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Abstract. We introduce the concept of cognitive design pattern to pro-
vide a design methodology for distributed multi-agent systems. A cog-
nitive design pattern is a reusable solution to tackle problems requiring
cognitive abilities (e.g., decision-making, attention, categorisation). It
provides theoretical models and design guidelines to define the individ-
ual control rules in order to obtain a desired behaviour for the multi-
agent system as a whole. In this paper, we propose a cognitive design
pattern for collective decision-making inspired by the nest-site selection
behaviour of honeybee swarms. We illustrate how to apply the pattern
to a case study involving spatial factors: the collective selection of the
shortest path between two target areas. We analyse the dynamics of the
multi-agent system and we show a very good agreement with the predic-
tions of the macroscopic model.

1 Introduction

Several recent studies describe swarm systems as information-processing systems
capable of some cognitive ability, which is strongly determined by the interac-
tion patterns among the system components [4,14]. In this paper, we propose to
take a similar perspective in the design of large-scale distributed systems. The
studies mentioned above suggest that—to a large extent—the cognitive process-
ing of natural decentralised systems takes place in inter-individual interactions,
therefore limiting the need to postulate explicit representations within the single
units. By viewing artificial swarm systems as distributed cognitive systems, it
will be possible to maximise their information processing capability while keep-
ing a low complexity of the individual units. That is, individual units would
contribute to the overall system behaviour without having the global picture
about the cognitive process they are collectively producing.

Designing such an information-processing system is clearly a complex endeav-
our, and in general, modelling, predicting and controlling large-scale distributed
systems are complex tasks. Therefore, a successful design methodology for such
systems should be grounded on solid theoretical premises. We propose a design
methodology that leverages the current understanding of cognitive processing
in (natural) distributed systems, and that puts this knowledge in use for the



design of artificial ones. Our proposal is based on the concept of cognitive de-
sign patterns, that is, reusable solutions to tackle problems requiring cognitive
processing (e.g., collective decision-making among multiple alternatives). Simi-
larly to common practice in software engineering [5], these design patterns can
be used to guide the design and development of distributed cognitive processes,
independently of the particular implementation technique. The idea of using
design patterns in distributed systems has already been partially explored, but
previous studies are not grounded on the theoretical understanding of collective
dynamics [6,1,12]. Our proposal aims at providing general solutions grounded
on the principled understanding of the basic mechanisms underlying cognitive
processing.

In this paper, we propose a cognitive design pattern for collective decision-
making. We refer to decision-making as the process of choosing the best option
among a (finite, possibly unknown) number of different alternatives. This process
requires the estimation of the quality of the available alternatives (possibly with
uncertainty) to select the best one. Recent studies have identified optimal deci-
sion strategies in decentralised systems [8,13,11].We propose a cognitive design
pattern hinged on these studies, to be applied to artificial distributed systems.
Although decision-making has been largely studied in this context [2,7,9,12],
general purpose solutions are still missing. Our work aims at filling this gap
by providing a design methodology that can be applied to several application
domains.

The cognitive design pattern we propose is composed of the following ele-
ments: problem, inspiration, solution and case study. The collective decision-
making problem and its relevance in artificial distributed systems have been
discussed above. The biological inspiration is presented in Section 2, in which
we discuss nest-site selection in honeybees and the related theoretical models
accounting for the collective decision-making process. From these models, we
derive the solution, which is discussed in Section 3 along with the causal rela-
tionship between the microscopic and macroscopic levels. To ease the pattern
comprehension, we instantiate the design pattern in a case study presented in
Section 4. In Section 5, we show the agreement between the collective decision
implemented following the design pattern and the macroscopic model predic-
tions. In Section 6, we discuss the proposed methodology and identify directions
for further improvements.

2 Biological inspiration and theoretical models

A remarkable example of collective decision-making is given by honeybee swarms
during nest site selection. In spring, honeybee swarms reproduce by colony fis-
sion: the queen bee and several thousand workers leave the parent hive and create
a cluster in the neighbourhood. Several hundred scout bees start searching for
new potential nest sites, and return to the swarm to advertise through waggle
dances what they have discovered. A number of alternatives may be discovered
during the selection process, and a consensus decision is necessary to lead the



whole swarm to the best one. Decision-making is based on peer-to-peer inter-
actions among bees: scouts committed to a potential site recruit other scouts.
Additionally, scouts have a certain probability of spontaneously abandoning com-
mitments. As a consequence, a competition between populations committed to
different sites takes place, eventually leading to a quorum of individuals commit-
ted for the site that is finally chosen. Recently, cross-inhibition between different
populations has been discovered. This is implemented through a stop signal that
scout bees selectively deliver to nest-mates advertising for a different option [13].
A bee receiving several stop signals abandons the recruitment and becomes un-
committed. Thanks to the stop signal, poor-quality sites are quickly abandoned
in favour of better ones. Most importantly, the stop signal allows to break deci-
sion deadlocks when same-quality alternatives are available, leading to a random
decision for one of the two. In this way, the system can optimise the decision
making, resulting in a choice that maximises the colony reward.

An analytical model of the nest-site selection process has been developed and
confronted with empirical results, confirming the existence of both positive and
negative feedback loops that determine the collective decision [13]. The model
describes the decision-making process in a binary-choice scenario. The swarm
is composed of N individuals (e.g., the scout bees), which can belong to three
different groups: uncommitted individuals (population U with size NU ), and
individuals committed to one of the alternatives (respectively population A and
B, with sizes NA and NB). A continuous-time Markov process describes the way
in which individuals switch between populations. Four types of transitions are
sufficient: discovery, abandonment, recruitment and cross-inhibition.

Uncommitted individuals spontaneously discover and become committed to
the alternative i at the rate γi:

〈NU , NA, NB〉
γA−−→ 〈N−

U , N
+
A , NB〉

〈NU , NA, NB〉
γB−−→ 〈N−

U , NA, N
+
B 〉

(1)

where N+
i and N−

i represent an increment or a decrement in population i. Com-
mitted individuals abandon the alternative i and thus get uncommitted at the
rate αi:

〈NU , NA, NB〉
αA−−→ 〈N+

U , N
−
A , NB〉

〈NU , NA, NB〉
αB−−→ 〈N+

U , NA, N
−
B 〉

(2)

Individuals from population i actively recruit uncommitted ones at the rate
ρiNi/N proportional to the recruiting population size:

〈NU , NA, NB〉
ρANA/N−−−−−−→ 〈N−

U , N
+
A , NB〉

〈NU , NA, NB〉
ρBNB/N−−−−−−→ 〈N−

U , NA, N
+
B 〉

(3)

Finally, individuals from population i actively inhibit individuals of population
j at the rate σiNi/N proportional to the inhibiting population size:

〈NU , NA, NB〉
σANA/N−−−−−−→ 〈N+

U , NA, N
−
B 〉

〈NU , NA, NB〉
σBNB/N−−−−−−→ 〈N+

U , N
−
A , NB〉

(4)



Here, all transition rates—γi, αi, ρi, σi—are greater than zero. It is worth noting
that this model does not require any explicit comparison of the alternatives’
quality by the single individuals. The quality value of the two alternatives—
hereafter labelled vA and vB—is instead encoded in the transition rates (e.g.,
through value-dependent discovery or recruitment rates [11]): different-quality
alternatives correspond to biased transition rates, while same-quality alterna-
tives to unbiased ones. Overall, the collective decision is based purely on the
system dynamics resulting from individual-to-individual interactions.

Starting from this stochastic model, it is possible to obtain the continuous-
time master equation that describes how the probability of being in each state
evolves over time. In the limit of large N , it is possible to extract a mean-field,
population-level model of the system dynamics [13]. This takes the form of two
coupled ordinary differential equations that describe the dynamics of the fraction
Ψi = Ni/N of individuals belonging to population i ∈ {U,A,B}:{

Ψ̇A = ΨU (γA + ρAΨA)− ΨA(αA + σBΨB)

Ψ̇B = ΨU (γB + ρBΨB)− ΨB(αB + σAΨA)
(5)

where ΨU = 1 − ΨA − ΨB . An extensive analysis of this model showed that the
cross-inhibition rates σi crucially determine the dynamics of decision-making
(see [11]). In case of same-quality alternatives (vA = vB), the transition rates
for different alternatives have the same value (i.e., γi = γ, ρi = ρ, αi = α
and σi = σ). In this case, for low rates of cross-inhibition, the system remains
deadlocked at indecision with an equal number of individuals committed to either
alternative (ΨA = ΨB). Through linear stability analysis [13], it is possible to
identify the cross-inhibition level for which the system breaks the deadlock and
converges to the choice of one alternative. The working region is {ρ > α, σ > σ∗},
with critical value:

σ∗ =
4αγρ

(ρ− α)2
. (6)

Additionally, in case of options of different quality, the cross-inhibition rate de-
termines the minimum quality difference between the two alternatives to break
the symmetry and make a systematic choice [11]. Therefore, there exist parame-
terisations of the system that allow to obtain accurate decisions when the quality
of the options differs sufficiently, or random decisions when the values are similar.

3 Design guidelines

The models discussed above provide a link between the individual-level
description—given by the continuous time Markov process—and the population-
level dynamics—given by the dynamical system in (5). However, the models
alone are not sufficient to guide the implementation of a distributed multi-agent
system. In fact, the transition rates depend on several factors: they incorporate
global knowledge about the populations size, which may not be available to the
agents, and they embed spatial and topological factors that partially determine
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Fig. 1. Macroscopic dynamics for different parameterisations (trajectories and equi-
librium points, shown as light green triangles for stable points and dark blue rhombus
for unstable saddle points).

the probability of interaction among agents. For design purposes, it is therefore
necessary to identify the causal relationship between microscopic transitions and
macroscopic dynamics, and to provide a mechanistic description of the working
principles.

The analysis of the macroscopic model in (5) reveals that, when the two al-
ternatives have different value (e.g., vA > vB), an unbalanced agent distribution
between the two populations is obtained thanks to a similarly biased commit-
ment rate. This can be obtained through either discovery or recruitment (e.g.,
γA > γB or ρA > ρB). Different discovery rates directly lead to a distribution of
agents between the two alternatives that follows the rate ratio (see for instance
Figure 1(a)). Similarly, a difference in the recruitment rates results in a unbal-
anced distribution even when the discovery rates are equal (see Figure 1(b)).
This is due to the positive feedback mechanism that can be noted in (3), which
states that the recruitment rate is proportional to the recruiting population size:
the larger the population, the stronger the recruitment for the same population.
Conversely, cross-inhibition provides a negative feedback loop that reduces the
size of a population committed to an alternative, as stated in (4). Crucially, the
rate of cross-inhibition is proportional to the size of the inhibiting population,
and therefore contributes to the creation of an unbalanced distribution of indi-
viduals between committed populations, even for unbiased inhibition rate (i.e.,
σA = σB , see Figure 1(c)). This is true also for same-quality alternatives (i.e.,
vA = vB). In this symmetric case, discovery, abandonment and recruitment are
equal and are therefore not sufficient to break the symmetry. However, a suffi-
cient level of cross-inhibition (i.e., σ > σ∗) makes the equilibrium point unstable,
therefore leading to a symmetry breaking, as shown in Figure 1(d).3

This mechanistic description clarifies the working regimes and suggests how
the transition rates should be chosen to obtain the desired macroscopic be-
haviour. However, to guide the implementation of a distributed multi-agent sys-
tem it is also necessary to define the main features of the individual agent be-

3 A full characterisation of the parameter space is out of the scope of the present
paper, and is object of ongoing studies. The interested reader can find a dynamical
systems analysis for the parameter σ in [11].



haviour and of the agent-to-agent interactions in order to obtain the transition
rates in the appropriate range. In doing this, spatial and topological factors
need to be suitably taken into account. The definition of these guidelines should
provide the minimal requirements to obtain the desired system behaviour, and
should incorporate the knowledge gained from the theoretical models.

In the particular case of collective decision making, we define general-purpose
design guidelines as follows:

(i) discovery : an uncommitted agent must commit to the alternative i with
probability per unit time Pγ,i (possibly proportional to the value vi);

(ii) abandonment : an agent committed to the alternative i must become un-
committed with probability Pα,i (possibly inversely proportional to vi);

(iii) recruitment : an uncommitted agent interacting with an agent committed
to any alternative i must commit to i with probability Pρ,i (possibly pro-
portional to the value vi);

(iv) cross-inhibition: an agent committed to alternative i that interacts with
an agent committed to alternative j 6= i must become uncommitted with
fixed probability Pσ;

(v) interaction: the system must be well-mixed, that is, the probability of in-
teraction between any two agents is uniform.

Note that cross-inhibition is asymmetric, that is, only one of the two agents
(e.g., the one initiating the interaction) can change commitment state, this way
respecting the stop signals mechanism. These guidelines are sufficient to gener-
ate a collective decision, provided that the agent probabilities of changing the
commitment state are in the correct range. In the following section, we follow
the design guidelines to implement a multi-agent system.

4 A simple spatial scenario

We introduce a simple, spatial multi-agent scenario to demonstrate the applica-
tion of the cognitive design pattern for collective decision making. The simplicity
of the case study eases the analysis and the comprehension of the implemented
mechanisms. At the same time, the studied scenario preserves the relevant ingre-
dients of the collective decision making, therefore can well represent application
scenarios where spatiality influences the system dynamics.

We study the collective choice of the shortest path between two alternatives
in a 1D space: agents move on a circle and need to collectively select and ex-
ploit the shortest path between two target areas (see a pictorial representation
in Figure 2). Two alternatives are possible: the upper and the lower path, re-
spectively labelled A and B. The angle θ between the target areas defines the
decision problem: the best alternative is A for θ < π, B for θ > π and any of
the two for θ = π. To identify and exploit a path, agents need to navigate back
and forth between target areas. We assume that agents can move at maximum
angular speed ω = π/18 s−1, and that movements are subject to noise mod-
elled as a Gaussian displacement per arc degree following a N (0, ξ) distribution,



with ξ = π/4500. During navigation, agents track the angular distance of the
two areas through dead reckoning, and use their estimates to attain previously
visited areas without exploring or sensing the environment. However, due to the
movement noise, position estimates are subject to cumulative errors. As a con-
sequence, agents may end up with incorrect information and may be unable to
attain a target area. Finally, agents have a sensing range of β = π/36 within
which they can identify target areas and interact with other agents. All agents
start with no knowledge about the target areas, and are therefore uncommitted.

Given the above specifications, we have developed the agent behaviours and
interactions following the cognitive design pattern, as stated below.

(i) Discovery : an agent explores the environment through a correlated random
walk with persistence rate λ = 0.8 [3], and gets committed to a path as
soon as it stores the position of the two target areas, allowing to navigate
back and forth between them on the discovered path. Here, the probability
Pγ,i is determined by spatial factors (such as position and size of the areas)
and by the parameters ω and λ. We obtain γi ∝ vi because shorter paths
are easier to discover through random walk.

(ii) Abandonment : an agent abandons its commitment if it fails to attain a
target area due to errors in the position estimates. Consequently, it erases
the stored locations and resumes exploration. Also in this case, Pα,i is not
directly under control of the agent’s behaviour, but depends on the param-
eter β and on the movement noise variance ξ. Here, we obtain αi ∝ 1/vi
because lower abandonment rates result from smaller cumulative error on
shorter paths: the variance increases proportionally to the path length.

(iii) Recruitment : an uncommitted agent that interacts with an agent commit-
ted to alternative i gets recruited with fixed probability Pρ: it receives the
location of the target areas and transforms them in its own reference frame.

(iv) Cross-inhibition: an agent committed to alternative i that interacts with
an agent committed to alternative j 6= i becomes uncommitted with fixed
probability Pσ: it erases the stored locations and resumes exploration.

(v) Interaction: to provide an equal probability of interaction with agents ex-
ploiting different paths, interactions are possible only when agents are
within the same target area. Each agent has a maximum of one inter-
action per time unit. Additionally, agents remain in the target area with

Fig. 2. A graphical representa-
tion of the multi-agent scenario.
The monodimensional environ-
ment is a circle in which the
agents move on the circumfer-
ence line to navigate back and
forth between the two target ar-
eas.



probability Ps = 0.9 per time unit, or until a state change. This helps in
creating well-mixed conditions and also increases the interaction rate.

Note that we have not specified a direct way to control the transition rates
for discovery and abandonment, while recruitment and cross-inhibition are de-
termined by the control probabilities Pρ and Pσ. We choose fixed probabili-
ties independently of the possible differences in the path lengths. As discussed
in Section 3, this should be sufficient to produce a collective choice, provided
that the discovery rates are biased toward the best option. Additionally, a suf-
ficient level of cross-inhibition will contribute to make a collective choice and
to break decision deadlocks (see Figure 1). To simplify the system analysis, we
fix Pρ = Pσ = P , which we refer to as the interaction probability. We study the
system behaviour varying P and θ, while the other parameters are kept constant.

5 Results

To verify the correctness of the design pattern and to study how the collective
behaviour changes as a function of the interaction probability P and of the deci-
sion problem given by θ, we check the adherence of the multi-agent system with
the macroscopic model. To this purpose, we statistically estimate the transition
rates γi, αi, ρi and σi directly from the multi-agent system. Parameter estima-
tion is performed through survival analysis, which permits to estimate how the
probability of an event changes over time directly from the experimental data.
Using the Nelson-Aalen estimator [10], we computed the hazard curve for the
cumulative number of expected events (e.g., the discovery of alternative A):

H(t) =
∑
ti≤t

di/ni, (7)

where di is the number of events recorded at ti and ni is the number of events
occurring at t ≥ ti (or not occurring at all, e.g., censored cases). In a memoryless
process, the instantaneous transition rate is constant over time, therefore events
cumulate at a constant rate, which corresponds to the hazard curve being a line.
Its slope represents the estimated transition rate (see for instance Figure 3(a)).
By employing a survival analysis, we can at the same time estimate all the
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Fig. 3. (a) Hazard curve to esti-
mate the transition rate αA for
θ = π and P = 0.1. (b) Tran-
sition σiΨi as function of Ψi for
i = A,B, θ = π and P = 0.1.
Points are unnormalised estima-
tions, and the fitting line slope
represents the normalised transi-
tion rate.
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Fig. 4. Comparison between macroscopic dynamics (trajectories and fixed points,
shown as light green triangles for stable points and dark blue rhombus for unsta-
ble ones) and the multi-agent simulations (final repartition of agents between the two
populations, shown as red empty dots) for the asymmetric case θ = 5π/4.

transition rates and check the Markov assumption by looking at the shape of
the hazard curves. Indeed, even if the agent behaviour is purely memoryless,
departure from the Markov assumption is possible due to the spatial factors.

We perform M = 300 multi-agent simulations with N = 400 agents, and we
vary both P and θ. The events we consider are the changes in the commitment
status of each agent resulting from discovery, abandonment, recruitment and
cross-inhibition, for both alternatives A and B. Discovery and abandonment
are transitions spontaneously triggered by an agent, therefore it is possible to
directly estimate the parameters γi and αi from the corresponding hazard curve
(e.g., Figure 3(a)). Conversely, recruitment and cross-inhibition result from the
interaction of agents belonging to different populations, and the transition rates
are proportional to the size of the recruiting and inhibiting populations. In this
case, it is necessary to first estimate the transition rates for each population
fraction (i.e., we estimate ρΨi and σΨi), and then normalize for Ψi to obtain
ρ and σ (see for instance Figure 3(b)). In this study, we limit the number of
different events to consider to N/10 by approximating the population fractions
within fixed-width windows of 0.025.

We first consider the asymmetric case of θ = 5π/4. In this case, the decision
problem should lead to the systematic choice of the alternative B. In Figure 4, we
show the dynamics of the macroscopic model of equation (5) with the parameters
estimated from the multi-agent system. We note that for low values of the inter-
action probability P there exists a single stable fixed point for ΨB > 0.8, and all
trajectories converge to it. The agreement between the multi-agent system and
the macroscopic dynamics is remarkable: the final distribution of agents from
the simulations perfectly matches the model predictions (see Figure 4(a) and
4(b)). For higher values of P , the macroscopic dynamics show that the system
undergoes a bifurcation, and a second stable fixed point appears that corre-
sponds to the choice of the inferior option (see Figure 4(c) and 4(d)). The basin
of attraction of the inferior fixed point is however smaller, and the trajectories
starting from the origin (i.e., when all agents are uncommitted) always lead to
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Fig. 5. (a) Convergence time
for symmetric and asymmet-
ric cases as a function of
the interaction probability P ,
with decision threshold at
Ψi = 0.7 and tmax = 2000s.
(b) Transition rates as a func-
tion of interaction probabil-
ity P for the symmetric case,
with θ = π.

the selection of the best option. This is confirmed by the multi-agent simulations,
as all the repetitions resulted in a systematic choice of the alternative B. The
bifurcation observed in the macroscopic dynamics appears when cross-inhibition
is sufficiently strong compared to the other transition rates. On the one hand,
this may lead to errors in the decision making if the system happens to be in the
basin of attraction of the inferior choice. On the other hand, as also noted in [11],
larger cross-inhibition rates lead to increased decision speed (see Figure 5(a)).
Similar dynamics can be observed for different values of θ < π, for which we
observed that smaller differences between the alternatives sometimes lead to
the wrong choice, as predicted by the macroscopic model (see supplementary
material http://iridia.ulb.ac.be/supp/IridiaSupp2014-005/sm.pdf).

In Figure 6 we show the case for θ = π, which corresponds to equal alterna-
tives and—potentially—to a decision deadlock. This is actually the case for very
low values of the interaction probability (e.g., P = 0.01 shown in Figure 6(a)).
In this case, the model predicts a single stable fixed point for ΨA = ΨB , in
agreement with the multi-agent simulations that equally remain deadlocked at
indecision (see the red dot-cloud around the fixed point in Figure 6(a)). However,
a phase transition is observed for increasing interaction probability, correspond-
ing to a higher cross-inhibition rate and therefore to the ability of breaking the
symmetry: two stable solutions appear indicating a collective choice for either A
or B. The accordance between the multi-agent simulations and the macroscopic
dynamics is very good also in this case, as shown in Figure 6(b)-(d). Note also
that the macroscopic dynamics are highly symmetric, in accordance with the
underlying multi-agent system. Similarly to the asymmetric case, we observe
that higher values of P lead to a more definite choice of one or the other option,
and that the convergence speed is also increased (see Figure 5(a)).

Figure 5(b) shows how the estimated transition rates vary with respect to
the interaction probability P for the symmetric case. While discovery and aban-
donment remain roughly constant, both ρ and σ increase quasi-linearly with P ,
indicating that a higher probability of interaction among agents directly trans-
lates in increased recruitment and cross-inhibition rates. We note that the esti-
mated cross-inhibition rate is initially below the critical value (σ < σ∗) for small
interaction probabilities (P < 0.07). These are actually the values at which the
multi-agent simulations remain deadlocked at indecision. For larger P , cross-
inhibition is sufficiently high and the collective decision is efficiently performed.

http://iridia.ulb.ac.be/supp/IridiaSupp2014-005/sm.pdf
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Fig. 6. Macroscopic dynamics vs. multi-agent simulations for the symmetric case θ = π.

6 Conclusions

Overall, the results we obtained confirm that the multi-agent system that we
implemented following the guidelines given by the cognitive design pattern cor-
responds very well to the reference macroscopic model. This result is non-trivial
due to the differences between the two levels: while the model is continuous and
deterministic, the multi-agent system, due to the finite swarm size, is discrete
and stochastic. We have exploited the understanding of the basic mechanisms
underlying the collective decision-making process in order to perform important
implementation choices, such as the use of a fixed interaction probability in-
dependent of the decision problem to be faced. This minimalistic choice would
not have been safe without knowledge about the system dynamics and about
the correspondence between microscopic rules and macroscopic behaviour. Sim-
ilarly, the implementation choices to grant a uniform interaction probability
among agents—and therefore the well-mixed property—are also a result of the
design pattern guidelines, which allowed to pinpoint the important aspects to
be considered (e.g., the need to limit peer-to-peer interactions in a location con-
taining a good sample of the population distribution). The parameter estimation
we performed and the subsequent analysis for varying P and θ suggest that our
implementation results in a well-behaved system not violating any assumption,
despite the spatial factors that hinder the adherence to a Markov process.

The main feature of the design pattern we have developed consists in the
possibility to perform decisions with minimal complexity at the individual level.
Indeed, the only requirement is that agents can interact and recognise that their
peers have a different opinion. Quality comparison is not necessary, which allows
to implement the system in a large number of possible applications.

The present paper represents the very first step toward the definition and for-
malisation of cognitive design patterns for swarm systems. Several aspects must
be investigated further in order to provide a proper engineering methodology.
For what concerns collective decision-making mechanisms, future work will be
dedicated to the characterisation of the full parameter space, in order to identify
the parameter ranges that result in desired macroscopic dynamics. Addition-
ally, we will characterise the relationship between individual-level parameters
(e.g., the interaction probabilities Pρ and Pσ) and the corresponding transition



rates (e.g., ρ and σ). Another issue to be considered is the effect of spatial and
topological constraints on the collective decision process. In some preliminary
studies, we have observed that spatiality influences the macroscopic dynamics
(e.g., violating the well-mixed condition), and therefore needs to be characterised
properly in order to provide guidelines re-usable in multiple domains.

Finally, following software engineering common practices [5], to let a solution
become a design pattern we need to apply such solution to at least three different
problems. In particular, we aim, as future work, to implement this cognitive
design pattern in the fields of cognitive radio networks and language games.
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