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Abstract Value-sensitive decision-making is an essential task for organisms at all
levels of biological complexity and consists of choosing options among a set of
alternatives and being rewarded according to the quality value of the chosen op-
tion. Provided that the chosen option has an above-threshold quality value, value-
sensitive decisions are particularly relevant in case not all of the possible options
are available at decision time. This means that the decision-maker may refrain from
deciding until a sufficient-quality option becomes available. Value-sensitive collec-
tive decisions are interesting for swarm robotics when the options are dispersed in
space (e.g., resources in a foraging problem), and may be discovered at different
times. However, current design methodologies for collective decision-making often
assume a well-mixed system, and clever design workarounds are suggested to deal
with a heterogeneous distribution of opinions within the swarm (e.g., due to spatial
constraints on the interaction network). Here, we quantify the effects of spatiality in
a value-sensitive decision problem involving a swarm of 150 kilobots. We present
a macroscopic model of value-sensitive decision-making inspired by house-hunting
honeybees, and implement a solution for both a multiagent system and a kilobot
swarm. Notably, no workaround is implemented to deal with the spatial distribu-
tion of opinions within the swarm. We show how the dynamics presented by the
robotic system match or depart from the model predictions in both a qualitative and
quantitative way as a result of spatial constraints.
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1 Introduction

Engineering large robot swarms with predictable performance is a very challeng-
ing problem, which is exacerbated by the spatiality aspects inherent to robotic sys-
tems that are widely distributed in space and that feature a highly heterogeneous
and dynamic interaction network. For this reason, available design methods for sys-
tem control resort to space-time models or low-dimensional abstractions [9, 3, 14].
Indeed, even with simple mobility models such as random walks [5], the system
dynamics are the more difficult to predict the more the individual actions are influ-
enced by information available only locally. If the state of a robot strongly depends
on its spatial location (which in turns determines the interactions with neighbours),
it is very likely that the swarm robotic system will present heterogeneities through
space that may have a bearing on the macroscopic dynamics. The effects of spatial-
ity are negligible only if the swarm is “well-mixed”: in analogy with chemical sys-
tems [8], a certain robot state should be uniformly distributed within the swarm, or,
in alternative, interactions between any two robots in the swarm should be equally
likely. This condition is however not customary in swarm robotics, due to limited
motion speed and local communication abilities that prevent sufficient mixing. As
a result, the system dynamics may strongly deviate from the predictions of abstract
macroscopic models [4, 24].

In collective decision-making problems, spatiality may be determinant for the
system dynamics, especially when the decision is the result of the formation of spa-
tial heterogeneities (e.g., in self-organised aggregation [1, 7]). In other cases, it can
play against convergence to a coherent outcome due to the formation of spatially
isolated clusters that do not sufficiently interact, resulting in a decision deadlock
or in long convergence times [24]. The attentive design of the individual robot be-
haviour can cancel out or even exploit the effects of spatiality [15, 20, 25]. Design
methodologies based on well-mixed assumptions propose clever workarounds to
deal with spatial constraints, such as limiting the interaction between agents from
different populations only when/where the agents populations mix, e.g., at a home
location [21].

In this work, we address the design of a collective decision-making behaviour in
a swarm robotics scenario characterised by spatial heterogeneities, and analyse the
effects of spatiality in the system dynamics. The decision problem falls in the gen-
eral class of value sensitive decision-making [17], that is, it requires that a decision
is taken only if there is at least one option that has a sufficiently high quality (i.e.,
above a given threshold θv). In case such a high-quality option is not available, a
decision should not be taken in the expectation that a supra-threshold option would
become available at a later time (see Sect. 2). Due to spatiality, it may be possible
that only low-quality alternatives are discovered first, due to random exploration,
so that the decision should be delayed until a high-quality one is eventually found.
Quantifying the effects of spatiality in such a decision problem is therefore a funda-
mental step toward the engineering of swarm robotics systems.

We provide an implementation for the value-sensitive decision problem follow-
ing a recently introduced design pattern for decentralised decision-making [21], as
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detailed in Sect. 3. Although the design pattern provides some guideline to deal
with spatiality—at least to a certain extent—, in this work we implement no special
workaround apart from parametrising the system in a way to enhance mixing among
robots. We study the system behaviour in the special case of binary symmetric de-
cisions, that is, two options are available with the same quality v ∈ [vm,vM], and we
analyse when the system is able to break a decision deadlock or remain stuck at in-
decisions (i.e., in the expectation that a high-quality option would later appear, see
Section 4). We provide results for an abstract multiagent system characterised by
point-mass particles not physically interacting with each other, and for experiments
with a swarm of 150 kilobots. We conclude in Sect. 5 by discussing the relevance of
the obtained results for the engineering of large-scale swarm robotics systems.

2 Case study: value-sensitive decision-making by a robot swarm

Problem Description. We consider a case study in which a robot swarm must search
and select among options deployed in a bidimensional environment, with an option
becoming visible to a robot only in its immediate surroundings. The collective de-
cision is taken when a large fraction xQ of robots commits to the same option. Each
option, Oi is characterised by its quality vi ∈ [vm,vM]. The robots have no a priori
information about the decision problem they have to solve, that is, the robots do not
know: (i) how many options are available, (ii) where the options are located, and
(iii) which is the quality of the options. The swarm is asked to explore the environ-
ment in order to identify all the available options and estimate their quality. Finally,
the swarm must select the option with the highest quality if the quality is above a
given threshold θv, otherwise should remain undecided.

The system property of committing or not to a decision as a function of the es-
timated quality of the options reflects value-sensitivity: The swarm response is sen-
sitive to the value of the perceived options’ quality. Value-sensitivity is relevant to
engineering [21], biology [17] and also neuroscience [18], and is an advantageous
property for systems that have to make decisions among an unknown number of op-
tions which have to be discovered. This is typical when the discovery of alternatives
is an episodic event. In similar conditions, options may become available at various
moments in time, for example, some options may need more time to be discovered
or may appear later in the environment. In these cases, committing too early to the
current best option may preclude the opportunity of selecting a better option that
would get discovered later. This situation may be frequent in scenarios where op-
tions are deployed in a spatial environment (e.g., nest-sites in house-hunting social
insects [23]). Farther options may take longer to get discovered although they might
have a better quality than nearer options. This phenomenon is well-known in biol-
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ogy: for instance, ant colonies that change their nest are able to select the best new
nest independently of the distance from the old nest [6].

Experimental Setup. The robot used in this study is the kilobot [22], a small and
simple robot with limited sensing and actuation capabilities. A kilobot operates at a
clock frequency of about 32 Hz (which corresponds to a clock period τc '31 ms).
It can move on a flat surface and control its movements through the modulation of
the power applied to two vibration motors. The motion speed varies from robot to
robot and also depends on the ground friction. In our experiments, a robot can move
straight at a speed of 13 mm/s and rotates at 40 ◦/s, on average. Through IR commu-
nication, a robot can exchange 9 bytes messages with neighbours in a limited range
ds which varies in relation to the reflectance of the ground and the brightness of
the environment. In our experiments, the communication range was about 100 mm.
Finally, each robot is equipped with a RGB LED that we use to let the robot display
their current state.

The environment is a circle with a radius of 750 mm and glass ground. Each
option is signalled through two static kilobot robots acting as beacons (which here-
after we call simply beacons to differentiate them from the robots that compose the
swarm). Each beacon broadcasts every second a message with the option ID and its
quality. We consider a binary decision problem characterised by two options, and
we assign a unique colour to each of them (i.e., red and blue); the colours will help
later to visualise each robots commitment state (see Sect. 4). We allocate two bea-
cons for each option to allow the robots to perceive the option messages in a larger
area. The two beacons are located at a distance of 150 mm from each other and thus
cover an area of AO ' 0.058m2. Therefore, each robot can perceive an option in a
very limited portion of space compared to the whole environment which has an area
of AE = 1.77m2. The two options are located at a distance of about 380 mm from
the environment center at diametrical opposite position. Thus, the distance between
the two options is about 760 mm.

We analyse the robot experiments postprocessing the video of the experiments
that we record through four overhead cameras. The cameras have overlapping fields
of view and have been calibrated in order to match the coordinates of each tracked
robot in a common reference frame to remove duplicate detection. We use a four-
camera tracking system to maximise the probability of detecting the LED colour of
every robot. In fact, multiple reduced fields of view allow a view on each area that is
more orthogonal to the ground plane and reduces the occurrence of robots occluding
the view of the LED with their own body.

Given the specification of the environment and of the robots communication ca-
pabilities, the swarm size (i.e., the number of robots) determines the average number
of neighbours for each robot. Given N robots moving in an environment of size AE
and interacting over a range ds, the resulting interaction network has average degree
〈k〉= πNds/AE [24]. We size the swarm to 150 robots which corresponds to having
a network with an average interaction degree of 〈k〉 ' 2.67. This value allows to
have frequent interactions but remains below the percolation threshold 〈k〉 ' 4,51
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which determines the emergence of a single connected component in the interaction
network [24].

3 Top-down implementation through the design pattern

We implemented a swarm robotics system for decentralised decision-making fol-
lowing a design methodology based on the concept of design patterns, as proposed
in [21]. The agent behaviour takes inspiration from a mathematical model for hon-
eybee nest-site selection [23]. This model describes the dynamics of a honeybee
swarm collectively deciding their future nesting site through a system of ODEs.
In [21], the honeybee model is formalised in a design pattern supporting the design
of swarm systems (e.g., robot swarms) by linking the macroscopic model parame-
ters to the individual agent behavioural rules.

Preconditions. The decentralised decision strategy that we implemented requires
a set of abilities at the individual robot level, as prescribed by the design pattern
of [21]. Each robot must be able to:

• explore the environment searching for available options;
• recognise available options once found;
• individually estimate the options’ quality;
• exchange with other robots the options’ ID and quality.

Each robot modulates its actions as a function of the estimated quality of the opinion
to which it is committed to. All these preconditions are met by the kilobot platform,
hence the design pattern methodology can be applied.

Individual robot rules. The decision process works as follows. Robots can be
committed to an option i (state Ci, and the total number of robots committed to i is
Ni) or uncommitted (state CU , and the total number of uncommitted robots is NU ).
An uncommitted robot explores the environment and upon discovery of a potential
option i it gets committed with probability Pγi . A robot committed to option i actively
recruits uncommitted robots (which also become committed to i) with probability
Pρi . A robot committed to option i sends stop signals to robots committed to option
j, with j 6= i. The robot that receives the stop signal becomes inhibited and reverts
to an uncommitted state with probability Pβi . Finally, a robot committed to option i
spontaneously abandons its commitment and reverts to an uncommitted state with
probability Pαi .

Each robot, every second, broadcasts a message with information of its commit-
ment state and, if committed to an option, the estimated option’s quality. A robot
updates its commitments state every τu = 400 clock cycles through one of the four
transitions: discovery, abandonment, recruitment and cross-inhibition. The mecha-
nism of state update is described by the probabilistic finite state machine presented
in Figure 1. Some of the transitions are available only if in the latest τu clock cycles
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Fig. 1 Robot behaviour described as a probabilistic finite state machine. A robot updates its com-
mitment state every τu clock cycles. Solid arrows are spontaneous individual transitions that can
happen at any update. Dot-dashed lines are spontaneous individual transitions that can happen only
if the robot has found an option in the latest τu clock cycles. Dashed and dotted arrows represent
interactive transitions that can happen only if the latest message received by the robot in the last τu
clock cycles is from another robot committed to option O1 or O2, respectively.

the robots has encountered an option (necessary for discovery) or received a mes-
sage from other committed robots (necessary for recruitment and cross-inhibition).

Every robot moves in the environment through an isotropic random walk deter-
mined by the alternate sequence of straight motions for τm = 300 clock cycles and
on-place rotations in a random direction for τr clock cycles, which are chosen ran-
domly from a uniform distribution U(1,150). The random walk is necessary (i) to
let uncommitted robot explore the environment to discover potential options, and
(ii) to allow robots to mix with each other and thus change their communication
neighbourhood [5].

The robot software is available online at http://diode.group.shef.ac.uk/
resources/.

Macroscopic parameterisation. The macroscopic model of the decision process
can be described through a system of stochastic differential equations (SDEs) that
describe the changes in the proportion of agents committed to each option. In this
paper, we limit the study to binary decisions, hence the model describes the changes
of the proportion of agents committed to option O1 and O2 as x1 = N1/N and x2 =
N2/N, where N = NU +N1+N2 is the total number of robots composing the swarm.
The macroscopic model is:dx1 = (γ1xU −α1x1 +ρAx1xU −β2x1x2)dt +σdW1(t)

dx2 = (γ2xU −α2x2 +ρBx2xU −β1x1x2)dt +σdW2(t)
xU + x1 + x2 = 1

, (1)

where γi,αi,ρi and βi are the transition rates, respectively, of discovery, abandon-
ment, recruitment and cross-inhibition for option i; and σdWi is a Wiener process
which represents additive noise with strength σ ≥ 0. In order to implement a sys-
tem able of value-sensitive decisions, we use a parameterisation similar to the one
proposed in [17]. We make two modifications prescribed by the design pattern [21]:
(i) The transition rate of discovery (γi) is changed in order to take into account the
episodic nature of a discovery; (ii) All transition rates are scaled to meet the maxi-
mum speed of the process. The employed parameterisation is:

http://diode.group.shef.ac.uk/resources/
http://diode.group.shef.ac.uk/resources/


Effects of Spatiality on Value-Sensitive Decisions Made by Robot Swarms 7

Deadlock

breaking

Decision

deadlock

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.1

0.2

0.3

0.4

v

β

(a)

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

v

x 1

(b)

Fig. 2 Analysis of the macroscopic model of Equation (1) with parameterisation (2) for the binary
case v = v1 = v2. (a) Stability diagram in the parameter space (v,β ). In the shaded area, the system
has a single attractor with an equal number of committed robots to both options. In the white area,
the system has two stable solutions with committed population biased for either of the two options.
The horizontal red dashed line shows the selected value of β = 0.3. (b) Bifurcation diagram for
β = 0.3 as a function of the option quality v. The solid blue lines are stable equilibria, the green
dashed line is an unstable saddle point. As desired, the system undergoes a pitchfork bifurcation
and breaks the decision deadlock for quality values greater than the treshold θv ' 1.5.

γi = vi ·PD, αi = v−1
i , ρi = vi, βi = β , dt = dτ/s, i ∈ {1,2}

(2)
with PD the episodic discovery probability, vi ∈ (1,5] the option i quality and
s = 0.008 the temporal scaling. Similarly to [13], we estimate geometrically the
probability of encountering an option, PD = AO/AE ' 0.033, where AO is the area
where an option can be detected by a robot and AE is the full environment area.

The macroscopic dynamics of the system in (1) can be studied analytically for
varying option values [17]. A particularly interesting case is the symmetric condition
in which both options have the same quality (i.e., v1 = v2 = v). In this situation, the
two options are equivalent, therefore the swarm must select any of the two but only
if their value is higher than θv. The study presented in this paper focuses on this case,
as it is paradigmatic for evaluating the value-sensitivity property. Figure 2(a) shows
the stability diagram as a function of the options’ quality v and the cross-inhibition
rate β . The diagram shows that there exist two zones determining the macroscopic
behaviour: In the grey shaded area, there exist a single attractor corresponding to
a decision deadlock, which means that the swarm remains locked at indecision; In
the white area, the system presents two stable attractors that correspond to decisions
for the one or the other option, and a third unstable saddle point. This diagram can
be exploited to select the system parameterisation that provides a desired value-
sensitive behaviour. For instance, in order to have a value-sensitive behaviour with
θv = 1.5, it is necessary to select β = 0.3 (displayed as a horizontal red dashed line
in Figure 2(a)). Figure 2(b) shows the bifurcation diagram for the selected value
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Fig. 3 Screenshot of a 150 kilobots ex-
periment taken from the four-overhead-
camera tacking system. The overlaying
coloured circles show the two options
localised in the environment. The robots
light up their LED in a colour that cor-
responds to their internal commitment
state: green for the uncommitted state
CU , red or blue for commitment to the
option of the respective colour. This
screenshot shows the final state of the
swarm, after 30 min, for an experiment
with v1 = v2 = 5. The swarm has a ma-
jority of robots committed to the blue
option (108), only 35 robots committed
to option red and 7 uncommitted robots.

of β , highlighting how the system breaks the decision deadlock when the options’
quality v is greater than θv ' 1.5.

Microscopic parameterisation. The design pattern of [21] explains how to con-
vert the macroscopic parameters in the individual robot probabilities. The main dif-
ference between the macroscopic model and the agent implementation concerns the
change of the temporal domain. While the macroscopic description is a continous
time model, the robots operate, as the most part of electrical devices, in discrete time
(i.e., CPU clock cycles). Following the conversion rules of [21], we obtain:

Pγi = γi ·T, Pαi = αi ·T, Pρi = ρi ·T, Pβi = βi ·T, i ∈ {1,2} (3)

with T the update timestep length, which is determined by the time between two
commitment updates τu = 400τc (where τc is the kilobot clock period) and the
timescale of the macroscopic model, which is rescaled by the term s. In our ex-
periments, T = sτu.

4 Results

In this study, we constrast the dynamics predicted by the macroscopic models with
the results obtained from the swarm robotics system which we implemented both
in simulation and on real robots. At the macroscopic level, we study the system
dynamics through time integration of Equation (1) via a generalised Heun method.
Using this numerical scheme the computed solution converges to the Stratonovich
solution of the SDEs [10]. Starting from the SDEs model, it is possible to derive the
corresponding master equation, which allows the analysis of the finite size effects
where the magnitude of the stochastic fluctuations is determined by the finite num-
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Fig. 4 Comparison between the predicted behaviour of the macroscopic system (as in Fig. 2(b))
and the multiagent simulations (underlaying density histogram). The results of the multiagent sim-
ulation correspond to the final distribution of population x1 in 100 runs of length 5 hours.

ber of robots composing the swarm [21]. We approximate the solution of the master
equation through the simulation of the Gillespie algorithm [8].

The swarm robotics system has been implemented and analysed both through
multiagent simulations and through a 150 kilobot swarm. The multiagent system
is implemented in MASON [12] and simulates point-mass particles that move in
a bidimensional plane. The scenario, the agent behaviour and its parameterisation
are coherent with the kilobot implementation described in Sections 2 and 3. How-
ever, in this system, noise and collisions among agents are not taken into account.
The kilobot swarm implementation, instead, allows us to study the dynamics of a
real physical system that includes all the aspects inherent to robotic experimenta-
tion. Figure 3 shows a screenshot of one experiment, while two videos of the robot
experiments are available online1

A first assessment of the effects of spatiality can be obtained looking at the
asymptotic dynamics of the system of Eq. (1) using the parameterisation (2), in com-
parison with the dynamics of the multiagent simulations. We performed a large set
of simulations by extensively varying the quality value v, and Figure 4 contrasts the
macroscopic bifurcation diagram as a function of the options’ quality v with the final
distribution of the simulated swarm at convergence. We can appreciate a good qual-
itative agreement of the multiagent dynamics with the stable attractors of Eq. (1).
The existence of a bifurcation is well predicted by the macroscopic model, although
the multiagent simulations appear to break the symmetry for slightly higher val-
ues of v. Figure 5 shows the comparison of the temporal dynamics of the macro-
scopic models and of the swarm robotics systems (both real and simulated). The
plots show aggregated results of several experiments for two options’ quality val-

1 https://www.youtube.com/watch?v=Gdy5o18y5lg and https://www.youtube.com/

watch?v=EJtcpuj1Q5o

https://www.youtube.com/watch?v=Gdy5o18y5lg
https://www.youtube.com/watch?v=EJtcpuj1Q5o
https://www.youtube.com/watch?v=EJtcpuj1Q5o
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Fig. 5 Comparison of the temporal dynamics of the macroscopic models and the swarm robotics
system. The solid lines show the dynamics of Equation (1) with noise strength σ = 0.0032 (average
over 500 runs). The empty boxplots are the dynamics of the master equation describing the process
with N = 150 agents (the solution is approximated with 500 runs of the Gillespie algorithm). The
darker boxplots are the results of the spatial multiagent simulations (500 runs). Finally, the lighter
boxplots are the results of 150-robots experiments (5 runs). Colours represent the three subpopu-
lations: gray the uncommitted robots, blue/red the committed robots. Since both options have the
same quality, the results show each time as blue the selected option and as red the discarded option.

ues: v = 1.5 and v = 5. The results show that both the multiagent simulations and
the kilobot swarm have slightly different dynamics compared to the macroscopic
description (SDE and Gillespie simulations). For v = 1.5, the system is close to the
critical bifurcation point, and the dynamics are not quantitatively matched by the
spatial system (see Fig. 5(a)). For v = 5 instead, the asymptotic behaviour is very
similar, but the dynamics of the swarm robotics system are slower (see Fig. 5(b)).
A slower convergence is the consequence of spatiality that leads to a drift of the
system from a well-mixed condition. We observe indeed a slightly heterogeneous
distribution of the commitment state among robots, with the emergence of clusters
of robots with uniform commitment and a slow mixing of the two populations. Such
a slowing-down effect is typical of consensus problems on regular lattices [2], and
appears also with mobile agents in case the mobility pattern is not sufficient to pro-
duce an adeguate mixing [24]. Additionally, collisions among kilobots represent an
additional factor that slows down the diffusion of robots in the environment, which
justifies the slower dynamics detected during the kilobots experiments with respect
to multiagent simulations, as shown in Fig. 5.

5 Discussions

The study we have presented highlights the complexity of dealing with spatiality in
the engineering of a swarm robotics system. Although the specific decision prob-
lem we tackle seems ideal for obtaining a quantitative match between macroscopic
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models and experimental system—due to the agents/robots living (and mixing) in
the same space—a non-negligible deviation from the model predictions is observed
in both the multiagent simulations and the experiments with kilobots, especially in
the transitory dynamics, which are slower for the spatial system. The design pat-
tern for decentralised decision-making [21] is key for achieving a good qualitative
match, as demonstrated with the extensive multiagent simulations we performed.
Similarly to the results presented in this study, other work [26] obtained a qualita-
tive match between spatial systems’ dynamics and non-spatial mathematical mod-
els. However, a quantitative micro-macro link requires some additional workaround
to better approximate a well-mixed system. For instance, the introduction of a dis-
tinction between latent and interactive agents as suggested in [21] could be key to
allow a better mixing of the populations. In future work, we will implement such
workaround and evaluate the extent to which the well-mixed condition is attained.
More generally, effects of spatiality should be included in the macroscopic models,
possibly resorting to heterogeneous mean-field approximations [16, 8]. In this way,
the design pattern methodology could be enriched with tools to deal with spatially
heterogeneous systems, and also for systems interacting on networks with heteroge-
neous topology (e.g., scale-free networks) [16]. Another possible approach to obtain
a quantitative match of the system dynamics influenced by spatiality consists in in-
cluding such factors into the macroscopic models [19, 9, 3].

An additional problem we recognise is given by collisions among robots, which
further reduce mobility and limit mixing within the system, as already noted in
previous studies [11, 24]. The kilobot platform does not provide means for efficient
collision avoidance, and the high density that characterises experimentation with
large groups plays against the population mixing. Indeed, besides being well-mixed,
large-scale systems need also be “diluted” to ensure a good micro-macro link [8].
Efforts to provide guidelines to deal with less dilute systems will greatly benefit
the engineering practice for swarm robotics systems. Indeed, we plan to investigate
through further studies the effects of density on robot mobility in order to provide a
model with diffusion coefficient as a function of the robot density.

The experimentation we performed in this study is limited to the symmetric bi-
nary decision case, which we deem sufficient to identify the relevant dynamics and
compare with the model predictions. However, the implementation we provide is
agnostic on the number of possible alternatives, and on the relative difference in
quality, as already demonstrated in [21]. This means that the implemented system
would work out-of-the-box also with an increasing number of alternatives. In such
a best-of-n scenario, however, the macroscopic dynamics may be influenced by the
number of available options, and the specific parameterisation we selected (i.e., the
transitions rate strengths, as suggested by [17]) may need to be adjusted to produce
value-sensitive decisions for any given number of options. Analytical studies in this
direction are ongoing, and tests with a swarm robotics system will allow the val-
idation of the design method beyond the binary case also for large-scale physical
systems.
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