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Résumé

L’objectif de ce mémoire est d’introduire un nouveau type de protection
pour l’être humain dans les environnements dangereux. Cette protection
est basée sur la robotique en essaim. Un essaim de robots protège un être
humain en augmentant les capacités de ce dernier. Les robots informent
l’être humain à propos de zones dangereuses que seuls les robots sont à
même de percevoir. En contraste avec la littérature courante qui explore
davantage les solutions avec un canal de communication unidirectionnel
depuis l’être humain vers les robots, notre solution prévoit un canal de
communication bidirectionnel. L’être humain contrôle indirectement les
robots en se déplaçant, tandis que l’essaim de robots encercle l’être humain
et le met en garde contre les zones dangereuses invisibles. Les robots
restent à la frontière de la zone dangereuse pour former une barrière entre
l’être humain et le danger. Une paire de chaussure équipée de LEDs a été
construite. Ces chaussures permettent aux robots de détecter l’être humain.
Notre solution a été testée lors de nombreuses simulations et sur de vrais
robots. Les résultats sont prometteurs, l’essaim encercle l’être humain et le
prévient de dangers à proximité.

Mots-clés : robotique enessaim, escorted’êtrehumain, zonesdangereuses,
chaussures équippées
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Summary

The objective of this master thesis is to introduce a novel type of pro-
tection for humans in dangerous environments. This protection is based
on swarm robotics. A swarm of robots protects a human by augmenting
his/her abilities. The robots provide the human with feedback about dan-
gerous areas that only the robots are able to perceive. In contrast with the
current literature that mostly explores solutions with a one-way feedback
from the human operator to the robots, our solution provides a bidirectional
feedback. The human indirectly controls the robots by changing his/her
position. The swarm of robots, encircling the human, notifies the human
about near invisible dangerous areas. The robots stay at the boundary of
the dangerous area to form a barrier between the human and the danger.
A pair of augmented shoes was built and equipped with LEDs. They allow
the robots to locate the human. Our solution was tested heavily in simula-
tion and on the real robots. The experiments conducted yielded promising
results. The swarm of robots encircles the human and notifies him/her
about dangerous areas.

Keywords: swarm robotics, human escorting, dangerous areas, aug-
mented shoes
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Chapter 1

Introduction

New progresses in robotics have opened a new branch of studies. Taking in-
spiration from social animals like ants, bees or fishes, researchers are now able
to create groups of robots performing tasks that could not be undertaken in-
dividually. These groups are called swarms. We envision swarm robotics to
be useful for applications like search and rescue, environment exploration, or
oil spill cleaning (Dorigo et al., 2014). In swarm robotics system, each robot ex-
ecutes the same controller code. The interaction between the robots and between
the robots and the environment enable the emergence of a collective behaviour.
There is no hierarchy in the swarm. That is, all the robots behave autonomously.
Research in swarm robotics is important as it underpins potential future dis-
ruptive innovations. Nanorobotics is going to be one of these innovations. The
use of nanorobotics in medicine will grow over the next years. It could be one
of the future solutions to cure cancer or other diseases by targeting the faulty
constituents of the body with a swarm of very small robots. Swarm robotics
is also important because it could constitute an adequate solution to other real
problems. Swarm robotics systems are robust, i.e., losing a robot of the swarm is
not a critical issue. Some tasks are dangerous for humans (e.g., demining, search
and rescue) and the use of robots is preferred to avoid any injuries. However
there is also a high risk of losing robots. Hence this task requires a fault-tolerant
approach that swarm robotics can provide. Thanks to their scalability and flex-
ibility, swarm robotics solutions are also suitable for applications where it is
difficult to estimate the resources needed to carry out the task (e.g., search and
rescue, cleaning). Swarm robotics solutions quickly adapt to new operation
conditions and are thus appropriate for tasks in environments that change over
time (e.g., patrolling, disaster recovery, and search and rescue). Since the robots
behave autonomously, swarm robotics solutions are also suitable for large or un-
structured environments where no infrastructure, like a communication system
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CHAPTER 1. INTRODUCTION 2

or a global localisation system, can be used to control the robots. Examples are
underwater or extra-terrestrial planetary exploration, surveillance, demining,
and search and rescue (Dorigo et al., 2014).

Even though swarm robotics can carry out tasks autonomously, they do not
have a global understanding of the environment and of the task that they must
carry out. A human operator can, therefore, interact with those swarm systems
to issue them commands (i.e., what type of tasks to carry out andwhere to carry
out the task). Issuing commands relies on a one-way communication between
the human and the swarm of robots. For swarm robotics to be adopted outside
of research laboratories and tackle real world issues, one should always be able
to take control of the swarm at any time. This is a legitimate safety requirement
when considering the use of a large amount of potentially harmful robots around
humans. Hence one can understand the vital aspect of the interaction between
human and swarms of robots. In this thesis, however, we did not implement a
method granting the human to completely control the swarm. We leave it as a
future work. For the purpose of this thesis, it was not necessary.

To date, little attention has been paid to robotics swarm feedback, i.e., mes-
sages sent from the swarm to the human operator. Most of the research works
focus on issuing commands to swarms. However, there might be situations in
which the human does not know everything (e.g., where a gas leak comes from).
For instance, we can leverage swarm robotics systems to help humans move in
dangerous environments. To the best of our knowledge, no study has considered
a human being escorted by a swarm of robots in a dangerous environment.

In this thesis we make an attempt to address this lack of consideration. We
study how a swarm of robots can help a human move in dangerous environ-
ments. We use inspiration fromflocking and pattern formation to allow a swarm
of robots to prevent a human from entering dangerous areas. In this thesis, these
dangerous areas are invisible to the human. These dangerous areas could, for
instance, containmines or be radioactive, or present another type of danger (e.g.,
poisonous gas, unstable floor). In order for the human to avoid these dangerous
areas, we designed a swarm system that escorts the human in an environment.
There is a bidirectional feedback between the swarm and the human. The ro-
bots warn the human about the danger, and the human indirectly controls the
position of the robots by changing his/her position. It contrasts with most of
the studies that only contain a unidirectional feedback (the human controlling
the swarm). For the robots to stay around the human, we had to find a way to
make the human detectable for the robots. We built an entirely new portable
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device for that purpose.

Our solutionwent through a series of tests. Themajority of the testswas used
to incrementally improve the solution. These tests weremade in a simulator and
on real robots. At the end of the implementation, more tests were performed to
assess the quality of the solution. Overall results are promising: the robots are
following the human and warn him/her about near dangers.

This thesis is outlined as follows. In chapter 2 we present studies related
to this master thesis. We introduce swarm robotics and provide a state of the
art in human - robots interaction, and human - robotic swarm. In chapter 3 we
expose the problem we address in more details. We also provide a complete
description of our solution. Chapter 4 contains detailed explanations on the
tests we conducted. Finally we conclude our work in chapter 5.



Chapter 2

State of the Art

In this section, we provide some general insight in the world of human - robot
interaction and swarm robotics. We then review the literature of human-swarm
interaction.

2.1 Human - Robot Interaction
Human - robot interaction has become a subject of great importance. A lot of
research has been done in this field recently in order to mimic the human com-
munication behaviours in different circumstances. One of the most interesting
examples isMinerva (Thrun et al., 1999). Minerva is a tour-guide robot that edu-
cates and entertains people in public places. It has a motorised face to imitate
human emotions. It was tested in a museum where it successfully performed
what it was created for while learning. Dautenhahn et al. (2006) studied how a
robot should best approach and place itself relative to a seated human subject.
They performed experiments where a human asked for an object that would
then be fetched by a robot. The robot would come to the human using different
approach directions. The results reveal that most humans disliked the frontal
approach and preferred to be approached from either the left or the right side.
Itoh et al. (2006) studied the negative physical and psychical effect of robots on
humans. Their study aims to complete other studies that only subjectivelymeas-
ured these negative effects by questionnaires. They built a device to measure
physiological parameters such as respiration, heart rate, perspiration and pulse
wave, and arm motion to obtain an objective measure of the effects of robots
on humans. Using this device, the robot was able to react to the stress of the
human and move accordingly in order to decrease the stress. Bethel et al. (2009)
investigated on non-facial and non-verbal methods of affective expression for
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CHAPTER 2. STATE OF THE ART 5

enabling social interaction in appearance-constrained robots and found 5 main
methods: body movements, postures, orientation, color, and sound. Example
of appearance-constrained robots can be found in search and rescue, law en-
forcement, and military applications. They conducted a study involving 128
participants in a confined-space simulated disaster site with the robots inter-
acting in the dark. ‘Statistically significant results indicated that participants felt the
robots that exhibited affective expressions were more calming, friendly, and attentive,
which improved the social human-robot interactions’ (Bethel et al., 2009).

The objective of this project is to protect a human fromdangerous areas using
robots. For this purpose, the robots have to recognise and locate the human.
Several solutions have emerged trying to solve that problem. However only
few of them considered the sensor to detect the human as being close to the
ground. These solutions rely either on 2D laser range data on an horizontal
plane, or RGB-D data. RGB-D (Red Green Blue-Depth/Distance) associates
the usual video stream to a ‘depth’ channel (Wikipedia, 2014). Gritti et al.
(2014) propose a new robust solution for people detection and tracking using
Kinect (Microsoft, 2015) or Asus Xtion (Asus, 2015). The floor must be flat. It
uses a statistical classifier trained with a big dataset containing real-world data.
After classification either as human leg or obstacle, the data is fed to a tracking
algorithm to track people. Such lasers are very expensive, and at the time of
realising this thesis it was not possible to use Kinect sensors on the robots. As
robotics swarms imply the use of many robots, buying one of these sensors for
each robot is too expensive. Thus we have to implement our own solution based
on the sensors available on the robots that we have.

2.2 Swarm Robotics
For Şahin (2005), swarm robotics is defined as ‘the study of how large numbers of
relatively simple physically embodied agents can be designed such that a desired collective
behaviour emerges from the local interactions among agents and between the agents and
the environment’ (Şahin, 2005). These groups of agents do not depend on any
external structure or centralised control (Dorigo et al., 2014). Thedevelopment of
swarms of robots rely on the principles of swarm intelligence. Swarm robotics
can be separated from other robotic studies by the following characteristics
(Brambilla et al., 2013):

• Robots are autonomous;

• Robots evolve in the environment and can interact with it;
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• Robots’ interactions are local (sensors and communications);

• No centralised control or global knowledge;

• Robots cooperate to achieve a certain goal.

As in swarm robotics, one is always looking for robust, scalable and flexible sys-
tems, the main source of inspiration is the group of social animals (e.g.: ants,
birds, fishes). When some of these simple animals gather in groups, they are
able to perform tasks that could not be achieved individually (collective beha-
viour emerges from local interactions). Below are listed the definitions of these
three terms (Brambilla et al., 2013):

Robustness: Resistance against loss of group entities. One can increase it by
adding redundancy or remove the need for a leader.

Scalability: Low variation in the performance of a system with respect to the
size of the system. It can be increased by encouraging local interactions, such
as sensing and communications.

Flexibility: Low variation in the performance of a system with respect to the
type of environment or the task.

With these definitions in mind, we can explain swarm engineering as:

‘Swarm engineering is an emerging discipline that aims at defining
systematic and well founded procedures for modeling, designing, realizing,
verifying, validating, operating, and maintaining a swarm robotics system.’
- Brambilla et al. (2013)

In this thesis the robots have to protect the human. We opted for a solution
where the robots escort the human. For that purpose they need to stay close
to him/her. The group composed by the human and the robots have to move
in a coordinated manner. The scientific term for this coordinated behaviour is
flocking. Many examples can be found in nature, e.g. birds, fishes. In nature this
behaviour offersmany advantages. Themost common approach for implement-
ing a flocking behaviour is virtual physics design. One can also obtain these
types of motion through artificial evolution (Brambilla et al., 2013). Reynolds
(1987) was the first to propose a model for flocking. It was meant for computer
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graphics applications. With only 3 simple rules that every agent in the swarm
has to respect, he was able to obtain realistic simulated swarm behaviours. The
3 rules are as follows:

Separation: Each agent tries not to be too close from its neighbours to avoid
collisions.

Alignment: Each agent changes its heading to the average heading of its neigh-
bours.

Cohesion: Each agent tries to centre itself at the average position of its neigh-
bours.

Baldassarre et al. (2003) used evolutionary techniques to develop collective flock-
ing behaviours. They demonstrate that these techniques are a powerful method
for implementing collective behaviours. One of the most effective strategy that
arose contained forms of ‘situated specialisations’. Robotswith identical evolved
controllers have behaviours that depend on the circumstances. They think this
is caused by the objective to reduce the interference between the attraction to the
target and the need to maintain an aggregation state. Thanks to these special-
isations, they observed that one of the robots was leading the way to the target
while the others just tried to stay close to it. This is close to the idea behind the
solution we want to implement.
Turgut et al. (2008) proposed one of the first implementations of Reynolds’
(Reynolds, 1987) behaviour on real robots. Each robot knows the heading of its
neighbours and their distance via a virtual heading sensor and infrared sensor
respectively.
Çelikkanat and Şahin (2010) investigated on the very important problem of the
control and guidance of a swarm of robots: how to control the swarm and to
what extend it can be controlled. They guided a swarm of robots by controlling
a minority of the agents inside the swarm: ‘informed robots’. ‘Naive robots’
only consider the flocking objective while the ‘informed robots’ also took into
account the direction orders given by the operator.
Ferrante et al. (2012) focused on motion control. They implemented a new way
to translate the output of the flocking rules into wheel speed. They made the
speed of the wheels proportional to the norm of the resulting direction vector.
This technique can be implemented on the simplest robots, even those which
cannot detect neighbours heading. They added a few ‘informed robots’ in the
swarm and showed that the swarm could travel longer distances using this norm
dependant technique instead of the constant speed technique.
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2.2.1 Human - Robots Swarm Interaction
Human - Robotic swarm interaction is the study of how humans can interact
with a swarm to control it and receive feedback from it (Brambilla et al., 2013). A
proper feedback is needed by the operator in order to make the right decisions.
Since swarms must ideally be autonomous and make decisions in a distributed
way, it is difficult to insert a communicationwith a human operator in the system
to gain control.

Currently, little attention has been devoted to the study of the interaction
between humans and robotic swarms, how one can send instructions and re-
ceive feedback. One of the challenges in human-swarm interaction is the differ-
ence in perspective between the swarm and the human operator. The human
only observes the global collective behaviour, not the local interactions or in-
dividual behaviours driving the robots. The simplicity of the hardware found
on the robots, or the efficient synthesis of all the information sent by the robots
(i.e., feedback) are also challenging. Most of the existing works in the literature
present a major disadvantage: they require an extra layer between the group of
robots and the human. This requirement might not always be satisfied whenwe
remember that swarms like this are mostly destined to evolve in an unknown
environment. The monitoring equipment necessary to operate the swarm may
not be safely deployed. Furthermore, a synthesis of all the local information
pieces must be done in order to provide an understandable state of the system
to the human. This synthesis involves modelling, additional overheads and
perhaps heavy computations, and the gathering of all information at a central
point (eliminating by the way the distributed and decentralised properties of
the swarm system) (Podevĳn et al., 2012).
Daily et al. (2003) used a head-mounted display and augmented reality to add
information right on top of the robot in the environment itself, suppressing the
need for an additional display. Baizid et al. (2009) proposed a platform to in-
teract with multiple robots simultaneously through a graphical user interface,
or a head-mounted display, in virtual reality. They also studied how virtual
reality abstraction affected the human perception and cognitive capabilities, i.e,
they created a virtual environment by filtering useless information. McLurkin
et al. (2006) developed an centralised graphical user interface taking inspiration
from real-time strategy video games, where one must control armies. They also
imagined a feedback approach based on LEDs and sounds. The robots transmit
their internal state by applying to their LEDs and sound system a defined pat-
tern, recognisable by the operator, now able to quickly understand the state of
the swarm without looking at a supplementary interface.
Podevĳn et al. (2012) argue that self-organisedmechanism, as those ruling thebe-
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haviour of the swarm, should be used to provide feedback to the operator. They
suggest that the best entity which could communicate the status of the system
and the whole swarm is the swarm itself. They performed experiments using
colour feedback to distinguish different internal states and split the swarms into
groups to tackle different tasks.
Giusti et al. (2012) present a novel approach for distributed real-time recognition
tasks using a swarm of mobile robots. Robots from multiple points of view ex-
change their local information to generate a global classification. They validated
their solution on real robots for hand gesture recognition.
Ayanian et al. (2014) implemented an iOS application with multitouch. The
multitouch gestures are translated into low-level commands for the robots com-
posing the swarm. On the screen, the swarm of robots is represented as a
bounding box that the user can manipulate to control the robots.

As swarm robotic systems are mostly destined to operate on risky floors,
unknown environment, it would seem logical to consider their application in
exploration and/or protection missions. However, at the time of writing this
thesis, we could not find any study on the subject. Exploration experiments
never included a human, or other living organism. The objective of this thesis
is to address this lack of study by designing and implementing a protective
behaviour executed by a robotic swarm.
The human operator is here part of the swarm system. The swarm has to protect
him by preventing him from going into dangerous areas, in the same way a
group of bodyguards protects someone. The swarm has to follow the operator
anywhere to ensure permanent protection.
We believe this work to be important since it might open doors to new types of
applications of swarm robotics: humanprotection, escort or swarm turn-by-turn
navigation.



Chapter 3

An Escorting Swarm

As discussed in the introduction, the problem we want to address is the protec-
tion of a human evolving in a dangerous environment. The human is unable
to see the danger. Chapter 2 introduced some of the works that are related to
the problem. In this chapter, we will present the problem in details and the
proposed solution at a high level of description. Then, we will describe the
implementation details.

3.1 The Problem
Since the early days, human beings have explored new territories to expand their
control and get a better understanding of the world surrounding them. Among
those new territories, some were relatively safe but some were dangerous. To
reduce risks, we have invented equipment, suits, and other kinds of protections
(e.g. guards, sensors, alarms). In this work, we suggest a solution to the problem
presented in this section.

Figure 3.1 shows a graphical representation of a possible scenario to our
problem. This scenario will help exemplify the challenges we address. In this
scenario, the human must go from point a to point b. Between these two points,
the human might be confronted to hazardous areas. These hazardous areas
are represented by the red circles in Figure 3.1. Example of such hazardous
areas are radioactive zones, mine fields. The human cannot perceive them. The
protection created should prevent the user from going inside those areas.

Exploration is not the only real application for the proposed solution that
comes intomind. Rescue in disaster areas would also benefit from it (evacuation

10



CHAPTER 3. AN ESCORTING SWARM 11

of people to safe zones). A solution to this problem should be able to constantly
protect the person using it, and constantly provide feedback. It should be robust
and fit to the environment in which it would be used.

A

B

!
!

! !

Figure 3.1 – Unknown dangerous environment: This image illustrates an environment,
observed from above, in which a human must move from point A to point B while avoiding
invisible dangerous areas. A is the start location, B is the goal ant the red circles represent
dangerous zones. We provide in this thesis a solution to guarantee safeness in such circum-
stances. Possible applications for this type of solutions are: mine fields crossing and cleaning,
radioactive areas avoidance,...

3.2 Solution
The solution we propose involves the use of a swarm of robots. Swarm robotics
systems arewell suited for this types of application because it is compatible with
unknown environments thanks to its flexible, robust and scalable characteristics
(Brambilla et al., 2013). In case of failure of one or a few robots, the system
would continue to provide sufficient performance thanks to its scalability and
robustness.
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In our solution, a swarm of robots forms a round shield around a user (i.e.,
they form a circle around the user). The round shield formed by the swarm
enables a 360° protection of a user. All the robots try to stay at the same distance
from each other and the human. However, when a danger is detected, the robots
might not respect that rule to form a boundary on the edge of the danger zone.
To achieve this, the solution relies on the pattern formation theory widely used
in swarm robotics. The corresponding techniques will be explained in the next
chapter with more details. If the number of robots is not high enough to form
a complete circle, an arc is formed at the front to always shield the most critical
zone.

As shown on Figure 3.2, the robots in contact with a dangerous zone will
report the danger through visual communication with the human. Here the
robots light on their orange LEDs and stay on the boundary of the zone to
prevent the human from getting into it. Since the human cannot see the danger,
and only the robots can, we can see that the swarm is increasing the perception
capabilities of the human.

One issue that had to be resolved was the detection of the human by the
robots. As Podevĳn et al. (2012) suggested, the interface between the human
and the robots swarm should be restricted to the strict minimum because in the
field the infrastructure needed to operate the swarm might not be easy to build
and manipulate. The swarm should handle the communication on its own.
As a big infrastructure such as a tracking system, or any interface of the same
kind would have been difficult to use in real life applications, we designed and
implemented a compact, wearable device that allows a human to be recognised
by the robots: a pair of shoes.

Figure 3.3 illustrates the use of the shoes (no user is wearing them to not
occlude the field of view). In Figure 3.3 (left), the robots have just recognised
the shoes thanks to the LED system inside and begin to move in order to form
a circle around the shoe. On Figure 3.3 (right), we show an example of one
configuration obtained after 3 minutes, viewed from above.

Our objective in this thesis, is to present an innovative protection using
swarm robotics. The results obtained from experiments with a swarm of real
robots are presented in the chapter 4.
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Figure 3.2 – Swarm prevention: This figure is a symbolic representation of a human helped
by a swarm. The circles with a triangle inside are representations of a robot. The swarm tells
the human that a dangerous zone is located at the front right by visual communication (here
the robots change their colour to red). The swarm stays at the boundary to form a ‘shield’. The
direction taken by each individual in the swarm is given by the triangle inside (here heading
north).
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Figure 3.3 – The shoes: This picture shows a prototype of the shoes viewed from above, and
the robots interacting with the shoes. The interaction is enabled through the recognition of the
colours, one for each shoe, indicating left (red) or right (green) side. This pair of shoes enables
the robots to locate the user, allowing them to evolve at the target distance from him/her. On
the left image, the robots are still in the process of placing themselves in a correct circle. The
right image depicts the situation after a 3 minutes experiment where the robots were initially
placed in lines around the shoes. Objects are put on the shoes to close the lights switch
(normally activated by the weight of the user).
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3.3 Implementation
In this section, we present the solution to the problem described in section 3.1
and all the choices that resulted in it. The explanation will follow a top-down
approach. We first review the hardware and the code architecture. Then, we
will detail our implementation.

We decided on swarm robotics because, as stated in section 2.2, robustness,
scalability and flexibility are characteristics that make swarm robotics systems
well suited for unknown environments (Brambilla et al., 2013). In case one of
the agents is broken, we do not want to see the whole system collapse and leave
the human unattended. The solution guarantees that the solution will work
in different conditions, environments, which is an advantage for exploration
and rescue (flexibility). In case of loss of robots, scalability would maintain the
protection performance to an acceptable level.

3.3.1 The Hardware
In the following section, we present the robotic platform used in our experi-
ments, and the device allowing the robots to detect the human.

3.3.1.1 E-puck

The robotic platform chosen was the e-puck (Mondada et al., 2009) because the
laboratory possess approximately 28 of them, along with the appropriate mod-
ules (omnidirectional camera, top LEDs). Furthermore, the academic personnel
had developed a good knowledge of the platform. The e-puck robot platform
was made for educational purposes. Its shape is cylindrical with a diameter of
7.5 cm. It is moved by two diametrically opposedwheels. Figure 3.4 (left) shows
an e-puck from the laboratory. Several extensions (modules) were plugged onto
it to increase its capabilities. In this thesis, in the final solution, we used the
proximity sensors, the omnidirectional camera sensor and the virtual ground
sensor. The proximity sensor is made up by 8 infrared sensors. Each infrared
sensor returns a value proportional to the proximity of a nearby obstacle in
the [0, 1] interval. The infrared sensors are placed along the perimeter of the
robot. The omnidirectional camera is a vertical camera placed on the top of
the e-puck’s base, aiming at a convex mirror to provide a 360° view of the en-
vironment. It translates this view into a list of colour blobs. A colour blob
is a cluster of pixels being almost of the same colour. During the calibration,
among other parameters, one can tune the degree of similarity, the minimum
size of the cluster, and the recognised colours. The last sensor is different: it
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is not real, and not physically present on the board (Reina et al., 2015). It is
simulated through the ARGoS simulator used to develop the controller of the
robot (Pinciroli et al., 2012; Garattoni et al., 2015). It sends data created inside
the simulator to the robot, from the simulated environment. In our case, this
data contains the colour of the ground, symbolising the presence of danger. We
actually simulated red discs on the floor through the simulator to artificially set
up dangerous areas that were not visible by the testing user. That way, the con-
ditions of real life application were the closest possible to ours. An example of
red zone is in Figure 3.4 (right). The positions of the robots inside the simulator
are determined by the use of a tracking system (Stranieri et al., 2013). The virtual
positions correspond to the real positions. Using a virtual sensor enables early
experimentation by removing the need to implement a real sensor. The real
robots actually have a ground sensor. However, as during the tests the human
cannot see the dangerous zones, we could not use any visible colour. A new
type of ground sensors, able to detect other types of information was necessary.
Hence we chose to create a ground virtual sensor that detects colours that are
only present in the simulator, not physically present in the laboratory. That way,
the dangers remain invisible to the human doing the experiments, but visible
by other operators watching the simulator screen.

Before considering the omnidirectional camera as the best option, another
sensor was examined: the range and bearing sensor (Gutiérrez et al., 2009).
The range and bearing extension is a infrared communication board that also
provides the range (distance) and the bearing (angle) of the emission source.
On paper it seemed like a better option because it was less restrictive than the
omnidirectional camera. With the camera, a precise calibration of the different
colours is required to avoid errors. The range and bearing uses a CRC code
to detect errors in the data received, thus ensuring the correct recognition of
the different entity types in the environment. The number of different entities
(colours) is very limited with the omnidirectional camera as a result of the
algorithm behind it. The range and bearing actuator can send up to 4 bytes
of data, multiplying the amount of different entities (one string of bits for each
entity). It is also less sensitive to light conditions. Unfortunately, after multiple
attempts to use the range and bearing, we realised that it was unusable. It
behaves in a completely unpredictable way with the range value. We tried to
calibrate it, but to no avail. Figure 3.5 illustrates thewide distribution ofmessage
intensities causing an imprecise measure of the range (distance of the source).
This figure is only for one run of the experiment. Consecutive runs yielded very
different results for the same experiment configuration.
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Figure 3.4 – The E-puck and its virtual sensor: On the left, one can see a picture of the
robotic platform we used: the E-puck. Our swarm is composed of several robot like this one.
On the right is a screen capture of the ARGoS simulator (Pinciroli et al., 2012) where the
danger virtual sensor is used. Virtual means that it is not real, not physically present on the
board. It is simulated through the ARGoS simulator. It sends data created inside the simulator
to the robot, from the simulated environment. It augments the robot sensing capabilities. In
our case, this data contains the colour of the ground, symbolising the presence of danger.
The red circle represents a danger zone in which no human can go. No human can see it
though. The small dots are representations of the real robots inside the simulator.

Limitations Although the omnidirectional camera worked better than the
range and bearing, it was still restrictive. The difficulty of the calibration, and the
error rate, increase with the amount of recognised colours. We limited ourselves
to 3 colours: red, green and blue. Another limitation was the speed of the ro-
bot, limited to 10 cm/s. Normal speed for a human walking is about 5 km/h
or 140 cm/s (Wikipedia, 2015b). In these circumstances we had to reduce the
walking speed of the user during the demonstration and the tests. The battery
was also an issue. The autonomy of one robot is between 30 minutes and one
hour when moving a lot. Changing batteries and restarting the robots multiple
times was necessary during long testing sessions. Since the robot only has two
wheels, it maintains its equilibrium by lowering the chassis. The front or the
back of the robot always touches the ground, making it impossible to use on
uneven grounds. The floor of the arena, the room where all the experiments
were done, is composed of adjacent squares. Sometimes the robots would get
stuck between two squares. Moreover, the activity LEDs on the different circuit
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Figure 3.5 – Intensities of the RAB messages: This figure shows the absolute frequencies
of the range and bearing messages intensities for a duration of 3 minutes. During these 3
minutes, one robot is emitting messages and rotating on itself. Another robot is placed at 25
centimetres of the first one and receives the messages. The message intensity can vary from
0 to 1023 on the x axis. The y axis is the absolute frequency. Each graph corresponds to a
different emitting robot. On the upper graph, one can see that frequency pikes can appear
far away from the ‘normal’ average value. On the lower graph, the interval of intensity is
very big. Other runs of the experiment with the same robots yielded very different results.
The current implementation of the RAB sensor is thus a bad choice for the measure of the
distance between robots.
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boards composing the robots interferedwith the omnidirectional camera, taking
them as other robots. We had to cover them with pieces of tape, and change the
calibration to not take into account the blobs that were too small.

3.3.1.2 E-geta

As explained in section 3.2, one of the main issue was to enhance the robots so
they could detect the user and position themselves with respect to him without
any large external equipment. Large external equipments are not recommended
since, in the targeted unknown environment, they might not be usable. For
example, one might use a tracking system to get the position of the robots in
real time and communicate it to the robots for them to adjust their speed. In a
controlled environment, this may work very well, but in the field it would be
difficult to deploy such a tracking system.

We thus opted for a compact, wearable device that would act as a ‘landmark’
for the robots: a pair of shoes. In order for the robots to understand on which
side of the human they are (to go in front of him/her), the two shoes have to emit
a different message. The two shoes have to emit a different colour to give the
robot information on the direction of the human. In section 3.3.2 we come back
on the algorithm used to deduce the direction of the human from the observed
colours.

Figure 3.6 – E-Geta: Left image by Haragayato [GFDL (http://www.gnu.org/copyleft/fdl.html)
or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Com-
mons. Found on Wikipedia (2015a). On the right is a picture of our prototype shoes, connec-
ted to their battery through voltage regulators. See Figure 3.7 for the circuit.

We took inspiration from the Japanese ‘geta’ shoes for the design. Figure 3.6
shows a picture of a Japanese wooden shoe called geta. The right side of the
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figure is a picture of our prototype. The two have the same overall design. We
chose this design in order to slow down the human’s speed. Indeed, the speed
of the robots is limited to maximum 10 cm/s per wheel. Another advantage is
the simplicity of the structure, and the low number of assembly parts.

The base of the shoe is madewithwood. The surrounding piece covering the
LEDs was cut in sheets of semi-opaque plexiglass to diffuse the light. The LEDs
are standard strip LEDs (one red strip, and one green). The electronic circuit
(Figure 3.7) is made up by a 9 volt battery connected to two variable voltage
regulators. The two regulators are step up in parallel in order to increase the
potential on the output. Each regulator is connected to a shoe LED strip. A
separation is necessary since the green LED strip requires more energy than the
red one. To get an equivalent luminosity for both shoes, a different voltage had
to be applied.

Figure 3.7 – The circuit: The figure shows a sketch of the final electronic circuit for the shoes.
The battery delivers 9 volts to two regulators in parallel, one for each shoe since each one of
them need a different energy supply. Indeed, the green LED strip is more power hungry than
the red one. The mass (black cable) is common for all the circuit.

3.3.2 The Robot Behaviour
The first step of the design of the solution is to imagine how the systemwill look
like and howwe will implement it (how do the robots move around the human,
what shape will they try to form). This part is important because it will define
the overall look and performance of the system.
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We decided on a circle shape because it is the easiest to realise in practice in
the pattern formation theory. It offers the best ratio

Surface
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πr2

2πr
�

r
2 ,

where r is the radius of the circle. That means that fewer robots are needed for
the same protected area, and more space for the human with a certain amount
of robots than any other possible shape. The Figure 3.8 represents the kind of
circle that we would like to obtain for 6 robots and 1 human in the centre.

Figure 3.8 – Ideal behaviour in absence of danger: This figure symbolises the ideal beha-
viour required in absence of danger. The swarm forms a circle to cover the widest protected
surface for a given amount of robots. All the robots are equally distanced from each other
and the human. The human is protected in all directions. In presence of danger, the robots in
contact with it should report it to the human and prevent him from going towards it, as seen
on Figure 3.2. In that case, the conditions concerning the target distance from the human and
between robot may not be respected.

Implementing a robots swarm behaviour means writing a controller code for
its individual components: the robots. The laboratory provides a template for
this purpose. The logic of the individual behaviour is added inside callback
methods called either by the simulator when performing simulations inside
ARGoS (Pinciroli et al., 2012), or by the robot main method when testing on
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real robots. The final code was written in C++. The code can be compiled for
the ARGoS simulator and cross-compiled for the real robots (E-puck) without
any modification. After the compilation, a simple transfer of the binary codes
over WiFi allows the operator to store the controller on the robots to launch an
experiment.

The implementation of the controller is built on 2 layers. The upper layer is a
deterministic finite state machine, containing for each state a specific behaviour
in the lower layer. Figure 3.9 illustrates the whole structure of the upper layer
in a simplified fashion. A complete state machine gathering all the states can be
found in Figure 3.10. Although the complete state machine is containing all the
aspects of the behaviour, it does not allow to grasp the idea quickly. Dividing the
final behaviour into several connected sub-behavioursmodularises the solution.
Adding a new state, a new sub-behaviour is easy.

Searchingstart

EscortingProtection

H

H&D NH

D

ND

NH

Corestart

O.A.Unblocking

O

NO

B

NF&O

NF

Figure 3.9 – State machine of the final behaviour: This figure is the visual representation
of the state machine of the final behaviour. Figure 3.9 (left) is what could be called the ‘core’
of the behaviour, while Figure 3.9 (right) would be considered as additions to enhance the
behaviour. The core part of the state machine is present on Figure 3.9 (right) since it is one
of its constituents. It is composed of 3 states: Searching when the robots do not detect any
human nor obstacle, Escorting when a human is detected, and Protection when a human is
detected and there is a danger nearby. If an obstacle is detected by a robot, the controller
changes its state to the Obstacle Avoidance (O.A.) state. If the robot gets blocked, another
state takes over to unblock it: Unblocking. When no more obstacle is in front of the robot,
it can go back to its obstacle avoidance if any obstacle remains close. If none, it switches
back to its core actions. The labels next to each transition must be read as follows: H(uman),
D(anger), O(bstacle), F(ront obstacle), B(locked. The robot detects that it is blocked. See
page 28 for details.). N stands for the negation, so NH means ‘no human found’.

Once the actions the robots have to execute have been defined, we have to
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1. Amount of direction change (left/right)
while having an obstacle around
reaches a threshold.

2. No human & no obstacle.

3. No obstacle & human & no danger.

4. Obstacle.

5. No front obstacle & obstacle else-
where.

6. No front obstacle & human & no
danger.

7. No front obstacle & no human & no
obstacle.

8. No front obstacle & human & danger.

9. No obstacle & human & danger.

Figure 3.10 – Complete state machine of the final behaviour: This figure is the visual
representation of the complete state machine of the final behaviour. On Figure 3.10 (left),
the states and their connections are drawn. On Figure 3.10 (right), the information on the
conditions needed to take the transitions are listed.

implement them, code them in the controller that will be run. So the next
step was to find a way to translate those actions into code. Our behaviour
is a kind of coordinated motion and pattern formation. Thus the common
way of implementing it was to make use of the virtual physics design. Using
this framework, each robot is a particle subject to virtual forces exerted by the
environment (the other robots, the obstacles, and other elements). Khatib (1986)
was among the first to use this method. His goal was to implement an obstacle
avoidance swarm behaviour where the obstacles create repulsive forces and the
goals attractive forces. The overall resulting potential presented local minima at
goals andmaxima at obstacles. Reif andWang (1999) introduces ‘social potential
fields’ consisting in virtual forces applied on robots by other robots, obstacles,
objectives, or other elements. The robot resultant motion is defined by the sum
of all the forces applied to it. The individual robots carry out the calculations
themselves, so the final control is completely distributed. The laws they used
are similar to those found in molecular dynamics (inverse-power laws). For
example, a law could favour attraction over long distances and repulsion over
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short distances. One of these is the Lennard-Jones potential, depicted in Figure
3.11. Inverse-power laws, while being extremely simple, can form interesting
and elaborate patterns with molecules and plasma gases (Reif andWang, 1999).
Spears et al. (2004) proposed a framework they call ‘physicomimetics’ to grant
distributed control over a large swarm of robots with ‘artificial physics’.

The laws of physics force a system to go to a state of minimum energy, i.e., to
reach aminimum of the potential function of the system. Since the force exerted
on the system is proportional to the derivative of the corresponding potential –

~f � −~∇P,

with~∇ being thenabla operator for the gradient computation, P thepotential and
~f the force – the minimum of the potential function means the disappearance
of the forces. For every robot to be at the desired location, the forces need to
disappear. In this thesis, we only consider forces and not the virtual potentials
associated to them. The implemented behaviour is expressed in terms of virtual
forces.
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Figure 3.11 – The Lennard-Jones potential: This figure shows a graph of one of the most
used virtual potentials in virtual physics, the Lennard-Jones potential, where ε is the gain, σ
is the target distance and d is the current real distance. In this example, the equilibrium is
reached at the global minimum at 0.3.

Using virtual physics offers some advantages over the other methods (Bram-
billa et al., 2013):

1. Only one mathematical formula fluently and elegantly converts all the
inputs into outputs for the actuators. It removes the need for multiple
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rules and behaviours.

f : Rm → Rn : x1, x2, ..., xm → y1, y2, ..., yn � f (x1, x2, ..., xm),

where m is the number of inputs, n is the number of outputs and f is the
translating function.

2. Multiple behaviours can be combined by simply summing the correspond-
ing resulting vectors.

y1, y2, ..., yn � g(x1, x2, ..., xm) �
s∑

i�0
fi (x1, x2, ..., xm),

where s is the number of behaviour components.

One disadvantage is that it might be difficult to find an expression that imple-
ments perfectly the behaviour we want.

As written above, the robots need inputs to compute the values to send to the
actuators, i.e., the wheels. The two types of inputs are the colour blobs and the
proximity sensor values, respectively provided by the omnidirectional camera and
the proximity sensors. Both are explained in section 3.3.1.1. Three blob colours
are used for our solution: red, green and blue, the three basic components of
every colour in computer graphics. It was decided to a low number of colours
to ease the calibration process and lower the amount of errors when detecting
the blobs (wrong colour). To each blob is associated a distance - angle couple.
The angle is taken from the front of the robot in radians. With these two values,
the robot is able to situate all the blobs and use them as attractive or repulsive
points. The proximity values are a list of 8 angle - value couples, where the angle
is the position of the sensor on the perimeter of the robot. The whole perimeter
of the robot is covered to detect any nearby obstacle. The value is comprised
between 0 and 1, inversely proportional to the distance to the obstacle.

The following paragraphs explain in details the various forces that were
implemented to obtain the desired behaviour from the given inputs. They are
grouped by states of the state machine in which they are used (see fig. 3.9). As
explained on page 22, each state in the upper layer of the general behaviour (the
state machine) contains a sub-behaviour (a particular action) executed bymeans
of virtual physics.
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Searching When no human nor obstacle is around, the robot enters in the
Searching mode with its LED off. It tries to stay at a constant distance from a
detected colour blob, whatever colour it is. Since robots in Escorting or Protecting
mode light their LEDs in blue, the searching robots always stay around the
robots helping the human, whom they will detect at some point. This measure
prevents the robots fromgoingaway too far from thehuman. This sub-behaviour
is implemented through a sum of simplified Lennard-Jones virtual forces, one
for each colour blob detected. The term ‘simplified’ is used because the force is
not the real derivative of the Lennard-Jones potential, but a simplified version
with lower exponents on the fractions:

~f (d) �
−4ε

d

[(
σ
d

)4
−

(
σ
d

)2]
~1s (3.1)

The original version is:
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−12ε
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d

)12
−

(
σ
d

)6]
~1s (3.2)

The simplified version is exposed in Figure 3.12. If no blob is detected, the robot
goes forward with a speed of 5 cm/s. The unit vector ~1s is heading towards the
source of the force (the applier).

Escorting If a human is found nearby and no danger is around, the controller
enters into the Escorting state. The robot then tries to stay at a fixed distance
from the human and other robots. If all the robots around the human follow
the same pattern formation rules, a circle appears encircling him/her. The
complete virtual force for this state is the sum of 3 components: the human force,
the robot repulsion force and the gravity force. All three components are fed with
the detected colour blobs as inputs to evaluate the distances and angles.

• The human force uses a stronger version of the Lennard-Jones force to
keep the robot at a certain distance from the human (see Figure 3.13). Its
expression is given by equation 3.3. Only the closest human colour blob is
fed to the force computation.

~f (d) �



−4ε
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~1s for d < σ

15(d − σ) ~1s for d ≥ σ
(3.3)
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Figure 3.12 – The simplified Lennard-Jones virtual force: This figure exposes a simplified
version of the Lennard-Jones force derivated from the corresponding potential. Its expression
is given by equation 3.1. The parameters values are: ε � 100 and σ � 50, and are conform to
those used with robots. One can observe the root at 50 corresponding to the state of minimum
energy in the system. Above 50, the force is positive, so the robot is attracted by the source
applying the force. Below 50, it is negative, so the robot is repulsed from the source of the
force.

• The robot repulsion force maintains a fixed distance between the robots es-
corting or protecting a human (those with LEDs lit in blue). The simplified
Lennard-Jones force is used, given by Equation 3.1 and Figure 3.12.

• The gravity force pushes the robots in front of the human like if the floor
was ‘sloped down’ to the front of the human, hence the name. Figure 3.14
illustrates the idea of the gravity force and Figure 3.15 its norm. This force
is expressed in polar coordinates:

~f (α) �
{

ε ~1θ for α < 0
−ε ~1θ for α ≥ 0

(3.4)

~1θ is the standard axis in polar coordinates (~1r , ~1θ) where the origin is
the centre of the human. ε is the norm of the force. This force can be
deactivated in the configuration file. Sometimes it might not be needed,
like in the experiments without human in chapter 4, or when the robots
do not need to be pushed in front of the human.

Protection The Protection is reached when the robot detects a human and
a danger. It makes its blue LEDs blink and stays at the border of the en-
countered danger area while maintaining the escorting formation. Hence this



CHAPTER 3. AN ESCORTING SWARM 28

30 40 50 60 70 80 90 100 110 120 130 140

−5

0

5

10

d (cm)

f

Figure 3.13 – The stronger Lennard-Jones virtual force: This figure exposes a stronger
version of the Lennard-Jones force derivated from the corresponding potential. Its expression
is given by the equation system 3.3. The functions are plotted on the whole domain but
only the red part is used. It allows to compare the two values for the same distance. The
force is stronger in the attraction part, hence the name. The repulsion part is unchanged
because of the more interesting asymptotic behaviour at d � 0, increasing the norm of the
force quicker than the linear attraction replacement (in gray). The parameters values are:
ε � 500 and σ � 35, and are conform to those used with robots. One can observe the root
at 35 corresponding to the state of minimum energy in the system. Above 35, the force is
positive, so the robot is attracted by the source applying the force. Below 35, it is negative,
so the robot is repulsed from the source of the force.

sub-behaviour is based on the one from the Escorting state. The only difference is
in the human virtual force. Since everything stays the same as in Escorting, except
the fact that the robotmust not cross the danger border, we justmodify the target
distance from the human. In presence of a danger, σ (the target distance) will
be decreased incrementally until no danger is detected any more. As a result,
the robot gets closer to the human like seen on Figure 3.2 at page 13. We speak
about dynamic target distance. Figure 3.16 illustrates the concept.

Obstacle Avoidance The Obstacle Avoidance is activated when the robot en-
counters an object. Since the robot cannot go back, only the front sensors are
used. Figure 3.17 shows the four sensors that are taken into account and explains
how the state is activated.
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Figure 3.14 – The gravity virtual force concept: This figure illustrates the idea of the gravity
virtual force. This force that can be disabled in the configuration of the experiment if there is
no need to push the robot in front of the human. The closest human colour blob to the human
is taken as reference (the closest shoe). Then depending on colour of the blob (shoe), two
different things can happen: the blob is red and the robot turns clockwise around it, or the
blob is green and the it turns anti-clockwise. The goal is to go in front of the human like if the
floor was ‘sloped down’ to the front of the human, hence the name. Two robots are both on
the opposite side of the human. The left one sees the red shoe as the closest one and turns
clockwise heading for the front. The right robot does the opposite with the same intention.
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Figure 3.15 – The gravity virtual force: This depicts the adopted value for the gravity virtual
force with respect to the angle from the front of the human. Any angle outside this domain
can fall back in the [−180; 180] interval by normalising it. An angle of 0° means that the robot
is in front of the human. The angle increases by turning anti-clockwise.



CHAPTER 3. AN ESCORTING SWARM 30

Target↗ Target↘

DangerSafe

{ {

Figure 3.16 – The dynamic target distance: The concept of dynamic target distance is ex-
plained in this drawing. On the figure, the same robot is represented at two different time steps.
On the right, the robot is inside the red dangerous area after the human took a step towards
it. The robot enters protection mode and starts blinking. Its human target distance begins to
decrease incrementally at each time step by a user-defined amount. As a consequence, it
comes closer to the human. When it crosses the border of the danger zone, it goes back to
Escorting mode (the danger is not detected any more) and raises its target distance again. At
some point, it will re-enter in the area and the whole process will start over. To avoid human
confusion regarding the presence of danger, there is a delay before the robot stops blinking.
That way, when the robot oscillates around the border, it keeps blinking to report the close
danger.
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Figure 3.17 – The obstacle avoidance concept: This figure shows the four sensors that are
taken into account to detect a nearby object. Each sensor is seen as a force pushing the robot
whose intensity is inversely proportional to the distance to the sensed object. If the norm of
the strongest force is over a threshold, the robot goes into Obstacle Avoidance and uses the
resultant as direction vector.
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Unblocking If the robot stays in Obstacle Avoidance and changes its direction
for some time, it enters intoUnblockingmode. Figure 3.18 shows a situation likely
to provoke it. The robot enters a narrow path between obstacles. Let us say that
it is closer to the left object and goes towards it. Since the forces generated by the
proximity sensors on the left are stronger, the resultant is heading to the right,
bringing the robot to the other obstacle. The same event occurs on the right side,
and the robot returns to the left obstacle. If the robot keeps doing for a certain
amount of time, the Unblocking mode is activated. At that point, two different
things can occur: an obstacle lies ahead of the robot within a certain distance,
or nothing is in front of the robot.

• If there is nothing, the robot moves forward for one time step, and returns
to the appropriate state: Obstacle Avoidance if there is an obstacle around,
or a state of the core if none.

• If there is an obstacle in front, the robot turns on itself until there is none.
It is the case in Figure 3.18.

All the parameters presented until now can be tuned by the human to ensure
the best performance. Here is a list of the important parameters available inside
the configuration file:

Human Force Gain: The factor ε multiplying the force in expression 3.3. In-
creasing it strengthens the force the human exerts on the robots.

Human Force Distance: The target distance to the human for all the robot es-
corting him/her.

Human Force Distance Variation Delta: The value added or subtracted to the
target distance to run the dynamic target distance mechanism.

Agent Force Gain: The factor εmultiplying the force in expression 3.1. Increas-
ing it strengthens the force robots exert on each other.

Agent Force Distance: The target distance all the robots must keep between
each other.

Gravity Force: A boolean activating the gravity force that pushes robots in front
of the human.

Gravity Force Gain: The norm of the force that pushes the robots in front of the
human.
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Figure 3.18 – The unblocking concept: On this figure, the robot is trapped between two
obstacles, one on the left and the other on the side. Let us say that it is closer to the left
object and goes towards it. Since the forces generated by the proximity sensors on the left
are stronger, the resultant is heading to the right, bringing the robot to the other obstacle. The
same event occurs on the right side, and the robot returns to the left obstacle. If the robot
keeps doing for a certain amount of time, the Unblocking mode is activated. At that point, two
different things can occur: an obstacle lies ahead of the robot within a certain distance, or
nothing is in front of the robot. If there is nothing, the robot moves forward for one time step,
and returns to the appropriate state: Obstacle Avoidance if there is an obstacle around, or a
state of the core if none. If there is an obstacle in front, the robot turns on itself until there is
none. Here, it will turn until heading south of the image, and then get out.

Direction Vector Window Size: The direction vector sent to the wheels is com-
puted by averaging a number of direction vectors: the one returned from
the forces exerted on the robot at this time step, and a number of previous
vectors sent to thewheels. The parameter gives the amount of vectors used
for the average. Increasing it makes the motion smoother.

Once the direction vector has been computed by the robot, it still has to translate
it into wheel speeds. As mentioned in section 3.3.1.1, it has two diametrically
opposed wheels. Figure 3.19 exposes in pseudo code the algorithm behind the
conversion.
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/* Get the direction values: */
angle :� angle of the direction vector with respect to the front of the robot;
speed :� norm of the direction vector;
/* Check if speed is not too high for the robot: */
if speed > 10 then

speed = 10;
end
/* Multiply angle by 3 to accelerate the robot rotations: */
angle = 3 · angle;
/* Check if angle is still correct: */
if angle > π then

angle = π;
end
if angle < −π then

angle = −π;
end
/* Assign wheels speed: */
if 0 < angle < π then

leftWheelSpeed = speed · cos(angle);
rightWheelSpeed = speed;

else
leftWheelSpeed = speed;
rightWheelSpeed = speed · cos(angle);

end

Figure 3.19 – The direction vector to wheel speeds translation: This pseudo code
explains how the computed direction vector is translated into the robot wheel speeds.
The speed limit for the e-pucks is about 10 cm/s. Thus, the first action after getting
the direction vector is to limit its norm. The angle of the vector is then multiplied by a
factor to accelerate the rotation of the robots. The idea behind the rotation algorithm is
to reduce the speed of the wheel corresponding to the direction of the rotation. E.g.: if
the robot needs to turn left, the left wheel speed decreases by a factor proportional to
the angle. The function that best fits is the cosinus of the angle, decreasing from 1 at
0° to -1 when the angle is 180°, making the robot progressively increase the curvature
of the path from straight line to rotation on itself.



Chapter 4

Experiments

In this chapter, we introduce the different experiments we conducted with the
real robots. These experimentswere conductedwith theE-puck robotic platform
(Mondada et al., 2009). We can classify the experiments into two sets: one
assessing the system quantitatively, and one assessing the system qualitatively
(i.e., the demonstration). We first describe the quantitative assessments, and
their results in the section 4.1. Then we switch to the other kind of experiments
in the section 4.2.

4.1 Characterisation of the System
In this section, we assess the performance of our solution without any human
controlling the swarm. The solution is evaluated quantitatively andqualitatively
with 5 criteria. In this section, we introduce these criteria.

4.1.1 The Robot Speed
The robots have a speed limit. Their wheel speed cannot be higher than 10 cm/s
(0.36 km/h). This limit has been fixed as one of the best practices by the labor-
atory staff to ensure that the robots do not get damaged in an experiment. The
average walk speed of a human is 5 km/h (Wikipedia, 2015b). The experiments
that will follow can thus be seen as proof of concept. Faster robots would be
required for real application. Furthermore, the robots should be able to move
around in multiple kinds of environments. The E-puck (Mondada et al., 2009)
is only suited for flat surfaces.

34
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4.1.2 The Shoe Detection Range
In this section, we determine the range of detection of the shoes by the robots.
We determine the maximum distance at which the robots see the shoes. Figure
4.1 illustrates the experiment we conducted to determine this distance. The
maximal distance goes from 59 cm in front and behind the shoes, to 65 cm on
the right and 70 cm on the left. This distance is acceptable given the size of the
robots. It gives enough room to the user. There is no risk of stepping on a robot.
The probable cause of the lower distance for the green shoe is the lower intensity
of the green LEDs inside the shoe. We use a lower luminosity to increase the
recognition rate of the green shoe by the robots. A brighter green shoe leads to
a more difficult calibration and worse blob detection rate on the robots.

60 cm{

70
cm
{

65
cm

{

60 cm{

Figure 4.1 – The shoe detection range: This figure depicts the experiment we conducted to
evaluate the maximum distance from the shoes at which the robots detect the shoes. A robot
was placed on the left, right, front and behind the shoes. We manually incrementally moved
the robot closer to the shoes until the robot detected them. We measured the corresponding
distance to the shoes. The red shoe is the left shoe, and the green one is the right one.
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4.1.3 Circle Properties
In this section, we evaluate the properties of the circle formed by the swarm
of robots. We first expose the three metrics we used to perform the evalu-
ations. Then we detail the conditions of the experiments. Finally, we analyse
the observations made with the experiments.

4.1.3.1 Metrics

In order to evaluate the performance of our solution, we needed to createmetrics
to put numbers on the behaviour observed (howwe compute the performance of
our solution). We defined three metrics which we think correspond the most to
what we want to capture from the observations: Correct Distance, Robot Density
and Time.

1. Correct Distance. This metric measures to what extent the robotic swarm
respects the target distance to the human.

2. Robot Density. It measures how regularly spaced the robots are around the
human. The more regularly spaced they are, the best it is. It checks if the
human is protected from all directions.

3. Time. It measures how long it takes for the swarm to reach a configuration
such that the Correct Distance and Robot Density metrics go under a given
threshold.

Correct Distance This metric measures to what extent the robotic swarm re-
spects the target distance to the human. To measure the error related to the
distance human-robot, we consider the distance from every robot to the rect-
angle formed by the two shoes (see Figure 4.2). Once we have these distances,
we use the next formula to compute an error for every time step:

errort �
1
N

N∑
i�1

|dti − d |
d

, (4.1)

where t is the number of the time step, N is the number of robots, dti is the
distance human-robot for robot i at time step t, and d is the target distance. Since
the detected colour blob on the shoemight not always be the nearest point to the
robot in the rectangle, this errormeasure is not perfect. Indeed, the robot adjusts
its distance based on the closest human colour blob, not on the closest point of
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the shoe (perimeter of the rectangle). Although this errormeasure is not perfect,
it is still reasonable enough for our purpose. To measure the error between the
real distance and the target distance, the robots use the colour blobs on the shoes.
One blob may cover a big part of one shoe. This is caused by the diffusion of the
light in the plexiglass material we used for the shoes. So its center might not be
the closest point to the robot on the shoe itself. On the other side, the measure of
the error we make with the arena tracking system takes as reference the closest
point to the robot on the shoe itself. There is thus a difference between the way
the robot computes its error and adjusts its position with respect to the human,
and the way we compute the error afterwards. It would be difficult to use the
samemethodology to compute the error, as the arena tracking system cannot see
the colour blobs. We would have to compute the error on each robot separately,
and then gather all the data to get the final value. In that case, however, the
measure would not come from an outside device. It would come from the
robots themselves. This would be less interesting because if there is an error
in the distance measure in the robot, the error measure would be good but in
reality the robot would be misplaced.

Robot Density It measures how regularly spaced the robots are around the
human. The more regularly space they are, the more the human is protected
from all directions. The error on the angular density of robots is computed as
follows. The positions of all the robots are captured, and the angle between each
consecutive pair of robots is calculated (see Figure 4.3). This list of angles is fed
to the next formula to return the error for the current timestep:

errort �
1
N

N∑
i�1

|αti − α |
α

, (4.2)

where t is the number of the time step, N is the number of robots, αti is the
angle separating the pair of consecutive robots i at time step t, and α is the target
angle.

Time It measures how long it takes for the swarm to reach a configuration such
that the Correct Distance and Robot Density metrics go under a given threshold.
To get this value, we average the evolutions of the error over time for every type
of experiment. We compare this evolution to a defined threshold representing
a certain quality of the solution. We obtain an average time for every type of
experiment corresponding to the time step where the threshold is crossed.
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Target Distance

Figure 4.2 – The distance metric: This figure represents the algorithm used to compute the
distance metric. The red and green shoes in the middle form a rectangle. The position of all
robots is obtained thanks to the arena tracking system (see Appendix ??). The distance of all
robots to the rectangle is computed. We compare every distance to the target human distance
(we take absolute value of the difference). Then we divide by the human target distance to
normalise. We normalise since an error of 10 cm for a target distance of 30 cm is not the
same as an error of 10 cm for a target distance of 100 cm. The average of all those divisions
is the error of the current time step. The example depicted on the figure would return an error
of 0. See expression 4.1. One can see that the geometric shape formed by the points that
are at the target distance from the human is not a perfect circle. This is because the robots
position themselves with respect to the shoes, not the center of the human. We try to provide
a measure that corresponds to the way robots compute their own distance.
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Figure 4.3 – The density metric: This figure represents the algorithm used to compute the
densitymetric. The position of all robots with the origin centred on the shoes is obtained thanks
to the arena tracking system (see Appendix ??). Then the angle between every consecutive
pair of robots is computed. We compare every angle to the target angle (360°/#robots, here
45°) by subtracting the second to the first. Then we divide by the target angle to normalise.
Normalisation is necessary since an error of 10° for a target of 30° is not the same as an error
of 10° for a target of 90°. The average of all those divisions is the error of the current time
step. The example depicted on the figure would return an error of 0. See expression 4.2.
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4.1.3.2 Setup

These experiments took place in the IRIDIA laboratory, in the arena room. The
arena room is the place were the academic staff can manipulate the robots and
run experiments. We used 8 e-pucks for every experiment. They were all
equipped with tags to allow the arena tracking system (Stranieri et al., 2013)
to locate them, and transmit the location to the simulator. At the beginning of
each experiment, the robots were placed according to the type of experiment
undertaken. There are two types of experiment. The first one consists in a
random starting position for all the robots. Figure 4.4 illustrates the first set-
up type. The other type consists in a specific starting position: all the robots
are placed on the right of the shoes. The arena is a rectangle, bounded with
wood boards or walls (on the right of the picture on the two figures there is
a wall). Each experiment lasted 3 minutes. At each time step of the 3 minute
long experiment, the positions of robots are saved into a file on the tracking
system server. When the experiment is finished, the file is transferred to another
computer located in the arena room. All the log files are then filtered by a
Matlab script we implemented to remove the errors in the positions. Some
robots are indeed misplaced or not found for several time steps due to some
tracking system errors. Once the files have been cleaned, other Matlab scripts
compute the values for the metrics listed in section 4.1.3.1.

4.1.3.3 Analysis

In this section we analyse the information gathered from our experiments. The
goal of these experiments was to show that the error measures we defined in
section 4.1.3.1 are decreasing over time during each experiment and stabilising
after some acceptable time. We grouped the results by type of error measure.
First we analyse the distance results, then the density results. We end with the
time metric. For both types of starting configuration, the results are based on 10
runs of the experiment.

On figures 4.6 and 4.7, we show the evolution of the average distance error
over time in the context of the random starting point experiment and in the
context of the specific starting point configuration. On both figures, we observe
a clear decrease of the error over time. On figure 4.6, the stabilisation is more
obvious than for figure 4.7 where the median continues to decrease slightly at
the end of the 3 minutes. Furthermore we can observe that the values of the
error are a lot more spread for the specific setup (Figure 4.7) than for the random
setup (4.6). We can explain this observation by the fact that the robots are close
to each other at the beginning of the experiment. That, and the nature of the
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Figure 4.4 – The random setup: On this figure, we show an example of a random starting
position for all the robots. The initial positions of all the robots are computed by a random
plot of 8 points in Matlab, 8 couples (x,y) such that x ∈ [−1, 1], y ∈ [−1, 1]. The robots are
then manually placed as the points are shown on the Matlab generated plot. The shoes are
centred under the camera. The camera is the origin of the environment: (0, 0). The origin is
not centred on the picture as we cropped the image to keep only the relevant part. The picture
was taken from one of the 16 camera of the arena tracking system (Stranieri et al., 2013).
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Figure 4.5 – The specific setup: On this figure, we show an example of a specific setup. All
the robots are placed on the right of the shoes. This starting configuration is interesting since
it could represent the usual configuration where all the robots are stored and waiting for the
activity to begin. The shoes are centred under the camera. The camera is the origin of the
environment: (0, 0). The origin is not centred on the picture as we cropped the image to keep
only the relevant part. The picture was taken from one of the 16 camera of the arena tracking
system (Stranieri et al., 2013).
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virtual forces exerted on the robots make the robots disperse in almost random
directions at the beginning of the experiments. Typically, on figure 4.5, the
robots on the right column would disperse to the right because of the column
of robots on their left. Although the robots on the right are also attracted by
the shoes, the repulsive forces of the robots on the left are stronger. Since for
the random start configuration the robots are more likely to be dispersed in the
arena, they are less subject to the forces of the other robots. Once the experiment
starts, they just move towards the shoes. The behaviours observed during these
experiments were not so different, leading to a small distribution for the error
value, as seen on figures 4.6 and 4.8. From the distance metric point of view, the
random starting position is the best.

As expected, the density error value is bigger for the specific configuration
than for the randomstarting configuration as the robots are clustered on the right
of the shoes (Figure 4.8 and 4.9). The angles separating the robots are further
from the target angle (see section 4.1.3.1) than for the random setup. Once
again, the values are decreasing over time for the two types of configurations.
The values are stabilising after 2 minutes for the random configuration. The
specific configuration does not stabilise completely at the end of the 3 minutes.
The variance of the values distribution is bigger for the specific configuration
(0.0241 for the random configuration, and 0.0560 for the specific one). However
the difference is less important than for the distance metric. The error values
are higher for the specific configuration. This could be due to the difficulty of
the reorganisation undertaken by the robots: half of the robots have to go on
the other side of the shoes. In the other configuration, the robots are already
more dispersed around the shoes. As for the distance metric, the random
configuration is the best alternative.

As the values are not completely stabilising for the specific starting config-
uration, it was interesting to see what was the evolution of the error for a longer
experiment. We thus launched one experiment of 9 minutes with the specific
starting configuration. Figure 4.10 (a) and 4.10 (b) show the evolution of the error
over time. The two figures show a global decrease of the error value. However,
the distance error on Figure 4.10 (a) has a more monotonous evolution than the
density one. The latter undergoes an augmentation around 3 minutes. During
the first 180 seconds, the two evolutions correspond to what was observed in
figures 4.7 and 4.9. The two series of values tend to stabilise at 0.8. Figure 4.10
(c) shows the final state of the swarm at the end of the experiment. The robots
are forming an acceptable circular shield around the human. One can conclude
that 0.8 is a nice value for the error measure. The value 0.8 will thus be used as
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Figure 4.6 – The distance error for a random starting configuration: On this figure, we
show the evolution of the average distance error through boxplots. It is an average on 10
experiments with real robots. The initial positions of all the robots are randomly selected. We
observe that the behaviour of the swarm tends to lower the error measure. The variance of
the values distribution is very low (0.0087 on average). A boxplot is a way of representing the
distribution of a group of values. Each box corresponds to one group of values. On each box,
one can see the median (the red line) of the distribution. The blue box is the interval between
the first quartile and the third quartile: the interquartile range (IQR). The dashed black line is
the interval of all the non outlier points. The upper whisker (the upper end of the black line)
is the highest datum still within 1.5 IQR of the upper quartile (Wikipedia, 2015c). The lower
whisker is the lowest datum still within 1.5 IQR of the lower quartile. Any point above the
upper whisker or below the lower whisker is called outlier.
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Figure 4.7 – The distance error for a specific starting configuration: On this figure, we
show the evolution of the average distance error through boxplots. It is an average on 10
experiments with real robots. The robots are placed on a grid on the right of the shoes like
shown on Figure 4.5. We observe that the behaviour of the swarm tends to lower the error
measure. The variance of the values distribution is very high (0.2034 on average).
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Figure 4.8 – The density error for a random starting configuration: On this figure, we
show the evolution of the average density error through boxplots. It is an average on 10
experiments with real robots. The initial positions of all the robots are randomly selected. We
observe that the behaviour of the swarm tends to lower the error measure. The variance of
the values distribution is low (0.0241 on average).
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Figure 4.9 – The density error for a specific starting configuration: On this figure, we
show the evolution of the average density error through boxplots. It is an average on 10
experiments with real robots. The robots are placed on a grid on the right of the shoes like
shown on Figure 4.5. We observe that the behaviour of the swarm tends to lower the error
measure. The variance of the values distribution is high (0.0560 on average).
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threshold of quality for the time metric.

If we use a threshold value of 0.8 for the quality measure, we observe a great
difference between the random and specific configuration in the time it takes
for the error measure to cross the threshold. Since for the distance and density
metrics the best alternative was the random start configuration, it is logical that
the alternative taking the less amount of time to cross the threshold of 0.8 is
the random alternative. We take the median as reference. If the configuration
is random, the swarm takes a few seconds on average to cross the threshold.
On the other side, for the specific configuration, the swarm takes approximately
1min30s to do the same for the density metric, and 30 seconds for the distance
metric.

As a conclusion, we can say that the random starting configuration is the best
in the experiments we performed. It offered a consistent behaviour, as seen on
Figure 4.6 and Figure 4.8. The variance is a lot smaller than for the other solution
(see Table 4.1). At the end of the experiments, the value for the two types of
errors were almost the same. Even if the specific starting configuration is a
worse solution than the random starting configuration, the robots still managed
to reach a state of acceptable quality in our standards after some time. In future
applications, one would thus have to choose between the compactness of the
specific configuration, leading to bigger delays, and the speed of the random
solution, harder to set up.

Variances Distance Density
Random 0.0087 0.0241
Specific 0.2034 0.0560

Table 4.1 – The variances: On this figure we gather all the variances from the experiments
we conducted. Each of the 4 values is an average of the variances of one of the 4 experiments.
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(a) (b)

(c)

Figure 4.10 – The long experiment for the specific starting configuration: On this figure,
we show the evolution of the distance error (a) and the density error (b) for one run of the
experiment. The experiment lasted 9 minutes. One can see a global decrease in the two
graphs showing that the behaviour tends to create a circle that presents good characteristics
for our application. On (b) one can observe an augmentation around 200 seconds. The video
from the experiment showed that the robots moved slightly to the right of the shoes, putting
more space between the robots on the left. The robots returned to their correct position
afterwards, as the graph suggests. (c) depicts the final state of the 9-minutes experiment
using the specific configuration as starting configuration. It corresponds to a value of 0.8 for
the two error measures. We defined this value as an acceptable quality.
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4.2 Demonstration
In the previous section we performed experiments that did not involve any
human. In this section, one human is using the shoes to walk in a virtually
dangerous zone and stay protected by the robots. We called this experiment
‘the demonstration’. The goal was to check if the robots were able to follow
the human and warn him/her about the dangerous areas. It acts as a proof of
concept.

4.2.1 Setup
We ran this experiment in the arena room, in the IRIDIA laboratory. We simu-
lated one dangerous area on the floor using the arena tracking system (Stranieri
et al., 2013; Reina et al., 2015) and ARGoS (Pinciroli et al., 2012; Garattoni et al.,
2015). Eight E-pucks were used (Mondada et al., 2009). The experiment was
recorded with a digital camera. Only one human took part of the experiment.
The human had to walk slowly towards a circular dangerous zone whose dia-
meter was 1 meter. At some point, the robots should notify him/her about the
danger. The human would then walk around the dangerous area as depicted
on Figure 4.11. The dangerous area was not visible to the human. If the robots
would not tell to the human that a danger is nearby, the experiment would fail.
The human started the experiment as shown on Figure 4.11, on the left of the
dangerous area.

4.2.2 Analysis
In this section, we describe the unfolding of the experiment on the basis of
pictures taken from the video we recorded. On Figure 4.12, we present the
sequential events that occurred during the experiment. Figure 4.12 (a) shows
the starting configuration of the experiment. The human is equipped with the
shoes we built. The robots are surrounding him. He is ready to move towards
danger. After a few steps, the human has reached the point where the robots
see the dangerous area. They notify the danger to him by blinking their LEDs.
One can see on Figure 4.12 (b) the two frontal robots blinking (their LEDs are
currently off for a short period of time). The human decides to avoid the danger
and turns left. While moving around the dangerous area, the robots in contact
with it stay blinking. The 3 robots on the right side of the human on Figure 4.12
(c) are touching the dangerous area. Thanks to this feedback sent by the robots,
the human knows its relative position to the danger. On this picture, one can
also see the mechanism that switches off the LEDs of the shoe working. The left
shoe is not touching the ground any more, releasing the switch and opening the
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!
Figure 4.11 – The demonstration setup: On this figure, we show the staring configuration
of the demonstration experiment, and the expected path the human has to follow. The human
first walk slowly towards the dangerous area (the red disc). He is surrounded by 8 protecting
E-pucks that follow him. The human is wearing the two shoes that were built to allow the
robots to detect him.

circuit powering the LEDs. On Figure 3.2 we showed how the swarm of robots
had to stay on the boundary of the dangerous area, even if the distance between
the robots and the human is under the target distance. One can observe on
Figure 4.12 (d) that the robots on the right of the human follow the curvature of
the dangerous area. On Figure 4.12 (e) the human has the same heading he had
at the beginning of the experiment. The danger area is on his right, as signalled
by the robots on his right. Soon after, the robots on the right of the human will
retrieve their correct distance to the human, and stop blinking. The danger area
has been avoided.

The experiment was a success. The robots notified the human about the
dangerous area. They stayed on the boundary of the area. However, for some
of the robots, the distance to the human was oscillating. One can see on Figure
4.12 (b) that one of the robot on the back of the human is closer to the human
than it should be. The speed of the human in this experiment was not constant.
At the beginning, the human walked very slowly to the dangerous area. Then,
he progressively increased the speed. The final speed was still low, though. For
a real life application, the robots would have to be further from the human and
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(a) (b)

(c) (d)

(e)

Figure 4.12 – I’m fabulous: Captured from the video of the experiment. The virtual danger-
ous area is added as an overlay as a red disc.



CHAPTER 4. EXPERIMENTS 53

form a wider circle. This would allow a higher anticipation, and higher walking
speeds as the robots would have larger margins to react to the human changes
of direction and speed. This experiment must be seen as a proof of concept.
Further development must be undertaken to obtain a system ready for real life
applications.
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Conclusion

In this thesis, we addressed the problem of providing a protection to a human
walking in a dangerous environment. This dangerous environment contains
dangerous areas thatmust be avoided. These areas could bemines or radioactive
areas. The human is unable to perceive them. We addressed this problem
with an approach based on swarm engineering. We decided on the E-pucks
(Mondada et al., 2009) as robotic platform to form a swarm encircling a human.
The swarm is augmenting the capabilities of the human. The human is able to
perceive dangers that he would not be able to perceive without the help of our
robotic system. The controller is based on the principles of virtual physics and
pattern formation. One of the challenges we had to address was to make the
robots detect the human. In order to allow robots to detect the human, we built
a portable device. We built shoes with coloured LEDs that the robots can detect
with their camera.

We conducted multiple experiments in simulations and with real robots to
show that our solution addresses our problem. We characterised the system
composed by the swarm of robots and the shoes by performing more tests:
we tested the range of detection of the shoes to see how far away the robots
could detect them. The maximum distance we obtained is sufficient for our
purpose, but not for real applications. We also analysed the time needed by the
robots to form a circle around the human from different starting positions. We
obtained the best results for the starting configuration where all the robots are
randomly placed in the arena. On the other hand we obtained longer delays for
the configuration where all the robots are clustered near the shoes. However,
in all the cases, the robots surrounded the human. We ran an experiment with
a human walking with the augmented shoes towards a dangerous area. The
robots in contact with the dangerous area correctly warned the human.

54
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Even though our solution satisfied our main problem (i.e., how to protect
a human from going into dangerous areas), we believe that the current imple-
mentation of our solution has some limitations. First of all, the speed of the
robots is too low for a real application. We made a comparison of the two
speeds in section 4.1.1. The average speed of a human is 5 km/h (1.39 m/s).
The maximum speed of the robots is 0.1 m/s. Faster robots would be needed
for real applications. The scope of the omnidirectional camera is acceptable in
our case, but in a real application it would be better if the robots detect the
human from farther. The omnidirectional camera that the robots use to detect
the human colour blobs is too sensitive to light conditions. Another sensor that
is more robust with respect to the conditions of the experiments would be better.
It could be interesting, as future work, to implement our solution on an other
robotic platform, e.g., the foot-bot, mounted with a more precise camera and a
combination of tracks and wheels (referred to as ‘treels’) (Dorigo et al., 2013).
The robotic platform we used is only suitable for flat surfaces. However the
outside real environments are everything but flat. Furthermore, for the purpose
of a real life experiment, the robots would need batteries with higher capacity.

Future Works This solution can be enhanced by other future works. Once
enhancements on the hardware side have been realised, one could update the
controller to perform other related activities. One interesting application one
could look into is guidance. The human would have less freedom of movement.
Instead, the robots would encircle the human and help him to move in a previ-
ously computed and optimised direction. Guidance could also apply to animals.
Below are presented 3 examples of guidance:

} Vehicle Guidance: This application is very similar to our project: helping
someone or a vehicle that cannot see the danger augment his/her/its abil-
ities to detect it, or preventing this vehicle from making any damage. One
could imagine a vehicle whose driver cannot see the danger because of
unusual circumstances (e.g., smoke, fog), or a vehicle behaving in a dan-
gerous way. For example, one could imagine a boat entering an unsafe
region of the sea (shallow water, streams), a channel or a harbour. In the
case of the harbour, the robots would also act as buoys or shock absorbers.
In the future, a greater part of vehicle will operate without a driver. Guid-
ance could also be extended to driverless vehicles. These vehicles could be
encircled by a swarm of robots to progress safely towards the destination.
If we consider a boat without a driver, the robots acting as shock absorbers
around the boat in the harbour are interesting. Indeed if an error occurs
in the boat driving program, or if someone hacks into the boat, the robots
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surrounding the vehicle would prevent big damages. One could argue
that it would be easier to equip the boat or the other vehicles with the
needed sensors or equipment. However, as these risky situations might
occur very sporadically, it might be a bad investment to buy the ad hoc
equipment. The U.S. Navy performed tests where a swarm of boats had to
protect a main ship against enemies (Hsu, 2014).

} Human Motion Synchronisation: The second application we thought about
was the synchronisation of multiple humans. For instance, one can ima-
gine a restricted area where security rounds have to be made. With the
help of the robots, the members of the security personnel could maximise
the covered area by synchronising their progression and walking speeds.
In case of intrusion or attack, the robots next to each member of the secur-
ity personnel could help to defend the personnel and provide additional
equipment (shields, aimbots, additional ammunition).

} Crowd Control and Fishing: A swarm of robots could also act as a crowd
container to limit important crowd movements or to channel the flow of
humans by forming barriers along the path. The same idea could be used
for fishing. One could build robots that imitate fish behaviours to avoid
frightening them and encircle schools of fishes. The robots would then
release nets around the swarm of fishes that would connect to each other
to form a sphere.
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