm of robots. Path discovery/selection is particularly
demanding from a decision-making standpoint because spatial factors strongly influence
the collective dynamics, as they determine the interaction patterns among the robots. As
a consequence, finding a micro–macro link between a non-spatial macroscopic model of
decision making and a strongly spatial decision problem is not trivial. A preliminary study
and partial results have been presented by Reina et al. (2014) for a very abstract scenario
involving agents moving in a one-dimensional space. Here, we present a complete study of
a more realistic scenario for agents/robots moving on a flat surface.

In Sect. 3, we provide a solution to the shortest path discovery/selection problem both
in an idealised multi-agent simulation that retains the relevant spatial factors but neglects
physical interactions (see Sect. 3.2) and in a physics-based simulation of a swarm of e-pucks
(Mondada et al. 2009), therefore accounting for limited swarm size and physical interferences
(see Sect. 3.3). In Sect. 4, we analyse the implemented behaviour under a variety of different
parameterisations and show that in every case there is a precise correspondence between the
microscopic and macroscopic descriptions. We extend the analysis towards varying group
size and also show the correspondence withMonte Carlo simulations of a macroscopic finite-
sizemodel. As discussed in the conclusions (see Sect. 5), the case study presented in this paper
contributes to the ongoing formalisation of a design pattern for collective decision making
by extending the high-level guidelines provided in Sect. 2 with specific recommendations
for dealing with issues deriving from spatiality. Additionally, this paper also provides useful
tools to verify the correctness of the implementation.

1 For a more specific definition of design patterns in the distributed systems domain, the interested reader is
referred to the work of Babaoğlu et al. (2006).
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2 From macroscopic descriptions to implementation guidelines

As mentioned above, how collectives can achieve consensus is widely studied in many dif-
ferent contexts, and several models have been proposed in the literature (e.g. Castellano et al.
2009; Vicsek and Zafeiris 2012; Kao et al. 2014). In this paper, we selected a macroscopic
model inspired by the nest-site selection behaviour observed in honeybees (Seeley et al.
2012; Pais et al. 2013). This model has been selected because it possesses properties that are
desirable in artificial distributed systems: (i) it attains near-optimal speed-accuracy trade-offs
in the selection of the best option (Marshall et al. 2009), and (ii) it exploits adaptive mecha-
nisms to tune decision speed and to break symmetry deadlocks (e.g. caused by same-quality
options). In this section, we first discuss the macroscopic model, then we provide a high-level
description of the implementation path prescribed by a design pattern to obtain a quantitative
micro–macro link.

2.1 Collective decision through cross-inhibition

An analytical model of the nest-site selection process in honeybee colonies has been devel-
oped and confronted with empirical results, confirming the existence of both positive and
negative feedback loops that determine the collective decision (Seeley et al. 2012). Themodel
describes a decision-making process in which only two options are available, referred to as A
and B. Each option i is characterised by an objective quality vi . The collective decision prob-
lem consists in identifying and selecting the best option, or any of the equal-best options. The
model treats a population of agents that can be either uncommitted (sub-population U with
fraction ΨU of the total population) or committed to one of the two options (sub-populations
A and B, respectively,with fractionΨA andΨB). Population dynamics can be easily described
by a system of two coupled ordinary differential equations, plus a mass conservation term:

⎧
⎨

⎩

Ψ̇A = γAΨU − αAΨA + ρAΨAΨU − σBΨAΨB

Ψ̇B = γBΨU − αBΨB + ρBΨBΨU − σAΨAΨB

ΨU + ΨA + ΨB = 1
, (1)

The variation of the population fractionΨi , i ∈ {A, B} results from four concurrent processes,
which correspond to the four terms of each differential equation in (1):

(i) Ψi increases as uncommitted individuals spontaneously discover and become commit-
ted to the option i at the rate γi ;

(ii) Ψi decreases as individuals committed to option i spontaneously abandon it and get
uncommitted at the rate αi ;

(iii) Ψi increases as individuals from population i actively recruit uncommitted ones at the
rate ρi ;

(iv) Ψi decreases as individuals from population i are inhibited by individuals of population
j �= i at the rate σ j .

All transition rates—γi , αi , ρi , σi—are greater than zero. It is worth noting that this model
does not require any explicit comparison of the option qualities. The quality value vi of the two
options is instead encoded in the transition rates (i.e. implementing a value-sensitive decision
making, see Pais et al. 2013): different-quality options correspond to biased transition rates,
while same-quality options correspond to unbiased transition rates. Overall, the collective
decision is based purely on the system dynamics resulting from individual-to-individual
interactions.
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Fig. 1 (Colours online) Effects of different parameterisations on the macroscopic dynamics (trajectories and
equilibrium points, shown as dark (blue) dots for stable points and light (green) dots for unstable saddle
points). See text for details

2.2 Implementation guidelines

2.2.1 Working regime

The choice of the parameters of the macroscopic model determines the working regime for
the decision-making process. Understanding the macroscopic dynamics leads to a principled
choice of the desired parameterisation, which ultimately translates in prescriptions for the
implementation.

When the two options have different qualities (e.g. vA > vB ), a biased population distrib-
ution is obtained thanks to similarly biased commitment rates. Everything else being equal,
a population distribution biased for the better option can be obtained thanks to a higher dis-
covery rate (i.e. γA > γB , see Fig. 1a) or similarly through recruitment (i.e. ρA > ρB , see
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Fig. 1b). Abandonment and cross-inhibition instead reduce the size of a population com-
mitted to a given alternative. Abandonment should be small enough to avoid that a large
fraction of the population remains uncommitted, possibly biased towards the lower quality
(i.e. αA < αB ). Cross-inhibition instead, being proportional to the size of the inhibiting
population, contributes to the creation of an unbalanced distribution of individuals between
committed populations even for unbiased inhibition rates (i.e. σA = σB , see Fig. 1c). This
is true also for same-quality alternatives (i.e. vA = vB ). In this symmetric case, discovery,
abandonment and recruitment are equal and are therefore not sufficient to break the symmetry.
However, a sufficient level of cross-inhibition makes the equilibrium point unstable, there-
fore leading to a symmetry breaking, as shown in Fig. 1d. Through linear stability analysis,
it is possible to identify the cross-inhibition level for which the system breaks the deadlock
and converges to the choice of one option (see Seeley et al. 2012). The working region is
{ρ > α, σ > σ ∗}, with critical value:

σ ∗ = 4αγρ

(ρ − α)2
. (2)

As a general guideline for the choice of the transition rates determining the working regime
of the macroscopic model, it is advisable to have a parameterisation linked to the option
quality, so that commitment is proportional to quality, abandonment inversely proportional,
while cross-inhibition can be proportional to the option quality or independent of it, but in
any case it must be sufficiently large to ensure convergence (for a detailed analysis, see Pais
et al. 2013):

γi , ρi ∝ vi , αi ∝ 1/vi , σi > σ ∗, i ∈ {A, B} (3)

2.2.2 Individual behaviour

Once a suitable working regime is identified, the four concurrent processes resulting in the
macroscopic dynamics of (1) need to be implemented as a multi-agent system. As a general
guideline, the agent behaviour should be implemented as the probabilistic finite statemachine
shown in Fig. 2. Here, the agent can be in three different commitment states that indicate
whether the agent is uncommitted (CU ) or committed to either option A or B (CA or CB).
Two types of transition need to be implemented: spontaneous transitions and interactive tran-
sitions. Spontaneous transitions correspond to discovery and abandonment and pertain to the
individual agent behaviour. Interactive transitions depend instead on the result of the interac-
tion among agents and are regulated by the probability of encountering agents of population
i , which we refer to as PΨi : the larger the proportion of agents committed to population i ,
the larger the probability of encountering one of its members. The transition probabilities
between different states determine the outcome of the decision-making process and should be
influenced by the option quality vi to restrict the system dynamics within the working regime
discussed above. Therefore, Pγi and Pρi—respectively, the discovery and recruitment prob-
ability for option i—should be biased towards the option of higher quality; the abandonment
probability Pαi should be small and possibly inversely proportional to the option quality vi ;
finally, cross-inhibition should be governed by a high-enough probability Pσi . Prior to formal-
isation of the link between microscopic transition probabilities and macroscopic transition
rates, the above high-level guidelines need to be verified for their sufficiency in providing
a quantitative micro–macro link. In Sect. 3, we show how these guidelines translate to an
actual implementation. Additionally, we discuss the inclusion of spatial factors influencing
the interactions between agents, and we indicate possible extensions of the guidelines to deal
with dynamic interaction topologies.
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Fig. 2 A compact representation as a probabilistic finite state machine of the individual agent behaviour.
Solid arrows are spontaneous individual transitions, while dashed arrows represent interactive transitions that
are triggered when an agent encounters an agent of another population (which happens with probability PΨi
for population i)

2.2.3 Required properties

To obtain a quantitative micro–macro link, two properties are fundamental: state transitions
must be memoryless, and the system must be well mixed.

Memorylessness is required by the macroscopic model, which can be derived as a mean-
field approximation of a population-level continuous-time Markov process (see Seeley et al.
2012, for details). Memorylessness implies that, at any time, the probability that any agent
undergoes a state transitions depends only on the current system state and is independent of
the previous state of the system (thus the macroscopic process fulfils the Markov property).
This can be achieved by ensuring a memoryless behaviour at the microscopic level, that is,
ensuring that state transitions are governed by fixed probabilities per time unit, which results
in an exponential distribution of the time intervals between entrance and exit from a state.
Note that spatiality may interfere with memorylessness, and particular care must be given to
the microscopic implementation, as exemplified in the case study presented in this paper.

The well-mixed property ensures that the probability of interaction between any two
agents is constant. This can be achieved by a fully connected interaction topology or by a
uniformly random interaction topology. If different populations were segregated, the well-
mixed property would not hold anymore, therefore resulting in altered system dynamics (e.g.
creation of island of agents with different opinions). To overcome this, interaction among
agents should take place only when an unbiased sample of all populations is available.

3 Case study: shortest path discovery/selection

The high-level prescriptions discussed above need to be reified through experimentation in
challenging case studies. Among the several factors that may hinder a macroscopic micro–
macro link in a swarm robotics context, spatiality and physical interferences are probably
the most important ones. Spatial features constrain the ability of interaction among different
populations and may easily lead to departures from the ideal well-mixed condition, while the
physical embodiment of specific robotic platforms constrains both motion and robot–robot
interactions. In some cases, embodiment may also impose a limit on the maximum number
of robots that can operate in a given scenario, as beyond this limit physical interferences
might impede the robots correct functioning.

A well-conceived case study should exemplify the challenges introduced by spatiality
and embodiment and propose strategies to address them. We have chosen a decision-making
scenario that strongly depends on spatial factors and in which physical interferences may
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Home areaTarget area B Target area A

dB dA

Robot
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dI

Fig. 3 Graphical representation of the environment. Target areas A and B are located at distance, respectively,
dA and dB from the home area (in this fig., dA = 2m and dB = 2.5m). All the three areas have radius
R = 0.3m. Robots move at constant speed ν = 0.1 m s−1 and can communicate with neighbours within a
range dI = 0.6m

have strong effects since the robots share the same space: the discovery and selection of the
shortest path between two areas in a foraging context (see Sect. 3.1). We first implement an
abstract multi-agent simulation (presented in Sect. 3.2) to isolate the challenges introduced
by the spatial distribution of target areas while ignoring the target robot embodiment and
the resulting physical interactions. Here, agents are modelled as dimensionless particles that
do not interfere with each other, so that we can analyse the performance of large swarms,
study how the system dynamics vary as a function of the group size and propose specific
solutions to tackle spatiality effects. The robotic simulation instead addresses both spatiality
and embodiment and requires specific strategies to limit the physical interferences which are
discussed in Sect. 3.3. Here, we have chosen a robotic platform—the e-puck robot (Mondada
et al. 2009)—that stresses the challenges given by physical interferences due to their relatively
small perceptual and interaction range.

Overall, the goal of this study consists in obtaining a good quantitative match between the
non-spatial macroscopic model of Sect. 2 and the multi-agent and robotic implementation,
as discussed in Sect. 4.

3.1 Problem definition

Foraging is a classic problem in swarm robotics (see Brambilla et al. 2013), and often solu-
tions take inspiration from the food-gathering behaviour observed in social insects. Broadly
speaking, agents involved in a foraging task are required to carry out search and retrieval
activities. They explore the environment to locate target areas that contain the objects to
be retrieved (e.g. a food patch). Then, they exploit the chosen path to retrieve objects to a
given home area (e.g. the nest). Foraging encompasses a wide range of activities, such as
exploration, navigation between target areas, retrieval and clustering of objects and collective
decision making. All these activities are key components in several real-world applications
envisioned as potential swarm robotics scenarios—e.g. search and rescue in disaster zones,
collective construction in hazardous environments and nuclear disaster cleaning. Here, we
focus on decision making, and we neglect other aspects (e.g. object retrieval) that are out of
the scope of the present paper.

In this study, the goal of the swarm is to identify and exploit the shortest path between
a home area and any of two target areas, referred to as target area A and target area B (see
Fig. 3). The environment is a 2D infinite plane without obstacles, and all areas have circular
shape with radius R = 0.3m. The targets are located at a distance from home that varies in
the range di ∈ [1.5, 3.5]m, with i ∈ {A, B}. The swarm is composed of agents/robots with
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local sensing and communication. An agent perceives home and targets only when within
the corresponding areas, moves at constant speed of ν = 0.1 m s−1 and communicates only
with neighbours up to a maximum distance dI = 0.6m (indicated by the dotted circle around
the robot in Fig. 3). Agents have perfect knowledge of the home location, while target areas
need to be located through exploration. The collective decision is taken when the number of
agents that have chosen a single target area reaches a quorum Q.

3.2 Implementation of abstract multi-agent simulations

The swarm is composed of dimensionless agents, so that no collisions or physical inter-
ferences are possible. Error-free odometry is exploited to track the position of known areas.
Agents can be either committed to a specific target, or uncommitted. The committed agents—
state CA and CB in Fig. 2—keep moving back and forth between home and target thanks to
odometry. The uncommitted agents—state CU—explore the environment to discover poten-
tial target areas. Agents can communicate with neighbours and share information about their
commitment state and the location of discovered target areas.

3.2.1 Interactive and latent agents

Following the guidelines provided in Sect. 2, we have implemented a microscopic behaviour
paying particular attention to the effects of spatiality. Indeed, given the locality of commu-
nication and the distance between target areas, agents committed to different targets and
uncommitted agents cannot always interact with each other. In particular, different popula-
tions of agents are spatially segregated and come into contact only when in the home area. To
ensure the well-mixed property, we have therefore decided to limit interactions only when
agents are within the home area. When agents leave home, interactions are disallowed. More
formally, agents can be in one of two activity states: an interactive state I (e.g. when inside
the home area) and a latent state L (e.g. outside the home area). Switching between activity
states follows the dynamics prescribed by the implemented behaviour and can be modelled
by the simple PFSM shown in Fig. 4 left. We introduce a constant probability PL for an
agent to get latent. Conversely, agents become interactive in different ways depending on
their commitment state, as will be detailed below. We refer to PI as the average probability
to become interactive. We can describe the change in the activity state through the PFSM
model in the left part of Fig. 4, which predicts that a fraction PI /(PI + PL) of agents can
be found on average in the interactive state. We exploit this prediction to tune the value of
PL : to ensure that on average 10% of the agents are interactive within the home area, we set
PL = 9PI .

Given the three possible commitment states prescribed by the design pattern (Fig. 2) and
the two activity states, the multi-agent implementation can be described by a PFSM with
six states as shown in the right part of Fig. 4. Therefore, the agent committed to target A is
interactive when in state C I

A and latent when in state CL
A (respectively, C I

B and CL
B for the

agent committed to target B). Otherwise, the uncommitted agent is interactive in state C I
U

and latent in state CL
U . The prescribed PFSM of Fig. 2 can be easily retrieved aggregating

states by commitment.

3.2.2 Interaction patterns

When agents are in the interactive state, they can exchange short communication messages
with neighbours, and on the basis of this communication, they can change their commitment
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PΨB
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PΨA
PσA
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Fig. 4 Microscopic implementation for the shortest path selection/discovery problem. Left PFSM describing
the switch between interactive and latent states. Right PFSM describing the complete agent behaviour.White
circles represent interactive states, while grey circles represent latent states in which no interaction is possible.
Solid arrows correspond to spontaneous transitions, while dashed arrows represent interactive transitions, and
they both correspond to transitions described in the PFSM of Fig. 2. Dash-dotted arrows instead identify the
transitions between activity states, i.e. the interactive and latent states. See text for further details

state. To obtain the well-mixed property, the distribution of interactive agents in the different
commitment states must provide an unbiased representation of the entire population, includ-
ing latent agents. More precisely, given the fractionΨ I (Ψ L ) of agents in the interactive state
I (latent state L), we require that:

Ψ I
i

Ψ I
≈ Ψ L

i

Ψ L
≈ Ψi , i ∈ {A, B,U }, (4)

where Ψ I
i and Ψ L

i represent the fractions of agents that are found in state C I
i and CL

i within
the entire population. In fact, if changes in the commitment state within the interactive
sub-population (fraction Ψ I ) are much faster than changes in the activity state (i.e. agents
switching between states I and L), the distribution of commitment states among interactive
agents would misrepresent the global population distribution, and therefore, the microscopic
and macroscopic dynamics would diverge. We have therefore decided to bind any change
in the commitment state resulting from agent–agent interactions to the dynamics of activity
change, which ensures the requirements given in (4). In other words, interactions are allowed
only upon transitions from the interactive to the latent state: whenever an agent decides to get
latent (following the constant probability per time unit PL ), it engages in an interaction with
another agent in state I and updates its commitment state accordingly. In this way, changes
in commitment state happen at the same rate as changes in the activity state.

Upon interaction, the probability of selecting a partner belonging to each population is
proportional to the corresponding fraction of interactive agents. We refer to these probabili-
ties as PΨA , PΨB and PΨU . Thanks to the attentive design of the interactive/latent dynamics
discussed above, such probabilities closely represent the global fractions ΨA, ΨB and ΨU .
Table 1 indicates all possible transitions from interactive to latent states and also links the
transition probabilities to the control parameters Pρ and Pσ that are introduced in the fol-
lowing. Here, it is worth noting that the sum of all outgoing transitions from any interactive
state equals to PL , which implements the link between changes in activity and commitment
state discussed above. The actual change in the commitment state depends on the randomly
selected partner, as detailed in the following.

123



Swarm Intell

Table 1 Correspondence
between the transition
probabilities in Fig. 4 and the
control parameters of the
implemented behaviour, for each
interactive state. Considering that
PΨA + PΨB + PΨU = 1, the sum
of all outgoing transitions from
any interactive state equals to PL

From Transition probability To

C I
U PΨA PρA → PL PΨA Pρ CL

A

PLU → PL
(
PΨU + (

1 − Pρ

) (
PΨA + PΨB

))
CL
U

PΨB PρB → PL PΨB Pρ CL
B

C I
A PΨB PσB → PL PΨB Pσ CL

U

PLA → PL
(
PΨA + PΨU + PΨB (1 − Pσ )

)
C I
A

C I
B PΨA PσA → PL PΨA Pσ CL

U

PLB → PL
(
PΨB + PΨU + PΨA (1 − Pσ )

)
C I
B

3.2.3 Motion patterns

Agents always move at constant speed ν = 0.1 m s−1, and their motion direction is deter-
mined by a motion vector m that depends on the agent state. Uncommitted agents explore
the environment in search of target areas through a correlated random walk (Bartumeus et al.
2005; Codling et al. 2008). When in the latent state CL

U , uncommitted agents compute their
motion vector m as the sum of an inertia and a random vector as follows:

m = ri θ i + 1 θr (5)

where the notation ri θ i indicates a vector in polar coordinates, with length ri and angle θi .
The angle θi is the agent’s heading direction, θr is an angle uniformly drawn in the range
[−π, π], and ri = 2 is the relative strength of the inertia vector determining the randomwalk.
Uncommitted agents switch between latent and interactive states with fixed probabilities per
time unit. While searching for target areas (state CL

U ), uncommitted agents stop exploration
to return home with constant probability PIU . The actual transition to the interactive state
C I
U takes place as soon as the agent enters the home area. When in the interactive state

C I
U , agents remain within the home area and move by correlated random walk (5). An

interactive uncommitted agent becomes latent and resumes exploration with probability PLU

(see Table 1).
Committed agents move back and forth between home and target exploiting odometry,

which is used to update the motion vector m towards the stored area locations. Similarly to
uncommitted agents, committed interactive agents (state C I

A or C I
B) remain within the home

area and move by correlated random walk (5). They become latent with probability PLA

(PLB , see also Table 1). When latent (state CL
A or CL

B ), they travel towards the target area and
return home after a full round trip. This is modelled in the PFSM of Fig. 4 by the transition
probability PIA (PIB ).

As already mentioned, to provide the well-mixed property, the probability to switch
between active and interactive states must be comparable across the agents’ commitments
states: in this way, the agents in state I are an unbiased sample of the populations A, B andU .
To this end, we tune the probability PIU to obtain a match between the average time of return
to the home area of uncommitted agents with the average round-trip time of the committed
agents. Given the agent speed ν and the distance range of target areas, the average round-trip
time is τm = 2d/ν = 50 s, where d = 2.5m is the average target area distance. Therefore,
we fix the probability to become interactive per time unit to PIU = 1/τm = 0.02 s.
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Note that in the present case study, different distances of the target correspond to different
round-trip times: the closer the target area, the shorter the time needed to return home, the
higher the frequency with which agents become interactive. This bias towards closer target
areas can be exploited for decision purposes, as the rate of becoming interactive positively
biases the system dynamics towards the selection of the shortest path. Starting from these
considerations, the implementation of the four concurrent processes prescribed by the design
pattern—discovery, abandonment, recruitment and cross-inhibition—can be easily obtained.

3.2.4 Discovery

Uncommitted agents discover target areas through random exploration while in the latent
state CL

U . Whenever an agent stumbles upon a target area, it stores the area location and
gets committed to it. In the PFSM model of Fig. 4, this event corresponds to the transition
between CL

U and CL
A (CL

B ), which happens with a probability PγA (PγB ). Discovery events
result from correlated random walks that start from the home area: the closer the target area,
the higher the discovery probability. Therefore, at a macroscopic level, the discovery rate is
biased towards shorter paths as prescribed by the design pattern.

3.2.5 Abandonment

Committed agents may spontaneously abandon their commitment and revert to an uncom-
mitted state with constant probability Pα . Only agents in the latent stateCL

A (CL
B ) are allowed

to abandon commitment and become uncommitted in order to resume exploration in state
CL
U , as shown in Fig. 4. Given that longer paths imply longer travel times, the macroscopic

abandonment rate is larger for longer paths, which is in agreement with the prescriptions of
the design pattern. After abandonment, agents return home and from there retrieve explo-
ration. In this way, the dynamics of abandonment do not interfere with discovery, ensuring
that every discovery event results from a random exploration that originates from the home
location. This allows to preserve the memoryless property of the agent behaviour as required
by the design pattern.

3.2.6 Recruitment

An uncommitted agent (stateC I
U ), upon interaction with a committed agent (stateC I

A orC
I
B),

gets recruited and thus committed to the other agent’s target areawith constant probability Pρ .
Given the interaction pattern discussed above, uncommitted agents get recruited only when
becoming latent, therefore with a constant probability PL . Given that the interactions with
committed agents are bound to the probability PΨA (PΨB ), the overall recruitment probability
is given by PL PΨA Pρ (PL PΨB Pρ), as shown in Table 1. Given that the interactive populations
are slightly biased by shorter paths, at the macroscopic level recruitment for closer targets
is slightly higher, as prescribed by the design pattern. The commitment message sent by a
committed agent contains the information relative to the corresponding target area location,
which can be used by the recruited agent for navigation. The transferred information is the
angle and distance of the target location relative to the recruiter. The receiver combines this
information with the recruiter’s relative location and orientation, and through triangulation
computes the target location.
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Table 2 Control parameters and chosen value or value range

Parameter Description Value

ν Agent speed 0.1m s−1

dI Interaction radius 0.6m

ri Relative strength of the inertia vector 2

PIU Probability of abandoning exploration ν/2d = 0.02 s−1

PL Probability of getting latent 3PIU
Pα Probability of abandoning commitment 0.005 s−1

Pρ Probability of recruitment [0, 1]
Pσ Probability of cross-inhibition [0, 1]
In this study, all parameters are fixed but the recruitment and cross-inhibition probabilities

3.2.7 Cross-inhibition

An interactive agent committed to target A (B) in state C I
A (C I

B), upon interaction with an
agent in stateC I

B (C I
A), gets cross-inhibited and reverts to an uncommitted state with constant

probability Pσ . Recall that interactions take place with probability PL and that the probability
of interacting with an agent from population A (B) is PΨA (PΨB ). It follows that the overall
cross-inhibition probability is PL PΨB Pσ (PL PΨA Pσ , see also Table 1). Upon interaction,
an agent recognises that the partner is committed to a different target area by measuring the
distance between the target area location internally stored and the area location communicated
by the partner. If the distance is greater than the target area radius R, cross-inhibition takes
place.

3.2.8 Control parameters

The implementedbehaviour has several control parameters that canbevaried to obtain slightly
different macroscopic dynamics. Some parameters have been arbitrarily chosen, while others
are tuned to preserve the properties prescribed by the design pattern. In this study, we fix all
parameters but Pρ and Pσ , which determine the interaction pattern between agents. Table 2
summarises the parameters we introduced and the values that have been chosen.

3.3 Implementation of physics-based swarm robotics simulations

To study how the agent embodiment influences the system dynamics, we implemented the
decision process on a swarm of simulated robots. The robotic platform of reference is the e-
puck robot (Mondada et al. 2009), equipped with a range-and-bearing board (Gutiérrez et al.
2009) to allow short-range localised communication and an embedded computer running
Linux.2 Experimentation is conducted exploiting theARGoS simulator (Pinciroli et al. 2012).
The robot behaviour is implemented in accordance with the multi-agent behaviour described
in Sect. 3.2.However, the robot characteristics and the physical embodiment introduce several
constraints that require ad hoc modifications of the behaviour. We group the introduced
modifications for (i) sensors and actuators, (ii) random walk, (iii) obstacle avoidance, and
(iv) path exploitation.

2 http://www.gctronic.com/doc/index.php/Overo_Extension.
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3.3.1 Sensors and actuators

In the multi-agent implementation, agents have an abstract perception of the environment as
well as abstract interactions with neighbours. In a robotic system, the same functionalities are
implemented employing the available sensors and actuators. More specifically, the robotic
implementation needs specific solutions for area localisation and robot–robot communica-
tion.

E-pucks detect and discriminate areas according to the floor grey level, as measured
through the infrared ground sensor. We paint the floor with three grey levels: one grey level
for the target areas, a second grey level for the home area and a third one for the empty area.
In this way, robots can perceive an area when physically over it through their ground sensor
and differentiate between types of area by looking at the different sensor activations resulting
from different grey scales.

Communication is implemented through a combination of range-and-bearing infrared
communication (IR) and WiFi, in a way similar to the range-and-bearing implementation
of Roberts et al. (2009). Even if robots communicate via WiFi, interactions are kept local
by delivering messages only to robots within IR range (we limit this range to R = 30 cm).
Robots constantly broadcast via the IR channel their IP address, so that only upon reception
of an IR message, a robot may deliver a WiFi message to the corresponding IP address. On
the receiver side, WiFi messages are filtered out when they do not have an IR counterpart.
In this way, WiFi communication gets enhanced by the localisation aspect: besides receiving
the message content, a robot may localise the sender position using the IR signal strength
and angle. In addition, by keeping interactions local, the risk of a communication channel
overload is limited even when operating with large groups. However, communication with
high robot densities or cluttered environments is limited to the subset of the closest neighbours
because IR communication works only in line-of-sight. This may have a bearing on the
macroscopic dynamics, as discussed below. Range-and-bearing communication is also used
to establish a common frame of reference among two communicating agents, given that robots
cannot recognise the relative heading of neighbours. We adopt here the solution described by
Gutiérrez et al. (2010), based on sharing the relative bearing among the interacting robots.
In this study we consider noiseless sensors and actuators. In a real robot implementation,
the odometry error of the physical robot could be compensated for exploiting robot–robot
communication as done in (Gutiérrez et al. 2010).

3.3.2 Random walk

Differently from the multi-agent system, e-pucks employ a differential-drive motion system
that does not allow immediate changes of direction. Therefore, during random walk, if the
movement vector m varies at each control step as described in Eq. (5), the robot might not
be able to change its position due to the time required to rotate on place for heading towards
m. To work out this issue while keeping the implementation as close as possible to the multi-
agent system, a robot computes m as in (5) and keeps unaltered the desired motion vector
m for w = 5 control steps before the next update. This gives the robot a sufficient time to
rotate and move along the desired direction, while keeping a frequent update of the motion
vector m.

3.3.3 Obstacle avoidance

Due to their physical embodiment, robots must avoid collisions with each other and conse-
quently alter their ideal motion trajectories. To avoid collisions, a robot computes its motion
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vector m—either from random walk (5) or from directed movements towards target areas—
and sums to this an obstacle avoidance vector o. The latter is computed by taking into account
neighbouring robots’ locations that are perceived in a range of 20 cm over the IR commu-
nication channel and calculating a sum vector in the opposite direction. Finally, the robot
motion vector mo is computed as:

mo = m + 2o, (6)

where a larger weight is given to the obstacle avoidance component to ensure collision-free
motion.

3.3.4 Path exploitation

Obstacle avoidance alone is not sufficient to allowa smooth navigation back and forth between
home and target areas. Indeed, groups of robots moving towards opposite locations interfere
with each other. To reduce such interferences, we designed the robot trajectories in a round
trip to create a double-line motion, letting robots keep the right with respect to the robots
travelling in the opposite direction. To achieve this organisedmotion, committed robots going
to a location rotate clockwise their motion vector m by an angle θ ∈ [0◦, 30◦], with θ linearly
decreasing as a function of the distance to the target location.

3.3.5 Expected effects of embodiment

The physics-based implementation of the robotic simulations allows us to investigate the
effects of physical embodiment on the collective dynamics. The solutions described above
deal with part of the constraints and interferences caused by the robot embodiment, but
do not completely solve them. The most important consideration is that the robotic system
cannot work with high robot densities, as motion between and within target areas would
be strongly altered or completely disrupted. Therefore, we limit our study to groups of 50
robots.With this group size, we expect only amild divergence from the ideal motion patterns.
Additional constraints are given by the line-of-sight communication, which may prevent
well-mixed interactions between the interactive robots. However, given that the average
number of interacting robots is limited to 10% of the group size according to the multi-
agent implementation, minor departures from a well-mixed condition are expected. A further
analysis of the effects of embodiment in the robotics implementation is presented in Sect. 4.2.

4 Results

We evaluate the correctness of the microscopic implementation in both the multi-agent and
the swarm robotics simulation. To this end, we compare the dynamics of the macroscopic
model with the results of the microscopic simulations. In this study, the parameterisation
of the macroscopic model is estimated directly from the simulations and we investigate the
decision-making dynamics for varying probabilities Pρ and Pσ and for a set of different
decision problems for varying option quality vi (i.e. varying the target areas distance di ,
i ∈ {A, B}).
4.1 Abstract multi-agent simulations

The effects of spatiality can be appreciated by looking at the decision-making dynamics of
multi-agent simulations by varying the position of target areas. We show results for a set
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(a) (b) (c)

Fig. 5 Macroscopic transition rates estimated from themulti-agent simulation. a Estimated rates for discovery
(γ̂i ) and abandonment (α̂i ) plotted against the target area distance di . Note the exponential decay of the

discovery rate (γ̂i = γo e−λdi , λ = 1.97), as indicated by the inset where the y-axis is plotted in logarithmic
scale. b, c Estimated rates for recruitment (ρ̂i ) and cross-inhibition (σ̂i ) plotted against target area distance di
and control probability Pρ/Pσ . See text for details

of decision problems in which the distance of target B is fixed (dB = 2.5m), while the
distance of target A systematically varies (dA ∈ {1.5, 2, 2.5, 3, 3.5}m). When not stated
otherwise, simulations are run for a total population of N = 500 agents. We first discuss the
relation between estimated transition rates and the target area distances. Then, we evaluate
the micro–macro link comparing the final population distributions in multi-agent simulations
with the macroscopic model attractors, and we verify the presence of the same type of phase
transitions at both levels. Finally, we extend the analysis to varying group size N to identify
finite-size effects on both microscopic and macroscopic dynamics.

4.1.1 Estimation of the macroscopic transition rates

To verify the existence of the micro–macro link, it is necessary to relate the microscopic
implementation to the macroscopic model. This is possible by estimating the transition rates
of themacroscopicmodel directly from themulti-agent simulation.We do so through survival
analysis, which provides powerful nonparametric methods (Nelson 1969) to estimate how
the probability of events changes over time directly from the experimental data (for a detailed
explanation of the methods, see Appendix). We designed a set of experiments to estimate all
the macroscopic transition rates of the ODE system in (1)—γi , αi , ρi , σi , i ∈ {A, B}—for
each possible distance of the target areas. For the interactive transitions, we also varied the
control parameters Pρ and Pσ in the set {0.1, 0.4, 0.7, 1}.

Figure 5 shows the result of the parameter estimation. In agreement with the implementa-
tion choices, the estimated discovery rate γ̂i decreases with the distance di of the target area
i , while the estimated abandonment rate α̂i follows the opposite trend (see Fig. 5a). Note
that discovery follows an exponential decay with increasing distance at an estimated decay
rate λ = 1.97, as shown in the inset of Fig. 5a. This is a result of the motion pattern imple-
mented for uncommitted agents, which is governed by exponentially distributed exploratory
trips. Such an exponential decay implies that farther targets are more difficult to discriminate
than closer ones through discovery, and agent–agent interactions are useful to break possible
deadlocks and lead to consistent decisions.

The interaction rates of recruitment ρ̂ and cross-inhibition σ̂ have been estimated for
different values of the control probabilities Pρ and Pσ , respectively. Also in this case,

123



Swarm Intell

the rates are inversely proportional to the distance of the target area to which the inter-
acting population is committed (see Fig. 5b), in agreement with the implementation choices.
Indeed, such a bias in the transition rates derives from the shorter round trips performed by
agents committed to closer targets. As a result, biased rates favour convergence on shorter
paths, confirming the correctness of the multi-agent implementation. Note that the effect
of distance on the transition rates is linear and is important for larger values of the con-
trol probability but nearly negligible for smaller values, as shown in Fig. 5b. The estimated
transition rates vary approximately linearly also with respect to the control probability of
the individual agents, Pρ and Pσ , as shown in Fig. 5c. A slight departure from linearity
is visible for cross-inhibition, which is mainly due to errors in the estimation procedure
given by the fact that returning home of committed agents is not a purely memoryless
process.

4.1.2 Final distribution

Given the estimatedmacroscopic parameters for varyingdistancedA andvarying control para-
meters Pρ and Pσ as resulting from the previous analysis, we can evaluate the micro–macro
link and compare the dynamics displayed by the two description levels. For each decision
problem obtained varying target distances and control probabilities, we perform 500 runs
and we compare the population distribution after 5 × 103 s (with an integration timestep
of 0.1 s) with the vector field and phase portrait of the ODE system (1) obtained using
the estimated macroscopic parameterisation. Figure 6 shows the correspondence between
microscopic and macroscopic dynamics for selected decision problems. The complete set
of results for every decision problem we investigated is available in Figures S1–S5 in the
online supplementary material. As can be observed in Fig. 6, we obtained a very good agree-
ment between the macroscopic dynamics and the multi-agent simulations, which confirms
the existence of a quantitative micro–macro link as a result of the correct implementation
of the multi-agent behaviour. The agreement is noticeable not only when the microscopic
dynamics have stabilised (i.e. population distributions around the macroscopic stable point,
see Fig. 6a, b, d), but also in unstable transitory states which precisely follow the macro-
scopic vector field, as shown in Fig. 6c. Here, the macroscopic dynamics predict a quick
convergence to a one-dimensional manifold, followed by a slower diffusion towards the
one or the other attractor (Pais et al. 2013). These dynamics are well reproduced by the
multi-agent simulations, which show several points scattered around the one-dimensional
manifold.

Analysing the system dynamics, it is possible to notice that for low values of Pρ a decision
is not taken and a large majority of the agents remains uncommitted (see Fig. 6a). This
behaviour results from a small positive feedback from recruitment which cannot balance
the spontaneous abandonment rate (see also Fig. 5). In fact, by increasing the value of Pρ ,
the system reliably converges towards the best option (see Fig. 6b). As shown in the inset,
100% of the runs reach the quorum Q = 0.75 for the best option. Cross-inhibition has a
different role in the system dynamics: it speeds up the decision process and avoids deadlocks
at indecision (Pais et al. 2013). In particular, for equally distant target areas, the dynamics
with low values of Pσ are slower and the system is often found to be still at indecision after
5 × 103 s. As shown by the inset of Fig. 6c, in this time frame only about half of the runs
reached the decision quorum for one or the other option. As soon as we increase Pσ , the
system always converges to a large majority of agents committed to either one of the two
alternatives (see Fig. 6d).
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Fig. 6 (Colours online) Comparison of the microscopic and macroscopic dynamics for different decision
problems and control probabilities. The macroscopic dynamics are displayed through the phase portrait (grey
arrows show the vector field, filled circles are equilibrium points—dark blue: stable; light green: unstable). The
bold magenta arrow represents the trajectory starting from a fully uncommitted population (ΨA = ΨB = 0).
The microscopic dynamics are displayed as a scatterplot representing the final distribution of 500 independent
runs (red empty circles). The insets show the decision pattern for a quorum Q = 0.75, indicating the percentage
of runs that resulted in an above-quorum fraction of agents committed to either alternative

4.1.3 Bifurcation

To further validate the existence of a precise quantitativemicro–macro link,we testedwhether
the macro and the micro systems undergo the same phase transition at the same predicted
value σ ∗ (see Sect. 2.2). For an unbiased decision problem (i.e. dA = dB ), transition rates
for any of the two options are equal, and in such a completely symmetric situation, the
system risks getting stuck at indecision. As discussed in Sect. 2.2.1, there exists a value of
sigma, σ ∗, for which the system breaks the symmetry and converges to either one of the two
options. Using the estimated transition rates for dA = dB = 1.5m and Pρ = 1, we computed
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Fig. 7 (Colours online) Phase transition predicted by the macroscopic model (lines) and resulting from
microscopicmulti-agent simulations (colour shades) for two unbiased decision problems: a dA = dB = 1.5m
and b dA = dB = 2.5m. We show the proportion of agents committed to option A, ΨA , varying the control
probability Pσ . The macroscopic bifurcation diagram illustrates stable states as dark (blue) solid lines and
unstable state as light (green) dashed lines. The distribution of ΨA obtained from multi-agent simulations is
illustrated through a density histogram in which more frequent values are represented as darker (red) boxes

the estimated critical value σ̂ ∗ = 3.96261 × 10−5. Note that the estimated macroscopic
transition rate σ̂ is linearly related to the individual-level cross-inhibition probability Pσ , as
shown in Fig. 5c, especially for small values of Pσ :

σ̂ = K (dA, dB)Pσ , (7)

where K (dA, dB) is a constant value that embeds spatial factors related to the distance of both
target areas, as well as the constant probability PL of engaging in an interaction when agents
are interactive (see Table 1). Since we have control only on the parameter Pσ , we discount
K (dA, dB) from σ̂ ∗. The pitchfork bifurcation is predicted by the macroscopic model at the
value Pσ ∗ = σ̂ ∗/K (dA, dB) = 1.4089 × 10−2 (see Fig. 7a). We have therefore performed
a bifurcation analysis with the multi-agent simulation, varying Pσ in the range [0, 0.1[ (with
a 0.005 step increment). For each condition, we performed 500 runs lasting 2 × 104 s, a
sufficient time to ensure convergence. Figure 7a illustrates the final distribution of ΨA as a
density histogram, which results in a very good agreement with the macroscopic bifurcation
diagram. Figure 7b shows similar results for a different parameterisation: dA = dB = 2.5m
and Pρ = 1.

4.1.4 Finite-size effects

A limitation of the macroscopic model (1) is the infinite-size approximation, which turns
into the impossibility to precisely analyse the system behaviour for varying group size N .
Similarly to Valentini et al. (2014), we numerically study the finite-size effects through
Monte Carlo simulations of a macroscopic finite-size model exploiting the Gillespie algo-
rithm (Gillespie 1976), a widely used method to study the behaviour of continuous-time,
well-mixed, memoryless processes. Figure 8 shows that also for small values of N the finite-
size dynamics are in agreement with the infinite size ODE system (1). However, for small

123



Swarm Intell

Fig. 8 (Colours online) Comparison of the macroscopic and microscopic dynamics including macroscopic
simulations of finite-size effects. The experiment parameterisation is dA = 2m, dB = 2.5m, Pρ = Pσ = 1.
The population distribution for 2000 independent runs is displayed as red empty circles for multi-agent simu-
lations, and as green diamonds for the Gillespie simulations. The inset shows the percentage of runs in which
a decision was made for one or the other option (quorum Q = 0.75)

Fig. 9 (Colours online) Exit
probability for multi-agent (black
solid lines) and Gillespie
simulations (red dashed line)

size N , the macroscopic system is subject to larger random fluctuations which result in more
frequent wrong decisions especially in decision problems with a small difference between
options (see the inset histogram in Fig. 8).

To better quantify the accuracy of the micro–macro link including finite-size effects, we
introduce the exit probability, a measure that indicates the percentage of runs that terminate
with a proportion of agents committed for the best (or equally best) option greater than a
quorum Q = 0.75. Figure 9 shows the estimated exit probability for varying group size for
both multi-agent and Gillespie simulations. Also in this case, we recognise a good agreement
between macroscopic dynamics and multi-agent simulation results. Multi-agent simulations
have a slightly higher exit probability than predicted by the macroscopic model. This is to be
accounted to the larger time delay in reporting discoveries of farthest targets, which slightly
bias the decision problem towards the closest option. Such effects cannot be grasped by the
macroscopic dynamics starting from a fully uncommitted population, but could be accounted
for by an appropriately measured bias in the starting conditions (e.g. starting with a small
population fraction committed to the closest target). In future studies, by introducing such a
bias in the macroscopic finite-size models, better predictions could be achieved.
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(a) (b) (c)

Fig. 10 Macroscopic transition rates estimated from the robotics simulations. See also the caption of Fig. 5
for details

4.2 Physics-based swarm robotics simulations

The swarm robotics implementation aims to investigate the effect of embodiment on the
macroscopic dynamics. In Sect. 3.3, we have discussed several solutions introduced to reduce
interferences and deal with physical interactions among robots and between robots and envi-
ronment. We have therefore run several simulations using the ARGoS framework (Pinciroli
et al. 2012) to study the microscopic dynamics. Also in this case, we study several deci-
sion problems fixing the distance of target B to dB = 2.5m and systematically varying the
distance of target A, dA ∈ {1.5, 2, 2.5, 3, 3.5}m. Simulations are performed with groups of
N = 50 robots.

4.2.1 Estimation of the macroscopic transition rates

For each experimental condition, we estimated the macroscopic transition rates through
survival analysis, following the same methodology used for multi-agent simulations and
detailed in Appendix (see Fig. 10). The estimated discovery (γ̂ ) and abandonment (α̂) rates
vary with target distance in a similar way to themulti-agent simulations, as shown in Fig. 10a.
Abandonment increases with distance while discovery exponentially decays at a decay rate
λ = 1.27 (see also the figure’s inset). Abandonment rates are also in a good quantitative
agreement with the multi-agent simulations, while discovery rates present larger values.
This is a result of the difference in the correlated random walk by agents and robots, the
former having a smaller correlation in the motion direction due to the ability of instantaneous
turning.

The estimated recruitment (ρ̂i ) and cross-inhibition (σ̂i ) rates depend on the distance di , as
well as on the control probabilities Pρ and Pσ , respectively, as shown by Fig. 10b, c. While
recruitment correctly decays with distance, similarly to the multi-agent implementation,
we notice that the cross-inhibition rate slightly increases with distance. This is mainly the
result of physical interferences among robots committed to the same option, which are less
frequent for longer paths because the density of robots over the path is reduced, therefore
leading to higher transition rates. Indeed, notwithstanding the ad hoc motion pattern for path
exploitation discussed in Sect. 3.3, physical interferences cannot be completely neutralised,
the stronger their effect the higher the robot density, resulting in a penalty for motion on
shorter paths.
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Fig. 11 (Colours online) Comparison of the microscopic and macroscopic dynamics for different decision
problems and control probabilities. See the caption of Fig. 6 for details

4.2.2 Final distribution

Exploiting the estimated macroscopic transition rates, we can analyse the micro–macro link
also for the robotics simulations. We have therefore matched the macroscopic dynamics
with the final population distribution from 500 independent runs of the robotics simulations.
Fig. 11 shows four selected conditions (corresponding to the same decision problems and
control parameters used in Fig. 6). The complete set of results for every decision problem
we investigated is available in Figures S6–S10 in the online supplementary material. Also
in this case, the agreement between macroscopic dynamics and microscopic simulations
is remarkable. With respect to multi-agent simulations, we note a larger scatter of data
points, which is due to larger random fluctuations related to the physical embodiment of
robots, as well as to finite-size effects given the relatively low group size. Apart from this,
the microscopic implementation accurately matches the macroscopic dynamics. We also
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recognise that the decision process is not compromised by a cross-inhibition rate increasing
with distance. Indeed, the additional negative feedback is counterbalanced by the positive
feedback given by recruitment, which allows to achieve rather accurate decisions.

5 Conclusions

The problem of correctly engineering large-scale distributed systems so as to obtain desired
macroscopic dynamics is a complex one, and no general solution exists to date. In this
paper, we have demonstrated how to obtain a quantitative relationship between a desired
macroscopicmodel of collective decisionmaking borrowed from studies of nest-site selection
in honeybees (Seeley et al. 2012) and a shortest path discovery/selection problemwithin both
multi-agent and robotics simulations. This work is particularly relevant in the perspective of
formalising a design pattern for collective decisions based on the mechanisms observed in
honeybees. The high-level guidelines provided in Sect. 2 have been verified in a particularly
challenging example, and the relationship between microscopic parameters and macroscopic
transition rates was obtained directly from the experimental data, showing that in many cases
an approximately linear relation holds, with few exceptions that can be ascribed to the effects
of spatiality and embodiment. Additionally, specific solutions have been proposed to deal
with both spatiality and embodiment which deserve further investigations before proceeding
to the formalisation of a design pattern for the general case.

For instance, the distinction between interactive and latent states can be generalised to
any scenario in which—due to spatiality or other constraints—agent–agent interactions are
not always possible, so that a necessity to differentiate between activity states arises. The
lesson learned from the present case study is the importance of implementing spontaneous
transitions between the activity states with comparable dynamics across different populations
of committed and uncommitted agents. This should ensure that the interactive agents are an
overall unbiased representation of the entire population.What needs to be further investigated
is the amount of bias that can be introduced before disrupting the micro–macro link.

Another important implementation choice consists in linking the possibilities of interac-
tion to the dynamics of activity change. In this respect, the lesson learned is the importance
of having similar dynamics between interaction rates and activity changes, in order to main-
tain unbiased proportions within the interactive population. Also in this case, it would be
important to ascertain whether alternative implementation patterns exist in order to speed up
the decision process beyond the constraints imposed by activity dynamics.

Finally, it is worth noticing that spatial factors are well managed also thanks to well-
designed motion patterns and transitions between states of the PFSM individual-level model.
The lesson learned is that a proper design of the individual behaviour should lead to mem-
oryless processes whenever possible. In this way, the microscopic implementation can be
easily linked to the macroscopic description. When spatiality provides some form of bias,
it is important to design the individual behaviour to neutralise such a bias (e.g. returning
to the home location after an abandonment is mandatory to avoid a bias in the discovery
of the abandoned alternative). Neutralising spatiality effects may have costs (e.g. it slows
down discovery of potential alternatives), but these are costs that need to be paid to obtain a
quantitative micro–macro link.

The problem studied in this paper and the solution proposed have some specificities that do
not allow to generalise towards any collective decision-making problem. However, this case
study canhelp in understanding the effects of spatiality on the decision dynamics. In this study,
the quality of the alternatives is not directly available to the agents and decisions are bound
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to biases related to spatial factors (i.e. different latencies related to different options, see also
Montes et al. 2010; Scheidler et al. 2015). As a consequence, not all possible macroscopic
dynamics can be obtained, because the macroscopic transition rates can only be modulated
by the chosen control parameters but not completely controlled. Different dynamics could be
achieved in case each agent can individually estimate (with noise) the quality of the available
option to contribute to the collective choice.

Future work will be tailored to formalise the suggestions given in this paper into a design
pattern for collective decision making. More formal guidelines and methods to deal with
spatiality issues—or, more generally, with the existence of latent states—will be provided,
together with a formal relationship betweenmicroscopic control parameters andmacroscopic
transition rates. As a consequence, it would become possible to select the relevant parame-
terisation of the system at the macroscopic description level and immediately derive the
corresponding parameterisation of the individual behaviour that leads to the desired collec-
tive outcome. This would lead to a complete micro–macro link for collective decisionmaking
allowing both top-down design and bottom-up verification and analysis.
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Appendix

Survival analysis

We estimated the transition rates of the macroscopic model from the multi-agent/swarm
robotics simulations through survival analysis. In this appendix, we shortly introduce this
methodology and we present the Nelson–Aalen estimator that we employed for our analysis.
Finally, we describe how to estimate the transition rates directly from experimental data. We
believe that showing the application of this statistical tool for the analysis of a swarm robotics
experiment may be of interest to the community.

Survival analysis

Survival analysis is a branch of statistics that offers tools to estimate the change over time
of the probability of an event from experimental data. Survival analysis has been initially
introduced in medicine to estimate the probability of survival (or death) of an organism
under some treatment. Subsequently, these tools generalised to the estimate of any transition
probability between populations. Nowadays, survival analysis is employed in several fields,
such as economics—e.g. to estimate the probability of a stock market crash—or mechanical
engineering—e.g. to estimate the probability of engine failures. In this work, we apply sur-
vival analysis to estimate the transition rates of the macroscopic model of collective decision
making.

Other works have used this type of analysis to estimate the parameters of multi-agent
systems behaviour. Jeanson et al. (2003) use survival analysis to estimate the probability
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Fig. 12 a Cumulative discovery probability over time for target area at distance d = 1.5m. The slope of the
resulting line corresponds to the discovery rate estimate. b Cross-inhibition rate σA estimates over population
fraction ΨA for target area distances dA = dB = 2.5m and probability Pσ = 0.1

with which cockroaches change their behaviour. Garnier et al. (2008) and Reina et al. (2014)
employed survival analysis to compute transition rates of artificial agents behaviour.

Hazard curve

We consider the three populations {A, B,U } in accordance with the agent’s commitment
state described in Sect. 2. To compute the rate at which agents switch (transit between) their
commitment state, we log the number of timesteps t interlaying between two commitment
switches (transitions) and the relative type of event causing the switch (e.g. discovery or
recruitment). At the end of an experiment, we log the timesteps t from the last commitment
switch as censored event, which indicates that after t timesteps no transition happened. We
use the Nelson–Aalen estimator (Nelson 1969) to compute the hazard curve H(t) from the
collected experimental data. The hazard curve H(t) shows the cumulative probability of
events occurring until time t and is computed as follows:

H(t) =
∑

ti≤t

di/ni , (8)

where di is the number of events recorded at ti , and ni is the number of events occurring (or
censored) at time t ≥ ti . In a memoryless system, the probability of an event does not change
over time, therefore the curve of the cumulative probability as function of time corresponds
to a line with a slope equal to the constant event rate (i.e. the transition rate). Assuming our
system as memoryless, we compute the transition rate by linear fitting the hazard curve with
a line passing through the origin. Additionally, the quality of the fitting can be used to verify
the correctness of a memoryless implementation.

Rate estimation

The rate of spontaneous transitions, in this study discovery and abandonment, can be directly
estimated by computing the slope of the hazard curve, as detailed above. For instance, Fig. 12a
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shows the hazard curve of the discovery rate computed from multi-agent experiments with
target area at distance d = 1.5m. Differently, rate estimates of transitions consequent to
an interaction—in this work, recruitment and cross-inhibition—include the probability of
interaction with an agent of the other population, which we call hereafter the interacting
population. This probability changes during the process as the interacting population size
changes and must be taken into account to estimate a constant transition rate independently
from the interacting population size. Therefore, we first compute one aggregate transition
rate for every interacting population size, and then, we normalise the rates for the interacting
population fraction. For instance, fromEq. (1), the cross-inhibition rate for the population B is
(−σAΨA), which includes the size of the interacting population A that delivers the inhibition
signal. Through survival analysis, we compute the aggregate rate (σAΨA) for varying values
of ΨA in the range ]0, 1[. Then, by linear fitting, we discount from the aggregate rates the
interacting population fraction to obtain σA. Figure 12b shows a set of 50 aggregate rate
estimates plotted as function of ΨA, the slope of the fitted line corresponds to the estimate of
σA.

To estimate the transition rates with constant population sizes, we run ad hoc experiments
where the population sizes are fixed. In these experiments, agents follow the normal behaviour
and, in case of commitment state transitions, they only log the event but do not change
commitment state. In this way, we can quickly gather a large amount of data for every
population size and parameterisation.
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