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Summary

Swarm robotics inspects the class of systems whereby a large number of

robots interact in a self-organized and decentralized way in order to collec-

tively reach a certain goal. Our work is better contextualized into a sub-

category of swarm robotics, called collective decision making. In collective

decision-making problems the swarm is place in front of a set (discrete or

continuous) of mutually exclusive alternatives. The general goal of a col-

lective decision is to have every robot (or a large majority) of the swarm

agreeing toward one of the options, usually the one which maximizes a cer-

tain performance of the system (e.g. the covered area, the execution time of

an action). In this thesis we present a self-organizing, decentralized, general

and portable solution to a novel scenario called environment classification.

In environment classification, an homogeneous swarm of autonomous robots

has to classify the environment by the resources that it contains. To con-

sider the problem correctly solved, every robot of the swarm has to agree

toward the most available resource in the environment. The goal of this

thesis is to give an empirical analysis of the dynamics of the swarm when

three decision rules are applied in the decision-making process, in terms of

accuracy of the solution and time required to reach the consensus. The de-

cision rules are the weighted voter model, the direct comparison, and the

majority rule. The comparison has been perform with both physic-based

simulation experiments and experiments with a swarm of real robots.
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Chapter 1

Introduction

“Great things are done by

a series of small things

brought together.”

Vincent Van Gogh

1.1 Swarm Robotics and Collective Decision Mak-

ing

The area of interest of this thesis is swarm robotics, a branch of robotics

that takes as source of inspiration some examples of collective behaviours

present in nature. Swarm robotics inspects the class of systems whereby a

large number of robots interact in a self-organized and decentralized way in

order to collectively reach a certain goal. In a self-organized system every

agent is separated from the others, that is, every agent is behaving indepen-

dently from the other agent’s state. After the starting steps, agents begin

to create some kind of relations (connections) with the others. The parts-

separated system become hence a parts-joined system [3]. Decentralized

means instead that the swarm does not have robots with the role of coor-

dinating the other robots. In swarm robotics, every robot has only a local

information deriving both from the environment and from the neighbours.

This is a big difference with the centralized systems, where the central robot

has a global knowledge about the system. The coordination between robots

derives from the processing of the information that every robot collects dur-

ing the execution. Information deriving from the communication with the
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neighbours and from the exploration of the environment are pooled and pro-

cessed by every robot following a determined strategy that brings the system

to a collective behaviour.

The number of robots involved in the process represents the swarm size.

Effects of varying the swarm size have been widely studied in literature.

Larger swarm sizes are usually preferable since it would imply higher level

of redundancy and parallelism, that is, higher redundancy and robustness.

The purpose of swarm robotics is to create systems with three character-

istic properties: flexibility, scalability, and robustness. These characteris-

tics aim, respectively, to build a swarm: 1) able to adapt itself to the

changes of the environment during the time; 2) that is correctly working

even increasing or decreasing the number of its components; and 3) that is

fault tolerant to eventual individual failures of the robots. These features

make swarm robotics particularly feasible for a wide range of real-world ap-

plications: dangerous tasks (e.g., demining, radioactive-garbage collection,

difficult-environment exploration [9], [86]), situations with an unknown en-

vironment, or situations where the conditions of the environment are rapidly

changing (e.g., oil-leakage [86]). A very complete overall review on swarm

robotics has been done by Brambilla et al. [9], and we will go deeply in the

explanation of swarm robotics in the following chapter ( 2).

Our work is better contextualized into a sub-category of swarm robotics,

called collective decision making. Collective decision-making problems are

widely studied in swarm robotics. In such kind of problems the swarm is

place in front of a set (discrete or continuous) of mutually exclusive alterna-

tives. The general goal of a collective decision is to have every robot (or a

large majority) of the swarm agreeing toward one of the options, usually the

one that maximizes a certain performance of the system (e.g. the covered

area, the execution time of an action).

A parallel can be found in nature: social insects are simple cognitive

agents able to take individual decisions. They are just informed about some

local information, for example on the surrounding environment or the status

of the neighbour elements [98]. Through direct or indirect communication

[9] the group of insects is able to reach a final state where every individual

has taken the same choice. The individual decision of an element (either

a robot or an insect) is the result of the process of gathering information

from the environment. Instead, collective decisions in swarm robotics are

emerging from the self-organization process of the robots and the decentral-

ized nature of the group. Usually the collective decision-making process is

composed by the phase of exploration, in order to gather information, and

the information pooling. After all the information have been collected, every
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single robot has to take a decision basing on them. Through numerous local

communication among the robots and with the environment and without a

centralized control a collective decision can be reached [12], [100].

Two big subclasses of collective decision making are agreement (or con-

sensus achievement) and specialization [9]. In agreement the desired out-

come is that every robot, or a large majority of the robots, is converging,

after the execution, on the same option among the set of possible one. In

specialization, instead, the robots should distribute themselves on a set of

possible tasks that must be executed. The most common example of spe-

cialization is task allocation, that is how to allocate the robots to a set of

known tasks in order to maximize the performance of the system. An ex-

ample is the cleaning of one room: let us suppose that, in order to clean a

room, two tasks must be achieved: the first step is to remove all the object

on the floor while the second is to distribute the robots on the floor and

clean the destined area. The collective decision-making problem concerns

the allocation of these tasks among the robots in a way that optimize the

cleaning of the room.

A particular case of collective decision making is called best-of-n, and

are problems characterized by a discrete set of opinions that the swarm has

to discriminate. The set of alternatives is characterized by the presence of a

single option that is the best one, i.e., the one that maximizes some metric

of the problem. Usually every option has an associated quality, and the best

option is the one with the highest quality.

1.2 Motivations and Contributions of the Thesis

In this thesis we analyse the behaviour of a swarm of robots facing a best-

of-n decision-making problem in a never studied scenario. Starting from

the work of Valentini et al. [103], [101] we proposed a solution for a new

scenario, focusing on the dynamics of the behaviour of the swarm under the

application of three different strategies of decision. In this problem, a swarm

has to classify the environment by the different resources it contains. The

goal of the swarm is to discover which is the most available resource that can

be found in the environment. Analysing our scenario we can easily identify

the key factors characterizing the best-of-n decision-making problems: the

discrete set of alternatives is represented by the resources in the environment,

while the best option that the swarm has to desirable choice is the most

available one. Every agent of the swarm is following the same behaviour

described by a probabilistic finite-state machine and is eventually applying,

in the decision-making process, the same decision rule. The main goal of this
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thesis is to analyse, from a quantitatively perspective, the behaviour of the

swarm when are applied three well-known decision-making rules: weighted

voter model, direct comparison, and majority rule. The object of our work is

to track the two variables better describing the performance of the solution,

that are the consensus time and the exit probability. The first one is the

time needed by the swarm to solve the problem while the second one is the

accuracy of the solution in terms of correctness of the solution.

Weighted voter model and majority rule have already been treated in

literature by other works [103], [101], [110], [54], [64], [104]. We introduced

a never studied decision rule that is the direct comparison. This approach is

using more information with respect than the other two rules that are com-

pletely self-organizing and are not leaning on the exchange of information.

We decided to introduce direct comparison as control strategy in order to

understand in which conditions is preferable to use a self-organized approach

and when is better to use an extensive exchange of information.

Our main goal was to give a complete analysis of the swarms’ behaviour

under the application of three strategies in order to solve the same prob-

lem. In the process of build up the comparison between the strategies we

made research works that can be useful to the rest of the community. The

innovative contributions of this research are:

• We gave a decentralized, self-organizing, general, and portable solution

to a non-studied scenario of a binary best-of-n decision-making prob-

lem. The main innovation is the scenario, that is never been exploited

before;

• We made a comparison between three different strategies in the same

scenario, focusing on the variables that describe the dynamics of the

system. We made an analysis of the well-known speed versus accuracy

problem of the three decision rules, identifying the conditions in which

each decision rule is more advantageous to be used with respect to the

others;

• We conducted extensive real-robots experiments comparing three dif-

ferent decision rules. Real-robots experiments are a definitive test-

bench: in real-robot experiments the situation is not the ideal one

that is used in simulations. It entails that the results obtained from

the experiments done with simulation tools can be different from the

ones made using real robots. We analysed the behaviour of the swarm

composed by real robots when the different strategies have been ap-

plied in order to solve the same problem in the same scenario;
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• We studied the behaviour of the swarm using the direct compari-

son, that is a strategy requiring an higher quantity of information

exchanged. This decision rule has never been applied to a swarm of

autonomous robots solving a collective decision-making problem. We

decided to introduce it because it is quite different than the other two

decision rules used. We wanted to test the direct comparison as a

control strategy, to see how.

This scenario still has a lot of extensions that can be studied in the

future. We recall that, in our scenario, the swarm has to discriminate the

resources present in the environment. We analysed a scenario where there

were two resources in the environment, reducing then the problem to a binary

best-of-n decision-making problem. In the future it would be interesting to

study the case where the resources in the environment are more than only 2,

extending the cardinality of the set of alternatives. Moreover, in our solution

every robot is behaving in the same way, following the same decision rule.

Another extension of the problem could be the analysis of the behaviour of

the swarm when different decision ruless are applied to different portions of

the swarm: what could be the effect of applying, for example, the weighted

voter model to one half of the swarm and the majority rule to the other

half? Would it speed-up the consensus time? And what about the accuracy

of the decisions?

1.3 Structure of the Thesis

The thesis is structured as follow.

In Chapter 2 (State of the Art) we reviewed the state of the art inter-

esting this thesis work. We started by introducing, defining, and describing

the swarm robotics field giving indications about the related works. After

that we completely explain the collective decision making, going deeply in

the details of the works that are directly linked to this thesis. This chap-

ter has been thought to introduce the reader to the swarm robotics, giving

information about this general field before to go deeper into the details of

collective decision making, the subcategory better describing our problem.

In Chapter 3 (Environment Classification) we defined our problem,

describing the scenario, the solution that we have proposed, and the finite

state machine describing the behaviour of the robots. In this introduction we

have just briefly introduced the environment classification, while in chapter

3 it will be fully described.

In Chapter 4 (Simulation Experiments) we showed the experiments
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that we have done in the simulation phase, showing the motivations that

pushed us to do each experiment and discussing about the obtained results.

In Chapter 5 (Real Robots Experiments) we spread out the real-robots

experiments, discussing about the experiments done in order to set-up the

experimental environment and about the results obtained by the experi-

ments.

In the conclusion chapter we summarized what we have done and which

are the results of the experiments.



Chapter 2

State of the Art

In this chapter we are going to introduce and define the Swarm Robotics as

branch of robotics. In order to do that we will discuss the origins of swarm

robotics and the influence of the observation of some biological systems

as source of inspiration. We will explain the main characteristics defining

swarm robotics, and we will list some works done up to now in this area.

Finally we will discuss about the points that are still lacking in this research

field.

After that we are going to focus on the sub-branch of swarm robotics’

called collective decision making, that is the sub-area where this thesis oc-

curs. We will explain the works done in collective decision making, classify-

ing them by the nature of the set of their alternatives that can be discrete

or continuous.

2.1 Swarm Robotics

Swarm intelligence is the discipline that studies the collective and intelligent

behaviour of a group of entities, both animals or robots, emerging from the

local interactions between simple individuals and between the individuals

and the environment [16].

Swarm robotics is the application of swarm intelligence to multi-robot

systems [86]. Swarm robotics studies the design of groups of cooperative

robots working together without any external infrastructure or any form of

centralized control [20]. The ideal outcome of a swarm robotics system is

a collective behaviour that performs as desired in order to find the solution

of a specific problem [9],[86]. Swarm robotics has been developed after the

study of self-organized behaviours present in nature, performed by social
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animals. Examples of natural swarm behaviours are some kind of eusocial

insects, as ants and termites, honeybees, cockroaches [8]. Other examples of

collective behaviours are easily observable in fish schools [45] and bird flocks

[5].

The main characteristics of collective behaviours in nature are flexibil-

ity to environmental changes, robustness to individual robot failures, and

scalability with the size of the swarm [11]. These characteristics are exactly

what is desirable to have in a swarm robotics system [86]. These properties

are the result of a really simple behaviour followed by the entities of the

self-organized swarm and of the local interaction among robots and between

robots and the environment surrounding them.

The range of applications of swarm robotics is really wide: dangerous

tasks (e.g., demining, radioactive-garbage collection, difficult-environment

exploration [9], [86]), situations with an unknown environment or situations

where the conditions are rapidly changing (e.g., oil-leakage [86]).

Up to now, no engineering approaches for the design of swarm systems

have been defined: swarm robotics is still such an art, where the researcher

has to put his own capabilities without a predefined approach. An engi-

neering way to define, design, realize, verify and maintain a swarm is still

lacking. The most common way to design a swarm of robots is bottom-up,

that is, starting from the design of a single robot behaviour the engineer tries

to reach the desired behaviour of the whole swarm by trial and error [15].

Some top-down approaches have been proposed [9], [109], [83]. However, no

real-world application has been implemented using swarm robotics. Possible

reasons for the absence of swarm robotics applications are for example, hard-

ware limitations of the current robots, the lack of an engineering approach

to design and validate the swarm, and the uncertainly of the outcome of the

swarm [9].

2.1.1 Origins and Characteristics

Initially the term swarm intelligence was used to indicate a particular class

of cellular robotic systems [7] and was not a simple concept to define: the

term intelligence behaviour in this context was defined as the capacity of

producing a desired outcome in a non-predictable way. The term swarm

intelligence assumes the meaning of a group of non-intelligent cellular robots

producing an intelligent (i.e., desired and not predictable output) outcome

[7].

Swarm robotics is the application of swarm intelligence to multi-robot

systems [86], [19]. Several definitions of swarm robotics have been defined.
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(a) (b)

Figure 2.1: (a): Train of ants (https://www.proofpest.com/michigan-ant-

indentificationnorthvillemichigan/); (b): Collective decision making in robotics bio-

inspired by nest-site selection in honeybees colonies, (G. Valentini et al. [101])

For example, in [86] is defined as: “the study of how large number of rela-

tively simple physically embodied agents can be designed such that a desired

collective behavior emerges from the local interactions among agents and be-

tween the agents and the environment”, while [17], [20] define it as: “the

study of how to design groups of robots that operate without relying on any

external infrastructure or on any form of centralized control”. The ideal

outcome of a swarm robotics system is a collective behaviour that performs

as desired in order to find the solution of a specific problem [9],[86].

Let us define two concepts that will be useful in the rest of the writing:

swarm level and individual level. Swarm level, or macroscopic level, is the

high-level point of view of the system. If we speak about macroscopic level

we are referring to the properties or the behaviours of the whole swarm as

unique identity. Individual level, or microscopic level, is the single individual

point of view, that is the characteristics of the single individuals and their

interactions.

Usually, if a system is taken with a swarm-level approach then the mod-

elling approach is a top-down one: the design starts from the desired prop-

erties and behaviours of the swarm, usually through ordinary differential

equations or other mathematical models. Otherwise, if the approach is

individual-level, the swarm is designed following a bottom-up method: the

designers start modelling the single-robot behaviour in order to reach some

desired properties of the whole swarm.

Ross Ashby, in his treatment about self-organization [3], gives two mean-

ings to this concept. It says that a self-organized system starts with every

agent separated from each other, that is, every agent is behaving indepen-

dently from the other agent’s state. After the starting steps, agents begin

to create some kind of relations (connections) with the others. The parts-
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(a) (b)

Figure 2.2: Examples of collective behaviour in nature: (a). School of fish aggregating

to defence from aggressions (www.archives.deccanchronicle.com); (b). Groups of birds

flocking (https://en.wikipedia.org)

separated system become hence a parts-joined system. The second meaning

of self-organization given by Ashby is still referring to the first one (i.e. from

parts-separated to parts-joined system) but it adds a factor to this defini-

tion. The system is not just changing from unorganized to organized but

from bad organized to correctly organized.

One of the most studied self-organized natural behaviour is from ant

colonies and perfectly represents an example of the concept of synergy just

discussed: an ant alone cannot achieve complex tasks, but a colony of ants

can construct nests, carrying food and so on. One of the most incredi-

ble behaviour of ants colonies is the selection of the closest source of food

with respect to the nest and the shortest path to reach it [48]. In order to

achieve this task, every ant in the colony releases a pheromone while walk-

ing to the food source, and decide which pheromone trail to follow based on

other pheromones released on the floor. This principle has been exploited

for an important optimization algorithm for the solution of computational

problems, reducible to the shortest path finding in a graph (Ant Colony

Optimization, by Dorigo, [18]), totally inspired by swarm intelligence.

Other insects having swarm behaviours are, as said, the honeybees. An

interesting behaviour of the honeybees colonies is the process called swarm-

ing, where the queen and a part of the colony move from one nest to a new

one. The process follows the nest site selection, where the swarm really

follow a collective decision making process in order to find the best nest be-

tween the different alternatives [72], [108]. An application of this behaviour

to a robot scenario has been presented in [106], [107], [105], [101]. A swarm

of 100 simple robots was put in an environment with two available nests to

explore. The goal was to decide which one was the best to move in. The be-
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haviour followed by the swarm was inspired by the house chasing behaviour

of honeybees. Nest-site selection is particularly important for this thesis

work, we will discuss it better later.

Not only insects have this kind of autonomous and self-organizing be-

haviours but also more complex animals, as fishes and birds. These two

categories are visibly acting in a collectively way, just think about the im-

age we have of flock of birds flying in big and coordinated groups, or fishes

in a schools swimming all together in order to defence against predator and

in order to accomplish travelling and foraging processes [78], [71], [23].

Despite the synchronized operations of social animals the main charac-

teristic of a swarm is the non-centralized form of coordination of the group

and the local interactions among group members and between group mem-

bers and the environment surrounding them. Even without a centralized

control the swarm keeps three fundamental system-level properties desir-

able for swarm robotics too: flexibility, robustness and scalability. A key

concept we want to highlight in this introduction of swarm robotics is that

this research field is aiming to give to the designed systems these three

characteristics.

Robustness: A robust swarm is able to keep operating in the desired

way even if some robots fail, although with lower performance [86]. This

property is mainly ensured by four key elements characterizing a swarm: re-

dundancy, decentralized coordination, simplicity of the robots and distribuited

sensing among the robots.

Flexibility : A system has the property to be flexible if it is able, without

changing the algorithm at individual level, to maintain the same swarm-level

behaviour even in presence of some environmental changing. Moreover, the

single robot has to be able to dynamically relocating itself to different tasks

to adapt to the specific environment and operating conditions [65], [9].

Scalability : This property has been defined, in literature, quite in a com-

mon way. Scalability refers to the property for a swarm of keep performing

with the same output with a different swarm sizes [86]. The swarm size

is the cardinality of the swarm, that is, the number of individuals (robots

in robotic swarms, or animals in natural swarms) involved in the process.

Both the swarm-level and the individual-level behaviour should not change

adding or removing elements [9]. Swarm performance should show grace-

ful degradation: even adding elements the swarm performance should keep

growing until a bottleneck point, where communication and coordination

between robots are too complex to be managed and the system fails.

Flexibility, scalability, and robustness are not enough to correctly dis-

tinguish swarm robotics research from other kind of multi-robots ones (e.g.,
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collective robotics [59], [52], robot-colonies [2]). A swarm robotics system

can be more precisely defined with other important features of the swarm

and of the single individuals. The desired shape is a swarm with a large

swarm size, made of autonomous and relatively inefficient robots with local

capabilities of sensing and communication.

We want to underline that the sensing and communication capabilities

of each robot must be locally situated. Every robot should be able to com-

municate with the neighbours without leaning on a global communicational

channel. If the robots communicate and sense locally, both these aspects

would be distributed in the environment, leaving the properties of scalability

and robustness [86], [65], [9].

2.1.2 Overview of Swarm Robotics

Sahin et al. [86] gives examples of possible real-world applications of swarm

robotics, subdividing the tasks basing on properties matching with swarm

robotics ones. Brambilla et al. [9] instead subdivides the literature of swarm

robotics in the exhibited collective behaviours (i.e. Spatially-organizing,

navigation, and collective decision making, that will be discussed in the

next paragraphs), giving examples of already done works. We will follow

this guideline to draw a short review of these works.

Spatially-organizing behaviours are those situations where the components

of the swarm have to spatially dispose themselves (and optionally objects) in

the environment following a defined pattern or configuration, as for example

put all the elements of the swarm in a delimited region of the environment

(aggregation) [92], [35], [99] or in determined patterns (pattern formation)

[4], [93], [91], [26].

In Navigation behaviours the robots have to find a way to navigate the

robots from a point to another one, in order to transport objects or to ex-

plore the environment in a determined way [94], [73], [68], [67], [40], [24], [46].

Collective decision making, which we focus in this thesis (2.2), treats the

problems where the robots have to influence the other members of the swarm

in order to reach a final unanimous decision. The two main subcategories

of collective decision making problems are agreement (on an opinion) and

task allocation. Collective decision making, being the area of interest of

this thesis, will be deeply discussed in the next section ( 2.2). Here we just

list some works referred to the main subcategories of the collective decision
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making: [37], [27], [42], [101], [43], [70], [64], [110], [106], [51], [60],

[76], [77], [112].

2.1.3 Open Challenges of Swarm Robotics

Swarm robotics has not yet been adopted in real world problems due to

some limitations. Some steps in technology, either at hardware and design-

ing/modelling/analysing level, must be done to export swarm robotics in

real-world applications.

The large number of robots involved in swarm robotics systems require

a cheap and small robots. The lack of dedicated hardware for this kind of

robots is still an open issues that is going hopefully to be improved with the

improving of technology. Indeed, the production of the device needed for

swarm robotics is still at research level and no mass production of suitable

robots with the integration of mechanical, sensors and actuators has been

made yet, even if technology is improving a lot opening a way to swarm

robotics [86]. Power consumption is another hardware limit: actual robots

do not allow swarm robotics to perform for long periods of time. If we image

a situation where a big environment has to be cleaned we realize that, in

real world application, it is more than credible that a swarm robotics task

is requiring a long time to be executed.

Design and modelling of a swarm of robots is the second crucial factor.

Up to now no engineering way to design and model a swarm have been

studied. The most used approach is a kind of trial and error one, where

designer work on single robots behaviour, taking care of their interactions

and the interaction with the environment. Even though some top-down

approach has been proposed (e.g., [59] [55]) and some approach to tackle

the micro-macro link problem (2.1.1) [82] has been studied, is still missing

an engineering and standardized approach to face the following phases of

the design:

• Modelling and specify requirements of the system as a whole;

• Design and realize the system, including every desired property and

outcome. The lack in designing, as said, is about top-down design.

Even some methods have been proposed (Brambilla et al. [9] Section

2.1) there are still limitations in the generalization of this process.

Proposed methods tends to require a knowledge of the domain. A new

tool for the realization of macroscopic level designed systems seems to

has just been developed by Pinciroli et al. [74]. Their simulator is a

tool allowing to both design the system from a microscopic level or
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from a macroscopic one;

• Verification and validation of the system: there are still no guarantees

on the outcome of the system. Liveness (property of a system to show

the desired outcome) and safety (property of the system to do not show

a not-desired outcome) analysis are still not strongly studied [111];

• Maintainance of the system;

Limitations are also due to the absence of a valid way for a simple human-

swarm interaction: researchers are still looking for a way to let humans

communicate with the swarms in order, for example, to coordinate effec-

tively and control the swarm once it started to operate. This issue still

needs to be studied and studied deeper, but some preliminary studies have

been conducted to help humans to cooperate with swarms. McLurkin et al.

[62] proposed a system communicating to the engineer through LEDs and

sounds. Podevjin [79] proposed a method to give commands to the swarm

using the Microsoft Kinect system.

For a complete discussion about swarm robotics issues, from a designing

point of view, refer to Barca et al. [6].

2.2 Collective Decision Making

From an high level perspective, collective decision making is that category of

swarm robotics’ problems where the swarm has to reach a general consensus

on some option in a set of possible ones. The consensus is reached when every

element of the swarm (or in some cases, the large majority of the elements

of the swarm) is preferring the same option in the set of alternatives. The

emerging behaviour is a collective choice that can be, for example, which is

the shortest path for the robots to reach a defined location, or which is the

best place where to collect a certain resource in the environment.

An interesting parallel to the collective decision-making problems as de-

fined in robotics’ literature can be found in nature: social insects are simple

individual cognitive agents able to take individual decisions. They are just

informed about some local information, for example on the surrounding en-

vironment or the status of the neighbour elements [98]. Through direct or

indirect communication [9] the group of insects is able to reach a final state

where every individual has taken the same choice. An example of perfect

intelligent-collective decision can be found in Tereshko et al. [98], where the

authors inspect how a swarm of honeybees can always find a collective deci-

sion about the source of food to select through indirect communication (e.g.
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waggle dance, pheromone trail laying, stridulation), even if the environment

is wide and rapidly changing over the time.

The individual decision of an element (either a robot or an insect) is

the result of the process of gathering information from the environment.

Instead, collective decisions in swarm robotics (and in groups in general)

are emerging from the self-organization process of the robots. Usually the

collective decision-making process is composed by the phase of exploration,

in order to gather information, and the information pooling. After all the

information has been collected, every single robot has to take a decision

basing on them. Through numerous local communication among the robots

and with the environment and without a centralized control a collective

decision can be reached [12], [100].

Two big subclasses of collective decision making are agreement (or con-

sensus achievement) and specialization [9]. In agreement the desired out-

come is that every robot, or a large majority of the robots, is converging,

after the execution, on the same option among the set of possible one. In

specialization, instead, the robots should distribute themselves on a set of

possible tasks that must be executed. The most common example of spe-

cialization is task allocation, that is how to allocate the robots to a set of

known tasks in order to maximize the performance of the system. An ex-

ample is the cleaning of one room: let us suppose that, in order to clean a

room, two tasks must be achieved: the first step is to remove all the object

on the floor while the second is to distribute the robots on the floor and

clean the destined area. The collective decision-making problem concerns

the allocation of these tasks among the robots in a way that optimize the

cleaning of the room.

Agreement has a wide area of application. It indeed concerns the agree-

ment of the whole swarm on a single decision, that can be of every type.

Examples are findable in navigation problems, where the group has to de-

cide which direction to follow. It is a collective decision-making problem

among a continuous set of alternatives (i.e. the infinite directions that can

be followed), as in flocking problems.

The possible alternatives are called options, and could be of different

types, depending from the problem: the possible nests to discriminate and

choose, the set of different resources that the robots have to pick up present

in the environment, the locations where to perform some task, the direction

to follow for the swarm etc. [69]. The set of options could be both continuous

or discrete. In this case, the problem is called best-of-n decision making

problem, where n represents the cardinality of the set of alternatives. The

problem treated in this thesis is falling in this subcategory: the swarm has
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to decide one option between a discrete set of alternatives.

Every option usually has an associated quality, that is the attractiveness

of the relative option. Each robot has to evaluate the quality of the options

in order to get its own opinion about the best option and to communicate

it to the other elements of the swarm. The qualities could be easily mea-

sured or not, they could be spread in all the environment or concentrated

in certain locations. A possible example to clarify the concept of quality is

the following: Wessnitzer et al. [110] proposed a best-of-n decision-making

problem where the swarm has to “ chase” two moving targets. The swarm

has firstly to decide which target to chase first, and then move to chase it.

They proposed two versions of the behaviour, changing the collective deci-

sion part of the problem: the selection of which target chase first. In the

first case the swarm has to chase the closest target, while in the second one,

the majority rule is applied on the components of the swarm to select the

first target to chase.

The set of possible options is then composed by the two targets while

the set of associated qualities varies in the two cases. In the first one the

quality is a physical and measurable value: the distance of the target from

the nest. In the second case the quality is not physical and is not physically

measurable. Indeed, it is represented by the number of robots voting for the

associated opinion (target).

The goal for this kind of problem is to have, after the execution of the ex-

periment, every robot (or the majority) of the swarm converging toward the

same opinion, possibly the one that maximizes some measure of the system.

One of the biggest problems in a decentralized system making a best-of-n

decision is that each robot has just a partial information about the system

and it opinions. It requires strategies to make the robots communicate ,

spreading the information, and applying some algorithms to select one opin-

ion.

Examples of this kind of class in literature can be find in foraging (in

Gutierrez et al. [42] the swarm has to discriminate two foraging areas in

order to understand the closest one), nest-site selection (in Valentini et al.

[101] the goal of the swarm is to decide which one will be the new nest site

between two alternatives, characterized by a quality), or again aggregation

(in Francesca et al. [27]).

Best-of-n is a subclass of collective decision-making problems because

of the set of opinions: the set of opinions must be discrete and there must

be one opinion that is better than the other. These characteristics make,

for example, flocking not included in best-of-n decision making, until is not

casted to a discrete set of opinion. Indeed, the possible directions are not a
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finite set and, moreover, there are no opinions better than the other.

Reina et al. [81] proposed a cognitive design pattern for a collective

decision-making problem for a decentralized swarm of self-organizing robots.

2.2.1 Overview of Collective Decision Making

Studies on collective decision-making processes has largely considered pheromone-

lying and pheromone-following to tackle and solve collective decision-making

problems such as the selection of the shortest path [64].

Pheromones are chemical signals that organisms as ants release on the

ground in order to communicate with other organisms. The use of pheromones

in artificial systems has been implemented with both real chemical sub-

stances [85], [29], [30] and with virtualization. Engineers simulated pheromones

in different ways: by projecting images on the floor, in order to emulate a

pheromone trail [96], [36], [44], or by exchanging messages [13]. Another

way to use a pheromone-like strategy has been studied by modifying the en-

vironment: in some cases [57], [53], RFID tags were put in the environment

in order to be wrote or read by the robots, hence simulating the pheromones

trails. Another study of simulation of pheromones is represented by the use

of a paint covered floor that glows if irradiated by ultraviolet LEDs [61].

Finally, some works represent pheromones by actual robots [73], [66], [67],

[22].

Pheromones simulations, as they have been developed so far, have impor-

tant limitations: chemical traces require complex specific sensors that make

the robots expensive and less reliable; projecting lights requires controlled

conditions and is, consequently, not adaptable to unknown environment; us-

ing robots has “pheromones” is not robust: a robot might eventually fail and

it would be critic for the system. Furthermore the use of specialized robot

(hence, more complex robots) would play against the simplicity required in

a swarm robotics system; modifications of the environment (e.g., RFID and

special-painted floor) are cheap solutions but require the modification of the

environment before the experiment. This is not always possible to be done.

A large part of collective behaviours are characterized by a quality-

dependent decision-making problem. Indeed, collective behaviours as short-

est path finding or collective transport need as a prerequisite to solve a collec-

tive decision-making process and choose the alternative to exploit. Solutions

proposed for the problems falling in this category are usually characterized

by two basic behavioural phases: a process for quality-based discrimination

of the alternatives and the decision-making process [101] [12].

A problem with a discrete set of options needs a strategy in order to
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solve the so called best-of-n decision-making problem and to find the most

valued option in the set. This distributed process relies on the handling

of the information gathered from the environment about the quality of the

alternatives in order to influence the whole swarm (or a majority of it)

toward the best opinion. This process, called modulation of the positive

feedback [38], is based on the amplification or inhibition of the period of

time in which robots take part into the decision-making process by spreading

their opinion for a duration proportional to the opinions’ quality estimated.

Previously studied algorithms are strongly related to the environment,

in the sense that the modulation of positive feedback process uses methods

that are domain specific and hence difficult to transfer on other scenarios.

Moreover, the modulation of positive feedback can be direct or indirect;

in direct solutions robots are communicating directly with each others and

eventually apply a decision rule in order to take the decision, while in indi-

rect ones the robots are communicating through the environment. In direct

modulation the robots are directly modifying the positive feedback: it could

be for example that they amplify or shrink the period of time in which they

spread their opinion. In indirect modulation instead the robots’ behaviour

does not change, but the spread of the opinions is modulated by the envi-

ronment composition. Finally there are cases where the modulation is still

quality dependent, but the proposed algorithm has been using abstracted

qualities for the opinions, making the solution portable in several cases of

best-of-n problems [101].

Other collective decision-making problems are those where the set of op-

tions is continuous and the options are equally-valued. In these problems

the consensus achievement process does not require a quality-based discrim-

ination process.

In this chapter we are going to split the studies made in literature in this

way:

• Systems with discrete set of opinions;

• Systems with continuous set of opinions;

2.2.1.1 Discrete Decision-Making Systems

Collective decision-making problems are often characterized by a finite num-

ber of alternatives, called options. Often (but not always) problems char-

acterized by a finite number of options that are characterized by qualities.

They are called best-of-n decision-making problems. In these kind of prob-

lems the goal is to have all the robots (or a large majority) of the swarm
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converging to the opinion with the highest quality.

We are going to study in this section the works relative to the problem

with a discrete set of alternatives, describing some works adopting the direct

form of modulation of the positive feedback and some other utilizing the

indirect one.

Montes et al., 2011 [64]: in this paper, the authors defined a collective

decision-making strategy by building on the work of Krapivsky and Redner

[50]. The problem can be casted to a best-of-n decision-making problem:

choose the best opinion in a set of two possible ones. More specifically, the

problem to be solved by the swarm is the well-known double bridge problem

(Goss et al. [39]). In this problem, the swarm has to choose the shortest

path between two available paths that connect a pair of locations without

measuring time or distance.

Following their algorithm, robots repeatedly apply the majority rule on

small teams of three robots. Lambiotte et al. [54] first studied the concept

of latency applied to majority rule. Latency is a period of time in which

the robots can not be influenced by the others. Montes et al. introduced

the concept of differential latency, that is, a case where the duration of the

latency period is different for the two different opinions. The latency period

is associated to the execution time of the actions from the robots. With this

assumption, opinions could be associated to different latency periods.

The algorithm is simple: the robots have to repeatedly go from the

starting point to the goal point through the selected path. Once in the

starting point, the robots are in not-latent state and form k teams of 3

agents. Every agent in the team has its own opinion and broadcast it locally

in the starting point. Concurrently every robot of the team collects the

other opinions and apply majority rule, assuming the most shared one and

transitioning to the latent state for the period of time associated to that

action. After the application of the majority rule, every component of the

team has the same opinion and the robots can execute the selected action

(going to the goal point passing through the selected path). Once the action

has been executed the robots pass to the not-latency state and the process

can restart.

A further analysis on majority rule with differential latency applied to

swarm of robots performing collective decision-making has been done in

Valentini et al. [104]. They analysed the previously done works with homo-

geneous Markov chains with finite state space, with the aim to demonstrate

that the system is absorbing [49], [87].

A. Brutschy et al., 2012 [10]: Brutschy et al. took inspiration from the



20 Chapter 2. State of the Art

Figure 2.3: Double-bridge problem scenario: on the left the swarm is running the

experiment, while on the right the swarm has chosen the shortest path. By Montes et

al.: Majority-rule opinion dynamics with differential latency: a mechanism for

self-organized collective decision-making.

work of Amé et al. [1], as done by Campo et al. [64]. The decision rule used

by the individuals to drive the collective decision toward the best opinion.

Brutschy et al., always keeping into the account the shortest path to link

two points, put some constraint in the algorithm followed by the robots of

Montes et al..

The robots have to travel along the paths between the start point and the

goal point. The two paths, representing the two options, have two different

execution time (they emulate the execution of two different actions). Instead

of applying the majority rule, the individuals apply the k-unanimity rule

defined as follows: a robot has a memory window where to store the opinion

of the encountered robots with a FIFO logic. When the window is full it

erases the oldest listed opinion and store the new one. When the robot

listens consequently K opinions all agreeing with each other it adopts this

opinion.

Brutschy et al. introduce a constraint to the classic k-unanimity rule.

Usually, the robots can listen the other opinions in every moment they meet

another robot. In their work, instead, robots can exchange information only

in the observation point. The observation point is the starting point and

the duration of the observation state is fixed and equal for every robots,

independently from their opinion. This key factor is the one that allows to

the swarm to collectively reach a consensus. Since the robots committing to

the best opinion are travelling along the shortest path, they will return to
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the starting point with an higher rate with respect to the robots choosing

the suboptimal path. In this way, they are spreading their opinion an higher

number of times. The probability to find robots with the best opinion in

the starting point is hence higher than the one to find the robots fevering

the less valued opinion.

The modulation of the positive feedback is made by the environment.

The robots travelling the shortest path are spreading the opinion more of-

ten. The quality is not measured and not taken into account by robots, i.e.,

robots do not know anything about the environment and the path qualities.

Campo et al., 2010 [12]: In this work the researcher took as started point

the work of Amé et al. [1]. Amé et al. explained how the cockroaches col-

lectively choose a shelter where to hide. The scenario (from Amé et al.) is

an environment with several shelters available for the cockroaches where to

aggregate. The cockroaches aggregate in a shelter as big as what is required

by the colony of cockroaches. Amé stated that the cockroaches are not

only aggregating under the biggest shelter; they are looking for a shelter big

enough to host all of them but not larger than what is required, in order to

avoid concurrency problems with other potential cockroaches colonies and

risky situations.

Campo et al. modelled the behaviour of the cockroaches in the follow-

ing way. The agents are exploring the environment until a shelter is found.

At this point, the agent stays in the shelter. The probability for the agent

to leave the shelter is inversely proportional to the number of other agents

under the shelter. Campo et al. adopted this behaviour with some adap-

tation. The cockroaches are substituted by artificial robots. The shelters

are representing a generic resource in the environment and its surface is

the capacity (availability) of the resource. Several resources with different

capacities (differently with respect of Amé et al.) are placed in the environ-

ment. The total need of the swarm of robots is the sum of the surfaces of

every agent. From this point we will use shelter and resource as synonyms

because, as said, they can be represented in the same way.

The problem tackled by Campo et al. is such that the robots do not

have enough capabilities to understand the dimension of the shelter (the

capacity of the resource) or the number of robots in the shelter. They had

to adapt the behaviour with an adhoc method in order to estimate the

number of robots present in the resource and then calculate the probability

to leave the shelter. Once arrived in the resource area they keep performing

a random walk, keeping trace of the encountered robots in the area. In this

way they can have an estimation of the crowd in the resource and calculate
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their probability to leave or not.

In this work there is no direct communication between robots. We can

see the presence of the robots in the resource area as a kind of positive feed-

back. Staying under a shelter means, for them, that is the right resource.

they represent in such a way the quality of that area: many robots mean

higher quality with respect to areas with fewer robots. They are then in-

directly modulating their positive feedback, through the environment. The

better the resource area fits the needs of the swarm the longer time the

robots are going to stay there.

Francesca et al. [27] replicated this work by using evolutionary robotics

and proposed a comparison between the two works with a macroscopic

model. In this work the authors make the swarm reaches the consensus

using a memoryless behaviour, that is, by using only the values of the sen-

sor relative to that time step. They use as controller a fully connected,

feed-forward neural network that transforms the 12 inputs, relative to the

sensors, into a two-lines output, one for each wheel.

Wessnitzer and Melhuish, 2003 [110]: In this work, they proposed a

swarm performing collective decision-making in order to decide which prey

to chase, before to collectively move toward the decided target. It is showing,

then, a collective decision-making followed by a target chasing collective

behaviour. The experiment is made of two target robots and a group of

chaser robots. The target robots are moving at the double of the velocity

of the predator robots. The goal of the swarm is to collectively decide

which target to chase and consequently chase it. In their paper, the authors

studied how three different local rules can bring the swarm to collective

decision. Swarming through 1) local direction control, 2) majority rule, and

3) hormone-inspired decision making.

A local direction control is used to keep the swarm compact. Initially

every robot is placed in a corner of the environment and has initial direction

pointing to the opposite corner of the environment. After the beginning

of the experiment, every robot keeps measuring the distances from the two

preys, without knowing the direction to follow. The measured distances are

compared step by step with the ones measured by the neighbours. If the

distance of a robot to the target is smaller with respect that of the other

robots then, it keeps going in the actual direction, otherwise it moves toward

the direction of the robot with the minimum distance from the target.

Majority rule is used instead of collective deciding which prey to chase

first. Initially, a random value is set for the preference (opinion) of each

robot. The opinion can be with equal probability both 1 or 2, that means,

respectively, chase first the robot target 1 or the robot target 2. At every
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time step, each robot evaluates the opinion of the neighbours and takes as

his opinion the majority of the sensed opinions.

Hormone-inspired decision-making : it makes the swarm decide if the

target has been chased and, thus, the swarms’ behaviour has to change.

The object of this algorithm is that the swarm should recognize when the

prey has been chased and switch the behaviour to catch the other prey.

The stagnation state (i.e., the state when the target has been chased and

the chasing robots are not moving any more) is recognized if the estimated

distance from the target is changing less than a decided value (let us call it

ε). If a robot recognizes to be in a stagnation state for a sufficiently long

period of time, it sends a message to the neighbours. This message contains

the number of robots agreeing to switch to the next behaviour (hence, if a

robot agrees in changing behaviour it forward the message incrementing the

number of robots agreeing).

This experiment used direct communication and showed how to apply

collective decision making as base for a collective behaviour. The major-

ity rule was used to just break the symmetry and decide which object to

chase first. A bio-inspired algorithm was instead used to actually choose

whether to switch algorithm or not. In this algorithm the communication

was actually direct among the robots. Every robot was transmitting mes-

sages spreading his own opinion adding to the opinion of the neighbours its

own opinion.

Schmickl amd Crailsheim, 2008 [88]: The proposed algorithm is exploit-

ing trophallaxis [14] in order to achieve a collective behaviour in foraging.

The environment is composed by dirt particles spread on the ground and

a dump area, where the dirt particles are supposed to be drop at the end

of the experiment. The robots are moving toward the garbage source that

is in an unknown position. Once reached it they pick up a dirt particle

in order to drop it in a dump area. Trophallaxis is a form of coordination

performed by social insects (specifically by bees). Transported to the robots

scenario, Schmickl and Crailsheim proposed the following behaviour: robots

are moving randomly in the environment performing obstacle avoidance. To

emulate the thropallaxis behaviour they have an internal variable that sim-

ulates the food carried by the honeybees. If two robots are meeting there is

a transfer of “virtual” food from the robot with an higher value of virtual

food to the one with a lower one. Once reached the dirt source this variable

is set to the maximum.

When the dirt particle is dropped down, is instead reset. In this way a

gradient between the dump area and the dirt source is created. If a robot
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is looking for the dirt source it will scale up the gradient. Otherwise, if the

robot has as target to drop down a particle, it will scale the gradient up.

Gutierrez et al., 2010 [42]: Gutierrez et al. showed an interesting collective

decision-making behaviour also inspired by trophallaxis of honeybees and

extended with sensorial capacities of the robots. Several food sources are

spread in the environment and a decentralized swarm of autonomous robots

has to find the closest one. This is an example of collective decision-making

problem applied to foraging.

The robots are initially placed in the center of the scenario arena, without

perceiving neither the food area nor the nest area. After the begin of the

experiment the robots start performing a random walk until the food or the

nest area are found. Once it happens the robots save the location of the

areas and continuously try to go back and forth between the nest and the

food area. Sometimes, it happens that the robots, due to some errors of the

sensors and the actuators, or to some noise in the estimation of the location

point, in this path lost itself and has to reset the saved locations. When two

robots are meeting they exchange their local evaluation of the positions of

the locations.

This peer-to-peer communication is the basis for the collective decision-

making strategy. Let’s assume the following as hypothesis, in order to sim-

plify the explanation:

• Every robot calculates a value that is its own level of confidence in the

food source location estimation;

• This estimation varies according to the distance travelled. If the robot

travels for a long time before to reach the food source in the estimated

location, then the level of confidence is lowered;

• When two robots are exchanging information the robot with a lower

level of confidence adopts the location of the other robot;

This mechanism of exchange information brings the system to choose the

shortest path to reach the food source. Gutierrez et al. developed a col-

lective decision-making strategy that uses the direct modulation of positive

feedback: the robots are “weighting” the importance of the exchanged in-

formation by using the level of confidence given by the travelled path. It

can also be seen as an indirect way to modulate the positive feedback, be-

cause the modulation is actually given by the time needed to travel the path.

Parker and Zhang, 2009 [69]: In their work, the authors proposed a generic
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algorithm for nest-site selection, totally based on the algorithm followed by

the honeybees and a specific type of ant in the nest-site process [56], [90],

[80]. They proposed a solution for the best-of-n decision-making problem

applicable to a decentralized swarm of autonomous robots. The goal of the

swarm is to find, among a set of possible alternatives, the nest with the

highest quality.

The proposed solution is based on local form of communication, that

allows many peer-to-peer parallel communications. The exchange of infor-

mation between robots is really important and is the key factor for the

goal achievement. The individual behaviour of the robots of the swarm is

subdivided into six states:

• Idle: the robots in idle state are stopped, waiting to be recruited into

the process;

• Searching : the robots in research state are randomly exploring the

environment in order to find the alternative nests;

• Advocating : in advocating state, robots are re-joining their team-mates

and sending recruitment messages to them;

• Researching : robots in this state are evaluating the quality of a par-

ticular nest-site;

• Committed : robots sending just committed messages to encountered

robots;

• Finished : robots which have finished the process;

The transitions between states represent the behaviour of the robots. Ini-

tially the robots can be both in the idle or in the searching state. Once they

find a nest (in the searching state) they determine the quality of it and then

enter the advocating state, going back to the team-mates. The task of the

robots in the advocating state is to periodically send recruitment messages

to other robots, trying to advise them about the estimated quality of the

explored nest. Robots in the idle, searching and advocating states can be

influenced by the recruitment messages. As soon as a robot in these states

receives a recruitment messages it transits in the researching state, and goes

to evaluate the quality of the specified site before going back to the advo-

cating state. In order to evaluate the quality of the nest, robots send query

messages to understand if the other robots are of the same idea. The more

robots agree with the goodness of that nest, the more the robot is giving an

high quality of that opinion.
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When the robot thinks that his alternative is popular enough it moves

to the committed state, and starts sending committed messages. When

another robot receives such a message, two situations are possible: 1) the

robot was already in commitment state, so that it doesn’t do anything; or

2) the robot was not in commitment state. In this situation it transits to

commitment state and reply with an acknowledge message. This is the key

factor that determines the collective agreement. When a robot does not

receive acknowledge messages to its commitment message for a long enough

period of time it passes to a finish state and where it definitively chooses

that opinion.

The primary points of this algorithm are the follows:

• No direct comparison between robots’ estimates are done. Indeed, any

robots can do some error in quality evaluation. It can happen that a

robot is fevering the best option but have done an under-estimation

of the quality, due to the noise. If this robot communicates with a

robot fevering the not optimal option but with a quality still better

than the other robots’ quality, it can switch the opinion. However,

probabilistically there is a much higher probability that the opposite

way changing happens. The lack of direct comparison avoids that

robots that are erroneously overestimating the quality of some alter-

natives can erroneously influence other robots correctly thinking about

another opinion;

• Direct local communication is another crucial factor: the robots are

locally and directly exchanging information about the estimation. It

allows to have a shared and distributed information among the swarm;

• Direct modulation of the positive feedback: the robots are sending the

recruitment messages with a ratio that is directly proportional with

their quality estimation;

Reina et al, 2014 [81]: Reina et al. proposed a cognitive design pattern

for collective decision making. They studied an analytical model for the nest-

site selection process in a binary-choice scenario. The swarm is subdivided

in three groups: uncommitted individuals, with a population of Nu robots,

and individual committed to one of the two alternatives, with a population

of respectively Na and Nb robots. There are 4 types of transitions available

that fully describe the behaviour of the individuals: discovery, abandonment,

recruitment and cross-inhibition.

They showed their solution in a shortest path selection scenario, to ease

the comprehension of the analysis they have done. The proposed scenario
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Figure 2.4: A graphical representation of the multi-agent scenario. The monodimen-

sional environment is a circle in which the agents move on the circumference line to

navigate back and forth between the two target areas. By Reina et al, 2014b: Towards

a Cognitive Design Pattern for Collective Decision-Making

was a circular path with two target areas (see Figure 2.4 ). The robots

move on the border of the circle and have to select the shortest path to

travel between the two target areas. To evaluate the distances, robots have

to travel the paths and estimate the distance using dead reckoning. However,

due to noises in the movements, estimated positions are having cumulative

errors.

Reina et al. developed an analytical pattern to follow in order to design

the behaviours for the collective decision making, and proposed a solution

of this specific problem by following the proposed pattern. When a robot,

randomly walking, discovers the two areas it stores the local positions of

the areas and commit itself to the last travelled path. The probability

to commit to the shortest path is higher since it is easier to find the two

points following the shortest path. Once the two points are discovered, the

robot starts going from one target area to the other one by following the

selected path. When the robot fails in reaching the target area, it moves to

abandoned state, abandoning its commitment and passing to uncommitted

state. It also erases the stored information about the position.

The interaction part is the most important one. First of all Reina et al.

gave some rules to well mix the interactions. The robots can communicate

only if they are in one of the two target areas. The robots, once in the target

area, stay there with a probability of 0.9. If, while in the target area, a state

changes then the robot goes out from it. When two robots are interacting

with each other there are two possibilities. The first, one of the two robots

is committed while the other is not, in this situation the uncommitted robot

changes commitment to the same opinion of the encountered robot with a
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fixed probability (Pp) and receives the estimations about the locations of

the two target areas (recruitment). The second possibility is that the robots

are both committed but to a different opinion. In this case, with a fixed

probability different to the previous one (Pσ) the robot erases its estimate

and switches to uncommitted state.

Valentini et al., 2014-2015 [106], [107], [105], [101]: In these works Valentini

et al. studied the well known best-of-n decision problem applied to the nest-

site selection problem, taking inspiration from honeybees nest-site selection

and particularly from the waggle dance performed by honeybees in order to

disseminate their opinion [89]. The scenario proposed (see Figure 2.1) was a

rectangular arena with three distinct areas: the two sites at the extremities

and the nest, in the middle, equally distanced by the two sites.

The particularity of these works were basically three: they decided to

abstract the qualities of the nest from the real features; they used a large

swarm of 100 real robots using the kilobots [84] and decided to decouple the

modulation of the positive feedback from the particular decision rules. The

qualities of sites were represented by beacons placed under the nests area,

ρi, and was defined as: ρi ∈ [0, 1].

The behaviour of the single robot is very simple and can be represented

by a four-state probabilistic finite state machine. The robots can be either

in waggle dance states (WaorWb) or in surveys states (SaorSb). The waggle

dance states are performed just in the nest, while the survey concerns the

evaluation of the alternative sites and is therefore done in the two candidate

sites. Every robot in every time step has its own opinion that can be A, if

it thinks that the quality of the site A is higher or B otherwise.

The robots initially start in survey states and go in the direction of the

site that they have to explore. Once there, they evaluate the quality of the

site and go back to the nest, where they change to waggle dance state. In

the waggle dance state, robots perform the random walk and broadcast their

own opinion within a limited range. The duration of the waggle dance state

is modulated by the estimated quality of the site, that is going to modulate

the parameter of an exponential random variable. Before to start the new

survey state, the robots pool the information shared by the neighbours and

choose their new opinion applying a decision rule to the information in this

pool.

In the two works Valentini et al. decided to apply two different decision

rules: first they applied the weighted voter model and lately they applied the

majority rule. With the weighted voter model the robots pick randomly an

opinion from the pool, while with the majority rule they apply the majority
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rule (described before) to those opinions. The pool is composed by the

information received by the neighbours robots, since the communication is

locally done within a limited range.

This algorithm is the reference algorithm for this thesis work.

2.2.1.2 Continuous Decision-Making Systems

Ferrante et al., 2010a [24]: the authors proposed a novel method to tackle

the problem of collective transport in presence of obstacles. A group of

three mobile robots (i.e., foot-bot, described in [21]) has to transport an

object from a start to a goal location in an environment where obstacles

are placed. The challenge of the paper was to make the robots negotiate

about the direction to follow, since the perception of the environment of

every robot is heterogeneous.

The authors decomposed the collective transportation problem into three

sub-tasks: go to goal, obstacle avoidance and social mediation. Each robot

has a different perception of the environment and therefore they are going

to have different goals. A robot directly seeing the goal will try to reach it

directly, while a robot perceiving an obstacle in front of it will try to perform

obstacle avoidance. Hence, the agreeing about the direction to follow must

be negotiated among the robots of the group. Let us call σp the desired

direction of the single robot and σs the socially mediated direction. σp is

the general alternative of the problem and, being a direction, is a continuous

set.

When a robot has no perception of anything in the environment, neither

the goal nor the obstacles, it will adopt as desired direction the average of

the directions sensed from the neighbours and will broadcast locally this

value. When instead a robot has an information, it will not keep calculating

the direction as the average of the other robots’ desired directions, but it

will calculate the desired direction as a consequence of the perception of the

environment. If it perceives an obstacle, it will try to avoid it and it will

send this information to the neighbours. The final direction of the robot is

obtained by averaging the sensed information with the own direction of the

robot.

The decision about the direction to follow is obtained by the social me-

diation between the robots. If a robot does not perceive any obstacle or

goal it just follows the other robots’ information. Otherwise, if it senses the

goal it just advice the other robots about it. In the moment it perceives an

obstacle, instead, there are two possible situations: if the robot only per-

ceives the obstacle and not the goal it just try to avoid it setting its desired
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direction as the direction to follow to avoid the object. If the robot perceives

both the obstacle and the goal it has to find a way to reach the goal avoiding

the obstacle and it has to mediate it with the other robots of the group. In

this case, it has to average the direction to the goal with the direction to

avoid the obstacle with a weighting factor related to the distance from the

obstacle (i.e., how urgent is to avoid it). Finally, once the desired direction

of the robot is computed, the process of social mediation takes part giving

as the output the needed direction for each robot.

In this experiment, the swarm has to compute the collective decision

about which direction to follow. This collective decision has an infinite set

of opinions (i.e., the opinions, that are the possible directions to follow)

among which to choose the best one.

Ferrante et al., 2012 [25]: authors present a novel approach to solve flock-

ing with a generic algorithm requiring low capabilities from the robots. This

method is based on magnitude-dependent motion control and does not lay

on external hardware, alignment control algorithms or goal direction. The

flocking vector (f ) of each robot, that is the direction to follow in order to

keep the flocking behaviour, is composed by three components: the proxi-

mal control vector (p), that encodes the attraction and repulsion rules, the

alignment vector (a), describing the alignment rule and the goal direction

to follow (g).

f = p+ a+ g (2.1)

They adapted the flocking method also taking in consideration only cer-

tain elements of the flocking vector described above:

f = p (2.2)

f = p+ g (2.3)

f = p+ a (2.4)

We are going to describe the three components of the vector focusing

on the way to compute each component. Proximity control is given by the

sensors and it takes into account the distances from the neighbours. The

algorithm is intended to let the robots keep the distance from the neighbours

within a range. The robots tend to be attracted by robots that are farer

than a pre-choose distance and tend to be repulsed by robots that are too

close. The alignment control instead computes an estimation of the average

of the orientations of the neighbours and adapt the robots’ own orientation
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according to this value. The goal direction is instead given by the physical

direction that has to be followed in order to reach the final goal.

In the paper motion control algorithms are used in order to translate

the flocking control vector calculated with the above described rules into the

actual linear and angular velocity of the robots. The two methods are called

MDMC and MIMC. With MDMC, the forward and the angular velocity of

each robot depends directly from the magnitude and the direction of the

flocking control vector described before. In MIMC, instead, forward and

angular speed of the robots do not fully depend from the components of the

flocking control vector: only the direction of the flocking control vector is

keeping into the account.

The results show that the swarm reaches an ordered state only when

using MDMC. They showed experiments with a medium-size swarm and a

large-size swarm. With the medium-size swarm the ordered state is reached

within 700 simulated seconds, while in the large-size swarm it happens within

1500 simulated seconds. Instead, when the MIMC is used, the system never

reaches the ordered state.
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Chapter 3

Environment Classification

Environment classification is a specific scenario that can be casted to a best-

of-n decision-making problem. In this problem, a swarm has to classify the

environment by the different resources it contains. Let us recall that the

best-of-n decision-making problem (discussed in 2.2) is a collective decision-

making problem where a swarm of robots has to discriminate the finite set

of possible options and choose the most valued one.

We studied a self-organized, general, and portable solution to such a

problem for a swarm of simple and autonomous robots with a form of de-

centralized control. The behaviour of the individuals that we have proposed

follows a simple probabilistic finite-state machine. We proposed a solution

with a direct form of communication and with a direct modulation of the

positive feedback based on the quality of the option estimated by the robot.

Following Valentini et al. [101] we decided to decouple the modulation of

the positive feedback from the application of the decision making rule. We

wanted to test the implementation of the individual agents’ decisions with

three different decision-making rules (weighted voter model, direct compari-

son, and majority rule) and to study how does the swarm react to the three

different situations.

The basic behaviour of the robots is the same independently from the

decision rules. The only exception is made for the use of the direct com-

parison. In this case the modulation of the positive feedback is not made

because the quality is already compared by the robots in the communication
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Figure 3.1: Probabilistic finite state automata describing the behaviour of the individ-

uals. DB and DW are respectively representing the dissemination states of the black

and white options. EB and EW are respectively representing the exploration states of

the black and white options’ qualities. PB is the probability to pick up a black opinion

from the pool and hence to pass to the dissemination state of the black opinion. 1-PB

is instead the probability to do not pass to black opinion dissemination state

phase.

3.1 Description of the Problem

Environment classification is a scenario where a decentralized swarm of au-

tonomous simple robots has to decide which resource, among the present

ones, is the most available in a closed environment. Every best-of-n prob-

lem is characterized by a set of options, each one related to a value called

quality, a swarm of robots that has to solve the problem, and an environment

where the problem is situated. In the environment classification problem,

we can easily distinguish and identify each of those elements: we are working

with a swarm of autonomous and simple robots, more specifically e-pucks,

that must decide which is the resource (i.e., option) mostly available (i.e.,

highest quality) in the environment.

We can try to image some examples of real world applications of the

environment classification: the classification of the garbage relative to an

after-nuclear disaster, where a swarm of robots has the task of identify haz-

ardous areas and clean the environment; or in human body scenario where

the swarm must distinguishes areas containing cancer cells from healthy

ones, or in the exploration of an extra-terrestrial scenario where the swarm

needs to identify and classify the resources present on the unknown environ-

ment and decide if it suit construction.
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We developed the environment classification in an experimental context,

where the resources are easily understandable by the robots that we have

used. The environment is a floor covered by black and white squares where

the colors are representing the two resources. We can hence reduce the

problem to the best-of-n decision problem with n = 2 options, represented

by the two colors. The quality of the options is the availability of each

resource, that is, the quantity of black and white cells on the floor. The

solution of the problem is reached when the swarm reaches a consensus on

one resource.

Briefly, the robots have to alternate two phases in order to solve the

problem: in the first phase they have to explore the environment while in

the second one they have to communicate their opinion about which is the

best option. We will discuss better the behaviour of the robots in 3.2.

Since the resources are spread in the environment, the quality of each

option is not easily estimable: each robot can, in the limited duration of the

exploration state, explore only a local part of the environment. It does not

allow the robots to have a global knowledge of the environment. Every time

the robot finishes the exploration and dissemination state he erases all the

data collected in the exploration state and has the possibility to make a new

estimation of the quality. Moreover, the estimation is only a noisy quan-

tification of the quality. The local knowledge about the environment allows

the swarm to act even under different environmental conditions, giving a

flexible character to the solution.

More over, the communication among the robots are direct and locally

situated: every robot has a range of communication within broadcasts its

own opinion. This feature, with the decentralized nature of the control,

gives to the solution scalability in swarm size and robustness to eventual

mistake and/or failures of some individuals.

Our solution presents an abstraction of the quality from its physical

meaning (e.g., what kind of resource is the one that the robot is analysing).

We assume that every robot has a sensor able to sense every resource, in our

case the color under the body of the robot. The measured value returned

from the robots after the exploration state is a bounded value ∈ [0, 1]. In this

way the studied solution has a more general and portable nature. Generality

of the solution is also supported by the fact that the set of available options

is not known a-priori by robots in the swarm; each robots discovers them

step by step, when encountering the different resources in the environment.

The behavioural finite state automata that we have used for the resolu-

tion of our problem is the same of Valentini et al. [101] previously developed

to solve a nest-site selection problem (where the swarm had to decide which
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site to chose among two possible ones). Environment classification is a new

scenario of a best-of-n decision-making problem. This scenario has never

been exploited before and the analysis of a system in this new scenario

is one of the main contributions of this thesis. The particularity of this

scenario is the distribution of the quality of each resource. The resources,

represented by the colours, are spread all over the floor of the environment.

Differently from the other works, the qualities of the resources are not rep-

resented by a measure evaluable in a single point: for example, in a general

problem of nest site selection (as [103]) the quality is directly measurable in

single points, that are the candidate sites. In environment classification the

distributed nature of the resource implies that every robot cannot directly

measure the quality but has to make an estimation of it, by exploring the

environment locally in every iteration.

We define two performance measures: consensus time and exit probabil-

ity. Consensus time is the time required by the swarm to reach the global

consensus, that is, every robot in the swarm has the same option. Once this

state is reached no robots can change option. Due to the decision rules we

are using, the only possibility is to adopt an opinion present in the informa-

tion pool and, if every robot is agreeing on the same option, there is no way

that in the pool there are different options. Achieving consensus does not

imply that the swarm has chosen the most valued option: the swarm might

erroneously converge on the wrong one. Exit probability concerns exactly

this fact. It is the ratio of correctly taken decisions over the total number

of trying that have been done, that depends from the initial conditions. We

will discuss better these two concepts and the results obtained in chapter 4

and 5.

The goal of our work is to study the macroscopic behaviour of the

swarm when three different decision-making rules are applied: weighted

voter model, majority rule and direct comparison. We want to analyse,

varying the initial conditions, how do the exit probability and consensus

time variables change in this scenario - the well known speed vs accuracy

problem ( [28], [58], [72], [102], [101], [105], [97]). The comparison

between the three decision rules is another innovative contribution of this

work. In literature rarely have been done works about the comparison in

the same scenario of three different strategies. We opted to use majority

rule and weighted voter model, that are completely self-organizing strate-

gies, and that have already been studied by some researcher in literature

( [103], [101], [110], [54], [64], [104]). Direct comparison, instead, is a strat-

egy that uses more information than the other analysed decision-making

rules. We introduced direct comparison as control strategy, in order to
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(a) (b)

Figure 3.2: Pictures of the environment classification scenario: (a). Swarm of 20 real-

robots working on an hard decision-making problem in real experiments; (b). Swarm

of 20 robots working in the scenario in simulation. Parameters of the scenario: 52%

black vs 48% white cells.

evaluate the difference in performance between completely self-organizing

strategies and direct comparison, to give a complete picture of the situation

about when its more advantageous to use the different strategies. We first

analyse the behaviour of the swarm by means of a simulator, and then, we

will validate our results with real robots.

3.1.1 Scenario and Arena

We used a squared arena with a surface of 4 m2. The arena is subdivided into

400 squares. Each square has a surface equal to 100 cm2 and is either black

or white, dependently from the initial conditions. The black and white cells

are distributed in a completely random way on the floor at the beginning of

each new run. The arena is enclosed by four walls that prevent the robots

from leaving the experimental environment (See fig 3.2).

The initial condition characterizing the scenario were mainly: 1) the

qualities of the resources, that are going to have a bearing on the difficulty

of the problem; 2) the swarm size, that is going to weigh on the speed vs

accuracy performances; 3) the initial number of robots fevering black or

white opinions; and 4) the transition rates (σ and ρ), the parameters that

define the mean time of the exploration and dissemination states.

We have studied two scenarios for what concerns the difficulty of the

problem, where for difficulty of the problem we intend the difference in the
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qualities of the two resources. We choose to analyse two cases that we call

simple and difficult scenario. In the simple case, we set a ratio between white

and black cells of 2, that is, the number of the white cells was the double

with respect to the ratio of the black cells. The percentages are 66% white

cells vs 33% black cells. In the difficult case, we study a situation where

the qualities of the two resources are closer to each other and the optimal

solution is harder to discriminate. The ratio of white cells over the black

ones is 0.923, that is, on the floor there is a percentage of white cells equal

to 48% and a percentage of black ones of 52%. Without loss of generality

we will assume from now to go on that the black cells are always more than

the white ones, making the distinction between difficult and simple cases

explained above.

For the initial condition of the swarm size we need to make a distinc-

tion between real-robots experiments and simulation ones. In simulation

we varied the swarm size up to 100 robots. In real-robots experiments we

instead choose to utilize 20 robots, due both to the robots availability of our

laboratory and the physical limitations that an experiment with a largely

swarm size would have entailed.

The element involved in the initial conditions is the proportion of robots

favoring the opinions. An higher percentage of robots favoring the “best”

option influences the macroscopic behaviour of the swarm both in term of

consensus time and exit probability. In simulation, we decided to study every

initial choice of this feature, while in real-robots experiment we decided to

have a balanced situation adopting the 50% of the robots favoring the two

opinions.

In every moment, the robots have an opinion about which alternative

is the best option of the problem. In the exploration state, robots have to

estimate the quality of their actual opinion. In order to do that, the robots

have to understand when they are on a cell that is of the same color of their

own actual opinion and keep track of the time spent on these cells. When

the exploration state is finished, robots compute the proportion between the

time spent on the opinions’ cells and the total time spent in exploration in

order to calculate the quality. This estimated quality is relative to a limited

and local area. Next, robots use this value to modulate the time in which

they broadcast (within a limited range) their current opinion (i.e., duration

of dissemination state). The dissemination state is mainly composed by two

partially overlapped phases. Initially the robots are just broadcasting the

value but in the last seconds of the dissemination state the robots listen and

save in a pool the information that the neighbours are communicating. In

the last time step of the dissemination state, right before to go back to the
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exploration of the environment, the robots have to select a new opinion. The

selection is made applying one of the three decision rules to the information

collected in the pool.

The desired outcome is the convergence of the swarm on one of the two

opinion, that is every robot of the swarm favoring the same opinion, possibly

the most valued one (black).

It is useful to visualize the opinions of the robots during the evolution

of each run in order to understand how are the dynamics of the swarm.

To advise their own opinion the robots are turning on the LEDs and each

opinion is settle to be represented by one color:

• RED Leds: if in a certain time step t a robot has RED lights on, it

means that its opinion at time t is BLACK, hence that it thinks that

the quality of the black resource is higher than the whites’ one;

• BLUE Leds: BLUE lights on, instead, means that the robot is be-

lieving that the most valued option is the white resource;

Since the colors of the LEDs are representing the opinions of the robots,

thus, the color that every robot is thinking that is most available on the

floor, probably you are wondering about the choice of the colors of the cells.

It would be more rational to use red and blue cells for the floor and let

the LEDs representing the red and blue options with, respectively, the red

and blue LEDs. The reason for the choice of the floors’ colors has been

imposed by the capabilities of the sensors equipped on the robots we have

used. Indeed, our robots are only able to sense grey-scale colors.

Additionally, we want the robots to communicate they internal state

(exploration state or dissemination state). To distinguish the two cases, the

robots blink the central LED when in the dissemination state, while keeping

all LEDs fixed on in the exploration state.

3.1.2 Robots

For our experiment we choose to use E-pucks (fig 3.3). These robots are

simple, small, open sources wheeled robots with a diameter of 7 cm de-

signed and developed by Francesco Mondada and his team at EPFL (cole

polytechnique fdrale de Lausanne), in 2006 [63]. E-pucks are equipped with

a small set of default sensors: a low-resolution camera, an accelerometer,

a sound sensor and 8 proximity sensors. Beside those sensors there is the

possibility to add extra features to extend the capabilities of the e-pucks, as

for example the Fly-Vision turret or the omnidirectional vision. We did not
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Figure 3.3: E-puck

extended with range

and bearing, Linux

extension board and

omni-directional camera.

In this picture the e-puck

is fevering the white

opinion by turning on blue

LEDs

use all the sensors available for e-pucks. In the following list there is a brief

description of the used capabilities:

• 8 Infra-red proximity sensors placed all around the robot. By means of

these sensors robots can perform obstacle detection. Proximity sensors

return a value proportional to the distance with the detected object.

Proximity sensors are also able to work as light sensors. We used these

sensors in order to make the robots perform obstacle avoidance, that

is stay away from the obstacle. In our case are the wall limiting the

border of the arena and the other robots in the environment;

• Ground sensor: the ground sensor is composed by a PCB board which

mounts three proximity sensors pointing directly the floor. We used

the ground sensors to detect the color of the floor under the robot in

each time step, in order to estimate the quality of the opinion;

• Range and bearing board: Gutierrez et al. [41] designed this local

communication board allowing the robots to communicate within a

determined range of distance and to sense at the same time both the

range and the bearing of the emitter robot without the utilization of

any other infrastructure or centralized control. The range of commu-

nication can be controlled through software from 0cm and 80cm. On

each board are mounted 12 IR emitter/receiver modules that are tak-

ing care of the sending and receiving part. Unluckily some limitations

in the range part of the sensor board is present. The calculation of

the range value is quite noisy and not always reliable;

• Linux extension board: it gives to the e-pucks all the characteristics

of a processor running Linux, including the possibility to use an USB

port to be linked to the pc or the possibility to use the Wifi network.
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Figure 3.4: Portion of a swarm

of 20 robots working on environ-

ment classification. Scenarios’

parameters:

ρB=52%; ρW =48%;

Swarm size=20;

Decision Rule=majority rule;

The e-puck hardware and software are fully open source so that a low-level

access to every electronic device is possible. The robot’s battery can stand

for up to 45 minutes approximately, but the performance of some sensor

(as for example the Range and Bearing) after about 25 minutes decreases

drastically. We therefore decided to run at maximum our experiments for a

maximum of 20 minutes before to changing the batteries for a new run.

3.2 Behavioural Finite State Automata

At a high level, the best-of-n decision making problem is composed by a

group of N agents trying to decide for the most valued alternative in a set

of n possible ones:

{a1, a2, ..., an}.

Where ai are the possible options of the problem. Each alternative has an

associated quality:

{ρ1, ρ2, ..., ρn}.

Where ρi is the quality relative to the i-th alternatives. Every robot has, at

every moment, an opinion about the best alternative:

{r1(t) = ai, r2(t) = aj , ..., rm(t) = az}.

Where ri(t) is the opinion associated to the i-th robot at the time step t.

In our case the set of n alternatives is composed by only two elements,

that are the black cells and the white ones:

a1 = BLACK; a2 = WHITE.

The associated qualities are the percentages of cells present on the floor of

the two colors. From now we will call ρB and ρW respectively the quality of

the black resource and the quality of the white one and we always consider

that ρB > ρW , without any loss of generality. We have already made the

two distinction between simple and difficult case:

Simple Case: ρB = 66%; ρW = 34%
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while

Difficult Case: ρB = 66%; ρW = 34%.

A problem of collective decision-making is considered successfully solved

only if two conditions are satisfied:

1. The opinion of every robot is the same:

{r1(t) = BLACK, r2(t) = BLACK, ..., rm(t) = BLACK}

or

{r1(t) = WHITE, r2(t) = WHITE, ..., rm(t) = WHITE}.

Once this state is reached the consensus has been achieved. In this

situation no robot can change idea since, even continuing the run, the

information collected are all agreeing on the same opinion of the robot;

2. The opinion chosen from the swarm is the most valued one. It means

that the quality associated to this opinion is the highest among the

ones in the set of possible opinions. With our hypothesis ( ρB > ρW
) the solution for the environment classification problem is that every

robot of the swarm is fevering Black:

{r1(t) = BLACK, r2(t) = BLACK, ..., rm(t) = BLACK}.

To solve the environment classification problem every robot follows a

behaviour that describe by a Finite State Automata. The behaviour of the

robots is very simple and is modelled by statistical rules. There are two

states in the FSA, representing the two phases of the robot’s behaviour. In

the first state, the exploration state, the robot has to examine the floor in

order to estimate the quality of its current opinion. The duration of the

exploration state is defined by a random variable exponentially distributed.

This concept will be defined and better explained later. Once the time

defined for the exploration state is expired the robot passes to the second

state, the dissemination state. The goal of the robot in the dissemination

state is to influence as many robot as possible with its own opinion. It is

done by randomly walking in the environment while broadcasting, within a

limited range, its own opinion. During both exploration and dissemination

state the robots have to perform a random walk in order to inspect and

spread the opinion in a completely random way.

In the exploration state the robot keeps track of the time spent on the

cells coloured by the color of its opinion. The quality is hence calculated
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by a simple division between the time spent on these cells over the total

time of the exploration state. We can therefore call white exploration (Ew)

state and black exploration state (Eb) the states relative to the explorations

of the different qualities, even if the behaviour in the two state is the same

with the only difference of the resource that must be examined. The same

distinction can be made for the dissemination state: in (Dw) the robots will

advertise the white opinion while in (Db) the black one.

The behaviour has been thought to make the robots diffusing their own

opinion for a period of time directly proportional to the quality estimated

in the exploration state. The weighting of the duration of the dissemination

state is called modulation of the positive feedback. We are going to describe

deeply the two state later. We will speak with more details about the du-

ration of the two states and about the tasks that the robots have to do in

each state.

During all the behaviour, independently if it is in dissemination state or

in exploration state, the robot is performing a random walk. During the

performance of this task the robots are moving straight for an exponentially

distributed period of time, before to turn for a uniformly distributed time.

The parameters of the two distribution have been set in order to make the

robots turn for a much shorter period of time with respect of the period of

time in which they are going forward.

3.2.1 Exploration State

The exploration state, as introduced in 3.2, is the starting point of the

behave of every robot. In this phase the robots perform a random walk [47]

and obstacle avoidance, in order to prevent the collision with the walls and

with the other robots.

The obstacle avoidance is implemented using the proximity sensors mounted

on the e-pucks. These sensors are returning two values: 1) a value bounded

in [0,1], representing the distance of the obstacle; and 2) the bearing of the

obstacle. If the robot is sensing a robot closer than a threshold (empirically

determined), it sets its own wheels velocity in order to turn on the spot and

go in the opposite direction with respect of the obstacle.

While walking in the environment, the robots check the color of the

floor under them using the ground sensor, incrementing a counter variable

for every time step spent on a cell of the same color of the robot’ opinion.

Let us call TB and TW the time spent respectively on a black and on a white

floor and TEXP the total duration of the exploration state. Considering a

generic robot i, if ri(t) = a1 = BLACK then he will keep trace only of TB,
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otherwise he will keep trace of TW . The quality is finally calculated as

Eb =⇒ ρB =
TB
TEXP

and

Ew =⇒ ρW =
TW
TEXP

.

The duration of the exponential state follows a random exponential dis-

tribution with mean σ. As in [103], it has been decided to adopt an expo-

nential random distributed period of time because the memoryless property

of this distribution that simplifies the mathematics modelling done by the

authors.

TEXPLORATION = Exponential(σ)

This parameter has been selected to ensure to the robots to have a

reasonable estimation of the quality but also to have a sufficient level of noise

because we are interested to study the situation of poor estimation of the

quality. With high noise, we expect to see some behavioural discrepancies

in the performance of the swarm with the three decision rules adopted, in

terms of exit probability and consensus time described in the last section.

Our expectation is that the exit probability is directly proportional to

the σ value, hence to the time spent in exploration state, and consensus time

inversely proportional to that. The quality estimation with high values of σ

will be more accurate, producing higher dissemination times for the robots

fevering the right opinion. The effects of the parameter σ on the behaviour

of the swarm will be better explained in 4.3 and 4.2.3.

After the exploration state, whether Eb or Ew, the robot will pass with

probability one in the associated dissemination state: Db in the first case

and Db in the second one (Figure 3.1).

3.2.2 Dissemination State

The dissemination state is composed by three subtasks: the broadcasting

of the current robot opinion about the best option; the recording of the in-

formation broadcasted from the neighbours; and the actual decision-making

process, that is the application of the decision-making rule over the collected

information.

The broadcasting of the current robot opinion is made in every moment

for the whole duration of the dissemination state. Concurrently, the listening

is performed only in the last 3s of the state to avoid time-correlations of the
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collected opinions. The decision-rule application is instead an instantaneous

operation: right before to change state the robots apply the decision-making

rule in order to select only one of the collected.

In parallel to the above discussed tasks, is always performed the robot

random walk. This is a key factor for the success of the strategy. The

random walk in the dissemination state has the objective to keep the robots

spatially well-mixed (i.e. randomly distributed in the environment), in order

to avoid the fragmentation of the opinions (e.g., the formation of clusters

of robots with the same opinion). The well-mixing property of the swarm

in this state is an influencing factor of the efficiency of the strategy. If

the swarm is spatially well-mixed then the strategy is efficient and reliable.

The more the swarm is far to be well-mixed, the slower the decision-making

process is and the lower is the efficient of the strategy [101].

For the duration of the dissemination state we opted to use an exponen-

tially random distributed time, as in the exploration state, with different

mean. The key factor of the proposed solution is the direct modulation of

this time period. Every robot uses the quality estimated in the exploration

state in order to modulate the duration of the dissemination state, thus the

period of time in which the opinion is broadcasted. This introduces a posi-

tive feedback that pushes the robots to broadcast more the best option. The

mean parameter (ζ) of the exponentially distributed variable representing

the dissemination time is given by g weighted by the quality estimated, as

described before

ζ = ρi · g .

Where g is a parameter empirically set by the designers. We decided to use

a value of g equal to the mean of the exploration state σ. We recall that

we analysed three decision rules (weighted voter model, direct comparison,

and majority rule). When the applied decision rule is the direct comparison,

the modulator factor is not the quality estimated in the exploration but is

the quality associated to the best valued opinion: 0.52 in case of difficult

scenario and 0.66 in case of simple one. In this case we decided to do not

modulate the positive feedback because the direct comparison is already

using the estimated quality in the picking up process. We will discuss about

it in 3.2.3.3.

The effect of the modulation of positive feedback is that the most valued

opinion will be probabilistically broadcasted for a longer time and thus the

most valued opinion will be broadcasted more, with higher probability to

influence other robots in the swarm. The modulation of the positive feedback

introduces, over the time, a bias of the robots in favor of the most valued
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option bringing the system to the right consensus.

We have already introduced the concept of the listening phase of the

dissemination state. We want that every robot listens the other neighbours

opinion for an equal period of time in order to have more or less the same

number of neighbours. Moreover, we desire that the robots use, for the

selection of the new opinion, only a set composed by recently sent informa-

tion. Indeed, we do not want to risk that the robots works on information

not-up-to-date (i.e., opinions of robots that have already changed over the

time). For these reasons we choose to limit the listening time to 3s. The

final total time of the dissemination state will be the random exponential

value plus the constant listening time at the end of the state:

TDISS = Exponential(ρi · g) + 3s .

After having applied the decision rule the robot will switch state, passing

to the exploration state. It can happens both that the robot changes opinion

(i.e., from having a black opinion to have a white one or vice-versa) with

a certain probability or that the opinion stays the same. Defining as Pb
the probability to pick up a black favoring robots’ opinion, and 1 − Pb the

probability to pick up a white favoring robots’:

• Black exploration state (Eb) with probability Pb;

• White exploration state (Ew) with probability Pb;

A particular focus of this work is to study the dynamics of different

decision rules. The three decision rules that we are going to be coupled to

the modulation of the positive feedback, biasing the choice of the swarm

toward the best option.

• Weighted voter model: This decision rule is the simplest one. The

robot chooses an opinion in a completely random way between the set

of collected ones and blindly trust it, adopting that opinion for the

next exploration state;

• Direct comparison: As in the weighted voter model the robot chooses

a random opinion from the set of received ones; but instead of blindly

trusting it the robot compares the received quality and changes idea

only if this is higher than its current opinion;

• Majority rule: With the majority rule, the decision making process

evaluates the whole pool of collected opinion. The new opinion adopted

by the robots is the most numerous one;
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Independently from the decision rule used, the robot is performing the

same behaviour described by the FSA presented in the previous section. We

will analyse the three rules in terms of speed in taking decision, accuracy of

the decision and computational complexity of the used algorithm.

Parameters that can affect the quality of the decision are the number

of robots that are initially fevering the right opinion and the quality of the

right opinion. Clearly the bigger is the number of robots starting with the

right opinion, the higher will be the probability to take the right decision

independently from the decision rule applied. The same, if there is a big

difference between the number of cells with the dominant color and the

others then the right decision will be taken with higher probability. We will

show the results of these variation later

3.2.3 Decision Rules

3.2.3.1 Weighted Voter Model

In weighted voter model [102] every robot chooses randomly an opinion in

the pool and blindly adopts it as its new favourite opinion. The weighted

voter model is the simplest decision rule that we tested. In our model every

robot stores at most 2 messages, thus two opinions and randomly chooses

one of them. picking-up the most valued option.

3.2.3.2 Majority Rule

Majority rule is one of the most studied decision rules and it has been

previously applied in several other experiments in swarm robotics [33, 31, 32]

(see 2). This decision rule requires to choose as next opinion the opinion

favoured by the majority of the neighbours.

In our scenario, the robot that applies the decision has collected up to

2 opinions from the neighbours. It adds to the collected opinions its own

opinion and then proceeds to the decision-making process. The adopted

opinion is the one that is most present in the set composed by the received

opinion and the robots’ one. If in the set of received opinions there is a tie,

i.e., there is not a majority, then the robot keeps its own opinion.

3.2.3.3 Direct Comparison

Direct Comparison is the decision rule that uses more information in the

decision process with respect of the other rules since it takes into account

not only the opinions received but also their qualities.
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As in the weighted voter model, a random opinion is taken among the re-

ceived ones, but it is not directly adopted by the robot. The robot compares

the quality of the selected opinion with the quality estimated in the previous

exploration state and, if and only if the quality estimated is higher than the

received one, then the robot switch opinion adopting the one compared with

his one.

Because of the comparison of the qualities, the direct comparison rule is

more susceptible to noise in the environment and to the resulting goodness

of the estimations made by the robots. This fact, as we will see later, can be

problematic in situations of very difficult scenarios or very unreliable robots.

We introduce the analysis of this decision rule as control rule to see the

efficacy of self-organizing strategies. Therefore we decided to do not use the

modulation of the positive feedback. This choice has been done also to do

not unbalance the three decision rules. Otherwise it would have influenced

the decision process twice: in the broadcasting process, where it would have

been spread more being the most valued one, and in the comparison process.

This double weighting nature the comparison between the three decision

rules would have been not-reliable and not-fair. The dissemination time is

thus:

TDISS = Exponential(ρOpt · g) + TLIST ,

where ρOpt is the quality pertaining to the optimum opinion.

Since direct comparison rule makes use of the quality estimated by the

neighbours, it is characterized by higher complexity of the algorithm and of

the communication stage. In order to send also the quality, the robots have

doubled the payload sent from 2 Bytes (the dimension needed to send only

the ID and the opinion) to 4 Bytes. This increased payload of messages has

also a bearing on the robots energy autonomy due to the power consumed

during the communication. This excessive afford recalls the difficulties in

the usage of the Range and Bearing of the e-pucks.
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Physics-Based Simulations

In this chapter we are going to present the experiments and the evalu-

ations done with physics-based simulations. Before starting with the final

experiments (i.e., the experiments involving the evaluation of the consen-

sus time and of the exit probability) we want to have a complete overview

about the main points of the experiments. The behaviour is composed by

a set of sub-tasks that the robots have to achieve in order to reach the con-

sensus. These sub-tasks, further described in Chapter 3.2, are the random

walk performed with obstacle avoidance, the performance of the exploration

state, and the performance of the dissemination state. In this chapter, we

explain the experiments done in order to understand the functioning of the

main sensors and actuators used to perform the main tasks, and finally the

dynamics of the main variables describing the performance of the swarm:

• Duration of the states: as described in Chapter 3.2, the behaviour

of the robots is subdivided into two states, characterized by a dura-

tion determined by an exponential random distribution (to recall: the

dissemination time is an exponential randomly distributed variable to

which a constant of 3s has been added, while the exploration state fol-

lows a pure exponential randomly distributed variable). We run some

experiments in order to validate these distribution times ( 4.2.1);

• Neighbourhood size: this concept is strongly linked to the first two

points (random walk and duration of the states) and represents the

average number of messages that each robot receives in one dissemi-

nation state. This concept, that directly involves the use of the range

49
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and bearing board, and the study of the neighbourhood size in our

scenario are described in 4.2.2;

• Quality estimations: the estimation of the opinions’ quality is one of

the central points of our system. The sensor used in order to estimate

the qualities is the ground sensor. The experiments conducted in or-

der evaluate the performance of the robots in the quality estimation

processes are presented in Section 4.2.3;

• Exit probability and consensus time: the two goals of this thesis are to

study the dynamics of the swarm in terms of exit probability and con-

sensus time, two macroscopic properties of the swarm that have been

introduced and explained in Section 3.1. We studied the trade off of

these two variables in one simpler and one more difficult scenario, ap-

plying three decision rules and with different swarm sizes (Section 4.3).

More specifically, we studied the trend of these two variables varying

the initial number of robots favouring the best option (Section 4.3.1),

varying the difficulty of the problem ( 4.3.2), and varying the value of

σ (Section 4.3.3). For an explanation about these parameters refer to

Chapter 3.2.1;

We will start with the description of the simulation tools and of the

algorithm implemented to solve the problem and then we will proceed with

the explanation of the above mentioned experiments.

4.1 Simulator and Description of the Algorithm

Simulations are a preliminary step to test a designed system in an envi-

ronment safe for the robots. For the simulations, we used ARGoS [75] (Au-

tonomous Robots Go Swarming), a physics-based simulator ensure flexibility

and efficiency, due to its modularity and parallelism.

ARGoS has been specifically designed to design multi-agent systems,

heterogeneous or not, starting from the design of the single individuals. We

wrote the code of our controller and a loop function to control the entire

simulation experiment. The controller determines the behaviour of each

class of robots. A class is a group of robots having the same behaviour. The

loop functions are functions to customize the features of the experiments that

allow the designer to implement some experiment-dependent characteristics

(e.g., how to start and when to finish the experiment, which data to collect in

the experiment, dynamically change the environment during the execution

of the experiment, interact with the objects and with the robots during
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Figure 4.1: Picture taken from the run

of one physics-based simulation in ARGoS

3. In the picture is visible a group of

20 robots trying to solve the environment

classification problem in a simple scenario.

The robots are the simulations of the e-

pucks, available thanks to the plug-in devel-

oped by Garattoni et al. [34]. Parameters:

Swarm Size = 20, Initial Black Robots =

10, Black Quality = 66%, White Quality =

52%.

the experiment). ARGoS also provides a graphic tool through which the

designer can visually check, step by step, how the swarm behaves (Fig. 4.1

shows a picture of the simulation visualizer). One of the features provided

by ARGoS is the possibility to eventually develop an ad-hoc plug-in for each

kind of robot. Garattoni et al. [34] developed a plug-in to integrate the e-

puck robots to ARGoS simulator and give to the designer the possibility

to use the same code in both real robots and simulations. In this way, the

designer can easily switch to real robot experiments.

Our program was composed by just one type of controller, since our

swarm is an homogeneous and decentralized system where every robot has

the same behaviour. The code of the controller is the following: when the

experiment starts, every robot sets-up its internal variables, calculating the

exponential variables for the dissemination and exploration time (that are

decreased every time step) and resets every variable regarding the opinion

and the quality. Every robot is set to be in exploration state at the beginning

of the experiment.

Every time step the robots evaluate the color of the floor through the

ground sensor. The ground sensor is only able to recognize the white and the

black colors. The robot receives from the ground sensor a value contained

in 0 and 1: all values between 0 and 0.5 mean that the ground sensor

recognized a black color, values between 0.5 and 1 mean that the ground

sensor recognized the white one. In the meantime the robots are performing

the random walk and, through the proximity sensor avoid collisions with

the other robots and the walls (obstacle avoidance). Just before switching

to dissemination state (i.e., when the time to be spent in exploration state

is finished) the robot calculates the quality of the explored option and the

next dissemination time.

In dissemination state the robots send messages through the range and

bearing device. They send a packet with the following informations:
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• Sender ID : every robot sends its own ID, in order to allow the receiving

robot to skim eventual double messages from one single robot;

• Quality : the quality evaluated in the last exploration state, relative

to the actual opinion. This value does not need to be sent if the

applied decision rule is the weighted voter model or the majority rule.

When direct comparison is applied, then the robot has to compare

the received quality with its own one in order to decide if to change

opinion or not (Chapter 3.2.3.3);

• Opinion: obviously the robots send their own actual opinion;

In the last 3s of the dissemination state, the robot saves the incoming

messages following a simple policy to select which of them to keep. The

robots have been programmed in order to not save more than one message

from each different robot in each dissemination state (i.e., if it gets twice

the opinion of one neighbour, it only saves the last received one). Moreover,

they save at maximum a number k of messages for each dissemination state,

and in our case k = 2 (the choice of this parameter is described in Chap-

ter 5.1.3.2). When the remaining dissemination time is finished, the robot

changes opinion by applying a decision rule to the information gathered

pool, and switches back to the exploration state.

Additionally, we implemented the reset function, that allows to perform

more than one run with the same initial parameters setting. This function is

only designed to reset all variables of the system and to bring back the whole

experiment to the initial condition. The loop function collects statistics to

write in the output file. The results of every run are saved in the output

file as a set of rows. Each row is composed by: 1) the number of robots

favouring the different options when the experiment finishes; and 2) the

time steps passed since the start of the experiment when the consensus has

been reached.

4.2 Preliminary Studies

4.2.1 Analysis of the Exploration and Dissemination Time

Distributions

The duration of exploration and dissemination states follows an exponential

random distribution (Chapter 3.2) with parameters σ and ρi∗g respectively.

The mean duration of the exponential state is then σ, that we set to 10s.

The mean duration of the dissemination state is equal to the parameter g
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Figure 4.2: The graphs report the distri-

bution of the exploration times, with the

black curve. The vertical orange line rep-

resents the calculated mean of the dura-

tion of the exploration states. Parameters:

σ = 10s, g = 10s.

weighted with the estimated quality. We set-up the parameter g to be always

equal to σ. More precisely, we want to recall that the dissemination state

is an exponential randomly distributed variable at which has been added a

constant of 3s, in order to avoid the generation of too short dissemination

times. This distribution is hence a combination of the exponential and of

the constant.

To test the trends of the two distributions, we have collected the du-

ration of the states of every robot. We performed experiments both in the

difficult and in the simple scenario. The distribution of the exploration times

is the same in the two scenarios since it only depends on the parameter σ

(not dependent from the environment). The distribution of the dissemina-

tion state, instead, directly depends by the quality estimated (i.e., from the

difficulty of the problem). We collected data relative to the durations of

the states. For both the exploration state and the dissemination state, we

recorded the duration of every single iteration of all the robots, indepen-

dently from their current opinion. Hence, we recorded one big set of data

containing all durations of the three state analysed for the experiments (ex-

ploration state, dissemination state in hard scenario, dissemination state in

simple scenario). The graphs report the densities of the set of data recorded.

Fig. 4.2 reports the density of the distribution of the exploration state times.

Fig. 4.3(b) and 4.3(a) show the distributions of the dissemination states in,

respectively, the difficult scenario and the simple one.

In Fig. 4.2, we see that, as expected, the exploration time distribution

has a mean (represented by the vertical orange line) equal to 10s, as the

parameter σ. In Fig. 4.3(b) and 4.3(a) is shown that the dissemination

state times still follow an exponential distribution with a mean close to

10s. However, in this case, the weighting factors slightly shift the mean to

lower values. We recall that the mean of this distribution is weighted with

the quality estimated with ρi ∈ (0, 1). For this reason, the mean of the

distribution of the dissemination states is always lower than 10s. Moreover,
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(a) (b)

Figure 4.3: In the graphs are reported, with the black curve, the distributions of the

dissemination times. The vertical orange lines represent the calculated mean of the

durations of the dissemination states. Parameters: σ = 10s, g = 10s, Swarm Size =

20Robots. a) Dissemination time distributions in the simple scenario, ρBlack = 66; b)

Dissemination time distributions in the difficult scenario, ρBlack = 52;

the qualities estimated in the two scenarios are different: in the first scenario

the black option is favoured and its quality is equal to 66%; in the second

scenario the black option is still favoured, but with a lower quality, that

is, 52%. The duration of the dissemination state is determined both by the

time spent in dissemination state for the black robots and for the white ones.

In this experiment, the number of black robots is going to be higher than

the number of white ones, since the black option is the best one. For these

reasons, the average dissemination time in the simple case is higher than

the average dissemination time in the hard scenario. Fig. 4.3(a) and 4.3(b)

show this difference. Even if the two distributions have a similar dynamic,

the mean of the distribution in the simple scenario is closer to 10 than the

distribution in the difficult scenario.

4.2.2 Study of Neighbourhood Size

Our first idea was to make the robots communicate within a controlled range,

that is three times the e-puck diameter (21cm). Unluckily, after the first

tests on the real-robot sensors and actuators performance, we figured out

that the range and bearing (the board that must take care of the commu-

nication phase) was not allowing us to control the range of communication

because of its unreliability and the high noise in its usage.

For this reason, we chose to adopt another strategy, that is, to control

the maximum number of saved messages of the robots at the software-level.

To decide how many packets to save at maximum in order to have a situation
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Figure 4.4: Graphs reporting the neighbourhood sizes with a communication range

of 21 cm. The green histograms represent the frequency at which the correspondent

value of the X-Axis has been observed. A higher histogram bar means a more probable

observable value. Parameters: Range Of Communication = 0.21 cm; ρBlack = 66%;

ρWhite = 34%; Initial Black Robots = 50% of the swarm size; σ = 10s; g = 10s.

a) Experiments performed with a swarm size of 20 Robots; b) Experiments performed

with a swarm size of 100 Robots.

as close as possible to the ideal one, we determined the neighbourhood size

in each dissemination state. For neighbourhood size, we intend the number

of incoming packets received by one robot during one whole dissemination

state. We then performed a series of experiments which output was the

number of messages listened in each dissemination state.

We set the configuration parameters to the ideal condition:

• Limited range of communication of 21cm. Limiting the range of com-

munication is allowed and reliable with the simulations tool;

• We choose the simple scenario because it is the case in which the

robots are receiving more values. Indeed, as shown in 4.3(b), due to

the higher evaluation of the qualities, the dissemination time is higher

in this scenario than in the difficult scenario. Hence, more messages

are exchanged;

• We adopted a swarm with a size of 20 and 100 robots;

We ran a set of experiments which output was a file containing the

number of received messages by each robot in every dissemination, for the

duration of the experiment. The data is plotted in Fig. 4.4 by means of an

histograms graph. The histograms represent the frequency of each neigh-

bourhood size. From these histograms emerges the difference between the

two situations with different swarm sizes. In 4.4(a) are shown the neighbour-

hood sizes when using a swarm of 20 robots. In this case, one robot never
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receives more than two messages per dissemination state. For this reason,

we have chosen to put a limit of 2 messages per dissemination state, and we

also used this limit in the real-robot experiments (where the neighbourhood

size was quite higher, see Fig. 4.4). Moreover, the number of times in which

the neighbourhood size is zero (i.e., the robot has not received messages in

that state) is the majority of the cases. Consequently, the robots only rarely

receive two messages. Fig. 4.4(b) reports the neighbourhood sizes obtained

using a robot of 100 robots in physics-based simulations. Watching the re-

sulting histogram-graph, we notice that the robots receives up to 6 messages

for dissemination state. In this case, the maximum value is registered for

two robots as neighbourhood size.

4.2.3 Preliminary study of quality estimation procedure

As mentioned above, the estimation of the opinions’ quality is a factor that

strongly influences the accuracy and the decision time needed to reach a

consensus by the swarm. The noise on the quality estimations alters the

performance of the swarm when applying different decision rules. It influ-

ences mainly two aspects of the behaviour. The first aspect is the determi-

nation of the dissemination state. As largely discussed, the dissemination

state time mean is weighted by the quality estimation of the current opinion.

To an underestimation or overestimation of the quality corresponds a wrong

definition of the dissemination state time, thus an under-broadcasting or an

over-broadcasting of the opinion. The other mainly affected point is the

comparison of the qualities done when using the direct comparison strategy

(Chapter 3.2.3.3). In this strategy, the qualities are compared before decid-

ing whether to change opinion or not. We conducted several experiments in

order to understand how noisy is the estimation of the quality by the robots.

Rationally, we are expecting that for an infinite period of time spent

in exploration state (i.e., for really high values of σ) the robots perfectly

evaluate the qualities, without errors. On the other hand, if the time spent

in exploration is really low, the estimations will be extremely noisy. In the

case in which a robot can explore the environment for only one second, the

probability to see only one resource in that second of exploration is really

high. It means that, if the resource is the one that the robot favourites, then

the estimation of the quality will be close to 1, otherwise it will be close to

0.

Moreover, larger swarm sizes could involve higher interferences rate be-

tween robots, that can be a factor affecting the estimations as well. In order

to see the effects of σ and of the swarm size, we have conducted the following
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Figure 4.5: Simple scenario: Graphics relative to the quality estimation in a simple sce-

nario. The plots (a) and (b) show the quality estimation of the floor with, respectively,

1 robot and with 100 robot in the arena. The red (blue) boxplots are the overall repre-

sentations of the estimations for the associated value of σ on the X-Axis when analysing

the black (white) option. The red (blue) points are the mean of the estimated quality

of the black (red) option for every discrete value of σ. The brown points are the ratio

between the black and the white estimations. The horizontal lines placed, respectively,

at 0.34, 0.66, 0.5 are the expected estimations of the two qualities (white and black)

and the correct ratio (
0.66

0.34
). Parameters: g = 0s, σ ∈ {1, 2, . . . , 100}, ρBlack = 66%,

ρWhite = 34%; The plots (c) and (d) represent the distribution of the estimated quality

by the black and the white robots. The distribution is represented with histograms.

Red (Blue) histograms represent the measurements of the black (white) option. The

yellow vertical line is the actual quality of the option. Parameters: g = 0s, σ = 10s,

ρBlack = 66%, ρWhite = 34%;
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tests:

• Simple scenario:

– Difficulty: ρBlack = 66%, ρWhite = 34%;

– Swarm size: 1 Robot ( 4.5(a)), 100 Robots ( 4.5(b));

– σ ∈ {1, 2, . . . , 100};

– g = 0s;

• Difficult scenario:

– Difficulty: ρBlack = 52%, ρWhite = 48%;

– Swarm size: 1 Robot ( 4.6(a)), 100 Robots ( 4.6(b));

– σ ∈ {1, 2, . . . , 100};

– g = 0s;

The controller used for the experiments aiming to understand the quality

estimation of the robots is the same as the one described in Chapter 3.2.

We collected 10000 estimations for each point of the graph, hence for each

couple of configuration of σ and swarm size.

Fig. 4.5(a) and 4.5(b) show the graphics of the quality estimation per-

formed by one single robot in the arena, with swarm sizes of, respectively, 1

and 100 robots. The trend of the mean of the quality estimations is indicated

by the red and blue points and it is shown to get closer to the real options’

quality when σ increases. With really low values of σ the estimation is poor.

we can for example notice that for σ = 1 the quality estimation of the red

option is lower than 0.6. The boxplots show that the quality estimation

variances decrease when σ decreases. It means that by increasing σ, the

values measured are closer to the mean. These results are explainable by

the fact that if a robot has more time to explore the environment then the

estimation will be better. The lower is the time, the poorer is the estima-

tion of the quality. Comparing the results obtained with swarm size = 1 and

with swarm size = 100, we notice that even if the mean is similar and really

close to the option’s quality in the two cases, the boxplots report differences.

With a swarm size of 1 robot, the estimations have a lower variance than

in the case with a swarm size of 100 robots. This can be explained by the

movement interferences due to the presence of a high number of robots.

The graphics in Fig. 4.5(c) and in Fig. 4.5(d) show the frequencies of the

estimation of each qualities. The results are plotted by using histograms.

Each histogram represents the estimations falling within a range of qualities
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Figure 4.6: Difficult scenario: Graphics relative to the quality estimation in a difficult

scenario. The plots (a) and (b) show the quality estimation of the floor with, respec-

tively, 1 robot and with 100 robot in the arena. The red (blue) boxplots are the overall

representations of the estimations for the associated value of σ on the X-Axis when

analysing the black (white) option. The red (blue) points are the mean of the estimated

quality of the black (red) option for every discrete value of σ. The brown points are

the ratio between the black and the white estimations. The horizontal lines placed, re-

spectively, at 0.48, 0.52, 0.923 are the expected estimations of the two qualities (white

and black) and the correct ratio (
0.48

0.52
). Parameters: g = 0s, σ ∈ {1, 2, . . . , 100},

ρBlack = 52%, ρWhite = 48%; The plots (c) and (d) represent the distribution of the

estimated quality by the black and the white robots. The distribution is represented by

means of histograms. Red (Blue) histograms represent the measurements of the black

(white) option. The yellow vertical line is the actual quality of the option. Parameters:

g = 0s, σ = 10s, ρBlack = 52%, ρWhite = 48%;
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(each range is large 0.05). The graphs refer to the experiments done with

σ = 10s in the simple scenario. It means that the exploration time is

relatively low. The robots often measure the limit values (0 and 1). Indeed,

in Fig. 4.5(c) we can see that there is a strong majority of estimations ended

with the measurement of a quality between 0 and 0.05. On the other hand,

in the graph shown in Fig. 4.5(d) a high frequency of quality estimations

ended with a value between 0.95 and 1. This is due to the short time

available for the exploration: the unbalanced situation in the number of

cells makes robots overestimating the black option, while underestimating

the white one. Both graphs are characterized by a high frequency of quality

estimations ended with the correct value (i.e., 0.66 for the black surveys

and 0.34 for the white surveys). For the black quality, the frequency of

estimations progressively increases from zero to the right option quality,

with the exception already discussed for the range between 0 and 0.5. After

the correct option quality, the frequencies decrease until reaching the other

limit value, one, where another peak is present. The graph relative to the

white quality estimation’s frequencies is symmetric to the one for the black

quality estimation.

Fig. 4.6(a) and 4.6(b) show the graphs relative to the estimations of the

quality in the difficult scenario, with swarm sizes of 1 robot and 100 robots.

The considerations for this graphs are similar to the ones for the simple

case. When increasing the value of σ, the behaviour of the two quality

estimations is similar to the one discussed above. Unlike previously, the

graphs in Fig. 4.6(c) and 4.6(d) show a bell-shaped trading with a maximum

in the range of the actual current quality of the two options. The high

frequency of quality estimations ended with 0 is shown in Fig. 4.5(c) and

with 1 is shown in 4.5(d) are not present anymore. This fact is due to the

more balanced situation between the two qualities: since the number of cells

is similar, it is difficult for the robot to explore only cells of the same color,

even in a limited time.

4.3 Exit Probability And Consensus Time

The goal of our work is to draw a comparison between three different

decision-making rules (weighted voter model, majority rule, and direct com-

parison) in the environment classification problem. The comparison is made

in terms of exit probability and consensus time, two variables largely dis-

cussed in Chapter 3. We analyse the dynamics of these two variables scaling

the main influencing factor of the problem: the difficulty (ρblackvsρwhite),

the number of robots initially favouring the best option, and the value of σ.
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In the following sections, we show the results of these studies.

4.3.1 Varying Initial Number of Black Robots

The initial number of robots favouring the black option, that is the best

one as we defined in Chapter 3, is probably the most influencing variable

for the dynamics of the swarm. An important information is the time to

reach a solution and the accuracy of the solution varying this variable. With

this aim, we tested in simulation the simple and the difficult scenarios with

a swarm size of 20 robots and 100 robots. For each initial condition (i.e.,

number of correctly favouring robots), we performed 1000 runs. The output

of the experiments is a text file containing, for each run, a row with the

number of black robots and white robots after the end of the experiment,

and the time needed to reach the consensus. Using the results in these files,

we plotted the dynamics of the two variables (Fig. 4.7 and 4.8).

The graphs in Fig. 4.7 show the dynamics of the system in the simple

scenario. Fig. 4.7(a) and 4.7(b) show the performance of a swarm composed

by 20 robots, while in Fig. 4.7(c) and 4.7(d) the robots involved in the

experiments were 100. The graphs show a rougher shape than with 20

robots, due to the higher number of points. Let us analyse first the consensus

time: from the graphs 4.7(a) and 4.7(c), the time required to reach the

consensus is higher when a higher number of robots is involved. We can see

how the time required by the majority rule is less affected by the swarm

size than the other strategies, remaining in both cases the fastest strategy.

Overall, the weighted voter model is the slowest. But when number of

initial robots favouring black is really lower than the swarm size, the direct

comparison takes more time to reach a consensus than the other strategies.

All the strategies are characterized by an increase of the consensus time

from zero to a certain point, before starting to decrease to zero. Before

these points, the solution is easily reachable, since the initial number of

black robots is really low and the solution is quickly going towards the

wrong option. After these points, the solution starts to be correct, but is

difficult to reach. Obviously, an higher number of initial black robots speeds

up the reaching of the solution.

We started discussing about the easiness of reaching a solution. It di-

rectly introduces us to the exit probability. We can easily see from 4.7(d)

and 4.7(b) how the exit probability monotonically increases with the in-

crease of the initial number of black robots. The comparison between them

shows how the curves are accentuated with the increase of the swarm size.

Looking at the majority rule curve, we notice that it approaches a step curve
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Figure 4.7: In the graphs are shown the dynamics of the exit probability and of the

consensus time scaling the initial number of robots favouring the black option in the

simple scenario obtained in simulation. We used for the experiments a swarm of 20

robots and a swarm of 100 robots. The points represent the average of the consensus

time (or of the exit probability) obtained with 1000 runs with the same number of initial

robots favouring the black option. The three colors represent the different decision

rule used: red = weighted voter model, green = majority rule, blue = majority rule.

Parameters: Number of initial black robots=(1, 2, . . . , 100), ρblack = 0.66%, ρwhite =

0.34%, σ = 10s, g = 10s. a) Consensus time obtained with a swarm size = 20 robots;

b) Exit probability obtained with a swarm size = 20 robots; c) Consensus time obtained

with a swarm size = 100 robots; d) Exit probability obtained with a swarm size = 100

robots.
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with the center corresponding to an initial number of black favouring robots

of 50% of the swarm, and more precisely, with a swarm size of 100 robots

the exit probability is 0.5 when the initial number of robots favouring the

best option is 47. In such a simple scenario, also the exit probability for the

direct comparison also approaches a step curve in zero.

What is really evident looking at the graphs reported in Fig. 4.8(d) is

the incredibly long time required by direct comparison. The graph shows

the consensus time in the difficult scenario with 100 robots. The direct

comparison is extremely lower than all the other strategies and, moreover,

is extremely lower than the direct comparison in all the other situations.

Fig. 4.8(d) (the detail panel) shows the consensus times functions relative to

the majority rule and the weighted voter model. As reasonable thinking, the

voter model takes more time in the difficult scenario than in the simple one.

The majority rule, instead, takes approximatively the same time. Another

difference between the consensus times in the difficult scenario with respect

to the simple scenario is the points of maximum, where the required time

starts to decrease. Indeed, the shape of the curves still follows the same

trend but the maximum points (i.e., the point where the initial conditions

make the problem simpler to solve) are shifted closer to the 50% of the

swarm size. It is due to the more difficult nature of the problem.

Analyzing the exit probabilities, we notice other important characteris-

tics. In Fig. 4.8(b), we can see that all decision rules are less accurate, but

the majority rule which has a similar exit probability. The direct compari-

son is instead the most disadvantaged by the higher difficulty: in the simple

case, with 20 robots, direct comparison was correctly solving the problem

with a probability of 100% in presence of 5 initial black robots. The diffi-

cult case, instead, is never reaching the 100%. The voter model, with the

increase of the difficult of the problem, approaches a straight line starting

from 0 and reaching 1. Another factor that is easily noticeable is the much

higher noise present in the curves of the direct comparison, in the difficult

problem. It is due to the unreliability of the direct comparison under high

level of noise (i.e., the more difficult of the problem).

4.3.2 Varying Problem Difficulty

As seen in 4.3.1, the difficulty of the problem is a fundamental factor for the

dynamics of the swarm in some cases. To better analyze how it influences

the exit probability and the consensus time, we performed more extensive

experiments spanning the two qualities. Using the two usual swarm sizes,

that are 20 and 100 robots, we spanned all the qualities from 52% to 66%.
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(d)

Figure 4.8: The graphs show the dynamics of the exit probability and of the consensus

time scaling the initial number of robots favouring the black option in the difficult

scenario obtained in simulation. We used a swarm of 20 robots and a swarm of 100

robots. The points represent the average of the consensus time (or of the exit prob-

ability) obtained with 1000 runs with the same number of initial robots favouring the

black option. The three colors represent the different decision rule used: red = weighted

voter model, green = majority rule, blue = majority rule. Parameters: Number of initial

black robots=(1, 2, . . . , 100) ρblack = 0.52%, ρwhite = 0.48%, σ = 10s, g = 10s. a)

Consensus time obtained with a swarm size = 20 robots; b) Exit probability obtained

with a swarm size = 20 robots; c) Consensus time obtained with a swarm size = 100

robots. In the square in the center of the main graphs is shown the zoomed detail of

the curves. In the main graph, it is obvious how the direct comparison takes more time

than the other rules, but the behaviour of majority rule and weighted voter model is

not obvious. For this reason we decided to zoom them; d) Exit probability obtained

with a swarm size = 100 robots.
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We decided to keep σ equal to 10s, to keep a high level of noise for the

experiments.

From the graphs in 4.9(c) and 4.9(a), it is evident how the behaviour of

the consensus time is to decrease with the decrease of the difficulty of the

problem, independently from the used swarm size. The way of decreasing is

different in the two cases. As already seen in 4.8(c), for a high level of noise

and a high number of robots involved in the decision-making process, the

direct comparison takes a really long time to reach the consensus and with

a high noise. The majority rule has a consensus time with a rather invariant

trend. The consensus time taken by this strategy is constant, independently

of the difficulty of the problem. On the other hand, the weighted voter

model is faster as the difficulty decreases.

For the exit probability, Figures 4.9(d) and 4.9(b) show that all the

strategies have an increasing trend with the decrease of the difficulties. In

order to analyze these graphs, one must keep in mind the graphs about

the exit probability presented in the Sections 4.8 and 4.7. For the majority

rule, in graphs (4.9(b) and 4.9(d)), we can immediately notice that the exit

probability. However, in the previous section (Section 4.3.1) we calculated

that the point where the exit probability is 0.5 for the majority rule corre-

sponds to 47 initial robots favouring black, for the simple scenario, and 50

initial black robots for the difficult scenario. Our results, here, do not match

with the ones of the previous works made about majority rule (Valentini et

al. [101], Montes et al. [64]). For this reason we decided to make a further

analysis that is presented in ??. In their work, for problem with the same

difficulty as our simple problem, the step of convergence corresponds to a

lower number of robots initially favouring the best option. Weighted voter

model and direct comparison are instead behaving similarly, increasing with

the decrease of the problems’ difficulty. With these initial conditions (i.e.,

with the swarm size equally parted in black and white favouring robots),

direct comparison is more accurate than weighted voter model. The fastest

strategy is still the majority rule.

Overall, these graphs highlights the really long consensus time required

by the direct comparison in situations of high noise, that is, with a high diffi-

culty of the problem. The behaviours of the weighted voter model and of the

direct comparison strategies get better both in terms of exit probability and

in consensus time, with the decrease of the problem’s difficulty. Moreover,

we see how weighted voter model and direct comparison gain in accuracy to

solve the same problems when the size of the used swarm increases, even if

the required time is higher.
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Figure 4.9: The graphs show the dynamics of the exit probability and of the consensus

time scaling the difficulty of the problem obtained in simulation. We used for the

experiments a swarms of 20 robots and a swarm of 100 robots. The points represent

the average of the consensus time (or of the exit probability) obtained with 1000 with

50% of black robots. The three colors represent the different decision rule used: red

= weighted voter model, green = majority rule, blue = majority rule. Parameters:

σ = 10s, ρblack =(52, 53, . . . , 66)%, ρwhite = 100 − rhoblack, g = 10s. a) Consensus

time obtained with a swarm size = 100 robots, initial black robots = 50, initial white

robots = 50. In the square in the center of the main graphs is shown the zoomed

detail of the curves. In the main graph is evident how the direct comparison takes more

than the other rules, but the behaviour of majority rule and weighted voter model is

not evident. For this reason we decided to zoom them; b) Exit probability obtained

with a swarm size = 100 robots, initial black robots = 50, initial white robots = 50;

c) Consensus time obtained with a swarm size = 20 robots, initial black robots = 10,

initial white robots = 10; d)Exit probability obtained with a swarm size = 20 robots,

initial black robots = 10, initial white robots = 10.
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Figure 4.10: The graphs show the dynamics of the exit probability and consensus time

for a range of values of σ obtained in physics-based simulations, with a swarm size

of 100 robots. The points represent the average of the consensus time (or of the exit

probability) obtained with 1000 runs with the same difficulty. The three colors represent

the different decision rule used: red = weighted voter model, green = majority rule, blue

= majority rule. Parameters: σ =(1, 2, . . . , 100)%, g = σ, black robots = 30% of the

swarm, white robots = 70% of the swarm. a) Consensus time obtained with a swarm

size of 20 robots, rhoblack = 66%, ρwhite = 100−rhoblack; b) Exit probability obtained

with a swarm size of 20 robots, rhoblack = 66%, ρwhite = 100−rhoblack; c) Consensus

time obtained with a swarm size of 20 robots, rhoblack = 52%, ρwhite = 100−rhoblack;

d)Exit probability obtained with a swarm size of 20 robots, rhoblack = 52%, ρwhite =

100− rhoblack.
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4.3.3 Varying Exploration Time

The exploration time is represented by its mean, σ, throughout this the-

sis. We performed experiments with fixed initial condition. We decided to

test the case in which the proportion of initial black robots is only 30%

(for the results obtained scaling the initial number of black robots, refer to

Fig. 4.7, 4.8, and 4.9). We tested the two usual scenarios, the simple and

the difficult one.

We start with the analysis of the consensus time in the four situations (20

and 100 robots and the two scenarios: Fig. 4.10(a), 4.10(c), 4.11(a), 4.11(c)).

The speed of the strategies has been studied in the previous experiments

(Sec. 4.3.1). In the simple scenario, the majority rule is the fastest while

the weighted voter model the slowest. In the difficult scenario, the majority

rule is still the fastest but the weighted voter model is faster than the direct

comparison. Moreover, we can see how the direct comparison is highly de-

pendent from the noise. In the difficult scenario, with the usage of a swarm

composed by 100 robots, the behaviour of the direct comparison is emblem-

atic. We can notice the extremely big discrepancy between the consensus

time obtained with low values of σ and with high ones. As mentioned previ-

ously, σ determines the noise in the quality evaluations. High σ values leads

to a robust estimation of the qualities. If the quality estimation is noisy and

the qualities of the two opinions are close, then the estimations can easily

be inverted (i.e., the best option estimated less than the worst option). A

high number of comparisons of the (noisily estimated) qualities, determined

by the large swarm size, implies a high number of mistakes and thus a long

time to reach the consensus. The direct comparison is the only strategy that

is going faster with the increase of the value of σ.

Concerning the exit probability (Fig. 4.11(d), 4.10(d), 4.11(b) 4.10(b))

we notice a quite uniform trend for the direct comparison and the weighted

voter model. As expected, the exit probabilities for direct comparison and

weighted voter model are higher in the simple case than in the difficult one.

However, the trend in the two cases is the same: the exit probability of the

direct comparison is constant, while the one for the weighted voter model is

uniformly growing until a certain point, before a constant trend. Moreover,

we see how increasing the swarm size favours the accuracy and slows down

the time needed to reach the consensus for all the strategies. The majority

rule, that has been shown to be highly dependent on the initial proportion of

black robots, increases its accuracy when increasing of σ. From Fig. 4.11(d)

and 4.10(d), we notice also the importance of the swarm size for this strategy.

Indeed, σ has no influence on the exit probability (that is always equal to 0)
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Figure 4.11: The graphs show the dynamics of the exit probability and consensus time

for a range of values of σ obtained in physics-based simulations, with a swarm size

of 100 robots. The points represent the average of the consensus time (or of the exit

probability) obtained with 1000 runs with the same difficulty. The three colors represent

the different decision rule used: red = weighted voter model, green = majority rule,

blue = majority rule. Parameters: σ =(1, 2, . . . , 100)%, g = σ, black robots = 30%

of the swarm, white robots = 70% of the swarm. a)Consensus time obtained with a

swarm size of 100 robots, rhoblack = 66%, ρwhite = 100− rhoblack; b) Exit probability

obtained with a swarm size of 100 robots, rhoblack = 66%, ρwhite = 100−rhoblack; c)

Consensus time obtained with a swarm size of 100 robots, rhoblack = 52%, ρwhite =

100−rhoblack; d)Exit probability obtained with a swarm size of 100 robots, rhoblack =

52%, ρwhite = 100− rhoblack.
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when a swarm of 100 robots is used (recall that we are in the situation where

there is only 30% of initial black robots and, with ρblack = 52%, in this point

the majority rule has always exit probability equals to 0, Fig. 4.8(d)). This

is not true for the swarms with 20 robots (Fig. 4.8(b)). In this situation,

the increase of σ actually increases the accuracy of the strategy.

4.4 Additional Analysis of Exit Probability for Ma-

jority rule

As previously touched on (Section 4.3.3), we noticed a difference in the be-

haviour of the exit probability when using the majority rule between our

work and the works of Valentini et al. [101], and Montes et al. [64]. Both in

our study and in their studies, the majority rule approaches a step-shaped

curve when using a larger swarm size. More specifically, Valentini et al.

showed that when the difficulty of the problem is similar to our simple sce-

nario (i.e., ρblack = 66% vs. ρwhite = 34%), the exit probability approaches

a step function and the center of the step (i.e., the point where the exit

probability is 0.5) corresponds, on the X-Axis, to an initial condition where

approximately the 30% of the swarm favours the best option. The difference

is that, in our scenario, with the same conditions, the exit probability for

the majority rule is equal to 0.5 when the initial robots favouring the best

option is 47.

One explanation of this result can be found in the swarm size. A higher

number of robots in the same environment causes high interferences and a

high rate of collisions. The dissemination time (recall that it is determined

also by the weighting factor, g) is an important factor since with low dissem-

ination times and high collisions, the well-mixing of the swarm can be not

ensured. In this section, we present the additional experiments performed

in order to understand and explain the anomalous behaviour of the exit

probability with the majority rule. For this purpose, we are going to freely

vary the parameters in a different way than previously.

First, we want to show the trend of the exit probability with the same

parameter that we have used in Section 4.3.1 but using different swarm

sizes. More precisely, we show the exit probability for swarm sizes of 20,

40, 60, 80 and 100 robots. We present the results of these experiments both

in the simple and in the difficult scenario respectively in Fig. 4.12(a) and

Fig. 4.12(b). From these graphs, we can see how, in both scenarios, the exit

probability approaches a step curve when the swarm size becomes larger.

The other result that emerges is the difference between the exit prob-
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Figure 4.12: In the graphs are shown the dynamics of the exit probability varying all the

initial conditions about the initial robots favouring the best option with different swarm

sizes. The points represent the exit probability obtained with 1000 runs in the same

condition. Every curve represent a different swarm sizes: light blue=20 Robots, red=40

Robots, gold=60 Robots, dark green=80 Robots, dark blue=100 Robots. Parameters:

σ = 10, g = σ, black robots = (1, 2, . . . ,swarm size), white robots = swarm size -

black robots. a) Simple scenario; b) Difficult scenario;

ability values in the two scenarios. The curves are shifted to the right in

the more difficult scenario, with respect to the simpler one. In the difficult

scenario (4.12(b)) we see that, even when increasing the swarm size, the

resulting exit probability is equal to 0.5 when the initial proportion of black

robots is around the 50% of the swarm. For the simpler scenario, instead,

the points where the exit probability is equal to 0.5 (indicated by the in-

tersection between the black horizontal row with the coloured curves) are

generally characterized by a lower number of initial black robots. We already

showed (Fig. 4.3.1) that, for a swarm size of 100 robots, in the simple case

the exit probability is equal to 0.5 when the initial number of black robots

is 47 (0.47%). From the curve representing the experiments done with a

swarm size of 20 robots, instead, the exit probability is equal to 0.5 when

the initial black robots are 5 (0.25%). This value is important because it

shows that, for smaller swarm sizes, the results obtained are consistent with

the results of by Valentini et al. and Montes et al. ([101], [64]). Moreover,

the hypothesis that the collisions affect the well-mixing properties of the

swarm favouring the clustering of the opinions is confirmed.

In view of these results, we decided to test the effects on the exit proba-

bility when using a longer dissemination state, in the two scenarios (simpler

and more difficult). For this purpose, we therefore performed experiments

using a swarm size of 100 robots, with σ = 10s, and applying the majority

rule. We decided to use a parameter g = 100s, because in this way the
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Figure 4.13: In the graphs are shown the dynamics of the exit probability. In the

picture on the left side, are reported the results obtained with the experiments described

in 4.3.1. On the right side, are reported the results of the experiments with exactly

the same parameters but with g=100. The X-Axis represent the initial number of

robots favouring the black option. On the Y-Axis there is the exit probability with the

respective initial conditions. The points represent the exit probability obtained with

1000 runs in the same condition. The horizontal black lines are lines to show where

the exit probability is 0.5. They have been drawn only for better visualize that point.

The vertical black lines are the intersection between the curves and the horizontal lines.

They indicate which is the initial condition of robots favouring the best option to obtain

an exit probability of 0.5. Parameters: σ = 10s, black robots = (1, 2, . . . , 100), white

robots = 100 - black robots, decision rule = majority rule. a) simple scenario, g = 10s,

exit probability = 0.5 when initial black robots = 47; b) simple scenario, g = 100s,

exit probability = 0.5 when initial black robots = 40; c) difficult scenario, g = 10s, exit

probability = 0.5 when initial black robots = 50; d) difficult scenario, g = 100s, exit

probability = 0.5 when initial black robots = 49.
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robots have the possibility to listen to the neighbours, therefore avoiding

the clustering of the opinion (recall that g is the parameter that has to be

weighted to define the mean of the dissemination state). By setting g=100s,

we obtain dissemination times ten times longer in average. In the other

experiments, we always used g=10s. This choice was made because of the

battery limitations of the real robots. With lower values of g, the consensus

time is shorter and the robots do not occur in limitations due to the batter-

ies. With higher values of g, we expect that the robots have more time to

mix with other robots, receiving opinions of more robots in different zones

of the environment. The considered opinions will only be the last 2 received

in the duration of the state (Section 4.2.2).

Fig. 4.13 shows the results of the exit probabilities using the majority

rule both in the cases where g=10s and g=100s, in order to help the reader

in the comparison between the two cases. Moreover, we show the results

of the exit probabilities both in the difficult and in the simple scenario,

respectively in Fig. 4.13(c), 4.13(d) and Fig. 4.13(a), 4.13(b). First, we

analyse the difficult scenario. We notice that in the two graphs the center

of the step curves (i.e., the point where the exit probability is 0.5) is really

close. The calculated initial number of black robots needed to get an exit

probability equal to 0.5 (indicated by the intersection between the two black

lines and the curves) is 49 when g=100s (Fig. 4.13(d)) and 50 when g=10s

(Fig. 4.13(c)).

In the simpler scenario, instead, the difference is bigger. It is because

the larger gap between the qualities of the two options. Indeed, in the

simpler scenario, the modulation of positive feedback is stronger than in

the difficult one. Moreover, we see how, when increasing the value of g,

the modulation of the positive feedback has a stronger influence: the center

point of the step curve is shifted to the left when a longer dissemination time

is used. The graphs in Fig. 4.13(a) and Fig. 4.13(b) show that the center

point corresponds to an initial number of black robots equal to 47, in the

case of using g=10s, while it is equal to 40.5 when g = 100s. This shows

the effect of the modulation of the positive feedback on higher times. This

result is consistent with the works of Valentini et al. [101] and Montes et

al. [64].

4.5 Overall Considerations

We briefly sumarize the results in order to give a more ordered idea of how

the decision rules affect the dynamics of the system.

The weighted voter model is the slowest strategy when the problem is
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simple and the situation is not noisy.The parameter σ influences the strategy

but does not compromise it: the times remain more or less uniform and the

exit probability is always quite high.

The direct comparison rule is accurate in every situation. The exit prob-

ability is almost always the highest. The very big drawback of this strategy

are mainly two: the heavy quantity of information exchanged and the ex-

treme dependence on the environment. Difficult problems or high levels of

noise in the quality estimations (i.e., low values of σ) results in an extremely

long time to reach a consensus. Moreover, increasing the swarm size increase

in a noisy way the consensus time.

The majority rule is the fastest strategy. Increasing the swarm size

results in an exit probability function that approaches a step curve. This

confirms the findings of Valentini et al. [101] and by Montes et al. [64].

However, when the swarm size is large, the majority rule needs to have a

longer dissemination time in order to ensure an efficient modulation of the

positive feedback. In Section 4.3.2 we saw how with g=10s the difference,

using the majority rule, between the simple and the difficult scenario is really

weak. In Section 4.4 we demonstrated that a higher dissemination time is

required to ensure an efficient modulation of the positive feedback and to

avoid the clustering of the opinion.

Another result that is commune to all the strategies is the increasing of

the accuracy with the increasing of the swarm size.



Chapter 5

Real-Robot Experiments

We performed several real-robot experiments using e-pucks (See 3.1.2, [63])

in an experimental environment with the aim of validating the results ob-

tained in simulation. More precisely, we showed the results in terms of

consensus time and exit probability for three decision rules and in scenarios

with different difficulties. The goal of these experiments was to test weighted

voter model, direct comparison and majority rule in real-world conditions.

First, we conducted experiments aimed at understanding the capacities

of perception and actuation of the robots (thus, to understand the perfor-

mance of sensors and actuators). Second, we focused on the comparison of

the results in terms of speed and accuracy of the solution. To ensure the

correctness of the validation work, we conducted experiments in an environ-

ment that is as close as possible to that of the simulation studies.

5.1 Arena and Experimental Setup

The number of experiments performed in simulation was impossible to repli-

cate in real-robots experiments, due to both availability and time limitations.

The size of the swarm is limited by the number of robots available in our

laboratory, that is equal to 20. Moreover, the time and effort required for

a real-robot experiment is dramatically higher than required in simulations.

Finally, simulations are processed by a cluster that can run thousands of par-

allel executions, while real-robot experiments cannot be parallelized. These

are the reasons that pushed us to focus to a certain situation, with fixed

initial conditions, and to run a lower number of runs than the ones made in
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simulations.

Let us recall that the goal of our swarm is to find which resource is

the most available in the environment, where resources are represented by

different colors on the floor. The floor of our environment is a chess-like

arena with randomly disposed cells and with an unbalanced number of black

and white cells. The percentage of black cells represents the difficulty of the

problem.

The starting point for the real-robot experiments was to choose how the

robots had to detect the color they were passing over. We chose to use

the ground sensor to perceive the floor. E-pucks real sensors have physical

limitations. The biggest limitation of the ground sensor (3.1.2) is that this

sensor is only able to recognize grey-scale colors, reducing the range of pos-

sible colors for our floor to three: black, white, and grey. Nevertheless, using

the ground sensor is the most adaptable and portable solution since, in a

real-world case, the swarm cannot fully rely on an external infrastructure

but has to operate with the equipped sensors.

Another option would have been to virtualize a coloured floor by means

of the tracking system [95] available in our laboratory. We chose not to use

this solution because it would have reduced the portability of our system,

limiting its use in a controlled environment.

We opted for the real-sensor equipped on the e-pucks for the following

reasons:

• The limitations of this solution were not influencing our work: we only

needed to study a case of binary best-of-n decision-making problem

(i.e., with two resources, black and white);

• The use of this solution in a possible real-world application is more

credible than the other proposed;

.

5.1.1 Experimental Environment

The environment set up has been made as close as possible to the environ-

ment used in simulations. The first step was to physically set-up the arena.

In order to replicate the floor analyzed in simulations we composed a paper

ground of 2 m ∗ 2 m size. For this purpose, we printed 4 sheets of heavy

coated paper glued together. Each sheet was 1m2 size and represented one

quadrant of the arena. The configuration of the squares on the floor was

copied from a simulation test, and the squares were randomly disposed in
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Figure 5.1: Picture of the swarm of 20 e-pucks running an experiment in the real-robots

experiments environment

a grid. After that, we placed 4 wood sticks to enclose the environment, in

order to avoid the robots to accidentally leave the arena (Fig. 5.1).

We recorded every experiment with the Iridia Tracking System [95] and

we used the Wifi network to communicate with the the robots. The commu-

nication was peer-to-peer, that is, we were sending the messages and retriev-

ing the saved information from each single robot. As in 2.1.3 a macroscopic

human-swarm interaction is still lacking.

In order to reduce noise to its minimum, we calibrated every sensor of

the robots. The performance of the sensors depends on the environmental

conditions. We calibrated the sensors under a controlled condition of light

brightness, that were never changed during all the experiments.

The output of the experiments consists of a text file for each robot.

During the experiments, every robot was saving its own opinion at each

time step. This allowed usto recover the evolution in the time of the robot

states after the experiments.

Moreover, the e-pucks were visually displaying their actual opinion to the

eventual observers through coloured LEDs. The black opinion was signaled

through turning on the red LEDs, while the white opinion by turning on

the blue LEDs (see Figure 5.2). The robots were signaling if they were in

dissemination state by blinking all the LEDs that were turned on.
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Figure 5.2: Blue and red blinking robots in a real-robots experiments: in the picture

there is a robot with the blue LED on and a robot with the red LED on. They are

advising the human being watching the experiment about their own opinion. In this

way the designer knows when the experiment can be considered finished (when the

swarm is entire showing the same color). In the background is possible to see a portion

of the rest of the swarm, the coloured floor and the borders of the arena.

5.1.2 Choice of Initial Conditions

The sensitive parameters affecting the swarm-level behaviour are mainly

three:

• Difficulty of the problem: we had to determine the proportion of the

two resources place in the arena. In simulations, we tested the swarm’s

behaviour in two situations: one with relatively simple discrimination

problem (66% of black cells vs 34% of white ones) and one more dif-

ficult problem (52% of black cells vs 48% of white ones). To ease the

comparison with real-robot experiments, we prepared two arenas, one

for the simple and one for the difficult scenarios;

• Initial fraction of robots favoring the best option: this is one of the

most influential elements for the exit probability and consensus time

variables. The safest choice is to use 50% of initial red-thinking robots

and 50% of blue ones, because in this way the initial situation of the

swarm is unbalanced;

The other parameters have been set in order to be as close as possible

to the parameters used in simulations.
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(a) (b)

Figure 5.3: Returned data from the ground sensor during the execution of the test.

1 Timestep = 1
10 sec. The blue circles are the values returned by the sensor in the

white floor test, the red circles are the value returned by the sensor in the black floor

test. The green horizontal line represents the threshold value (500) chosen for our

experiments.

(a): Data relative to the calibration of the robot 44; (b): Data relative to the calibration

of the robot 45;

5.1.3 Sensor Performance

To be certain about the correctness of the results and the reliability of

the performance of the robots, we performed experiments to calibrate and

analyze the robot sensors (we recall that the behaviour of each robot is

subdivided into exploration state and dissemination state). The exploration

state is characterized by the sensing of the floor in order to explore the

environment. The dissemination state instead is characterized by the com-

munication between robots that broadcast their opinion. Two sensors are

mainly involved in these two states: the ground sensor (3.1.2), in order to

distinguish the white cells from the black cells; and the range and bearing

(3.1.2), used to make the robots communicate with their neighbours.

5.1.3.1 Ground Sensor

At each time step, the robot determines the color of the ground using its

ground sensor. This sensor returns, every time step, a value between zero

and 1000: if the ground is white then the returned value will be (ideally)

1000. Otherwise, if the floor is black, the value will ideally be zero. The

e-pucks are endowed with three ground sensors, one in the center and two

on the sides. We only used the central ground sensor in all the experiments.

In this way, when the robot is between two or more cells the returned value

will refer to the cell where the center of the robot is.
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A real sensor the measurement is affected by numerous factors as the

light intensity, the type of material of the floor. To have a good idea of

the average estimation and to understand if we could have fixed a credible

threshold to parse the returned value to black or white, we decided to put

every robot on a black floor firstly and then on a white one and to analyze

the data collected by the sensor. The results of the two tests are plotted

in the same graph (Fig.5.3a,b). As shown in the graphs, the sensor is not

extremely noisy. A reasonable and reliable threshold for the distinction

between the black survey and the white survey is 500, as indicated in the

graph by an horizontal green line.

Fig.5.3a shows the results of the calibration relative to the robot 44, while

in Fig.5.3b shows th ones relative to the robot 45. We notice that every robot

identifies the black and white with a certain value, that can depends both

from the environment condition or from the robots’ hardware. The ground

sensor of the robot 44 returns values with a mean close to, approximatively,

200 and 800, when the robot is placed respectively on a black and on a white

floor. The values returned by the ground sensor of robot 45, instead, have

a mean around 1000 and 400, respectively for the white and the black.

We see that the sensor seems to return values that are distributed around

two average values, for the white case (600 and 800)(Figure 5.3a). However,

even in presence of the described noise, the sensor still returns values higher

than 500 for the white floor and the outcome is not compromised. The noise

is probably due to the fact that white paper has an higher transparency than

the black one, where the robot returns values with a lower level of noise.

For the robot 45 instead, the characteristics of the noise are different.

This robot’ sensor is more cable to recognizing the white color, returning

values really close to 1000. Additionally, the black color test is approxi-

matively reliable and is characterized by relatively low variance. The noise,

here, comes out after 500 time steps (when the calibration is going to finish).

This error is probably due to interferences in the experiment that compro-

mised the last part of the calibration. We reported this graph (Fig. 5.3b)

in order to show how little changes in the environment conditions (e.g., the

level of the light).

We ran this experiment using 8 robots and retrieved the data from each

experiment. With these results, we validated the use of a threshold at 500

to reliably determine the color of the floor. We decided to report in this

thesis the graphs relative to two experiments: the one done using the robot

44, that is one of the experiments run without errors, and the experiment

done with the robot 45, that had a malfunctioning in the last time steps.
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Figure 5.4: Ratio of the received messages over the sent ones when varying the distance

between the two robots used for the experiment. On the X-Axis we report the distance

between the robots, expressed in cm. We conducted one experiment for each measure

of distance using the two robots. We report on the Y-Axes the ratio between the

number of total sent messages during the experiment and the number of the received

ones by the two robots. The yellow squares represent the reception ratio of the robot

number 35, while the blue triangles the reception ratio of the robot number 47.

5.1.3.2 Range and Bearing

The robots exchange messages through the range and bearing board that

sends and receives messages locally through infra-red communication. The

range and bearing allows the robots to get a measure of both the range and

the bearing of the robot that sent the received messages.

The communication is a crucial point in our strategy. We performed

preliminary analysis about the quality and the quantity of messages received

by the robots before the final experiments.

First, we analyzed the range of communication of the sensor. It occurred

to be impossible to fix a credible range of communication with the range

and bearing. It was therefore critical to know the number of packages are

dropped in relation to the distance between two robots communicating by

using the standard threshold of the robots.

For this purpose, we put two robots at a fixed distance. The two robots

were sending messages and listening incoming messages while rotating on

themselves. In this way, we could have a good estimation of the number of

dropped messages as a function of the distance between the two robots. We

repeated the same test placing the robots at different distances: from 1m to

40cm with a step of 10cm.

The graph in Fig. 5.4 shows the relationship between the received mes-
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Figure 5.5: Ratio of the received messages over the sent ones relative to six robots. On

the X-Axes there are the robots used for the experiments. On the Y-Axes there is the

ratio between the number of total sent messages during the experiment and the number

of the received ones by the two robots. Each coloured circle represents the receiving

ratio of one robot. We run every experiment using two robots. The couple that worked

together are: (Rob 1 vs Rob 3); (Rob 2 vs Rob 4); (Rob 5 vs Rob 6). The red dotted

horizontal line represents the mean of the receiving ratio of all the experiments, that is

indicated in the box at the bottom left corner of the graph.

sages and the sending distance. On the X-axes are reported the distances

(40, 50, . . . , 100cm) between the robots during the experiments. In every

experiment, the number of sent messages was known since the robots were

sending a message in each time step. For every distance, we kept track of

the received messages from the two robots and we calculated the ratio of

the received messages over the total number of messages sent. In the graph,

these values are reported with a blue triangle and with a yellow square,

respectively for the robot number 47 and for the robot number 35. The

ratio monotonically decreases with the increase of the distances. The only

exception is made for the received messages by the robot 47 when placed

60cm far from the other robot. In this case, the ratio was higher than when

the robot has been placed 50cm far from the other. It is however reasonable

to assume that the maximum distance for the robots to receive a solid (i.e.,

higher than the 10% of the total sent messages) number of messages is 0.7m.

Above this distance the number of messages is not relevant. The ratio of

received messages at 0.7 m is around the 20%.

The second experiment on the range and bearing board was similar to

the first one, but we decided to test it in an enclosed arena with the robots

moving. The border of the arena can mirror the messages, creating different

dynamics in the range and bearing communication. Moreover, differently
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from the previous experiment, the robots are moving and are thus modifying

the communication performance. We placed two robots performing random

walk and obstacle avoidance (the same performed by the controller used

for our final experiments, 3.2) in an arena with dimension 0.40m ∗ 0.40m,

enclosed by four wood sticks. We repeated the same experiment with three

different couple of robots (robots 1 and 3, robots 2 and 4, robots 5 and 6).

Fig. 5.5 shows the results of the experiments. We present in this graph

the results of the communication between each couple of robots.

The results of this experiment confirmed us that, even when moving in

an enclosed environment (with the above discussed size), the robots could

successfully exchange approximatively 20% of the messages. The success

rate of the robots is not uniform, as in the previous experiments. In this

case the robots are receiving a different number of messages, even if in the

same experiment, while in the previous experiment the ratio was approxi-

matively the same for the robots involved. We notice that the robot 1, that

was involved in the experiment with the robot 3, had a success rate around

0.225 while the robot 3 had a success rate around 0.15, thus closer to the

mean.

After estimating the range of communication between two robots in a

controlled situations, we wanted to understand how does the communication

work between robots in our particular scenario: in an arena (2 ∗ 2)m2 size,

with twenty robots walking randomly and sending messages for an exponen-

tial period of time (dissemination state 3.2).

In the dissemination state every robot sends messages for a time con-

trolled by an exponential random distribution weighted with the quality

of the opinion favoured by the robot. The parameter of the exponential

distribution is

DiffT ime = ρi ∗ g + l;

where rhoi is the quality of the fevering opinion estimated in the previous

exploration state, g is the mean time that must be weighted with the quality

and l is a fixed period in which every robot, besides to sending messages, also

listen the opinions of the neighbours. l is the final part of the dissemination

state, i.e., the listening task occurs in the last l seconds of the dissemination

state.

The goal of this experiment was to select a feasible listen time (l). The

constraint on the listening time was introduced in order to avoid the listening

of obsolete opinions (i.e., we do not want to take into accounts the opinions

from the robots that have already change the opinion). Listening just in
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Figure 5.6: Neighbourhood size varying listening time (l). On the X-axes is present

the duration of the listening period (in seconds). On the Y-axes there is the average

number of received messages by all the robots during all the dissemination states (i.e.,

the neighbourhood size).

the last l seconds, the probability of listening obsolete values is minimized.

We performed preliminary experiments in order to see how the listening

time is influencing, in experiments with real robots, the number of different

messages received by every robot in one dissemination state, that is, the

neighbourhood size. We recorded the messages received from every robot

in the same way we save them in the definitive experiment. The policy of

recording of the message is the following:

• The robots skim off repeated messages: every robot takes only one

message in consideration from each robot in every dissemination state;

• The robots throw away the “default” values: the range and bearing

is always sending messages, even when no values have been set to be

send (for example the robots send messages even in the exploration

state). In order to avoid the reception of these messages, we set a

default value that the robots recognize as default value, to be throw

away;

Every experiment was characterized by a duration of 10minutes and by

a different listening time. We varied the duration of the listening time l

from 5s down to 1s, with a step of 1s.

The graph in Fig. 5.6 shows the overall average of the incoming mes-

sages of every robot for every dissemination state for all the duration of

the experiment. It emerges that, considering a maximum listening time of

5s, the average number of received messages from every robot is more or
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less constant (5 messages received). Of course this result could change if

we consider an infinite listening time. As previously explained we take in

consideration only a limited listening time in order to keep the property of

receiving new messages, avoiding the listening of obsolete information.

As a rule of thumb, we set the range of communication of 21cm, that is,

three times the diameter of the e-puck. In this way, the number of ex-

changed messages would have been limited and in some way controlled. In

Fig. 5.7(a), this graphs emerges from experiments done in simulation and

better explained in chapter 4, is possible to see the neighbourhood size ob-

tained by the experiments with a range of 0.21cm without any limitations or

control. From this graph we can notice that the robots never receive more

than two messages per dissemination state.

We would like to have a situation as close as possible to the ideal one,

but the limitations discussed about the range and bearing board sensibility

did not allow us to limit the range. Varying the listening time did not prove

effective in limiting and controlling the number of messages received. We

decided to put a stronger software-level limit on it, both in simulations and

in real-robots experiments.

For this purpose, we observed how varies the controlled neighbourhood

size in our scenario with a k maximum number of incoming messages. The

robots listen every incoming messages but save only the last k values. In this

way are ensured both the limitation on the number of incoming messages,

and the recentness of the information. We choose to test:

• k = 2;

• k = 4;

The results of this test are shown in Fig. 5.7(b). The histograms show the

frequency of the dissemination states characterized by n incoming messages

(where n ∈ [0, 1, . . . , 4]) in the two cases where we limited the incoming

messages to 2 and 4, respectively with the blue and red colors. In the

two cases, the column relative to the maximum value (2 and 4) are the

highest because when are listened more than k messages then the number of

incoming messages is limited to k. According with the results of Fig. 5.6 is

evident that there are, in a large majority of the cases, more than 2 incoming

messages in real-robots experiments. Indeed, in average, the robots receive

5 messages per dissemination state. This fact is supported by the number

of time in which have been recorded 4 (or more) incoming messages. Is then

clear that if we limit the number of incoming messages to 4 then we would
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Figure 5.7: Neighbourhood size limiting number of incoming messages to 2 and 4

have had a strong discrepancy with the simulations case. Looking to Fig. 5.6,

we see that the incoming messages are always less then 2. For this reason

we choose to adopt the policy to save only 2 messages per dissemination

state. There is, although, a difference that cannot be avoided: in simulation

the majority of the times the number of recorded messages are 0 or 1. That

is not true in real-robots experiments where, due to the impossibility to fix

a range of communication, we cannot adjust this value. In this case the

number of incoming messages is, for a large majority of the time, 2.

5.2 Analysis of Exit Probability and Consensus

Time

We studied the environment classification with two scenario, one simpler

and one more difficult. In the two scenarios the ratio between the black and

white qualities qualities are, respectively, 0.5151 and 0.923, that is:

• Simple scenario: 66% black quality and 34% white quality;

• Difficult scenario: 52% black quality and 48% white quality;

For each scenario we have conducted 45 runs, 15 for each decision rule

for a total of 90 runs. We are going to show the results obtained from

the experiments in both the cases and subdividing for each case the three

decision rules.

The output of each slot of runs (i.e. the 15 runs for each decision rule in

each scenario) is synthesized by two graphs (all the graphs are reported in

Fig. 5.8 and in Fig. 5.9): in one graph we have plotted the trading of each

run, representing with the color blue the number of white fevering robots
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and with the color red the black ones; in the second graph we have plotted

the boxplots of the same trading of the whole set of runs.

5.2.1 Simple Scenario

In a simple-scenario set-up the number of the black cells (the most valued

option) is the double with respect of the white ones. In this situation the

gap between the two qualities is relatively high and the level of noise in

their evaluation is really low. Generally speaking, without going deeper in

the decision rules results, in this scenario we expect that the swarm will

often choose the best option. Both the exit probability will be high and the

needed time to reach a consensus relatively low.

Simple scenario set-up:

• Arena: squared arena of 2m ∗ 2m composed by a coloured floor as

described in 3.2;

• Difficulty: 66% of black cells versus 34% of white cells;

• Swarm: group of 20 e-pucks, as described in 3.1.2, composed by an

equal number of initially favoring black and white robots;

• Application of the three decision rules: direct comparison, majority

rule, and weighted vote model;

• σ = 10s;

The results of the experiments done in the simple scenario are shown in

Fig. 5.8 and will be discussed in 5.3.

5.2.2 Difficult Scenario

In the difficult scenario the gap between the two qualities is really small

and the level of noise in their evaluation is higher with respect to the other

case. In this scenario we are expecting that the choice of the swarm will be

more variable. The swarm will probably mistake more often and the average

consensus time will be much higher with respect to the first scenario.

To summarize this scenario we list the features of the experiment:

• Arena: squared arena of (2 ∗ 2)m2 composed by a coloured floor as

described in 3.2;

• Difficulty: 52% of black cells versus 48% of white cells;
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Figure 5.8: Graphs deriving from the real-robots experiment in the simple scenario. The

graphs show the trend of the robots’ states during the execution of the experiments. In

the graphs in the left column are shown the boxplots relative to the overall experiments

done with every decision rule. In the graphs in the right column is individually plot

the trand of every run. The blue lines represent the number of robots favoring the

white option in every time step. The red lines represent the number of robots favoring

the black opinion in every time. 1 Timestep = 1
10 sec. a) Boxplot of runs with

direct comparison; b) Single runs with direct comparison; c) Boxplot of runs with

weighted voter model; d) Single runs with weighted voter model; e) Boxplot of runs

with majority rule; f) Single runs with majority rule. Parameters: Swarm size = 20;

Red robots = 50%oftheswarmsize; Blue robots =50%oftheswarmsize; Difficulty:

ρBlack = 66%, ρWhite = 34%; σ = 10s; g = 10s;
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Figure 5.9: Graphs deriving from the real-robots experiment in the difficult scenario.

The graphs show the trend of the robots’ states during the execution of the experi-

ments. In the graphs in the left column are shown the boxplots relative to the overall

experiments done with every decision rule. In the graphs in the right column is individu-

ally plot the trand of every run. The blue lines represent the number of robots favoring

the white option in every time step. The red lines represent the number of robots

favoring the black opinion in every time. 1 Timestep = 1
10 sec. a) Boxplot of runs

with direct comparison; b) Single runs with direct comparison; c) Boxplot of runs with

weighted voter model; d) Single runs with weighted voter model; e) Boxplot of runs

with majority rule; f) Single runs with majority rule. Parameters: Swarm size = 20;

Red robots = 50%oftheswarmsize; Blue robots =50%oftheswarmsize; Difficulty:

ρBlack = 52%, ρWhite = 48%; σ = 10s; g = 10s;
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• Swarm: group of 20 e-pucks, as described in 3.1.2, composed by an

equal number of initially fevering black and white robots;

• Application of the three decision rules: direct comparison, majority

rule, and weighted vote model;

• σ = 10;

The results of the experiments done in the difficult scenario are shown

in Fig. 5.9 and will be discussed in 5.3.

5.3 Overall Consideration

In the graphs reported in Fig. 5.8 and Fig. 5.9 are shown the results of the

experiments done with real robots in the, respectively, the simple and the

hard decision-making problem. The results have been shown in two forms:

in one type of graphs (Fig. 5.2.1(b),(d),(f) and Fig. 5.2.2(b),(d),(f)) the run

are plot individually, showing the trading of the number of robots favoring

the two options in every time steps; in the other graphs (Fig. 5.8(a),(c),(e)

and Fig. 5.9(a),(c),(e) are reported the boxplot relative to the overall runs

for each decision rule. In the graphs on the right, the red lines represent the

number of robots favoring the black option, while the blue lines the robots

favoring the white option.

We tested the three decision rules applied to two scenarios, a simpler

one and a more difficult one. The main difference between the two scenarios

is the distance between the qualities of the two resources: in one situation

the gap is really low (only 4%) while in the other is bigger (32%). This

factor influences the direct comparison more, that is, the decision rule that

seems to reflect differences in the behavioural dynamics the most. Indeed

the estimation of the quality in this decision rule assumes a central role.

In direct comparison, the quality is directly used to compare the two

opinions in the decision-making process. This is the main factor influencing

the switching of the opinion of the robot. A very accurate estimation of the

quality ensures a correct behaviour of the robots in the case of small gap in

terms of difference of qualities. Otherwise, the best valued opinion could be

erroneously estimated as worst than the not-best-valued one, implying the

not correct decision of the robot.

From the 5.8(a),(b) and 5.9(a),(b) is easy to see the difference in the

behaviour of this decision rule. We have done only 15 runs in real-robots

experiments, but every run ended with the swarm taking the right choice,
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both in the simple and in the difficult case. The big differences are twofold:

the consensus time and the oscillatory behaviour of the swarm.

In the simple scenario the maximum consensus time observed is close to

220s, while in the difficult scenario is higher than 800s (> 400%). The trend

of the red robots and of the blue robots is clean and rather monotonic, in the

simple scenario, where the robots favoring the black opinion is uniformly and

almost monotonically growing in all the runs. This feature is not essentially

different in the difficult scenario: before reaching the point where the swarm

is monotonically changing opinion the robots keep switching from black

fevering back to white fevering and vice-versa. This behaviour is directly

linked to the longer time to reach the consensus and is due to the over or

under estimation of the qualities, as described in the first paragraph.

Figures 5.8(c),(d) and 5.9(c),(d) show the results about the application

of the weighted voter model. This decision rule is the one that takes longer

than all the other in both the scenarios. In the first case the maximum

time needed to reach the consensus is about 700s, while in the second one

is close to 1200s. However, even incrementing the difficulty of the problem,

the increasing of the consensus time is lower than in direct comparison: the

difficult scenario takes less than 50% more in the difficult scenario (while in

direct comparison takes 400% of the time more).

The accuracy of the decision rule is quite high: in the simple scenario

all the runs exited with the right choice, while in the difficult one only one

run was erroneous. The trading of the changing robots is pretty the same

in the two scenarios: considering Figures 5.8(d) and 5.9(d), is possible to

notice that the character of the changing swarm is not so monotonic: the

oscillation is characteristic for this decision rule.

Indeed, the pool of collected information is composed in the following

way: when the situation is balanced between number of black and white

robots the probability to have, in the pool the probability to have black or

white opinions is around 50%. Since a robot randomly picks up an opinion

and blindly trust on it, it switches continuously from one opinion to another

one. The correctness of the decision rule is ensured by the fact that for a

long time the best opinion will be spread more.

In 5.8(e),(f) and 5.9(e),(f) are shown the results about the majority

rule. This is the most studied decision rule in literature and is evaluating

the overall pool of collected information: the most present one opinion is the

one that the robot will adopt in the next state. First of all we must notice

how the swarm, in the two scenarios, takes more or less the same time to

reach the consensus. This fact suggests us that this decision rule is quite

independent from the difficulty of the problem.
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Even the oscillatory behaviour of the switching robots is similar: in both

the cases the robots are “ confused ” until, more or less, the half of the overall

execution time, after that the trade becomes monotonic. It is due to the

fact that the number of robots fevering one opinion is quite higher than the

other faction.

However, the accuracy of the swarm is quite low: in both the cases there

are runs where the swarm is taking the wrong decision. Even in the simple

scenario one run is failing, while in the difficult scenario there are much more

runs where the swarm mistakes.

Overall, the majority rule is the fastest decision rule but the less accurate,

while the voter model is the slowest. From the data we have, the direct

comparison has resulted to be the most accurate since it never failed, but

we do not have enough data to ensure it. Moreover we want to recall that

the information exchanged in the direct comparison are the double than the

information exchanged in the other strategies. Is possible to see how, while

the weighted voter model and the majority rule are keeping the same trade

in both the scenarios, the direct comparison is starting to have a much

stronger oscillation when noise is introduced. It can be said also for the

consensus time: while in presence of higher level of noise, with majority rule

and with voter model the swarm takes more or less the same time to reach

the consensus, the direct comparison is taking 4 times more.

It suggests us that direct comparison is very quality-dependent and that,

if the level of noise increases this decision rule leak in integrity. Majority

rule and weighted voter model, instead, are more self-organizing and flexible

since the behaviour, even increasing the level of difficulty of the problem,

remains quite constant.



Chapter 6

Conclusions

Swarm robotics is a relatively new approach to the coordination of large

groups of simple robots aiming to achieve together a complex task. A par-

ticular sub-category of problems of swarm robotics is called collective deci-

sion making. In collective decision-making problems, all the robots of the

swarm have to agree toward the same option chosen among a set of possible

alternatives, that is usually the one that maximizes a metric of the prob-

lem. Examples of collective decision making are the subdivision of a set of

tasks among the robots of the swarm, or the selection of the best alternative

among a set of possible ones. In this thesis, we presented a self-organizing,

decentralized, general, and portable solution to the environment classifica-

tion problem, a best-of-n decision-making problem. We tackled environment

classification as a binary best-of-n decision-making problem. Furthermore,

we analysed the behaviour of the swarm by applying three different decision-

making rules (weighted voter model, majority rule, and direct comparison)

in terms of accuracy and speed of the solution. This has been done both with

physics-based simulation and with a swarm of real robots. In this Chapter,

we summarize the contributions emerged during the course of this work, we

give an overview of the obtained results, and we provide directions for future

lines of research.

6.1 Results and Contributions of the Thesis

In this thesis, we gave an empirical comparison between three different de-

cision rules applied to a decentralized swarm of autonomous robots in order

to solve the environment classification problem. The environment classifi-

cation, that is a best-of-n decision-making problem where the swarm has to
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classify the environment by the resource that is most present in it. The cor-

rect solution for the swarm is to converge on a decision for which is the most

available resource. The swarm’s behaviour can be described with the exit

probability, i.e., the accuracy of the solutions, and the consensus time, i.e.,

the time required by the swarm to reach a consensus. We studied the trends

of these variables varying the parameters of the problem: the initial number

of robots favoring the black option (i.e., the best option), the exploration

time that is directly correlated to the accuracy of the quality estimation,

and the difficulty of the problem. We showed which decision rule is better

to apply in each different situation, such as in presence of higher or lower

levels of noise, with a difficult problem or with a simpler one. Moreover

we validated the comparison between the three strategy with a real-robots

swarm.

The main contributions are the following:

• We gave a self-organizing, decentralized and portable solution to a new

problem called environment classification. Environment classification

is a scenario of the best-of-n decision-making problem. We studied it

with a binary set of alternatives;

• We made an extensive comparison of three different decision rules ap-

plied to the environment classification. We analysed the dynamics of

the swarm under a wide range of different initial conditions. We tested

the behaviour of the swarm both in simpler and in more difficult con-

ditions. We showed how the studied decision rules can tolerate high

levels of noise and maintain good performance in presence of it (i.e.,

weighted voter model) while others are completely depending on the

absence of noise (i.e., the direct comparison);

• We made the analysis for the direct comparison, a decision rule never

studied in this field. It is characterized by an heavy exchange of in-

formation and by the direct comparison of the estimated qualities in

order to select the new opinion;

• We performed extensive experiments with real robots in a real world

environment, comparing the effects of the three strategies. A com-

parison between different strategies using a real robots swarm is an

approach that aim to validate the comparison obtained with physics-

based simulations and to see which are the effects in a real-world con-

ditions.

With our work we showed the advantages of using the different strategies.

From the results emerges that the weighted voter model is the more reliable
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(i.e., good accuracy with a reasonable consensus time) decision rule in pres-

ence of high noise and difficult problems. The weighted voter model has

been showed to be a slow strategy. However the performance of the swarm

when this strategy is applied does not worsen so much with the increasing

of the difficult of the problem or of the noise. We show that the direct com-

parison is extremely influenced by the accuracy of the quality estimations,

hence by the duration of the exploration and of the problem’s difficulty.

This decision rule, that is exchanging double of the information exchanged

by the others two, is really accurate even in noisy and difficult condition.

A price to pay to have accurate solutions in difficult and noisy condition is

the extremely high time required to reach a consensus in a difficult scenario

with an high number of robots, making this decision rule not adoptable in

these conditions. The majority rule is, for every initial condition, the fastest

strategy. Moreover, the majority rule takes a time similar both in simple

and in difficult scenarios, even being of course slower for difficult problems.

However, majority rule is the less accurate one and the one more influenced

by the initial number of robots favoring the best option, but it is the fastest.

An overall result is the improvement of the performance in terms of

accuracy of all the strategy with the increasing of the swarm size. This

result is consistent with the principles of swarm robotics. However, the

consensus times with larger swarm sizes is, inevitably, higher than in case

of smaller swarm sizes. The number of communication between robots is

higher, and the robots to be “convinced” is higher.

6.2 Future Lines Of Research

Our study concerns a binary best-of-n decision-making problem. In our

scenario the floor is fully covered by cells of two colors, representing an

abstraction of two resources to be classified. The problem is extendible to

the case with n > 2 options. The analysis of a scenario with more than two

resources would require an effort in order to analyse the effects of having

an initial number of robots favoring the difference options. The space of

initial condition would grow combinatorily as a function of the initial robots

favoring the different options.

Another situation that we did not take into account is the distribution

of the resources in the environment. In our case we uniformly distributed

the resource in the environment. A question that can provide a new spark

for a future work is how the swarm could react to the studied strategy in

a scenario where the resources are distributed in a determined way on the

environment. What can happen if the resources are clustered in different
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zones of the floor? What about, for example, if all the black cells are placed

in a rounded surface in the middle of the arena?

We studied the solution for an homogeneous swarm, where each robot

acts in the same way and applies the same decision rule. A different kind of

work could be the one of compare these results with the results of a solution

with an heterogeneous swarm where the robots act in the same way but is

applying a different decision rule. For example, the combination of apply

the majority rule to the half of the swarm and the weighted voter model

to the other half, would speed-up the performance obtained by the voter

model? Or would improve the accuracy of the majority rule?
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[65] Iñaki Navarro and Fernando Mat́ıa. An introduction to swarm

robotics. ISRN Robotics, 2013, 2012.

[66] Shervin Nouyan, Alexandre Campo, and Marco Dorigo. Path for-

mation in a robot swarm – self-organized strategies to find your way

home, 2008.

[67] Shervin Nouyan, Roderich Groß, Michael Bonani, Francesco Mondada,

and Marco Dorigo. Teamwork in self-organized robot colonies. Evolu-

tionary Computation, IEEE Transactions on, 13(4):695–711, 2009.

[68] KeithJ. OHara and TuckerR. Balch. Pervasive sensor-less networks

for cooperative multi-robot tasks. In Rachid Alami, Raja Chatila,



104 BIBLIOGRAPHY

and Hajime Asama, editors, Distributed Autonomous Robotic Systems

6, pages 305–314. Springer Japan, 2007.

[69] Chris A C Parker and Hong Zhang. Cooperative decision-making

in decentralized multiple-robot systems: The best-of-n problem.

IEEE/ASME Transactions on Mechatronics, 14(2):240–251, 2009.

[70] Chris A C Parker and Hong Zhang. Biologically inspired collective

comparisons by robotic swarms. The International Journal of Robotics

Research, 30(5):524–535, 2011.

[71] Julia K. Parrish, Steven V. Viscido, and Daniel Grnbaum. Self-

organized fish schools: An examination of emergent properties. The

Biological Bulletin, 202(3):296–305, 2002.

[72] Kevin M. Passino and Thomas D. Seeley. Modeling and analysis of

nest-site selection by honeybee swarms: the speed and accuracy trade-

off. Behavioral Ecology and Sociobiology, 59(3):427–442, 2006.

[73] David Payton, Mike Daily, Regina Estowski, Mike Howard, and Craig

Lee. Pheromone robotics. Auton. Robots, 11(3):319–324, November

2001.

[74] Carlo Pinciroli, Adam Lee-Brown, and Giovanni Beltrame. Buzz:

An extensible programming language for self-organizing heterogeneous

robot swarms. IEEE Transactions on Robotics, 2015. Submitted.

[75] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne

Brutschy, Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gi-

anni Caro, Frederick Ducatelle, Mauro Birattari, Luca Maria Gam-

bardella, and Marco Dorigo. ARGoS: a modular, parallel, multi-engine

simulator for multi-robot systems. Swarm Intelligence, 6(4):271–295,

2012.

[76] Giovanni Pini, Arne Brutschy, Mauro Birattari, and Marco Dorigo.

Interference reduction through task partitioning in a robotic swarm. In

Sixth International Conference on Informatics in Control, Automation

and Robotics–ICINCO, pages 52–59, 2009.

[77] Giovanni Pini, Arne Brutschy, Marco Frison, Andrea Roli, Marco

Dorigo, and Mauro Birattari. Task partitioning in swarms of robots:

An adaptive method for strategy selection. Swarm Intelligence, 5(3-

4):283–304, 2011.



BIBLIOGRAPHY 105

[78] TonyJ. Pitcher. Functions of shoaling behaviour in teleosts. In

TonyJ. Pitcher, editor, The Behaviour of Teleost Fishes, pages 294–

337. Springer US, 1986.
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